Neuroevolution reinforcement learning for multi-echelon inventory optimization with delivery options and uncertain discount

The advanced information technology has enabled supply chain to make centralized optimal decision, allowing to make a global optimal solution. However, dealing with uncertainty is important in inventory management. Besides demand and supply uncertainties, supplier discounts also often arise unexpect...

Full description

Saved in:
Bibliographic Details
Published in:Engineering applications of artificial intelligence Vol. 134; p. 108670
Main Authors: Rizqi, Zakka Ugih, Chou, Shuo-Yan
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.08.2024
Subjects:
ISSN:0952-1976, 1873-6769
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The advanced information technology has enabled supply chain to make centralized optimal decision, allowing to make a global optimal solution. However, dealing with uncertainty is important in inventory management. Besides demand and supply uncertainties, supplier discounts also often arise unexpectedly. Further, suppliers or third-parties typically offer various delivery options in which trade-off occurs between cost and lead time. Thus, this study introduces new problem namely Multi-Echelon Inventory Optimization with Delivery Options and Uncertain Discount (MEIO-DO-UD). As a solution, Neuroevolution Reinforcement Learning (NERL) framework is developed for minimizing total system cost. The environment is modeled via System Dynamics (SD) and actor is presented by integration of Artificial Neural Network and Evolutionary Algorithm (EA), creating an effective decision-making model under dynamic uncertainty. The experimental study has been conducted where two different supply chain networks are given namely serial and divergence. Three EA algorithms are compared namely Differential Evolution (DE), Memetic Algorithm (MA), and Evolution Strategy (ES). Furthermore, NERL is also compared with the EA-optimized classical continuous review model namely (s,Q). The result shows that regardless what EA type is used, the proposed NERL always outperforms EA-optimized (s,Q) model. The more complex the problem, the further improvement can be made i.e. cost reduction up to 58%, followed by the fill rate improvement. The result also shows that NERL can avoid overfitting. Managerial implications are highlighted where NERL provides the more stable inventory level among all supply chain partners and bull-whip effect can be damped.
AbstractList The advanced information technology has enabled supply chain to make centralized optimal decision, allowing to make a global optimal solution. However, dealing with uncertainty is important in inventory management. Besides demand and supply uncertainties, supplier discounts also often arise unexpectedly. Further, suppliers or third-parties typically offer various delivery options in which trade-off occurs between cost and lead time. Thus, this study introduces new problem namely Multi-Echelon Inventory Optimization with Delivery Options and Uncertain Discount (MEIO-DO-UD). As a solution, Neuroevolution Reinforcement Learning (NERL) framework is developed for minimizing total system cost. The environment is modeled via System Dynamics (SD) and actor is presented by integration of Artificial Neural Network and Evolutionary Algorithm (EA), creating an effective decision-making model under dynamic uncertainty. The experimental study has been conducted where two different supply chain networks are given namely serial and divergence. Three EA algorithms are compared namely Differential Evolution (DE), Memetic Algorithm (MA), and Evolution Strategy (ES). Furthermore, NERL is also compared with the EA-optimized classical continuous review model namely (s,Q). The result shows that regardless what EA type is used, the proposed NERL always outperforms EA-optimized (s,Q) model. The more complex the problem, the further improvement can be made i.e. cost reduction up to 58%, followed by the fill rate improvement. The result also shows that NERL can avoid overfitting. Managerial implications are highlighted where NERL provides the more stable inventory level among all supply chain partners and bull-whip effect can be damped.
ArticleNumber 108670
Author Chou, Shuo-Yan
Rizqi, Zakka Ugih
Author_xml – sequence: 1
  givenname: Zakka Ugih
  orcidid: 0000-0003-2986-9503
  surname: Rizqi
  fullname: Rizqi, Zakka Ugih
  email: ugihzakka@gmail.com
  organization: Department of Industrial Management, National Taiwan University of Science and Technology, No. 43, Keelung Rd., Taipei, 10607, Taiwan
– sequence: 2
  givenname: Shuo-Yan
  surname: Chou
  fullname: Chou, Shuo-Yan
  organization: Department of Industrial Management, National Taiwan University of Science and Technology, No. 43, Keelung Rd., Taipei, 10607, Taiwan
BookMark eNqFkNtKAzEQhoMo2FZfQfICW5M9ZDfghVI8QdEbvQ5pMttO2SYlm61UX97twRtvejXwz3zDzDck5847IOSGszFnXNwux-Dmer3WOE5ZmvdhJUp2Rga8KrNElEKekwGTRZpwWYpLMmzbJWMsq3IxID9v0AUPG990Eb2jAdDVPhhYgYu0AR0cujntI7rqmogJmAU0_SC6TT_hw5b6dcQVfus9_4VxQS00uIFjy7uWamdp5wyEqNFRi63xnYtX5KLWTQvXxzoin0-PH5OXZPr-_Dp5mCYm42lMZjlktTa5BajzoqhyWTJbZdJUtWQ8s2xW8JlMM8t1bmbcGiHKIueFTIXlVppsRO4Oe03wbRugVgbj_twYNDaKM7UTqZbqT6TaiVQHkT0u_uHrgCsdtqfB-wMI_XMbhKBag9BrsBjARGU9nlrxC4G2mMU
CitedBy_id crossref_primary_10_1007_s10479_024_06342_5
crossref_primary_10_1080_00207543_2025_2507795
crossref_primary_10_1016_j_asoc_2025_113141
crossref_primary_10_1007_s10696_025_09626_5
crossref_primary_10_1016_j_sca_2025_100154
Cites_doi 10.1287/msom.2020.0939
10.1016/j.nucengdes.2023.112423
10.1007/s00170-012-4195-z
10.1007/s11740-020-01000-8
10.1016/j.sca.2023.100024
10.1016/j.apm.2023.10.039
10.3390/math8010069
10.33422/EJEST.2019.09.38
10.1016/j.ijforecast.2017.11.004
10.1063/1.4985449
10.1016/j.ejor.2021.07.016
10.3390/math9070747
10.1016/j.ijpe.2016.08.009
10.1287/opre.38.6.947
10.1007/s13369-012-0360-9
10.2139/ssrn.4663662
10.1016/j.jalgor.2009.04.002
10.2139/ssrn.4227665
10.1109/TEM.2018.2839616
10.1016/j.ifacol.2022.09.609
10.1080/00207543.2011.574503
10.1287/msom.2021.1064
10.1007/s11128-023-03876-8
10.1007/s00521-020-04832-8
10.1109/CAC48633.2019.8997498
10.24002/ijieem.v1i2.3410
10.1016/j.patrec.2023.04.008
10.1007/s00521-020-05131-y
10.1016/j.eswa.2017.08.046
10.52162/3.2021110
10.1007/s10479-023-05734-3
10.1016/j.omega.2010.09.005
10.3390/app112110374
10.1007/s11740-020-00986-5
10.1016/j.ijpe.2023.109088
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2024.108670
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
ExternalDocumentID 10_1016_j_engappai_2024_108670
S0952197624008285
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c312t-b4e3fac4deef45584970d839c8f9013d0b51b923d1a4cb1dc6675415926d1d9c3
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001247357300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0952-1976
IngestDate Sat Nov 29 03:41:18 EST 2025
Tue Nov 18 21:07:22 EST 2025
Tue Jun 18 08:50:47 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Supply chain
Simulation
Multi-echelon inventory
Optimization
Reinforcement learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-b4e3fac4deef45584970d839c8f9013d0b51b923d1a4cb1dc6675415926d1d9c3
ORCID 0000-0003-2986-9503
ParticipantIDs crossref_citationtrail_10_1016_j_engappai_2024_108670
crossref_primary_10_1016_j_engappai_2024_108670
elsevier_sciencedirect_doi_10_1016_j_engappai_2024_108670
PublicationCentury 2000
PublicationDate August 2024
2024-08-00
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: August 2024
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Acampora, Chiatto, Vitiello (bib2) 2023
Gallego‐garcía, Gallego‐garcía, García‐garcía (bib12a) 2021
Harris (bib17) 1990
Patriarca, Di Gravio, Costantino, Tronci (bib26) 2020
Zhu, Yang, Ma, Gao, Chen (bib46) 2022
Kaynov, van Knippenberg, Menkovski, van Breemen, van Jaarsveld (bib47) 2024
Kara, Dogan (bib19) 2018
Slowik, Kwasnicka (bib37) 2020
Rizqi, Khairunisa, Maulani (bib48) 2021; 3
Anyibuofu (bib4) 2014
Prestwich, Tarim, Rossi, Hnich (bib29) 2012
Baruah, Chinnam, Korostelev, Dalkiran (bib7) 2016
Wu, de Carvalho Servia, Mowbray (bib42) 2023
Gijsbrechts, Boute, Van Mieghem, Zhang (bib15) 2022
Oroojlooyjadid, Nazari, Snyder, Takáč (bib24) 2022
Zhou, Guo, Yu, Zhang (bib45) 2024
Baioletti, Di Bari, Milani, Poggioni (bib5) 2020
Firoozi, Tang, Ariafar, Ariffin (bib11) 2013
Zhang, Gupta, Chen, Ong (bib44) 2022
Panchal, Panchal (bib25) 2014; 3
Prak, Teunter (bib28) 2019
Liu, Hu, Peng, Yang (bib22) 2022
Rizqi, Khairunisa (bib33) 2020
Seyedan, Mafakheri, Wang (bib34) 2023
Barmi, Ebrahimi, Feldt (bib6) 2011
Radaideh, Du, Seurin, Seyler, Gu, Wang, Shirvan (bib30) 2023
Kosasih, Brintrup (bib20) 2022
Mahapatra, Soni, Mahapatra, Sarkar, Majumder (bib23) 2021
Rizqi (bib32) 2023
Almahamid, Grolinger (bib3) 2021
AbuZekry (bib1) 2019
Peng, Zhang, Feng, Zhang, Wu, Su (bib27) 2019
Heidrich-Meisner, Igel (bib18) 2009
Zarandi, Moosavi, Zarinbal (bib43) 2013
Kristiyani, Daryanto (bib21) 2019
Dittrich, Fohlmeister (bib10) 2021
Rekabi, Goodarzian, Garjan, Zare, Muñuzuri, Ali (bib31) 2023
Wang, Wang, Liang, Zhao, Huang, Xu, Dai, Miao (bib41) 2022
Chandraju, Raviprasad, Chidan Kumar (bib9) 2012; 2
Guo, Choi, Shen, Jung (bib16) 2019
Geevers, van Hezewijk, Mes (bib14) 2022
García-Ródenas, Linares, López-Gómez (bib13) 2021
Singh, Verma (bib36) 2018
Friedrich, Maziero (bib12) 2023
Shofa, Widyarto (bib35) 2017
Uzair, Jamil (bib40) 2020
Tunc, Kilic, Tarim, Eksioglu (bib39) 2011
Storn (bib38) 1996
Boute, Gijsbrechts, van Jaarsveld, Vanvuchelen (bib8) 2022
Wang (10.1016/j.engappai.2024.108670_bib41) 2022
Tunc (10.1016/j.engappai.2024.108670_bib39) 2011
AbuZekry (10.1016/j.engappai.2024.108670_bib1) 2019
Acampora (10.1016/j.engappai.2024.108670_bib2) 2023
García-Ródenas (10.1016/j.engappai.2024.108670_bib13) 2021
Radaideh (10.1016/j.engappai.2024.108670_bib30) 2023
Prak (10.1016/j.engappai.2024.108670_bib28) 2019
Prestwich (10.1016/j.engappai.2024.108670_bib29) 2012
Barmi (10.1016/j.engappai.2024.108670_bib6) 2011
Rizqi (10.1016/j.engappai.2024.108670_bib33) 2020
Zhou (10.1016/j.engappai.2024.108670_bib45) 2024
Chandraju (10.1016/j.engappai.2024.108670_bib9) 2012; 2
Friedrich (10.1016/j.engappai.2024.108670_bib12) 2023
Panchal (10.1016/j.engappai.2024.108670_bib25) 2014; 3
Kaynov (10.1016/j.engappai.2024.108670_bib47) 2024
Kosasih (10.1016/j.engappai.2024.108670_bib20) 2022
Almahamid (10.1016/j.engappai.2024.108670_bib3) 2021
Boute (10.1016/j.engappai.2024.108670_bib8) 2022
Gijsbrechts (10.1016/j.engappai.2024.108670_bib15) 2022
Storn (10.1016/j.engappai.2024.108670_bib38) 1996
Singh (10.1016/j.engappai.2024.108670_bib36) 2018
Seyedan (10.1016/j.engappai.2024.108670_bib34) 2023
Oroojlooyjadid (10.1016/j.engappai.2024.108670_bib24) 2022
Rizqi (10.1016/j.engappai.2024.108670_bib48) 2021; 3
Zhu (10.1016/j.engappai.2024.108670_bib46) 2022
Harris (10.1016/j.engappai.2024.108670_bib17) 1990
Shofa (10.1016/j.engappai.2024.108670_bib35) 2017
Slowik (10.1016/j.engappai.2024.108670_bib37) 2020
Dittrich (10.1016/j.engappai.2024.108670_bib10) 2021
Zarandi (10.1016/j.engappai.2024.108670_bib43) 2013
Mahapatra (10.1016/j.engappai.2024.108670_bib23) 2021
Kristiyani (10.1016/j.engappai.2024.108670_bib21) 2019
Guo (10.1016/j.engappai.2024.108670_bib16) 2019
Heidrich-Meisner (10.1016/j.engappai.2024.108670_bib18) 2009
Firoozi (10.1016/j.engappai.2024.108670_bib11) 2013
Rekabi (10.1016/j.engappai.2024.108670_bib31) 2023
Gallego‐garcía (10.1016/j.engappai.2024.108670_bib12a) 2021
Wu (10.1016/j.engappai.2024.108670_bib42) 2023
Baruah (10.1016/j.engappai.2024.108670_bib7) 2016
Liu (10.1016/j.engappai.2024.108670_bib22) 2022
Patriarca (10.1016/j.engappai.2024.108670_bib26) 2020
Geevers (10.1016/j.engappai.2024.108670_bib14) 2022
Zhang (10.1016/j.engappai.2024.108670_bib44) 2022
Kara (10.1016/j.engappai.2024.108670_bib19) 2018
Peng (10.1016/j.engappai.2024.108670_bib27) 2019
Anyibuofu (10.1016/j.engappai.2024.108670_bib4) 2014
Uzair (10.1016/j.engappai.2024.108670_bib40) 2020
Baioletti (10.1016/j.engappai.2024.108670_bib5) 2020
Rizqi (10.1016/j.engappai.2024.108670_bib32) 2023
References_xml – year: 2009
  ident: bib18
  article-title: Neuroevolution strategies for episodic reinforcement learning
  publication-title: J. Algorithm
– year: 2021
  ident: bib23
  article-title: A continuous review production-inventory system with a variable preparation time in a fuzzy random environment
  publication-title: Mathematics
– year: 2022
  ident: bib46
  article-title: Optimal strategy for a periodic review inventory system with discounted variable cost and finite ordering capacity
  publication-title: Oper. Res.
– year: 2014
  ident: bib4
  article-title: Inventory Management Practices in Manufacturing Firms
– year: 2013
  ident: bib11
  article-title: An optimization approach for A joint location inventory model considering quantity discount policy
  publication-title: Arabian J. Sci. Eng.
– year: 2022
  ident: bib20
  article-title: Reinforcement learning provides a flexible approach for realistic supply chain safety stock optimisation
  publication-title: IFAC-PapersOnLine
– year: 2023
  ident: bib34
  article-title: Order-up-to-level inventory optimization model using time-series demand forecasting with ensemble deep learning
  publication-title: Supply Chain Analytics
– year: 2013
  ident: bib43
  article-title: A fuzzy reinforcement learning algorithm for inventory control in supply chains
  publication-title: Int. J. Adv. Manuf. Technol.
– year: 2011
  ident: bib39
  article-title: The cost of using stationary inventory policies when demand is non-stationary
  publication-title: Omega
– year: 2019
  ident: bib21
  article-title: An inventory model considering all unit discount and carbon emissions
  publication-title: International Journal of Industrial Engineering and Engineering Management
– year: 2019
  ident: bib28
  article-title: A general method for addressing forecasting uncertainty in inventory models
  publication-title: Int. J. Forecast.
– year: 2023
  ident: bib2
  article-title: Training circuit-based quantum classifiers through memetic algorithms
  publication-title: Pattern Recogn. Lett.
– year: 2020
  ident: bib5
  article-title: Differential evolution for neural networks optimization
  publication-title: Mathematics
– year: 2020
  ident: bib33
  article-title: Integration of deterministic and probabilistic inventory methods to optimize the balance between overstock and stockout
  publication-title: IOP Conference Series: Materials Science and Engineering
– year: 2023
  ident: bib12
  article-title: Evolution strategies: application in hybrid quantum-classical neural networks
  publication-title: Quant. Inf. Process.
– year: 2019
  ident: bib1
  article-title: Comparative study of NeuroEvolution algorithms in reinforcement learning for self-driving cars
  publication-title: European Journal of Engineering Science and Technology
– year: 2012
  ident: bib29
  article-title: A neuroevolutionary approach to stochastic inventory control in multi-echelon systems
  publication-title: Int. J. Prod. Res.
– year: 2023
  ident: bib42
  article-title: Distributional reinforcement learning for inventory management in multi-echelon supply chains
  publication-title: Digital Chemical Engineering
– volume: 3
  start-page: 455
  year: 2014
  end-page: 464
  ident: bib25
  article-title: Review on methods of selecting number of hidden nodes in artificial neural network
  publication-title: Int. J. Comput. Sci. Mobile Comput.
– year: 2023
  ident: bib31
  article-title: A data-driven mathematical model to design a responsive-sustainable pharmaceutical supply chain network: a Benders decomposition approach
  publication-title: Ann. Oper. Res.
– year: 2021
  ident: bib12a
  article-title: An optimized system to reduce procurement risks and stock‐outs: a simulation case study for a component manufacturer
  publication-title: Appl. Sci.
– year: 2021
  ident: bib13
  article-title: Memetic algorithms for training feedforward neural networks: an approach based on gravitational search algorithm
  publication-title: Neural Comput. Appl.
– year: 2019
  ident: bib27
  article-title: Deep reinforcement learning approach for capacitated supply chain optimization under demand uncertainty
  publication-title: Proceedings - 2019 Chinese Automation Congress (CAC)
– volume: 2
  start-page: 1
  year: 2012
  end-page: 5
  ident: bib9
  article-title: Implementation of system application product (SAP) materials management (MM-Module) for material requirement planning (MRP) in sugar industry
  publication-title: Int. J. Sci. Res. Publ.
– year: 2019
  ident: bib16
  article-title: Inventory management in mass customization operations: a review
  publication-title: IEEE Trans. Eng. Manag.
– year: 1990
  ident: bib17
  article-title: How many parts to make at once
  publication-title: Oper. Res.
– year: 2018
  ident: bib36
  article-title: Inventory management in supply chain
  publication-title: Materials Today: Proceedings
– year: 2022
  ident: bib44
  article-title: Multitask neuroevolution for reinforcement learning with long and short episodes
  publication-title: IEEE Transactions on Cognitive and Developmental Systems
– year: 2022
  ident: bib15
  article-title: Can deep reinforcement learning improve inventory management? Performance on lost sales, dual-sourcing, and multi-echelon problems
  publication-title: Manuf. Serv. Oper. Manag.
– volume: 3
  start-page: 36
  year: 2021
  end-page: 42
  ident: bib48
  article-title: Financial assessment on designing inventory policy by considering demand, lead time, and defective product uncertainties: A monte carlo simulation
  publication-title: Indonesian Scholars Scientific Summit Taiwan Proceeding
– year: 2018
  ident: bib19
  article-title: Reinforcement learning approaches for specifying ordering policies of perishable inventory systems
  publication-title: Expert Syst. Appl.
– year: 2024
  ident: bib45
  article-title: Optimization of multi-echelon spare parts inventory systems using multi-agent deep reinforcement learning
  publication-title: Appl. Math. Model.
– year: 2021
  ident: bib10
  article-title: A deep q-learning-based optimization of the inventory control in a linear process chain
  publication-title: J. Inst. Eng. Prod.
– year: 2022
  ident: bib24
  article-title: A deep Q-network for the beer game: deep reinforcement learning for inventory optimization
  publication-title: Manuf. Serv. Oper. Manag.
– year: 2020
  ident: bib26
  article-title: EOQ inventory model for perishable products under uncertainty
  publication-title: J. Inst. Eng. Prod.
– year: 2024
  ident: bib47
  article-title: Deep reinforcement learning for one-warehouse multi-retailer inventory management
  publication-title: Int. J. Prod. Econ
– year: 2011
  ident: bib6
  article-title: Evolution strategies as a scalable alternative to reinforcement learning tim
  publication-title: 2011 IEEE Fourth International Conference on Software Testing, Verification and Validation Workshops
– year: 2022
  ident: bib8
  article-title: Deep reinforcement learning for inventory control: a roadmap
  publication-title: Eur. J. Oper. Res.
– year: 2023
  ident: bib30
  article-title: NEORL: NeuroEvolution optimization with reinforcement learning—applications to carbon-free energy systems
  publication-title: Nucl. Eng. Des.
– year: 2017
  ident: bib35
  article-title: Effective production control in an automotive industry: MRP vs. demand-driven MRP
  publication-title: AIP Conference Proceedings
– year: 2022
  ident: bib22
  article-title: Multi-agent deep reinforcement learning for multi-echelon inventory management
  publication-title: SSRN Electron. J.
– year: 2022
  ident: bib41
  article-title: Deep reinforcement learning: a survey
  publication-title: IEEE Transact. Neural Networks Learn. Syst.
– year: 2020
  ident: bib37
  article-title: Evolutionary algorithms and their applications to engineering problems
  publication-title: Neural Comput. Appl.
– year: 1996
  ident: bib38
  article-title: On the usage of differential evolution for function optimization
  publication-title: Biennial Conference of the North American Fuzzy Information Processing Society - NAFIPS
– year: 2020
  ident: bib40
  article-title: Effects of hidden layers on the efficiency of neural networks
  publication-title: Proceedings - 2020 23rd IEEE International Multi-Topic Conference, INMIC 2020
– year: 2016
  ident: bib7
  article-title: Optimal soft-order revisions under demand and supply uncertainty and upstream information
  publication-title: Int. J. Prod. Econ.
– year: 2022
  ident: bib14
  article-title: Multi-echelon inventory optimization using deep reinforcement learning
  publication-title: SSRN Electron. J.
– year: 2023
  ident: bib32
  article-title: Capacitated continuous review inventory with partial backorder under time-dependent demand and fuzzy supply: Bi-objective optimization via simulation model
  publication-title: SSRN Electron. J.
– year: 2021
  ident: bib3
  article-title: Reinforcement learning algorithms: an overview and classification
  publication-title: Canadian Conference on Electrical and Computer Engineering
– year: 2022
  ident: 10.1016/j.engappai.2024.108670_bib24
  article-title: A deep Q-network for the beer game: deep reinforcement learning for inventory optimization
  publication-title: Manuf. Serv. Oper. Manag.
  doi: 10.1287/msom.2020.0939
– year: 2023
  ident: 10.1016/j.engappai.2024.108670_bib30
  article-title: NEORL: NeuroEvolution optimization with reinforcement learning—applications to carbon-free energy systems
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2023.112423
– year: 2013
  ident: 10.1016/j.engappai.2024.108670_bib43
  article-title: A fuzzy reinforcement learning algorithm for inventory control in supply chains
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-012-4195-z
– year: 2021
  ident: 10.1016/j.engappai.2024.108670_bib10
  article-title: A deep q-learning-based optimization of the inventory control in a linear process chain
  publication-title: J. Inst. Eng. Prod.
  doi: 10.1007/s11740-020-01000-8
– year: 2023
  ident: 10.1016/j.engappai.2024.108670_bib34
  article-title: Order-up-to-level inventory optimization model using time-series demand forecasting with ensemble deep learning
  publication-title: Supply Chain Analytics
  doi: 10.1016/j.sca.2023.100024
– year: 2014
  ident: 10.1016/j.engappai.2024.108670_bib4
– year: 2022
  ident: 10.1016/j.engappai.2024.108670_bib41
  article-title: Deep reinforcement learning: a survey
  publication-title: IEEE Transact. Neural Networks Learn. Syst.
– year: 2022
  ident: 10.1016/j.engappai.2024.108670_bib46
  article-title: Optimal strategy for a periodic review inventory system with discounted variable cost and finite ordering capacity
  publication-title: Oper. Res.
– year: 2024
  ident: 10.1016/j.engappai.2024.108670_bib45
  article-title: Optimization of multi-echelon spare parts inventory systems using multi-agent deep reinforcement learning
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2023.10.039
– year: 2020
  ident: 10.1016/j.engappai.2024.108670_bib5
  article-title: Differential evolution for neural networks optimization
  publication-title: Mathematics
  doi: 10.3390/math8010069
– year: 2019
  ident: 10.1016/j.engappai.2024.108670_bib1
  article-title: Comparative study of NeuroEvolution algorithms in reinforcement learning for self-driving cars
  publication-title: European Journal of Engineering Science and Technology
  doi: 10.33422/EJEST.2019.09.38
– year: 2019
  ident: 10.1016/j.engappai.2024.108670_bib28
  article-title: A general method for addressing forecasting uncertainty in inventory models
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2017.11.004
– year: 2017
  ident: 10.1016/j.engappai.2024.108670_bib35
  article-title: Effective production control in an automotive industry: MRP vs. demand-driven MRP
  doi: 10.1063/1.4985449
– year: 2022
  ident: 10.1016/j.engappai.2024.108670_bib8
  article-title: Deep reinforcement learning for inventory control: a roadmap
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2021.07.016
– year: 2021
  ident: 10.1016/j.engappai.2024.108670_bib23
  article-title: A continuous review production-inventory system with a variable preparation time in a fuzzy random environment
  publication-title: Mathematics
  doi: 10.3390/math9070747
– year: 1996
  ident: 10.1016/j.engappai.2024.108670_bib38
  article-title: On the usage of differential evolution for function optimization
– year: 2016
  ident: 10.1016/j.engappai.2024.108670_bib7
  article-title: Optimal soft-order revisions under demand and supply uncertainty and upstream information
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2016.08.009
– year: 1990
  ident: 10.1016/j.engappai.2024.108670_bib17
  article-title: How many parts to make at once
  publication-title: Oper. Res.
  doi: 10.1287/opre.38.6.947
– year: 2013
  ident: 10.1016/j.engappai.2024.108670_bib11
  article-title: An optimization approach for A joint location inventory model considering quantity discount policy
  publication-title: Arabian J. Sci. Eng.
  doi: 10.1007/s13369-012-0360-9
– year: 2023
  ident: 10.1016/j.engappai.2024.108670_bib32
  article-title: Capacitated continuous review inventory with partial backorder under time-dependent demand and fuzzy supply: Bi-objective optimization via simulation model
  publication-title: SSRN Electron. J.
  doi: 10.2139/ssrn.4663662
– year: 2009
  ident: 10.1016/j.engappai.2024.108670_bib18
  article-title: Neuroevolution strategies for episodic reinforcement learning
  publication-title: J. Algorithm
  doi: 10.1016/j.jalgor.2009.04.002
– year: 2022
  ident: 10.1016/j.engappai.2024.108670_bib14
  article-title: Multi-echelon inventory optimization using deep reinforcement learning
  publication-title: SSRN Electron. J.
  doi: 10.2139/ssrn.4227665
– year: 2011
  ident: 10.1016/j.engappai.2024.108670_bib6
  article-title: Evolution strategies as a scalable alternative to reinforcement learning tim
– year: 2019
  ident: 10.1016/j.engappai.2024.108670_bib16
  article-title: Inventory management in mass customization operations: a review
  publication-title: IEEE Trans. Eng. Manag.
  doi: 10.1109/TEM.2018.2839616
– year: 2022
  ident: 10.1016/j.engappai.2024.108670_bib20
  article-title: Reinforcement learning provides a flexible approach for realistic supply chain safety stock optimisation
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2022.09.609
– year: 2012
  ident: 10.1016/j.engappai.2024.108670_bib29
  article-title: A neuroevolutionary approach to stochastic inventory control in multi-echelon systems
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2011.574503
– year: 2022
  ident: 10.1016/j.engappai.2024.108670_bib15
  article-title: Can deep reinforcement learning improve inventory management? Performance on lost sales, dual-sourcing, and multi-echelon problems
  publication-title: Manuf. Serv. Oper. Manag.
  doi: 10.1287/msom.2021.1064
– year: 2023
  ident: 10.1016/j.engappai.2024.108670_bib12
  article-title: Evolution strategies: application in hybrid quantum-classical neural networks
  publication-title: Quant. Inf. Process.
  doi: 10.1007/s11128-023-03876-8
– year: 2020
  ident: 10.1016/j.engappai.2024.108670_bib37
  article-title: Evolutionary algorithms and their applications to engineering problems
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-04832-8
– volume: 2
  start-page: 1
  issue: 9
  year: 2012
  ident: 10.1016/j.engappai.2024.108670_bib9
  article-title: Implementation of system application product (SAP) materials management (MM-Module) for material requirement planning (MRP) in sugar industry
  publication-title: Int. J. Sci. Res. Publ.
– year: 2023
  ident: 10.1016/j.engappai.2024.108670_bib42
  article-title: Distributional reinforcement learning for inventory management in multi-echelon supply chains
  publication-title: Digital Chemical Engineering
– year: 2019
  ident: 10.1016/j.engappai.2024.108670_bib27
  article-title: Deep reinforcement learning approach for capacitated supply chain optimization under demand uncertainty
  doi: 10.1109/CAC48633.2019.8997498
– year: 2019
  ident: 10.1016/j.engappai.2024.108670_bib21
  article-title: An inventory model considering all unit discount and carbon emissions
  publication-title: International Journal of Industrial Engineering and Engineering Management
  doi: 10.24002/ijieem.v1i2.3410
– year: 2023
  ident: 10.1016/j.engappai.2024.108670_bib2
  article-title: Training circuit-based quantum classifiers through memetic algorithms
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2023.04.008
– year: 2021
  ident: 10.1016/j.engappai.2024.108670_bib13
  article-title: Memetic algorithms for training feedforward neural networks: an approach based on gravitational search algorithm
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05131-y
– year: 2018
  ident: 10.1016/j.engappai.2024.108670_bib19
  article-title: Reinforcement learning approaches for specifying ordering policies of perishable inventory systems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.08.046
– volume: 3
  start-page: 455
  issue: 11
  year: 2014
  ident: 10.1016/j.engappai.2024.108670_bib25
  article-title: Review on methods of selecting number of hidden nodes in artificial neural network
  publication-title: Int. J. Comput. Sci. Mobile Comput.
– year: 2022
  ident: 10.1016/j.engappai.2024.108670_bib44
  article-title: Multitask neuroevolution for reinforcement learning with long and short episodes
  publication-title: IEEE Transactions on Cognitive and Developmental Systems
– year: 2021
  ident: 10.1016/j.engappai.2024.108670_bib3
  article-title: Reinforcement learning algorithms: an overview and classification
– volume: 3
  start-page: 36
  year: 2021
  ident: 10.1016/j.engappai.2024.108670_bib48
  article-title: Financial assessment on designing inventory policy by considering demand, lead time, and defective product uncertainties: A monte carlo simulation
  publication-title: Indonesian Scholars Scientific Summit Taiwan Proceeding
  doi: 10.52162/3.2021110
– year: 2020
  ident: 10.1016/j.engappai.2024.108670_bib40
  article-title: Effects of hidden layers on the efficiency of neural networks
– year: 2023
  ident: 10.1016/j.engappai.2024.108670_bib31
  article-title: A data-driven mathematical model to design a responsive-sustainable pharmaceutical supply chain network: a Benders decomposition approach
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-023-05734-3
– year: 2020
  ident: 10.1016/j.engappai.2024.108670_bib33
  article-title: Integration of deterministic and probabilistic inventory methods to optimize the balance between overstock and stockout
– year: 2011
  ident: 10.1016/j.engappai.2024.108670_bib39
  article-title: The cost of using stationary inventory policies when demand is non-stationary
  publication-title: Omega
  doi: 10.1016/j.omega.2010.09.005
– year: 2021
  ident: 10.1016/j.engappai.2024.108670_bib12a
  article-title: An optimized system to reduce procurement risks and stock‐outs: a simulation case study for a component manufacturer
  publication-title: Appl. Sci.
  doi: 10.3390/app112110374
– year: 2022
  ident: 10.1016/j.engappai.2024.108670_bib22
  article-title: Multi-agent deep reinforcement learning for multi-echelon inventory management
  publication-title: SSRN Electron. J.
– year: 2020
  ident: 10.1016/j.engappai.2024.108670_bib26
  article-title: EOQ inventory model for perishable products under uncertainty
  publication-title: J. Inst. Eng. Prod.
  doi: 10.1007/s11740-020-00986-5
– year: 2018
  ident: 10.1016/j.engappai.2024.108670_bib36
  article-title: Inventory management in supply chain
– year: 2024
  ident: 10.1016/j.engappai.2024.108670_bib47
  article-title: Deep reinforcement learning for one-warehouse multi-retailer inventory management
  publication-title: Int. J. Prod. Econ
  doi: 10.1016/j.ijpe.2023.109088
SSID ssj0003846
Score 2.4568336
Snippet The advanced information technology has enabled supply chain to make centralized optimal decision, allowing to make a global optimal solution. However, dealing...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108670
SubjectTerms Multi-echelon inventory
Optimization
Reinforcement learning
Simulation
Supply chain
Title Neuroevolution reinforcement learning for multi-echelon inventory optimization with delivery options and uncertain discount
URI https://dx.doi.org/10.1016/j.engappai.2024.108670
Volume 134
WOSCitedRecordID wos001247357300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxELYC9MCl9AEqLa186C1yGu_bR4RAbQ-oB5DSXlZe2wuBsKEhiVD7K_qPGT-z26JSDr2sIkf27ma-jMfjz_Mh9D7NawASS0ia1bBASTJKuGSSME6LQlEu62FtxCby4-NiNGJfer1f_izMcpI3TXF7y67_q6mhDYytj84-wtxhUGiAz2B0uILZ4fpPhjflNtTS3aM_U6Y2qjBpQC8SYcmThkxIlOaCGsKjpj6aLXdwI1fufKZN1Eo10fwN-5Um1-h0O8yIlk-gd3mM5kQnzb8qdNhv75Ib4sHMMJSMXkirJGjY_Bn_-G5IBt_45SXvn56NQ8764Hy6MAnb88WUfHXIdkmLKAmUuVX2MSKUWemX4IhdWtO6Ui0BZTVF_vDyNuFwMVDNGbwAHw_0LQarDt2y2r9Nd4GE6PltF6Ufp9TjlHacNbQR5SkDX7-x_-lw9DlM73FhT3_5N2gdO7__ie6PeFpRzMkz9NQtP_C-hc1z1FPNC7TlliLYOfobaPJqH77tJfrZBRbuAAt7YGFowh1g4QAs3AYW1sDCHljYAQsDsHAAFvbA2kanR4cnBx-Jk-4gIqbRnFSJimsuEqlUnaQQ5LJ8KCEWF0UNAWgsh1VKK1hbSMoTUVEpMli4QizJokxSyUS8g9abaaNeIax0PaKYVhxCyYTHqe5Z6CAq09oDw2oXpf7nLYWra6_lVSbl3w28iz6Efte2ssuDPZi3XuniUxt3lgDMB_q-fvTd3qDN1T9nD63PZwv1Fj0Ry_n4ZvbOofIOC0O-tA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neuroevolution+reinforcement+learning+for+multi-echelon+inventory+optimization+with+delivery+options+and+uncertain+discount&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Rizqi%2C+Zakka+Ugih&rft.au=Chou%2C+Shuo-Yan&rft.date=2024-08-01&rft.issn=0952-1976&rft.volume=134&rft.spage=108670&rft_id=info:doi/10.1016%2Fj.engappai.2024.108670&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2024_108670
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon