Reconfigurable coding acoustic meta-lens based on helical metamaterials

•We propose a 3D reconfigurable binary coding meta-lens (RCML) based on helical metamaterials for acoustic waves in the air.•We suggest a set of design and reconfiguration methods for RCML, which can modify the focus with small-scale adjustment.•The RCML has accurate focus point control ability and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied acoustics Jg. 211; S. 109538
Hauptverfasser: Li, Xiang, Li, Jian, Huang, Xinjing
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.08.2023
Schlagworte:
ISSN:0003-682X, 1872-910X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •We propose a 3D reconfigurable binary coding meta-lens (RCML) based on helical metamaterials for acoustic waves in the air.•We suggest a set of design and reconfiguration methods for RCML, which can modify the focus with small-scale adjustment.•The RCML has accurate focus point control ability and noticeable amplification effect. Acoustic lenses play an important role in acoustic sensing and imaging. We propose a reconfigurable coding meta-lens (RCML)based on helical metamaterials in the air. The proposed RCML consists of many reassemblable helical meta-units and tunnel-units that have stable phase-shift difference π; these two kinds of antiphase units are called logical “1{\Prime} and “0”. By specific array arrangement, the units “1” and “0” can form RCML with different discretization particle sizes. We suggest a set of design and reconfiguration methods for RCML, which can modify the focus via small-scale adjustment. Both simulations and experiments demonstrate that the RCML can realize acoustic convergence over a wide designed frequency band with a compact volume. For low-frequency acoustic waves, the thickness of the RCML is only 1/5.7 the wavelength. Moreover, RCML exhibit accurate focus point control and great amplification effect. Our study has great potential in versatile applications, including the design of acoustic sensors, energy collection devices and imaging systems.
AbstractList •We propose a 3D reconfigurable binary coding meta-lens (RCML) based on helical metamaterials for acoustic waves in the air.•We suggest a set of design and reconfiguration methods for RCML, which can modify the focus with small-scale adjustment.•The RCML has accurate focus point control ability and noticeable amplification effect. Acoustic lenses play an important role in acoustic sensing and imaging. We propose a reconfigurable coding meta-lens (RCML)based on helical metamaterials in the air. The proposed RCML consists of many reassemblable helical meta-units and tunnel-units that have stable phase-shift difference π; these two kinds of antiphase units are called logical “1{\Prime} and “0”. By specific array arrangement, the units “1” and “0” can form RCML with different discretization particle sizes. We suggest a set of design and reconfiguration methods for RCML, which can modify the focus via small-scale adjustment. Both simulations and experiments demonstrate that the RCML can realize acoustic convergence over a wide designed frequency band with a compact volume. For low-frequency acoustic waves, the thickness of the RCML is only 1/5.7 the wavelength. Moreover, RCML exhibit accurate focus point control and great amplification effect. Our study has great potential in versatile applications, including the design of acoustic sensors, energy collection devices and imaging systems.
ArticleNumber 109538
Author Huang, Xinjing
Li, Xiang
Li, Jian
Author_xml – sequence: 1
  givenname: Xiang
  surname: Li
  fullname: Li, Xiang
– sequence: 2
  givenname: Jian
  surname: Li
  fullname: Li, Jian
– sequence: 3
  givenname: Xinjing
  surname: Huang
  fullname: Huang, Xinjing
  email: huangxinjing@tju.edu.cn
BookMark eNqFkN1KAzEQRoNUsK2-guwLbM3PJk3BC6VoFQqCKPQuzCazNWWbLUkq-PZurd5406uPmeF8MGdEBqELSMg1oxNGmbrZTGAHttunPOGUi345k0KfkSHTU17OGF0NyJBSKkql-eqCjFLa9CPlUg7J4hVtFxq_3keoWyxs53xYF8c-b4stZihbDKmoIaErulB8YOsttD-nLWSMHtp0Sc6bPvDqN8fk_fHhbf5ULl8Wz_P7ZWkF47m0FTiKlivtnOJ6xqABIUSjKqW1FLXUGmva2EpzqRyTHKieNg6krSRU2ooxUcdeG7uUIjZmF_0W4pdh1Bx0mI3502EOOsxRRw_e_gOtz5B9F3IE357G74449s99eowmWY_BovMRbTau86cqvgHjnIPN
CitedBy_id crossref_primary_10_1016_j_ijmecsci_2024_109696
crossref_primary_10_1016_j_apacoust_2025_110658
crossref_primary_10_1038_s41598_025_85800_x
crossref_primary_10_1016_j_apacoust_2024_110209
crossref_primary_10_1016_j_jsv_2025_119096
crossref_primary_10_1002_admt_202402082
crossref_primary_10_1007_s00339_023_07132_9
Cites_doi 10.1063/5.0049407
10.1103/PhysRevApplied.15.024005
10.1016/j.apacoust.2022.109050
10.1063/5.0044436
10.1016/j.jsv.2018.10.031
10.1109/JSEN.2022.3181981
10.1103/PhysRevB.76.144302
10.1016/j.jsv.2022.117514
10.1016/j.coco.2022.101342
10.1016/j.eml.2021.101481
10.1063/5.0045024
10.1088/1361-6463/ab8247
10.1016/j.ijmecsci.2022.107521
10.1038/s41598-019-50317-7
10.1016/j.ndteint.2018.09.002
10.1063/1.4971795
10.1016/j.apacoust.2022.108942
10.1103/PhysRevApplied.16.064014
10.1016/j.apacoust.2023.109221
10.1016/j.ijmecsci.2022.107339
10.1016/j.jsv.2022.116910
10.1063/1.4986472
10.1016/j.rinp.2021.104840
10.1016/j.jsv.2022.117140
10.1109/ACCESS.2021.3068319
10.1103/PhysRevApplied.16.044021
10.1002/admi.201600767
10.1002/adma.201403889
10.1088/1367-2630/ac8442
10.1103/PhysRevApplied.18.014046
10.1063/1.5120111
10.1063/5.0089288
10.1103/PhysRevApplied.17.034019
10.1038/ncomms11731
10.1002/adma.201603507
10.1103/PhysRevApplied.18.014048
10.3389/fphy.2022.923637
10.1063/5.0047131
10.1103/PhysRevApplied.15.024026
10.1109/LAWP.2009.2015899
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.apacoust.2023.109538
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1872-910X
ExternalDocumentID 10_1016_j_apacoust_2023_109538
S0003682X23003365
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
VH1
WUQ
XPP
ZMT
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c312t-c4ad0ec268dd62891afa333f6468853b588eb0fc48256d152a087fda5c45a48c3
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001044650800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0003-682X
IngestDate Sat Nov 29 06:59:12 EST 2025
Tue Nov 18 22:15:34 EST 2025
Fri Feb 23 02:35:16 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Acoustic coding meta-lens
Acoustic metamaterial
Helical structure
Reconfigurable focusing
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-c4ad0ec268dd62891afa333f6468853b588eb0fc48256d152a087fda5c45a48c3
ParticipantIDs crossref_primary_10_1016_j_apacoust_2023_109538
crossref_citationtrail_10_1016_j_apacoust_2023_109538
elsevier_sciencedirect_doi_10_1016_j_apacoust_2023_109538
PublicationCentury 2000
PublicationDate August 2023
2023-08-00
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationTitle Applied acoustics
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ma, Zhang, Du, Wang, Wu (b0100) 2022; 120
Wang, Yi, Zhu (b0025) 2023; 548
Huang, Liu, Hsu, Chiang, Tsai, Chi (b0010) 2015; 27
Zheng, Liu, Liu, Chen, An, Cao (b0160) 2022; 18
Chen, Xie, Liu (b0195) 2021; 30
Ilovitsh, Ilovitsh, Ferrara (b0205) 2019; 9
Chen, Sun, Rao, Lisevych, Fan (b0080) 2021; 16
Kim, Kim, Jeon (b0105) 2022; 529
Rocca, Haupt, Massa (b0200) 2009; 8
Chen, Zhu, Wei, Yao, Wu (b0150) 2020; 53
Jin, Wang, Khelif, Djafari-Rouhani (b0115) 2021; 15
Tian, Ge, Zhang, Xu, Lu, Jing (b0065) 2022; 18
Li, Diao, Wu, Jiang (b0070) 2022; 198
Fan X D, Zhu Y F, Liang B. Broadband convergence of acoustic energy with binary reflected phases on planar surface. Appl Phys Lett 2016; 109(24): 243501.
Han, Chen, Fan (b0085) 2021; 9
Zhu, Li, Zhang, Zhu, Zhang, Tian (b0165) 2016; 7
Tang S, Ren B, Feng Y. Broadband acoustic focusing via binary rectangular cavity/Helmholtz resonator metasurface. J Appl Phys 2021; 129(15): 155307.
Chen, Li, Yu (b0020) 2021; 49
Chiang, Quan, Peng, Sepehrirahnama, Oberst, Alù (b0090) 2021; 16
Li, Li, Huang (b0120) 2022; 22
Yan, Yao, Li (b0030) 2022; 536
Fokin, Ambati, Sun, Zhang (b0155) 2007; 76
Lu C, Yu R, Ma Q. GRIN metamaterial generalized Luneburg lens for ultra-long acoustic jet. Appl Phys Lett 2021; 118(14): 144103.
Yu, Zou, Wang (b0190) 2022; 24
YDing Y, Statharas E C, Yao K. A broadband acoustic metamaterial with impedance matching layer of gradient index. Appl Phys Lett 2017; 110(24): 241903.
Zhao, Dong, Miao, Wang, Zhang (b0145) 2022; 17
Liang, Liu, Chen, Zhu (b0175) 2019; 442
Cao W K, Wu L T, Zhang C, et al. A reflective acoustic meta-diffuser based on the coding meta-surface. J Appl Phys 2019; 126: 194503.
Lei, Wu, Huang, Wang, Huang (b0050) 2022; 200
Lei, Ren, Chen, Chen, Li, Chang (b0005) 2016; 3
Ahmed, Sabra, Erturk (b0040) 2021; 118
Xie, Tang, Cheng, Liu, Chen, Tian (b0180) 2017; 29
Hur, Jeon, Anzan-Uz-Zaman, Kim, Shah, Kim (b0075) 2022; 224
Ren, Dong, He, Chen, Fang (b0045) 2022; 229
Brizuela, Camacho, Cosarinsky, Iriarte, Cruza (b0015) 2019; 101
Sun, Zhong, Liu, Xiao, Zhao, Yan (b0055) 2022; 35
Li H H, Zheng B, Duan M S. Helmholtz-Structured Two-Dimensional Super-Diffraction Meta-Lens. Front Phys-lausanne 2022; 529.
Hu C, Weng J, Ding Y. Experimental demonstration of a three-dimensional acoustic hyperlens for super-resolution imaging. Appl Phys Lett 2021; 118(20): 203504.
Zhang C, Cao W K, Wu L T, et al. A reconfigurable active acoustic metalens. Appl Phys Lett 2021; 118: 133502.
Baena, Wang, Fu, Kabir, Yuen, Peng (b0035) 2023; 203
Cao, Zhang, Wu, Guo, Ke, Cui (b0125) 2021; 15
Sun (10.1016/j.apacoust.2023.109538_b0055) 2022; 35
Wang (10.1016/j.apacoust.2023.109538_b0025) 2023; 548
Tian (10.1016/j.apacoust.2023.109538_b0065) 2022; 18
Chen (10.1016/j.apacoust.2023.109538_b0195) 2021; 30
Lei (10.1016/j.apacoust.2023.109538_b0050) 2022; 200
Ilovitsh (10.1016/j.apacoust.2023.109538_b0205) 2019; 9
Huang (10.1016/j.apacoust.2023.109538_b0010) 2015; 27
Brizuela (10.1016/j.apacoust.2023.109538_b0015) 2019; 101
Chiang (10.1016/j.apacoust.2023.109538_b0090) 2021; 16
Yu (10.1016/j.apacoust.2023.109538_b0190) 2022; 24
Rocca (10.1016/j.apacoust.2023.109538_b0200) 2009; 8
Liang (10.1016/j.apacoust.2023.109538_b0175) 2019; 442
Xie (10.1016/j.apacoust.2023.109538_b0180) 2017; 29
10.1016/j.apacoust.2023.109538_b0170
Fokin (10.1016/j.apacoust.2023.109538_b0155) 2007; 76
10.1016/j.apacoust.2023.109538_b0130
10.1016/j.apacoust.2023.109538_b0095
Ren (10.1016/j.apacoust.2023.109538_b0045) 2022; 229
Hur (10.1016/j.apacoust.2023.109538_b0075) 2022; 224
10.1016/j.apacoust.2023.109538_b0135
Zheng (10.1016/j.apacoust.2023.109538_b0160) 2022; 18
10.1016/j.apacoust.2023.109538_b0110
Kim (10.1016/j.apacoust.2023.109538_b0105) 2022; 529
Han (10.1016/j.apacoust.2023.109538_b0085) 2021; 9
Ma (10.1016/j.apacoust.2023.109538_b0100) 2022; 120
Lei (10.1016/j.apacoust.2023.109538_b0005) 2016; 3
Li (10.1016/j.apacoust.2023.109538_b0070) 2022; 198
Chen (10.1016/j.apacoust.2023.109538_b0080) 2021; 16
Zhao (10.1016/j.apacoust.2023.109538_b0145) 2022; 17
10.1016/j.apacoust.2023.109538_b0060
Cao (10.1016/j.apacoust.2023.109538_b0125) 2021; 15
Jin (10.1016/j.apacoust.2023.109538_b0115) 2021; 15
Zhu (10.1016/j.apacoust.2023.109538_b0165) 2016; 7
Li (10.1016/j.apacoust.2023.109538_b0120) 2022; 22
Baena (10.1016/j.apacoust.2023.109538_b0035) 2023; 203
10.1016/j.apacoust.2023.109538_b0185
10.1016/j.apacoust.2023.109538_b0140
Ahmed (10.1016/j.apacoust.2023.109538_b0040) 2021; 118
Chen (10.1016/j.apacoust.2023.109538_b0020) 2021; 49
Yan (10.1016/j.apacoust.2023.109538_b0030) 2022; 536
Chen (10.1016/j.apacoust.2023.109538_b0150) 2020; 53
References_xml – volume: 536
  start-page: 117140
  year: 2022
  ident: b0030
  article-title: Propagation of elastic waves in metamaterial plates with various lattices for low-frequency vibration attenuation
  publication-title: J Sound Vib
– volume: 9
  start-page: 13961
  year: 2019
  ident: b0205
  article-title: Multiplexed ultrasound beam summation for side lobe reduction
  publication-title: Sci Rep-UK
– volume: 16
  year: 2021
  ident: b0080
  article-title: Escalated Deep-Subwavelength Acoustic Imaging with Field Enhancement Inside a Metalens
  publication-title: Phys Rev Appl
– volume: 229
  start-page: 107521
  year: 2022
  ident: b0045
  article-title: Underwater gradient metalens for broadband subwavelength focusing
  publication-title: Int J Mech Sci
– volume: 200
  start-page: 109050
  year: 2022
  ident: b0050
  article-title: Broadband directional resonant tunneling emission enhancement via acoustic anisotropic metamaterials
  publication-title: Appl Acoust
– reference: Lu C, Yu R, Ma Q. GRIN metamaterial generalized Luneburg lens for ultra-long acoustic jet. Appl Phys Lett 2021; 118(14): 144103.
– volume: 18
  year: 2022
  ident: b0160
  article-title: High-Throughput Superresolved Focal Imaging Based on a Phase-Modulated Acoustic Superoscillatory Lens
  publication-title: Phys Rev Appl
– volume: 18
  year: 2022
  ident: b0065
  article-title: Far-field subwavelength Acoustic computational imaging with a single detector
  publication-title: Phys Rev Appl
– volume: 442
  start-page: 482
  year: 2019
  end-page: 496
  ident: b0175
  article-title: Theoretical and experimental study of gradient-helicoid metamaterial
  publication-title: J Sound Vib
– volume: 15
  year: 2021
  ident: b0115
  article-title: Elastic metasurfaces for deep and robust subwavelength focusing and imaging
  publication-title: Phys Rev Appl
– volume: 29
  start-page: 1603507
  year: 2017
  ident: b0180
  article-title: Coding acoustic metasurfaces
  publication-title: Adv Mater
– volume: 101
  start-page: 1
  year: 2019
  end-page: 16
  ident: b0015
  article-title: Improving elevation resolution in phased-array inspections for NDT
  publication-title: NDT&E Int
– volume: 9
  start-page: 46061
  year: 2021
  end-page: 46067
  ident: b0085
  article-title: Broadband characterization of near-field focusing with groove-structured lens
  publication-title: IEEE Access
– volume: 224
  start-page: 107339
  year: 2022
  ident: b0075
  article-title: Subwavelength ultrasonic imaging via a harmonic resonant tunneling metalens
  publication-title: Int J Mech Sci
– volume: 120
  start-page: 121701
  year: 2022
  ident: b0100
  article-title: An underwater planar lens for broadband acoustic concentrator
  publication-title: Appl Phys Lett
– reference: YDing Y, Statharas E C, Yao K. A broadband acoustic metamaterial with impedance matching layer of gradient index. Appl Phys Lett 2017; 110(24): 241903.
– volume: 548
  start-page: 117514
  year: 2023
  ident: b0025
  article-title: Tunable underwater low-frequency sound absorption via locally resonant piezoelectric metamaterials
  publication-title: J Sound Vib
– volume: 30
  start-page: 104840
  year: 2021
  ident: b0195
  article-title: Continuous-phase-transformation acoustic metasurface
  publication-title: Results Phys
– volume: 203
  start-page: 109221
  year: 2023
  ident: b0035
  article-title: A new fabrication method of designed metamaterial based on a 3D-printed structure for underwater sound absorption applications
  publication-title: Appl Acoust
– volume: 15
  year: 2021
  ident: b0125
  article-title: Tunable acoustic metasurface for three-dimensional wave manipulations
  publication-title: Phys Rev Appl
– volume: 198
  start-page: 108942
  year: 2022
  ident: b0070
  article-title: Thickness-designable acoustic metamaterial for passive phased arrays
  publication-title: Appl Acoust
– volume: 24
  start-page: 083009
  year: 2022
  ident: b0190
  article-title: Achromatic acoustic generalized phase-reversal zone plates
  publication-title: New J Phys
– volume: 22
  start-page: 13989
  year: 2022
  end-page: 13998
  ident: b0120
  article-title: Acoustic Meta-Lens for Enhanced Sensing Consisting of Single-Helicoid Array
  publication-title: IEEE Sens J
– reference: Li H H, Zheng B, Duan M S. Helmholtz-Structured Two-Dimensional Super-Diffraction Meta-Lens. Front Phys-lausanne 2022; 529.
– volume: 118
  year: 2021
  ident: b0040
  article-title: Sound energy harvesting by leveraging a 3D-printed phononic crystal lens
  publication-title: Appl Acoust
– volume: 53
  start-page: 255501
  year: 2020
  ident: b0150
  article-title: Broadband tunable focusing lenses by acoustic coding metasurfaces
  publication-title: J Phys D Appl Phys
– volume: 17
  year: 2022
  ident: b0145
  article-title: Broadband coding metasurfaces with 2-bit manipulations
  publication-title: Phys Rev Appl
– volume: 76
  year: 2007
  ident: b0155
  article-title: Method for retrieving effective properties of locally resonant acoustic metamaterials
  publication-title: Phys Rev B
– reference: Fan X D, Zhu Y F, Liang B. Broadband convergence of acoustic energy with binary reflected phases on planar surface. Appl Phys Lett 2016; 109(24): 243501.
– volume: 35
  start-page: 101342
  year: 2022
  ident: b0055
  article-title: Enhanced metamaterial vibration for high-performance acoustic piezoelectric energy harvesting
  publication-title: Compos Commun
– volume: 16
  year: 2021
  ident: b0090
  article-title: Scalable metagrating for efficient ultrasonic focusing
  publication-title: Phys Rev Appl
– volume: 3
  start-page: 1600767
  year: 2016
  ident: b0005
  article-title: Polydopamine nanocoating for effective photothermal killing of bacteria and fungus upon near-infrared irradiation
  publication-title: Adv Mater Interfaces
– volume: 49
  start-page: 101481
  year: 2021
  ident: b0020
  article-title: A tunable gradient acoustic metamaterial for acoustic sensing
  publication-title: Extreme Mech Lett
– reference: Cao W K, Wu L T, Zhang C, et al. A reflective acoustic meta-diffuser based on the coding meta-surface. J Appl Phys 2019; 126: 194503.
– reference: Zhang C, Cao W K, Wu L T, et al. A reconfigurable active acoustic metalens. Appl Phys Lett 2021; 118: 133502.
– volume: 529
  start-page: 116910
  year: 2022
  ident: b0105
  article-title: Realization of an acoustic metalens exhibiting broadband high transmission
  publication-title: J Sound Vib
– reference: Hu C, Weng J, Ding Y. Experimental demonstration of a three-dimensional acoustic hyperlens for super-resolution imaging. Appl Phys Lett 2021; 118(20): 203504.
– volume: 8
  start-page: 437
  year: 2009
  end-page: 440
  ident: b0200
  article-title: Sidelobe reduction through element phase control in uniform subarrayed array antennas
  publication-title: IEEE Antenn Wirel PR
– reference: Tang S, Ren B, Feng Y. Broadband acoustic focusing via binary rectangular cavity/Helmholtz resonator metasurface. J Appl Phys 2021; 129(15): 155307.
– volume: 7
  year: 2016
  ident: b0165
  article-title: Implementation of dispersion-free slow acoustic wave propagation and phase engineering with helical-structured metamaterials
  publication-title: Nat Commun
– volume: 27
  start-page: 655
  year: 2015
  end-page: 661
  ident: b0010
  article-title: A multitheragnostic nanobubble system to induce blood–brain barrier disruption with magnetically guided focused ultrasound
  publication-title: Adv Mater
– ident: 10.1016/j.apacoust.2023.109538_b0140
  doi: 10.1063/5.0049407
– volume: 15
  issue: 2
  year: 2021
  ident: 10.1016/j.apacoust.2023.109538_b0115
  article-title: Elastic metasurfaces for deep and robust subwavelength focusing and imaging
  publication-title: Phys Rev Appl
  doi: 10.1103/PhysRevApplied.15.024005
– volume: 200
  start-page: 109050
  year: 2022
  ident: 10.1016/j.apacoust.2023.109538_b0050
  article-title: Broadband directional resonant tunneling emission enhancement via acoustic anisotropic metamaterials
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2022.109050
– ident: 10.1016/j.apacoust.2023.109538_b0095
  doi: 10.1063/5.0044436
– volume: 442
  start-page: 482
  year: 2019
  ident: 10.1016/j.apacoust.2023.109538_b0175
  article-title: Theoretical and experimental study of gradient-helicoid metamaterial
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2018.10.031
– volume: 22
  start-page: 13989
  issue: 14
  year: 2022
  ident: 10.1016/j.apacoust.2023.109538_b0120
  article-title: Acoustic Meta-Lens for Enhanced Sensing Consisting of Single-Helicoid Array
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2022.3181981
– volume: 76
  issue: 14
  year: 2007
  ident: 10.1016/j.apacoust.2023.109538_b0155
  article-title: Method for retrieving effective properties of locally resonant acoustic metamaterials
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.76.144302
– volume: 548
  start-page: 117514
  year: 2023
  ident: 10.1016/j.apacoust.2023.109538_b0025
  article-title: Tunable underwater low-frequency sound absorption via locally resonant piezoelectric metamaterials
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2022.117514
– volume: 35
  start-page: 101342
  year: 2022
  ident: 10.1016/j.apacoust.2023.109538_b0055
  article-title: Enhanced metamaterial vibration for high-performance acoustic piezoelectric energy harvesting
  publication-title: Compos Commun
  doi: 10.1016/j.coco.2022.101342
– volume: 49
  start-page: 101481
  year: 2021
  ident: 10.1016/j.apacoust.2023.109538_b0020
  article-title: A tunable gradient acoustic metamaterial for acoustic sensing
  publication-title: Extreme Mech Lett
  doi: 10.1016/j.eml.2021.101481
– ident: 10.1016/j.apacoust.2023.109538_b0135
  doi: 10.1063/5.0045024
– volume: 53
  start-page: 255501
  issue: 25
  year: 2020
  ident: 10.1016/j.apacoust.2023.109538_b0150
  article-title: Broadband tunable focusing lenses by acoustic coding metasurfaces
  publication-title: J Phys D Appl Phys
  doi: 10.1088/1361-6463/ab8247
– volume: 229
  start-page: 107521
  year: 2022
  ident: 10.1016/j.apacoust.2023.109538_b0045
  article-title: Underwater gradient metalens for broadband subwavelength focusing
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2022.107521
– volume: 9
  start-page: 13961
  year: 2019
  ident: 10.1016/j.apacoust.2023.109538_b0205
  article-title: Multiplexed ultrasound beam summation for side lobe reduction
  publication-title: Sci Rep-UK
  doi: 10.1038/s41598-019-50317-7
– volume: 101
  start-page: 1
  year: 2019
  ident: 10.1016/j.apacoust.2023.109538_b0015
  article-title: Improving elevation resolution in phased-array inspections for NDT
  publication-title: NDT&E Int
  doi: 10.1016/j.ndteint.2018.09.002
– ident: 10.1016/j.apacoust.2023.109538_b0185
  doi: 10.1063/1.4971795
– volume: 198
  start-page: 108942
  year: 2022
  ident: 10.1016/j.apacoust.2023.109538_b0070
  article-title: Thickness-designable acoustic metamaterial for passive phased arrays
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2022.108942
– volume: 118
  issue: 10
  year: 2021
  ident: 10.1016/j.apacoust.2023.109538_b0040
  article-title: Sound energy harvesting by leveraging a 3D-printed phononic crystal lens
  publication-title: Appl Acoust
– volume: 16
  issue: 6
  year: 2021
  ident: 10.1016/j.apacoust.2023.109538_b0090
  article-title: Scalable metagrating for efficient ultrasonic focusing
  publication-title: Phys Rev Appl
  doi: 10.1103/PhysRevApplied.16.064014
– volume: 203
  start-page: 109221
  year: 2023
  ident: 10.1016/j.apacoust.2023.109538_b0035
  article-title: A new fabrication method of designed metamaterial based on a 3D-printed structure for underwater sound absorption applications
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2023.109221
– volume: 224
  start-page: 107339
  year: 2022
  ident: 10.1016/j.apacoust.2023.109538_b0075
  article-title: Subwavelength ultrasonic imaging via a harmonic resonant tunneling metalens
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2022.107339
– volume: 529
  start-page: 116910
  year: 2022
  ident: 10.1016/j.apacoust.2023.109538_b0105
  article-title: Realization of an acoustic metalens exhibiting broadband high transmission
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2022.116910
– ident: 10.1016/j.apacoust.2023.109538_b0170
  doi: 10.1063/1.4986472
– volume: 30
  start-page: 104840
  year: 2021
  ident: 10.1016/j.apacoust.2023.109538_b0195
  article-title: Continuous-phase-transformation acoustic metasurface
  publication-title: Results Phys
  doi: 10.1016/j.rinp.2021.104840
– volume: 536
  start-page: 117140
  year: 2022
  ident: 10.1016/j.apacoust.2023.109538_b0030
  article-title: Propagation of elastic waves in metamaterial plates with various lattices for low-frequency vibration attenuation
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2022.117140
– volume: 9
  start-page: 46061
  year: 2021
  ident: 10.1016/j.apacoust.2023.109538_b0085
  article-title: Broadband characterization of near-field focusing with groove-structured lens
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3068319
– volume: 16
  issue: 4
  year: 2021
  ident: 10.1016/j.apacoust.2023.109538_b0080
  article-title: Escalated Deep-Subwavelength Acoustic Imaging with Field Enhancement Inside a Metalens
  publication-title: Phys Rev Appl
  doi: 10.1103/PhysRevApplied.16.044021
– volume: 3
  start-page: 1600767
  issue: 22
  year: 2016
  ident: 10.1016/j.apacoust.2023.109538_b0005
  article-title: Polydopamine nanocoating for effective photothermal killing of bacteria and fungus upon near-infrared irradiation
  publication-title: Adv Mater Interfaces
  doi: 10.1002/admi.201600767
– volume: 27
  start-page: 655
  issue: 4
  year: 2015
  ident: 10.1016/j.apacoust.2023.109538_b0010
  article-title: A multitheragnostic nanobubble system to induce blood–brain barrier disruption with magnetically guided focused ultrasound
  publication-title: Adv Mater
  doi: 10.1002/adma.201403889
– volume: 24
  start-page: 083009
  issue: 8
  year: 2022
  ident: 10.1016/j.apacoust.2023.109538_b0190
  article-title: Achromatic acoustic generalized phase-reversal zone plates
  publication-title: New J Phys
  doi: 10.1088/1367-2630/ac8442
– volume: 18
  issue: 1
  year: 2022
  ident: 10.1016/j.apacoust.2023.109538_b0065
  article-title: Far-field subwavelength Acoustic computational imaging with a single detector
  publication-title: Phys Rev Appl
  doi: 10.1103/PhysRevApplied.18.014046
– ident: 10.1016/j.apacoust.2023.109538_b0130
  doi: 10.1063/1.5120111
– volume: 120
  start-page: 121701
  issue: 12
  year: 2022
  ident: 10.1016/j.apacoust.2023.109538_b0100
  article-title: An underwater planar lens for broadband acoustic concentrator
  publication-title: Appl Phys Lett
  doi: 10.1063/5.0089288
– volume: 17
  issue: 3
  year: 2022
  ident: 10.1016/j.apacoust.2023.109538_b0145
  article-title: Broadband coding metasurfaces with 2-bit manipulations
  publication-title: Phys Rev Appl
  doi: 10.1103/PhysRevApplied.17.034019
– volume: 7
  issue: 1
  year: 2016
  ident: 10.1016/j.apacoust.2023.109538_b0165
  article-title: Implementation of dispersion-free slow acoustic wave propagation and phase engineering with helical-structured metamaterials
  publication-title: Nat Commun
  doi: 10.1038/ncomms11731
– volume: 29
  start-page: 1603507
  issue: 6
  year: 2017
  ident: 10.1016/j.apacoust.2023.109538_b0180
  article-title: Coding acoustic metasurfaces
  publication-title: Adv Mater
  doi: 10.1002/adma.201603507
– volume: 18
  issue: 1
  year: 2022
  ident: 10.1016/j.apacoust.2023.109538_b0160
  article-title: High-Throughput Superresolved Focal Imaging Based on a Phase-Modulated Acoustic Superoscillatory Lens
  publication-title: Phys Rev Appl
  doi: 10.1103/PhysRevApplied.18.014048
– ident: 10.1016/j.apacoust.2023.109538_b0110
  doi: 10.3389/fphy.2022.923637
– ident: 10.1016/j.apacoust.2023.109538_b0060
  doi: 10.1063/5.0047131
– volume: 15
  issue: 2
  year: 2021
  ident: 10.1016/j.apacoust.2023.109538_b0125
  article-title: Tunable acoustic metasurface for three-dimensional wave manipulations
  publication-title: Phys Rev Appl
  doi: 10.1103/PhysRevApplied.15.024026
– volume: 8
  start-page: 437
  year: 2009
  ident: 10.1016/j.apacoust.2023.109538_b0200
  article-title: Sidelobe reduction through element phase control in uniform subarrayed array antennas
  publication-title: IEEE Antenn Wirel PR
  doi: 10.1109/LAWP.2009.2015899
SSID ssj0000255
Score 2.3937347
Snippet •We propose a 3D reconfigurable binary coding meta-lens (RCML) based on helical metamaterials for acoustic waves in the air.•We suggest a set of design and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109538
SubjectTerms Acoustic coding meta-lens
Acoustic metamaterial
Helical structure
Reconfigurable focusing
Title Reconfigurable coding acoustic meta-lens based on helical metamaterials
URI https://dx.doi.org/10.1016/j.apacoust.2023.109538
Volume 211
WOSCitedRecordID wos001044650800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-910X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000255
  issn: 0003-682X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFB50q6APRati1co8-Cap2bll8lik9kIpglXyFiYzk7pLyZa9SH--Z27ZrBaqiC8hTDiZ3fMdznwzOReE3tlcSMXHNGPtuHEpOWVWqjzPuChLw41tiY_N-XZWnJ_Lqio_x0aXC99OoOg6eXNTXv9XqGEMwHaps38Bd_9SGIB7AB2uADtc_wh4t6Hs2snlau6zovTMp62A4_N9u1zLaJXBUrN47xYw4z4WfLdXHir3CAhs-JFD1pqoanpJz8PPfCxABSZ2uTl0OrC641U8k64m3TStlPGggdA-zC2efqUMmHW4UfCoNBPSt0SH9SQ4UVkQcKJ5NfSyJPjU3zx2ODyY7gM18P9h303tilzxUPXll2rYX3wFHZgPtk45pYLfR1uk4KUcoa2Dk8PqdL0ME85Tu0QnMEgPv32225nJgG1cPEHbcZuADwK8T9E92-2gx4PikTvooQ_e1Ytn6GgTchwgxwkt3EOOPeR41uEIOd6A_Dn6-unw4uNxFhtkZJqOyTLTTJncaiKkMQJ2zmPVKkppK5iQQMMaLqVt8lYzCcTWAFNTuSxao7hmXDGp6Qs06madfYkwYUXODWXuOy4ThDSg3MZyp-OWqYLtIp6UU-tYPd41MbmqU5jgtE5KrZ1S66DUXfShl7sO9VPulCiT7uvIAgO7q8Fk7pB99Q-yr9GjtdW_QaPlfGX30AP9YzlZzN9G6_oJRq2DyA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconfigurable+coding+acoustic+meta-lens+based+on+helical+metamaterials&rft.jtitle=Applied+acoustics&rft.au=Li%2C+Xiang&rft.au=Li%2C+Jian&rft.au=Huang%2C+Xinjing&rft.date=2023-08-01&rft.pub=Elsevier+Ltd&rft.issn=0003-682X&rft.eissn=1872-910X&rft.volume=211&rft_id=info:doi/10.1016%2Fj.apacoust.2023.109538&rft.externalDocID=S0003682X23003365
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-682X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-682X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-682X&client=summon