Neuroevolution reinforcement learning for multi-echelon inventory optimization with delivery options and uncertain discount
The advanced information technology has enabled supply chain to make centralized optimal decision, allowing to make a global optimal solution. However, dealing with uncertainty is important in inventory management. Besides demand and supply uncertainties, supplier discounts also often arise unexpect...
Saved in:
| Published in: | Engineering applications of artificial intelligence Vol. 134; p. 108670 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.08.2024
|
| Subjects: | |
| ISSN: | 0952-1976, 1873-6769 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The advanced information technology has enabled supply chain to make centralized optimal decision, allowing to make a global optimal solution. However, dealing with uncertainty is important in inventory management. Besides demand and supply uncertainties, supplier discounts also often arise unexpectedly. Further, suppliers or third-parties typically offer various delivery options in which trade-off occurs between cost and lead time. Thus, this study introduces new problem namely Multi-Echelon Inventory Optimization with Delivery Options and Uncertain Discount (MEIO-DO-UD). As a solution, Neuroevolution Reinforcement Learning (NERL) framework is developed for minimizing total system cost. The environment is modeled via System Dynamics (SD) and actor is presented by integration of Artificial Neural Network and Evolutionary Algorithm (EA), creating an effective decision-making model under dynamic uncertainty. The experimental study has been conducted where two different supply chain networks are given namely serial and divergence. Three EA algorithms are compared namely Differential Evolution (DE), Memetic Algorithm (MA), and Evolution Strategy (ES). Furthermore, NERL is also compared with the EA-optimized classical continuous review model namely (s,Q). The result shows that regardless what EA type is used, the proposed NERL always outperforms EA-optimized (s,Q) model. The more complex the problem, the further improvement can be made i.e. cost reduction up to 58%, followed by the fill rate improvement. The result also shows that NERL can avoid overfitting. Managerial implications are highlighted where NERL provides the more stable inventory level among all supply chain partners and bull-whip effect can be damped. |
|---|---|
| AbstractList | The advanced information technology has enabled supply chain to make centralized optimal decision, allowing to make a global optimal solution. However, dealing with uncertainty is important in inventory management. Besides demand and supply uncertainties, supplier discounts also often arise unexpectedly. Further, suppliers or third-parties typically offer various delivery options in which trade-off occurs between cost and lead time. Thus, this study introduces new problem namely Multi-Echelon Inventory Optimization with Delivery Options and Uncertain Discount (MEIO-DO-UD). As a solution, Neuroevolution Reinforcement Learning (NERL) framework is developed for minimizing total system cost. The environment is modeled via System Dynamics (SD) and actor is presented by integration of Artificial Neural Network and Evolutionary Algorithm (EA), creating an effective decision-making model under dynamic uncertainty. The experimental study has been conducted where two different supply chain networks are given namely serial and divergence. Three EA algorithms are compared namely Differential Evolution (DE), Memetic Algorithm (MA), and Evolution Strategy (ES). Furthermore, NERL is also compared with the EA-optimized classical continuous review model namely (s,Q). The result shows that regardless what EA type is used, the proposed NERL always outperforms EA-optimized (s,Q) model. The more complex the problem, the further improvement can be made i.e. cost reduction up to 58%, followed by the fill rate improvement. The result also shows that NERL can avoid overfitting. Managerial implications are highlighted where NERL provides the more stable inventory level among all supply chain partners and bull-whip effect can be damped. |
| ArticleNumber | 108670 |
| Author | Chou, Shuo-Yan Rizqi, Zakka Ugih |
| Author_xml | – sequence: 1 givenname: Zakka Ugih orcidid: 0000-0003-2986-9503 surname: Rizqi fullname: Rizqi, Zakka Ugih email: ugihzakka@gmail.com organization: Department of Industrial Management, National Taiwan University of Science and Technology, No. 43, Keelung Rd., Taipei, 10607, Taiwan – sequence: 2 givenname: Shuo-Yan surname: Chou fullname: Chou, Shuo-Yan organization: Department of Industrial Management, National Taiwan University of Science and Technology, No. 43, Keelung Rd., Taipei, 10607, Taiwan |
| BookMark | eNqFkNtKAzEQhoMo2FZfQfICW5M9ZDfghVI8QdEbvQ5pMttO2SYlm61UX97twRtvejXwz3zDzDck5847IOSGszFnXNwux-Dmer3WOE5ZmvdhJUp2Rga8KrNElEKekwGTRZpwWYpLMmzbJWMsq3IxID9v0AUPG990Eb2jAdDVPhhYgYu0AR0cujntI7rqmogJmAU0_SC6TT_hw5b6dcQVfus9_4VxQS00uIFjy7uWamdp5wyEqNFRi63xnYtX5KLWTQvXxzoin0-PH5OXZPr-_Dp5mCYm42lMZjlktTa5BajzoqhyWTJbZdJUtWQ8s2xW8JlMM8t1bmbcGiHKIueFTIXlVppsRO4Oe03wbRugVgbj_twYNDaKM7UTqZbqT6TaiVQHkT0u_uHrgCsdtqfB-wMI_XMbhKBag9BrsBjARGU9nlrxC4G2mMU |
| CitedBy_id | crossref_primary_10_1007_s10479_024_06342_5 crossref_primary_10_1080_00207543_2025_2507795 crossref_primary_10_1016_j_asoc_2025_113141 crossref_primary_10_1007_s10696_025_09626_5 crossref_primary_10_1016_j_sca_2025_100154 |
| Cites_doi | 10.1287/msom.2020.0939 10.1016/j.nucengdes.2023.112423 10.1007/s00170-012-4195-z 10.1007/s11740-020-01000-8 10.1016/j.sca.2023.100024 10.1016/j.apm.2023.10.039 10.3390/math8010069 10.33422/EJEST.2019.09.38 10.1016/j.ijforecast.2017.11.004 10.1063/1.4985449 10.1016/j.ejor.2021.07.016 10.3390/math9070747 10.1016/j.ijpe.2016.08.009 10.1287/opre.38.6.947 10.1007/s13369-012-0360-9 10.2139/ssrn.4663662 10.1016/j.jalgor.2009.04.002 10.2139/ssrn.4227665 10.1109/TEM.2018.2839616 10.1016/j.ifacol.2022.09.609 10.1080/00207543.2011.574503 10.1287/msom.2021.1064 10.1007/s11128-023-03876-8 10.1007/s00521-020-04832-8 10.1109/CAC48633.2019.8997498 10.24002/ijieem.v1i2.3410 10.1016/j.patrec.2023.04.008 10.1007/s00521-020-05131-y 10.1016/j.eswa.2017.08.046 10.52162/3.2021110 10.1007/s10479-023-05734-3 10.1016/j.omega.2010.09.005 10.3390/app112110374 10.1007/s11740-020-00986-5 10.1016/j.ijpe.2023.109088 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.engappai.2024.108670 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISSN | 1873-6769 |
| ExternalDocumentID | 10_1016_j_engappai_2024_108670 S0952197624008285 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABMAC ABXDB ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS WUQ ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c312t-b4e3fac4deef45584970d839c8f9013d0b51b923d1a4cb1dc6675415926d1d9c3 |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001247357300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0952-1976 |
| IngestDate | Sat Nov 29 03:41:18 EST 2025 Tue Nov 18 21:07:22 EST 2025 Tue Jun 18 08:50:47 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Supply chain Simulation Multi-echelon inventory Optimization Reinforcement learning |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c312t-b4e3fac4deef45584970d839c8f9013d0b51b923d1a4cb1dc6675415926d1d9c3 |
| ORCID | 0000-0003-2986-9503 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_engappai_2024_108670 crossref_primary_10_1016_j_engappai_2024_108670 elsevier_sciencedirect_doi_10_1016_j_engappai_2024_108670 |
| PublicationCentury | 2000 |
| PublicationDate | August 2024 2024-08-00 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 08 year: 2024 text: August 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering applications of artificial intelligence |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Acampora, Chiatto, Vitiello (bib2) 2023 Gallego‐garcía, Gallego‐garcía, García‐garcía (bib12a) 2021 Harris (bib17) 1990 Patriarca, Di Gravio, Costantino, Tronci (bib26) 2020 Zhu, Yang, Ma, Gao, Chen (bib46) 2022 Kaynov, van Knippenberg, Menkovski, van Breemen, van Jaarsveld (bib47) 2024 Kara, Dogan (bib19) 2018 Slowik, Kwasnicka (bib37) 2020 Rizqi, Khairunisa, Maulani (bib48) 2021; 3 Anyibuofu (bib4) 2014 Prestwich, Tarim, Rossi, Hnich (bib29) 2012 Baruah, Chinnam, Korostelev, Dalkiran (bib7) 2016 Wu, de Carvalho Servia, Mowbray (bib42) 2023 Gijsbrechts, Boute, Van Mieghem, Zhang (bib15) 2022 Oroojlooyjadid, Nazari, Snyder, Takáč (bib24) 2022 Zhou, Guo, Yu, Zhang (bib45) 2024 Baioletti, Di Bari, Milani, Poggioni (bib5) 2020 Firoozi, Tang, Ariafar, Ariffin (bib11) 2013 Zhang, Gupta, Chen, Ong (bib44) 2022 Panchal, Panchal (bib25) 2014; 3 Prak, Teunter (bib28) 2019 Liu, Hu, Peng, Yang (bib22) 2022 Rizqi, Khairunisa (bib33) 2020 Seyedan, Mafakheri, Wang (bib34) 2023 Barmi, Ebrahimi, Feldt (bib6) 2011 Radaideh, Du, Seurin, Seyler, Gu, Wang, Shirvan (bib30) 2023 Kosasih, Brintrup (bib20) 2022 Mahapatra, Soni, Mahapatra, Sarkar, Majumder (bib23) 2021 Rizqi (bib32) 2023 Almahamid, Grolinger (bib3) 2021 AbuZekry (bib1) 2019 Peng, Zhang, Feng, Zhang, Wu, Su (bib27) 2019 Heidrich-Meisner, Igel (bib18) 2009 Zarandi, Moosavi, Zarinbal (bib43) 2013 Kristiyani, Daryanto (bib21) 2019 Dittrich, Fohlmeister (bib10) 2021 Rekabi, Goodarzian, Garjan, Zare, Muñuzuri, Ali (bib31) 2023 Wang, Wang, Liang, Zhao, Huang, Xu, Dai, Miao (bib41) 2022 Chandraju, Raviprasad, Chidan Kumar (bib9) 2012; 2 Guo, Choi, Shen, Jung (bib16) 2019 Geevers, van Hezewijk, Mes (bib14) 2022 García-Ródenas, Linares, López-Gómez (bib13) 2021 Singh, Verma (bib36) 2018 Friedrich, Maziero (bib12) 2023 Shofa, Widyarto (bib35) 2017 Uzair, Jamil (bib40) 2020 Tunc, Kilic, Tarim, Eksioglu (bib39) 2011 Storn (bib38) 1996 Boute, Gijsbrechts, van Jaarsveld, Vanvuchelen (bib8) 2022 Wang (10.1016/j.engappai.2024.108670_bib41) 2022 Tunc (10.1016/j.engappai.2024.108670_bib39) 2011 AbuZekry (10.1016/j.engappai.2024.108670_bib1) 2019 Acampora (10.1016/j.engappai.2024.108670_bib2) 2023 García-Ródenas (10.1016/j.engappai.2024.108670_bib13) 2021 Radaideh (10.1016/j.engappai.2024.108670_bib30) 2023 Prak (10.1016/j.engappai.2024.108670_bib28) 2019 Prestwich (10.1016/j.engappai.2024.108670_bib29) 2012 Barmi (10.1016/j.engappai.2024.108670_bib6) 2011 Rizqi (10.1016/j.engappai.2024.108670_bib33) 2020 Zhou (10.1016/j.engappai.2024.108670_bib45) 2024 Chandraju (10.1016/j.engappai.2024.108670_bib9) 2012; 2 Friedrich (10.1016/j.engappai.2024.108670_bib12) 2023 Panchal (10.1016/j.engappai.2024.108670_bib25) 2014; 3 Kaynov (10.1016/j.engappai.2024.108670_bib47) 2024 Kosasih (10.1016/j.engappai.2024.108670_bib20) 2022 Almahamid (10.1016/j.engappai.2024.108670_bib3) 2021 Boute (10.1016/j.engappai.2024.108670_bib8) 2022 Gijsbrechts (10.1016/j.engappai.2024.108670_bib15) 2022 Storn (10.1016/j.engappai.2024.108670_bib38) 1996 Singh (10.1016/j.engappai.2024.108670_bib36) 2018 Seyedan (10.1016/j.engappai.2024.108670_bib34) 2023 Oroojlooyjadid (10.1016/j.engappai.2024.108670_bib24) 2022 Rizqi (10.1016/j.engappai.2024.108670_bib48) 2021; 3 Zhu (10.1016/j.engappai.2024.108670_bib46) 2022 Harris (10.1016/j.engappai.2024.108670_bib17) 1990 Shofa (10.1016/j.engappai.2024.108670_bib35) 2017 Slowik (10.1016/j.engappai.2024.108670_bib37) 2020 Dittrich (10.1016/j.engappai.2024.108670_bib10) 2021 Zarandi (10.1016/j.engappai.2024.108670_bib43) 2013 Mahapatra (10.1016/j.engappai.2024.108670_bib23) 2021 Kristiyani (10.1016/j.engappai.2024.108670_bib21) 2019 Guo (10.1016/j.engappai.2024.108670_bib16) 2019 Heidrich-Meisner (10.1016/j.engappai.2024.108670_bib18) 2009 Firoozi (10.1016/j.engappai.2024.108670_bib11) 2013 Rekabi (10.1016/j.engappai.2024.108670_bib31) 2023 Gallego‐garcía (10.1016/j.engappai.2024.108670_bib12a) 2021 Wu (10.1016/j.engappai.2024.108670_bib42) 2023 Baruah (10.1016/j.engappai.2024.108670_bib7) 2016 Liu (10.1016/j.engappai.2024.108670_bib22) 2022 Patriarca (10.1016/j.engappai.2024.108670_bib26) 2020 Geevers (10.1016/j.engappai.2024.108670_bib14) 2022 Zhang (10.1016/j.engappai.2024.108670_bib44) 2022 Kara (10.1016/j.engappai.2024.108670_bib19) 2018 Peng (10.1016/j.engappai.2024.108670_bib27) 2019 Anyibuofu (10.1016/j.engappai.2024.108670_bib4) 2014 Uzair (10.1016/j.engappai.2024.108670_bib40) 2020 Baioletti (10.1016/j.engappai.2024.108670_bib5) 2020 Rizqi (10.1016/j.engappai.2024.108670_bib32) 2023 |
| References_xml | – year: 2009 ident: bib18 article-title: Neuroevolution strategies for episodic reinforcement learning publication-title: J. Algorithm – year: 2021 ident: bib23 article-title: A continuous review production-inventory system with a variable preparation time in a fuzzy random environment publication-title: Mathematics – year: 2022 ident: bib46 article-title: Optimal strategy for a periodic review inventory system with discounted variable cost and finite ordering capacity publication-title: Oper. Res. – year: 2014 ident: bib4 article-title: Inventory Management Practices in Manufacturing Firms – year: 2013 ident: bib11 article-title: An optimization approach for A joint location inventory model considering quantity discount policy publication-title: Arabian J. Sci. Eng. – year: 2022 ident: bib20 article-title: Reinforcement learning provides a flexible approach for realistic supply chain safety stock optimisation publication-title: IFAC-PapersOnLine – year: 2023 ident: bib34 article-title: Order-up-to-level inventory optimization model using time-series demand forecasting with ensemble deep learning publication-title: Supply Chain Analytics – year: 2013 ident: bib43 article-title: A fuzzy reinforcement learning algorithm for inventory control in supply chains publication-title: Int. J. Adv. Manuf. Technol. – year: 2011 ident: bib39 article-title: The cost of using stationary inventory policies when demand is non-stationary publication-title: Omega – year: 2019 ident: bib21 article-title: An inventory model considering all unit discount and carbon emissions publication-title: International Journal of Industrial Engineering and Engineering Management – year: 2019 ident: bib28 article-title: A general method for addressing forecasting uncertainty in inventory models publication-title: Int. J. Forecast. – year: 2023 ident: bib2 article-title: Training circuit-based quantum classifiers through memetic algorithms publication-title: Pattern Recogn. Lett. – year: 2020 ident: bib5 article-title: Differential evolution for neural networks optimization publication-title: Mathematics – year: 2020 ident: bib33 article-title: Integration of deterministic and probabilistic inventory methods to optimize the balance between overstock and stockout publication-title: IOP Conference Series: Materials Science and Engineering – year: 2023 ident: bib12 article-title: Evolution strategies: application in hybrid quantum-classical neural networks publication-title: Quant. Inf. Process. – year: 2019 ident: bib1 article-title: Comparative study of NeuroEvolution algorithms in reinforcement learning for self-driving cars publication-title: European Journal of Engineering Science and Technology – year: 2012 ident: bib29 article-title: A neuroevolutionary approach to stochastic inventory control in multi-echelon systems publication-title: Int. J. Prod. Res. – year: 2023 ident: bib42 article-title: Distributional reinforcement learning for inventory management in multi-echelon supply chains publication-title: Digital Chemical Engineering – volume: 3 start-page: 455 year: 2014 end-page: 464 ident: bib25 article-title: Review on methods of selecting number of hidden nodes in artificial neural network publication-title: Int. J. Comput. Sci. Mobile Comput. – year: 2023 ident: bib31 article-title: A data-driven mathematical model to design a responsive-sustainable pharmaceutical supply chain network: a Benders decomposition approach publication-title: Ann. Oper. Res. – year: 2021 ident: bib12a article-title: An optimized system to reduce procurement risks and stock‐outs: a simulation case study for a component manufacturer publication-title: Appl. Sci. – year: 2021 ident: bib13 article-title: Memetic algorithms for training feedforward neural networks: an approach based on gravitational search algorithm publication-title: Neural Comput. Appl. – year: 2019 ident: bib27 article-title: Deep reinforcement learning approach for capacitated supply chain optimization under demand uncertainty publication-title: Proceedings - 2019 Chinese Automation Congress (CAC) – volume: 2 start-page: 1 year: 2012 end-page: 5 ident: bib9 article-title: Implementation of system application product (SAP) materials management (MM-Module) for material requirement planning (MRP) in sugar industry publication-title: Int. J. Sci. Res. Publ. – year: 2019 ident: bib16 article-title: Inventory management in mass customization operations: a review publication-title: IEEE Trans. Eng. Manag. – year: 1990 ident: bib17 article-title: How many parts to make at once publication-title: Oper. Res. – year: 2018 ident: bib36 article-title: Inventory management in supply chain publication-title: Materials Today: Proceedings – year: 2022 ident: bib44 article-title: Multitask neuroevolution for reinforcement learning with long and short episodes publication-title: IEEE Transactions on Cognitive and Developmental Systems – year: 2022 ident: bib15 article-title: Can deep reinforcement learning improve inventory management? Performance on lost sales, dual-sourcing, and multi-echelon problems publication-title: Manuf. Serv. Oper. Manag. – volume: 3 start-page: 36 year: 2021 end-page: 42 ident: bib48 article-title: Financial assessment on designing inventory policy by considering demand, lead time, and defective product uncertainties: A monte carlo simulation publication-title: Indonesian Scholars Scientific Summit Taiwan Proceeding – year: 2018 ident: bib19 article-title: Reinforcement learning approaches for specifying ordering policies of perishable inventory systems publication-title: Expert Syst. Appl. – year: 2024 ident: bib45 article-title: Optimization of multi-echelon spare parts inventory systems using multi-agent deep reinforcement learning publication-title: Appl. Math. Model. – year: 2021 ident: bib10 article-title: A deep q-learning-based optimization of the inventory control in a linear process chain publication-title: J. Inst. Eng. Prod. – year: 2022 ident: bib24 article-title: A deep Q-network for the beer game: deep reinforcement learning for inventory optimization publication-title: Manuf. Serv. Oper. Manag. – year: 2020 ident: bib26 article-title: EOQ inventory model for perishable products under uncertainty publication-title: J. Inst. Eng. Prod. – year: 2024 ident: bib47 article-title: Deep reinforcement learning for one-warehouse multi-retailer inventory management publication-title: Int. J. Prod. Econ – year: 2011 ident: bib6 article-title: Evolution strategies as a scalable alternative to reinforcement learning tim publication-title: 2011 IEEE Fourth International Conference on Software Testing, Verification and Validation Workshops – year: 2022 ident: bib8 article-title: Deep reinforcement learning for inventory control: a roadmap publication-title: Eur. J. Oper. Res. – year: 2023 ident: bib30 article-title: NEORL: NeuroEvolution optimization with reinforcement learning—applications to carbon-free energy systems publication-title: Nucl. Eng. Des. – year: 2017 ident: bib35 article-title: Effective production control in an automotive industry: MRP vs. demand-driven MRP publication-title: AIP Conference Proceedings – year: 2022 ident: bib22 article-title: Multi-agent deep reinforcement learning for multi-echelon inventory management publication-title: SSRN Electron. J. – year: 2022 ident: bib41 article-title: Deep reinforcement learning: a survey publication-title: IEEE Transact. Neural Networks Learn. Syst. – year: 2020 ident: bib37 article-title: Evolutionary algorithms and their applications to engineering problems publication-title: Neural Comput. Appl. – year: 1996 ident: bib38 article-title: On the usage of differential evolution for function optimization publication-title: Biennial Conference of the North American Fuzzy Information Processing Society - NAFIPS – year: 2020 ident: bib40 article-title: Effects of hidden layers on the efficiency of neural networks publication-title: Proceedings - 2020 23rd IEEE International Multi-Topic Conference, INMIC 2020 – year: 2016 ident: bib7 article-title: Optimal soft-order revisions under demand and supply uncertainty and upstream information publication-title: Int. J. Prod. Econ. – year: 2022 ident: bib14 article-title: Multi-echelon inventory optimization using deep reinforcement learning publication-title: SSRN Electron. J. – year: 2023 ident: bib32 article-title: Capacitated continuous review inventory with partial backorder under time-dependent demand and fuzzy supply: Bi-objective optimization via simulation model publication-title: SSRN Electron. J. – year: 2021 ident: bib3 article-title: Reinforcement learning algorithms: an overview and classification publication-title: Canadian Conference on Electrical and Computer Engineering – year: 2022 ident: 10.1016/j.engappai.2024.108670_bib24 article-title: A deep Q-network for the beer game: deep reinforcement learning for inventory optimization publication-title: Manuf. Serv. Oper. Manag. doi: 10.1287/msom.2020.0939 – year: 2023 ident: 10.1016/j.engappai.2024.108670_bib30 article-title: NEORL: NeuroEvolution optimization with reinforcement learning—applications to carbon-free energy systems publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2023.112423 – year: 2013 ident: 10.1016/j.engappai.2024.108670_bib43 article-title: A fuzzy reinforcement learning algorithm for inventory control in supply chains publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-012-4195-z – year: 2021 ident: 10.1016/j.engappai.2024.108670_bib10 article-title: A deep q-learning-based optimization of the inventory control in a linear process chain publication-title: J. Inst. Eng. Prod. doi: 10.1007/s11740-020-01000-8 – year: 2023 ident: 10.1016/j.engappai.2024.108670_bib34 article-title: Order-up-to-level inventory optimization model using time-series demand forecasting with ensemble deep learning publication-title: Supply Chain Analytics doi: 10.1016/j.sca.2023.100024 – year: 2014 ident: 10.1016/j.engappai.2024.108670_bib4 – year: 2022 ident: 10.1016/j.engappai.2024.108670_bib41 article-title: Deep reinforcement learning: a survey publication-title: IEEE Transact. Neural Networks Learn. Syst. – year: 2022 ident: 10.1016/j.engappai.2024.108670_bib46 article-title: Optimal strategy for a periodic review inventory system with discounted variable cost and finite ordering capacity publication-title: Oper. Res. – year: 2024 ident: 10.1016/j.engappai.2024.108670_bib45 article-title: Optimization of multi-echelon spare parts inventory systems using multi-agent deep reinforcement learning publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2023.10.039 – year: 2020 ident: 10.1016/j.engappai.2024.108670_bib5 article-title: Differential evolution for neural networks optimization publication-title: Mathematics doi: 10.3390/math8010069 – year: 2019 ident: 10.1016/j.engappai.2024.108670_bib1 article-title: Comparative study of NeuroEvolution algorithms in reinforcement learning for self-driving cars publication-title: European Journal of Engineering Science and Technology doi: 10.33422/EJEST.2019.09.38 – year: 2019 ident: 10.1016/j.engappai.2024.108670_bib28 article-title: A general method for addressing forecasting uncertainty in inventory models publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2017.11.004 – year: 2017 ident: 10.1016/j.engappai.2024.108670_bib35 article-title: Effective production control in an automotive industry: MRP vs. demand-driven MRP doi: 10.1063/1.4985449 – year: 2022 ident: 10.1016/j.engappai.2024.108670_bib8 article-title: Deep reinforcement learning for inventory control: a roadmap publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2021.07.016 – year: 2021 ident: 10.1016/j.engappai.2024.108670_bib23 article-title: A continuous review production-inventory system with a variable preparation time in a fuzzy random environment publication-title: Mathematics doi: 10.3390/math9070747 – year: 1996 ident: 10.1016/j.engappai.2024.108670_bib38 article-title: On the usage of differential evolution for function optimization – year: 2016 ident: 10.1016/j.engappai.2024.108670_bib7 article-title: Optimal soft-order revisions under demand and supply uncertainty and upstream information publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2016.08.009 – year: 1990 ident: 10.1016/j.engappai.2024.108670_bib17 article-title: How many parts to make at once publication-title: Oper. Res. doi: 10.1287/opre.38.6.947 – year: 2013 ident: 10.1016/j.engappai.2024.108670_bib11 article-title: An optimization approach for A joint location inventory model considering quantity discount policy publication-title: Arabian J. Sci. Eng. doi: 10.1007/s13369-012-0360-9 – year: 2023 ident: 10.1016/j.engappai.2024.108670_bib32 article-title: Capacitated continuous review inventory with partial backorder under time-dependent demand and fuzzy supply: Bi-objective optimization via simulation model publication-title: SSRN Electron. J. doi: 10.2139/ssrn.4663662 – year: 2009 ident: 10.1016/j.engappai.2024.108670_bib18 article-title: Neuroevolution strategies for episodic reinforcement learning publication-title: J. Algorithm doi: 10.1016/j.jalgor.2009.04.002 – year: 2022 ident: 10.1016/j.engappai.2024.108670_bib14 article-title: Multi-echelon inventory optimization using deep reinforcement learning publication-title: SSRN Electron. J. doi: 10.2139/ssrn.4227665 – year: 2011 ident: 10.1016/j.engappai.2024.108670_bib6 article-title: Evolution strategies as a scalable alternative to reinforcement learning tim – year: 2019 ident: 10.1016/j.engappai.2024.108670_bib16 article-title: Inventory management in mass customization operations: a review publication-title: IEEE Trans. Eng. Manag. doi: 10.1109/TEM.2018.2839616 – year: 2022 ident: 10.1016/j.engappai.2024.108670_bib20 article-title: Reinforcement learning provides a flexible approach for realistic supply chain safety stock optimisation publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2022.09.609 – year: 2012 ident: 10.1016/j.engappai.2024.108670_bib29 article-title: A neuroevolutionary approach to stochastic inventory control in multi-echelon systems publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2011.574503 – year: 2022 ident: 10.1016/j.engappai.2024.108670_bib15 article-title: Can deep reinforcement learning improve inventory management? Performance on lost sales, dual-sourcing, and multi-echelon problems publication-title: Manuf. Serv. Oper. Manag. doi: 10.1287/msom.2021.1064 – year: 2023 ident: 10.1016/j.engappai.2024.108670_bib12 article-title: Evolution strategies: application in hybrid quantum-classical neural networks publication-title: Quant. Inf. Process. doi: 10.1007/s11128-023-03876-8 – year: 2020 ident: 10.1016/j.engappai.2024.108670_bib37 article-title: Evolutionary algorithms and their applications to engineering problems publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-04832-8 – volume: 2 start-page: 1 issue: 9 year: 2012 ident: 10.1016/j.engappai.2024.108670_bib9 article-title: Implementation of system application product (SAP) materials management (MM-Module) for material requirement planning (MRP) in sugar industry publication-title: Int. J. Sci. Res. Publ. – year: 2023 ident: 10.1016/j.engappai.2024.108670_bib42 article-title: Distributional reinforcement learning for inventory management in multi-echelon supply chains publication-title: Digital Chemical Engineering – year: 2019 ident: 10.1016/j.engappai.2024.108670_bib27 article-title: Deep reinforcement learning approach for capacitated supply chain optimization under demand uncertainty doi: 10.1109/CAC48633.2019.8997498 – year: 2019 ident: 10.1016/j.engappai.2024.108670_bib21 article-title: An inventory model considering all unit discount and carbon emissions publication-title: International Journal of Industrial Engineering and Engineering Management doi: 10.24002/ijieem.v1i2.3410 – year: 2023 ident: 10.1016/j.engappai.2024.108670_bib2 article-title: Training circuit-based quantum classifiers through memetic algorithms publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2023.04.008 – year: 2021 ident: 10.1016/j.engappai.2024.108670_bib13 article-title: Memetic algorithms for training feedforward neural networks: an approach based on gravitational search algorithm publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05131-y – year: 2018 ident: 10.1016/j.engappai.2024.108670_bib19 article-title: Reinforcement learning approaches for specifying ordering policies of perishable inventory systems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.08.046 – volume: 3 start-page: 455 issue: 11 year: 2014 ident: 10.1016/j.engappai.2024.108670_bib25 article-title: Review on methods of selecting number of hidden nodes in artificial neural network publication-title: Int. J. Comput. Sci. Mobile Comput. – year: 2022 ident: 10.1016/j.engappai.2024.108670_bib44 article-title: Multitask neuroevolution for reinforcement learning with long and short episodes publication-title: IEEE Transactions on Cognitive and Developmental Systems – year: 2021 ident: 10.1016/j.engappai.2024.108670_bib3 article-title: Reinforcement learning algorithms: an overview and classification – volume: 3 start-page: 36 year: 2021 ident: 10.1016/j.engappai.2024.108670_bib48 article-title: Financial assessment on designing inventory policy by considering demand, lead time, and defective product uncertainties: A monte carlo simulation publication-title: Indonesian Scholars Scientific Summit Taiwan Proceeding doi: 10.52162/3.2021110 – year: 2020 ident: 10.1016/j.engappai.2024.108670_bib40 article-title: Effects of hidden layers on the efficiency of neural networks – year: 2023 ident: 10.1016/j.engappai.2024.108670_bib31 article-title: A data-driven mathematical model to design a responsive-sustainable pharmaceutical supply chain network: a Benders decomposition approach publication-title: Ann. Oper. Res. doi: 10.1007/s10479-023-05734-3 – year: 2020 ident: 10.1016/j.engappai.2024.108670_bib33 article-title: Integration of deterministic and probabilistic inventory methods to optimize the balance between overstock and stockout – year: 2011 ident: 10.1016/j.engappai.2024.108670_bib39 article-title: The cost of using stationary inventory policies when demand is non-stationary publication-title: Omega doi: 10.1016/j.omega.2010.09.005 – year: 2021 ident: 10.1016/j.engappai.2024.108670_bib12a article-title: An optimized system to reduce procurement risks and stock‐outs: a simulation case study for a component manufacturer publication-title: Appl. Sci. doi: 10.3390/app112110374 – year: 2022 ident: 10.1016/j.engappai.2024.108670_bib22 article-title: Multi-agent deep reinforcement learning for multi-echelon inventory management publication-title: SSRN Electron. J. – year: 2020 ident: 10.1016/j.engappai.2024.108670_bib26 article-title: EOQ inventory model for perishable products under uncertainty publication-title: J. Inst. Eng. Prod. doi: 10.1007/s11740-020-00986-5 – year: 2018 ident: 10.1016/j.engappai.2024.108670_bib36 article-title: Inventory management in supply chain – year: 2024 ident: 10.1016/j.engappai.2024.108670_bib47 article-title: Deep reinforcement learning for one-warehouse multi-retailer inventory management publication-title: Int. J. Prod. Econ doi: 10.1016/j.ijpe.2023.109088 |
| SSID | ssj0003846 |
| Score | 2.4568336 |
| Snippet | The advanced information technology has enabled supply chain to make centralized optimal decision, allowing to make a global optimal solution. However, dealing... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 108670 |
| SubjectTerms | Multi-echelon inventory Optimization Reinforcement learning Simulation Supply chain |
| Title | Neuroevolution reinforcement learning for multi-echelon inventory optimization with delivery options and uncertain discount |
| URI | https://dx.doi.org/10.1016/j.engappai.2024.108670 |
| Volume | 134 |
| WOSCitedRecordID | wos001247357300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxELYC9MCl9AEqLa186C1yGu_bR4RAbQ-oB5DSXlZe2wuBsKEhiVD7K_qPGT-z26JSDr2sIkf27ma-jMfjz_Mh9D7NawASS0ia1bBASTJKuGSSME6LQlEu62FtxCby4-NiNGJfer1f_izMcpI3TXF7y67_q6mhDYytj84-wtxhUGiAz2B0uILZ4fpPhjflNtTS3aM_U6Y2qjBpQC8SYcmThkxIlOaCGsKjpj6aLXdwI1fufKZN1Eo10fwN-5Um1-h0O8yIlk-gd3mM5kQnzb8qdNhv75Ib4sHMMJSMXkirJGjY_Bn_-G5IBt_45SXvn56NQ8764Hy6MAnb88WUfHXIdkmLKAmUuVX2MSKUWemX4IhdWtO6Ui0BZTVF_vDyNuFwMVDNGbwAHw_0LQarDt2y2r9Nd4GE6PltF6Ufp9TjlHacNbQR5SkDX7-x_-lw9DlM73FhT3_5N2gdO7__ie6PeFpRzMkz9NQtP_C-hc1z1FPNC7TlliLYOfobaPJqH77tJfrZBRbuAAt7YGFowh1g4QAs3AYW1sDCHljYAQsDsHAAFvbA2kanR4cnBx-Jk-4gIqbRnFSJimsuEqlUnaQQ5LJ8KCEWF0UNAWgsh1VKK1hbSMoTUVEpMli4QizJokxSyUS8g9abaaNeIax0PaKYVhxCyYTHqe5Z6CAq09oDw2oXpf7nLYWra6_lVSbl3w28iz6Efte2ssuDPZi3XuniUxt3lgDMB_q-fvTd3qDN1T9nD63PZwv1Fj0Ry_n4ZvbOofIOC0O-tA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neuroevolution+reinforcement+learning+for+multi-echelon+inventory+optimization+with+delivery+options+and+uncertain+discount&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Rizqi%2C+Zakka+Ugih&rft.au=Chou%2C+Shuo-Yan&rft.date=2024-08-01&rft.issn=0952-1976&rft.volume=134&rft.spage=108670&rft_id=info:doi/10.1016%2Fj.engappai.2024.108670&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2024_108670 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |