Boosting algorithms for network intrusion detection: A comparative evaluation of Real AdaBoost, Gentle AdaBoost and Modest AdaBoost
Computer networks have been experienced ever-increasing growth since they play a critical role in different aspects of human life. Regarding the vulnerabilities of computer networks, they should be monitored regularly to detect intrusions and attacks by using high-performance Intrusion Detection Sys...
Uložené v:
| Vydané v: | Engineering applications of artificial intelligence Ročník 94; s. 103770 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.09.2020
|
| Predmet: | |
| ISSN: | 0952-1976, 1873-6769 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Computer networks have been experienced ever-increasing growth since they play a critical role in different aspects of human life. Regarding the vulnerabilities of computer networks, they should be monitored regularly to detect intrusions and attacks by using high-performance Intrusion Detection Systems (IDSs). IDSs try to differentiate between normal and abnormal behaviors to recognize intrusions. Due to the complex behavior of malicious entities, it is crucially important to adopt machine learning methods for intrusion detection with a fine performance and low time complexity. Boosting approach is considered as a way to deal with this challenge. In this paper, we prepare a clear summary of the latest progress in the context of intrusion detection methods, present a technical background on boosting, and demonstrate the ability of the three well-known boosting algorithms (Real Adaboost, Gentle Adaboost, and Modest Adaboost) as IDSs by using five IDS public benchmark datasets. The results show that the Modest AdaBoost has a higher error rate compared to Gentle and Real AdaBoost in IDSs. Besides, in the case of IDSs, Gentle and Real AdaBoost show the same performance as they have about 70% lower error rates compared to Modest Adaboost, however, Modest AdaBoost is about 7% faster than them. In addition, as IDSs need to retrain the model frequently, the results show that Modest AdaBoost has a much lower performance than Gentle and Real AdaBoost in case of error rate stability. |
|---|---|
| AbstractList | Computer networks have been experienced ever-increasing growth since they play a critical role in different aspects of human life. Regarding the vulnerabilities of computer networks, they should be monitored regularly to detect intrusions and attacks by using high-performance Intrusion Detection Systems (IDSs). IDSs try to differentiate between normal and abnormal behaviors to recognize intrusions. Due to the complex behavior of malicious entities, it is crucially important to adopt machine learning methods for intrusion detection with a fine performance and low time complexity. Boosting approach is considered as a way to deal with this challenge. In this paper, we prepare a clear summary of the latest progress in the context of intrusion detection methods, present a technical background on boosting, and demonstrate the ability of the three well-known boosting algorithms (Real Adaboost, Gentle Adaboost, and Modest Adaboost) as IDSs by using five IDS public benchmark datasets. The results show that the Modest AdaBoost has a higher error rate compared to Gentle and Real AdaBoost in IDSs. Besides, in the case of IDSs, Gentle and Real AdaBoost show the same performance as they have about 70% lower error rates compared to Modest Adaboost, however, Modest AdaBoost is about 7% faster than them. In addition, as IDSs need to retrain the model frequently, the results show that Modest AdaBoost has a much lower performance than Gentle and Real AdaBoost in case of error rate stability. |
| ArticleNumber | 103770 |
| Author | Haugen, Øystein Abbasi, Mahmoud Shahraki, Amin |
| Author_xml | – sequence: 1 givenname: Amin surname: Shahraki fullname: Shahraki, Amin email: am.shahraki@ieee.org organization: Department of Informatics, University of Oslo, Oslo, Norway – sequence: 2 givenname: Mahmoud surname: Abbasi fullname: Abbasi, Mahmoud organization: Faculty of Engineering, Islamic Azad University of Mashhad, Mashhad, Iran – sequence: 3 givenname: Øystein surname: Haugen fullname: Haugen, Øystein organization: Faculty of Computer Sciences, Østfold University College, Halden, Norway |
| BookMark | eNqFkE9LAzEQxYNUsFa_guQDuDXZbZNd8WAt_oOKIN7DmExq6jYpSax49ou7terBi6d5vOE9Zn77pOeDR0KOOBtyxsXJYoh-DqsVuGHJyo1ZScl2SJ_XsiqEFE2P9FkzLgveSLFH9lNaMMaqeiT65OMihJSdn1No5yG6_LxM1IZIPea3EF-o8zm-Jhc8NZhR506d0gnVYbmCCNmtkeIa2lfYbGiw9AGhpRMDX8XH9Bp9bvHXoOANvQsGO_njHZBdC23Cw-85II9Xl4_Tm2J2f307ncwKXfEyF2DrxhirWQljfBIg-RjsCJqSc67HrAZjGs5qy-XI1HaETAppAEVTN4LXvBqQs22tjiGliFZpl7_OzhFcqzhTG55qoX54qg1PteXZxcWf-Cq6JcT3_4Pn2yB2v60dRpW0Q6_RuNgBVSa4_yo-AbHrmJ0 |
| CitedBy_id | crossref_primary_10_1007_s42243_023_01060_x crossref_primary_10_3390_bioengineering9080350 crossref_primary_10_1051_e3sconf_202339003005 crossref_primary_10_1109_TNSE_2022_3206353 crossref_primary_10_32604_cmc_2023_038864 crossref_primary_10_1016_j_comcom_2021_01_021 crossref_primary_10_1049_ipr2_70177 crossref_primary_10_1016_j_comnet_2022_108836 crossref_primary_10_1016_j_egyr_2022_02_290 crossref_primary_10_1007_s10207_023_00682_2 crossref_primary_10_1016_j_istruc_2024_107893 crossref_primary_10_1093_jcde_qwad047 crossref_primary_10_3390_su15053982 crossref_primary_10_1016_j_engappai_2021_104234 crossref_primary_10_3934_mbe_2025021 crossref_primary_10_1016_j_cmpbup_2025_100184 crossref_primary_10_3390_info15070394 crossref_primary_10_1109_LSENS_2023_3296347 crossref_primary_10_1016_j_cosrev_2020_100357 crossref_primary_10_1016_j_psep_2024_05_036 crossref_primary_10_1016_j_ipm_2025_104176 crossref_primary_10_1007_s11053_022_10017_y crossref_primary_10_1002_er_7505 crossref_primary_10_1002_suco_202300401 crossref_primary_10_1080_1023666X_2025_2477557 crossref_primary_10_3390_bdcc5040072 crossref_primary_10_1093_jee_toaf035 crossref_primary_10_1007_s10489_020_02090_8 crossref_primary_10_1109_ACCESS_2024_3462170 crossref_primary_10_1186_s42400_023_00203_7 crossref_primary_10_1016_j_asoc_2025_112719 crossref_primary_10_1021_acspolymersau_5c00057 crossref_primary_10_1142_S0218488525500242 crossref_primary_10_1016_j_powtec_2023_118480 crossref_primary_10_1016_j_jfranklin_2025_108038 crossref_primary_10_1016_j_psep_2024_04_097 crossref_primary_10_1016_j_cose_2025_104527 crossref_primary_10_1016_j_engappai_2022_105760 crossref_primary_10_3390_batteries9010013 crossref_primary_10_3390_bdcc5040066 crossref_primary_10_3390_jsan12050067 crossref_primary_10_1016_j_energy_2025_134401 crossref_primary_10_1016_j_comnet_2021_108125 crossref_primary_10_1016_j_mtcomm_2025_112630 crossref_primary_10_1371_journal_pone_0331307 crossref_primary_10_1109_JSEN_2022_3229030 crossref_primary_10_1109_TKDE_2024_3512793 crossref_primary_10_1016_j_health_2022_100118 crossref_primary_10_1007_s40747_025_02014_4 crossref_primary_10_1109_ACCESS_2022_3205351 crossref_primary_10_1109_TNSM_2022_3223881 crossref_primary_10_1007_s11276_023_03495_2 crossref_primary_10_1049_ntw2_12128 crossref_primary_10_1177_0958305X251315408 crossref_primary_10_1109_ACCESS_2024_3519219 crossref_primary_10_1016_j_jmgm_2025_109116 crossref_primary_10_1007_s10098_024_02852_9 crossref_primary_10_3390_math11020431 crossref_primary_10_3390_molecules28052326 crossref_primary_10_1007_s10586_025_05378_x crossref_primary_10_1051_matecconf_202440002007 crossref_primary_10_1007_s10489_023_04920_x crossref_primary_10_1155_2023_5542049 crossref_primary_10_1016_j_compeleceng_2025_110553 crossref_primary_10_1016_j_scitotenv_2023_167386 crossref_primary_10_1109_JIOT_2024_3415499 crossref_primary_10_3390_s21175682 crossref_primary_10_1155_2024_1635337 crossref_primary_10_1016_j_rineng_2023_101745 crossref_primary_10_3390_su142416692 crossref_primary_10_1002_ett_4394 crossref_primary_10_1016_j_firesaf_2024_104103 crossref_primary_10_1007_s12633_025_03375_8 crossref_primary_10_1016_j_pce_2024_103561 crossref_primary_10_1111_exsy_12934 crossref_primary_10_3390_su16219476 crossref_primary_10_1038_s41598_022_11395_2 crossref_primary_10_1109_ACCESS_2024_3510636 crossref_primary_10_32604_cmc_2024_048755 crossref_primary_10_61435_ijred_2024_60387 crossref_primary_10_1109_TNSM_2020_3035315 crossref_primary_10_1109_JSTARS_2021_3069013 crossref_primary_10_1109_ACCESS_2021_3126834 crossref_primary_10_1088_1742_6596_2312_1_012082 crossref_primary_10_1016_j_engfailanal_2023_107506 crossref_primary_10_1080_10106049_2022_2076910 crossref_primary_10_1109_ACCESS_2025_3538170 crossref_primary_10_32604_cmc_2022_031734 crossref_primary_10_1109_JSEN_2025_3547062 crossref_primary_10_1016_j_cie_2025_111023 crossref_primary_10_1142_S021964922250071X crossref_primary_10_1007_s11042_022_14219_7 crossref_primary_10_1016_j_engappai_2022_105461 crossref_primary_10_1016_j_asoc_2022_109799 crossref_primary_10_1007_s12539_021_00430_x crossref_primary_10_3390_s21113814 crossref_primary_10_1016_j_measurement_2023_113485 crossref_primary_10_1007_s40747_021_00498_4 crossref_primary_10_1109_ACCESS_2024_3373558 crossref_primary_10_1007_s11277_022_09726_7 crossref_primary_10_1016_j_engappai_2021_104216 crossref_primary_10_3390_computers12030047 crossref_primary_10_1016_j_engstruct_2023_115601 crossref_primary_10_1016_j_health_2023_100290 crossref_primary_10_1109_TIM_2025_3552442 crossref_primary_10_1515_polyeng_2025_0066 crossref_primary_10_32604_cmc_2023_033153 crossref_primary_10_1016_j_forsciint_2025_112579 crossref_primary_10_1007_s10586_024_05087_x crossref_primary_10_1016_j_csite_2025_105912 |
| Cites_doi | 10.1016/j.knosys.2017.03.012 10.1006/jcss.1997.1504 10.1109/LNET.2019.2901792 10.1007/s12083-017-0630-0 10.1109/TII.2019.2938778 10.1145/3122983 10.1016/j.comnet.2007.02.001 10.1016/j.knosys.2019.104930 10.1214/aos/1016218223 10.1145/238061.238163 10.1016/j.eswa.2009.05.029 10.1109/ACCESS.2019.2899721 10.1109/ACCESS.2018.2807385 10.5220/0006639801080116 10.1109/TKDE.2019.2891622 10.1109/COMST.2015.2444095 10.1109/ACCESS.2017.2780250 10.1016/j.future.2019.12.034 10.1016/j.eswa.2011.06.013 10.1016/j.jvcir.2019.05.001 10.5937/vojtehg66-16670 10.1016/j.jnca.2012.09.004 10.1016/j.aci.2017.10.003 10.1109/PROC.1979.11321 10.1016/j.procs.2015.08.220 10.1109/COMST.2019.2904897 10.1016/j.eswa.2013.08.066 10.1109/TWC.2017.2655044 10.1109/COMST.2018.2854724 10.1109/ACCESS.2019.2895334 10.1109/TNSM.2019.2933358 10.1109/JIOT.2018.2871719 10.1109/34.982906 10.1109/ACCESS.2019.2923640 10.1109/ACCESS.2018.2820092 10.1016/j.dss.2006.04.004 10.1109/ACCESS.2019.2908225 10.1109/COMST.2018.2844341 10.1186/s42400-019-0038-7 10.1023/A:1022648800760 10.1016/j.engappai.2020.103631 10.1109/ACCESS.2018.2844794 10.1109/COMST.2015.2494502 10.1109/TETCI.2017.2772792 10.1016/j.comnet.2017.08.013 10.1145/972374.972384 10.1016/j.cose.2017.09.001 10.1109/TPWRS.2016.2631891 10.1016/j.jocs.2017.03.006 10.1007/s00500-018-3577-z 10.1109/COMST.2018.2843533 10.1109/34.58871 10.1109/TBDATA.2017.2715166 10.1109/ACCESS.2019.2894176 10.1109/ACCESS.2019.2912115 10.1109/ACCESS.2018.2810198 10.1016/j.cose.2011.08.009 10.1109/ACCESS.2019.2893871 10.1109/JAS.2017.7510730 10.1023/A:1007614523901 |
| ContentType | Journal Article |
| Copyright | 2020 |
| Copyright_xml | – notice: 2020 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.engappai.2020.103770 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISSN | 1873-6769 |
| ExternalDocumentID | 10_1016_j_engappai_2020_103770 S0952197620301706 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS WUQ ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c312t-af89ddfc02a5eb6a715af4a92111c508add9108f174d8f4e0767dae698961813 |
| ISICitedReferencesCount | 136 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000564244500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0952-1976 |
| IngestDate | Sat Nov 29 07:06:02 EST 2025 Tue Nov 18 22:12:19 EST 2025 Fri Feb 23 02:46:53 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | AdaBoost Boosting techniques Machine learning Ensemble learning Malware detection Anomaly detection Intrusion detection systems |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c312t-af89ddfc02a5eb6a715af4a92111c508add9108f174d8f4e0767dae698961813 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_engappai_2020_103770 crossref_primary_10_1016_j_engappai_2020_103770 elsevier_sciencedirect_doi_10_1016_j_engappai_2020_103770 |
| PublicationCentury | 2000 |
| PublicationDate | September 2020 2020-09-00 |
| PublicationDateYYYYMMDD | 2020-09-01 |
| PublicationDate_xml | – month: 09 year: 2020 text: September 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering applications of artificial intelligence |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Sindhu, Geetha, Kannan (b60) 2012; 39 D’Alconzo, Drago, Morichetta, Mellia, Casas (b15) 2019; 16 Freund, Schapire (b21) 1996 Ali, Al Mohammed, Ismail, Zolkipli (b6) 2018; 6 Liao, Lin, Lin, Tung (b42) 2013; 36 Friedman, Hastie, Tibshirani (b23) 2000; 28 He, Zhao, Hu, Yan, Zhu, Xu (b29) 2020; 91 Alhakami, A.L.harbi, Bourouis, Alroobaea, Bouguila (b5) 2019; 7 Protić (b55) 2018; 66 Freund, Schapire (b20) 1997; 55 Zhao, Yu, Li, Mao, Zhu (b78) 2019; 7 Kuncheva (b40) 2014 Otoum, Kantarci, Mouftah (b52) 2019; 1 Breiman (b11) 2017 Agrawal, Agrawal (b2) 2015; 60 Kolias, Kambourakis, Maragoudakis (b37) 2011; 30 Vinayakumar, Alazab, Soman, Poornachandran, AlNemrat, Venkatraman (b72) 2019; 7 Freund, Y., Schapire, R.E., 1996. Game theory, on-line prediction and boosting. In: Proceedings of the ninth annual conference on Computational learning theory, pp. 325–332. Gosztolya, Busa-Fekete (b25) 2019; 23 Friedman, Hastie, Tibshirani (b22) 2001; vol. 1 Moustafa, Turnbull, Choo (b50) 2019; 6 Tavallaee, Bagheri, Lu, Ghorbani (b65) 2009 Moustafa, Slay (b48) 2015 Hansen, Salamon (b28) 1990; 12 Tao, Sun, Sun (b64) 2018; 6 Hansen, Lowry, Meservy, McDonald (b27) 2007; 43 Schapire, Singer (b57) 1999; 37 Gao, Shan, Hu, Niu, Liu (b24) 2019; 7 Viegas, Santin, Oliveira (b71) 2017; 127 Yuan, Kaklamanos, Hogrefe (b75) 2016 METIS (b45) 2020 Wang, Sheng, Wang, Zeng, Ye, Huang, Zhu (b74) 2018; 6 Mohammadi, Al-Fuqaha, Sorour, Guizani (b46) 2018; 20 Moustafa, Adi, Turnbull, Hu (b47) 2018; 6 Jemili, Zaghdoud, Ahmed (b33) 2007 Papamartzivanos, Gómez Mármol, Kambourakis (b53) 2019; 7 Wang, Shen, Zhang (b73) 2016 Tang, Tang, Dai, Chen, Li, Rodrigues (b63) 2020; 106 Patcha, Park (b54) 2007; 51 Kuncheva (b39) 2002; 24 Bilge, L., Kirda, E., Kruegel, C., Balduzzi, M., 2011. Exposure: Finding malicious domains using passive dns analysis. In: Ndss, pp. 1–17. Liang, Weller, Zhao, Luo, Dong (b41) 2016; 32 Meir, Rätsch (b44) 2003 Beyene, Jäntti, Ruttik (b9) 2017; 16 Tsai, Hsu, Lin, Lin (b69) 2009; 36 Akhtar, Mian (b3) 2018; 6 Sreeram, Vuppala (b61) 2019; 15 Dasarathy, Sheela (b16) 1979; 67 Moustafa, Slay, Creech (b49) 2019; 5 Zeng, Gu, Wei, Guo (b76) 2019; 7 Aljawarneh, Aldwairi, Yassein (b7) 2018; 25 Khraisat, Gondal, Vamplew, Kamruzzaman (b35) 2019; 2 Dua, Du (b17) 2016 Bamakan, Wang, Shi (b8) 2017; 126 Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A., 2018. Toward generating a new intrusion detection dataset and intrusion traffic characterization. In: ICISSP, pp. 108–116. Graves, Acquisti, Christin (b26) 2018; 18 Khan, Gumaei, Derhab, Hussain (b34) 2019; 7 Tian, Luo, Qiu, Du, Guizani (b67) 2019; 16 Kim, Lee, Kim (b36) 2014; 41 Conti, Li, Maragno, Spolaor (b14) 2018; 20 Hindy, Brosset, Bayne, Seeam, Tachtatzis, Atkinson, Bellekens (b30) 2018 Huang, Chen, Liu, Tao, Li (b31) 2019; 32 Tounsi, Rais (b68) 2018; 72 Javaid, Niyaz, Sun, Alam (b32) 2016 Vezhnevets, Vezhnevets (b70) 2005 Teng, Wu, Zhu, Teng, Zhang (b66) 2018; 5 Afifi, Abdelhamed (b1) 2019; 62 Kreibich, Crowcroft (b38) 2004; 34 Al-Fuqaha, Guizani, Mohammadi, Aledhari, Ayyash (b4) 2015; 17 Liu, Zhang, Zhang (b43) 2019; 186 Sultana, Chilamkurti, Peng, Alhadad (b62) 2019; 12 Shone, Ngoc, Phai, Shi (b59) 2018; 2 Faker, Dogdu (b18) 2019 Breiman, Friedman, Stone, Olshen (b12) 1984 Nisioti, Mylonas, Yoo, Katos (b51) 2018; 20 Zhang, Patras, Haddadi (b77) 2019; 21 Buczak, Guven (b13) 2015; 18 Schapire (b56) 1990; 5 Conti (10.1016/j.engappai.2020.103770_b14) 2018; 20 Schapire (10.1016/j.engappai.2020.103770_b57) 1999; 37 Nisioti (10.1016/j.engappai.2020.103770_b51) 2018; 20 Zhao (10.1016/j.engappai.2020.103770_b78) 2019; 7 Agrawal (10.1016/j.engappai.2020.103770_b2) 2015; 60 Ali (10.1016/j.engappai.2020.103770_b6) 2018; 6 Patcha (10.1016/j.engappai.2020.103770_b54) 2007; 51 D’Alconzo (10.1016/j.engappai.2020.103770_b15) 2019; 16 Khan (10.1016/j.engappai.2020.103770_b34) 2019; 7 Kim (10.1016/j.engappai.2020.103770_b36) 2014; 41 Bamakan (10.1016/j.engappai.2020.103770_b8) 2017; 126 Breiman (10.1016/j.engappai.2020.103770_b12) 1984 Yuan (10.1016/j.engappai.2020.103770_b75) 2016 Shone (10.1016/j.engappai.2020.103770_b59) 2018; 2 Hansen (10.1016/j.engappai.2020.103770_b28) 1990; 12 Buczak (10.1016/j.engappai.2020.103770_b13) 2015; 18 Tian (10.1016/j.engappai.2020.103770_b67) 2019; 16 Vezhnevets (10.1016/j.engappai.2020.103770_b70) 2005 Protić (10.1016/j.engappai.2020.103770_b55) 2018; 66 Freund (10.1016/j.engappai.2020.103770_b21) 1996 Kuncheva (10.1016/j.engappai.2020.103770_b40) 2014 Aljawarneh (10.1016/j.engappai.2020.103770_b7) 2018; 25 Freund (10.1016/j.engappai.2020.103770_b20) 1997; 55 Hansen (10.1016/j.engappai.2020.103770_b27) 2007; 43 Wang (10.1016/j.engappai.2020.103770_b74) 2018; 6 Dasarathy (10.1016/j.engappai.2020.103770_b16) 1979; 67 Huang (10.1016/j.engappai.2020.103770_b31) 2019; 32 Khraisat (10.1016/j.engappai.2020.103770_b35) 2019; 2 Wang (10.1016/j.engappai.2020.103770_b73) 2016 Zeng (10.1016/j.engappai.2020.103770_b76) 2019; 7 Friedman (10.1016/j.engappai.2020.103770_b23) 2000; 28 Gao (10.1016/j.engappai.2020.103770_b24) 2019; 7 He (10.1016/j.engappai.2020.103770_b29) 2020; 91 Kuncheva (10.1016/j.engappai.2020.103770_b39) 2002; 24 Moustafa (10.1016/j.engappai.2020.103770_b47) 2018; 6 Liu (10.1016/j.engappai.2020.103770_b43) 2019; 186 Javaid (10.1016/j.engappai.2020.103770_b32) 2016 Meir (10.1016/j.engappai.2020.103770_b44) 2003 Viegas (10.1016/j.engappai.2020.103770_b71) 2017; 127 Beyene (10.1016/j.engappai.2020.103770_b9) 2017; 16 Vinayakumar (10.1016/j.engappai.2020.103770_b72) 2019; 7 Sreeram (10.1016/j.engappai.2020.103770_b61) 2019; 15 Moustafa (10.1016/j.engappai.2020.103770_b49) 2019; 5 Tsai (10.1016/j.engappai.2020.103770_b69) 2009; 36 METIS (10.1016/j.engappai.2020.103770_b45) 2020 Tao (10.1016/j.engappai.2020.103770_b64) 2018; 6 Faker (10.1016/j.engappai.2020.103770_b18) 2019 Afifi (10.1016/j.engappai.2020.103770_b1) 2019; 62 Sindhu (10.1016/j.engappai.2020.103770_b60) 2012; 39 Liang (10.1016/j.engappai.2020.103770_b41) 2016; 32 Sultana (10.1016/j.engappai.2020.103770_b62) 2019; 12 Zhang (10.1016/j.engappai.2020.103770_b77) 2019; 21 Dua (10.1016/j.engappai.2020.103770_b17) 2016 Liao (10.1016/j.engappai.2020.103770_b42) 2013; 36 10.1016/j.engappai.2020.103770_b58 10.1016/j.engappai.2020.103770_b19 Graves (10.1016/j.engappai.2020.103770_b26) 2018; 18 Otoum (10.1016/j.engappai.2020.103770_b52) 2019; 1 Tang (10.1016/j.engappai.2020.103770_b63) 2020; 106 Friedman (10.1016/j.engappai.2020.103770_b22) 2001; vol. 1 Papamartzivanos (10.1016/j.engappai.2020.103770_b53) 2019; 7 Gosztolya (10.1016/j.engappai.2020.103770_b25) 2019; 23 Moustafa (10.1016/j.engappai.2020.103770_b50) 2019; 6 Kolias (10.1016/j.engappai.2020.103770_b37) 2011; 30 Tavallaee (10.1016/j.engappai.2020.103770_b65) 2009 Alhakami (10.1016/j.engappai.2020.103770_b5) 2019; 7 Al-Fuqaha (10.1016/j.engappai.2020.103770_b4) 2015; 17 Jemili (10.1016/j.engappai.2020.103770_b33) 2007 Teng (10.1016/j.engappai.2020.103770_b66) 2018; 5 Tounsi (10.1016/j.engappai.2020.103770_b68) 2018; 72 Kreibich (10.1016/j.engappai.2020.103770_b38) 2004; 34 Mohammadi (10.1016/j.engappai.2020.103770_b46) 2018; 20 Moustafa (10.1016/j.engappai.2020.103770_b48) 2015 Schapire (10.1016/j.engappai.2020.103770_b56) 1990; 5 Breiman (10.1016/j.engappai.2020.103770_b11) 2017 Akhtar (10.1016/j.engappai.2020.103770_b3) 2018; 6 10.1016/j.engappai.2020.103770_b10 Hindy (10.1016/j.engappai.2020.103770_b30) 2018 |
| References_xml | – volume: 7 start-page: 30373 year: 2019 end-page: 30385 ident: b34 article-title: A novel two-stage deep learning model for efficient network intrusion detection publication-title: IEEE Access – volume: 5 start-page: 197 year: 1990 end-page: 227 ident: b56 article-title: The strength of weak learnability publication-title: Mach. Learn. – volume: 6 start-page: 32910 year: 2018 end-page: 32924 ident: b47 article-title: A new threat intelligence scheme for safeguarding industry 4.0 systems publication-title: IEEE Access – volume: 67 start-page: 708 year: 1979 end-page: 713 ident: b16 article-title: A composite classifier system design: concepts and methodology publication-title: Proc. IEEE – volume: 51 start-page: 3448 year: 2007 end-page: 3470 ident: b54 article-title: An overview of anomaly detection techniques: Existing solutions and latest technological trends publication-title: Comput. Netw. – volume: 127 start-page: 200 year: 2017 end-page: 216 ident: b71 article-title: Toward a reliable anomalybased intrusion detection in real-world environments publication-title: Comput. Netw. – volume: 1 start-page: 68 year: 2019 end-page: 71 ident: b52 article-title: On the feasibility of deep learning in sensor network intrusion detection publication-title: IEEE Netw. Lett. – volume: 23 start-page: 115 year: 2019 end-page: 128 ident: b25 article-title: Calibrating AdaBoost for phoneme classification publication-title: Soft Comput. – volume: 106 start-page: 347 year: 2020 end-page: 359 ident: b63 article-title: Mf-adaboost: Ldos attack detection based on multi-features and improved adaboost publication-title: Future Gener. Comput. Syst. – volume: 7 start-page: 52181 year: 2019 end-page: 52190 ident: b5 article-title: Network anomaly intrusion detection using a nonparametric bayesian approach and feature selection publication-title: IEEE Access – volume: 6 start-page: 20255 year: 2018 end-page: 20261 ident: b6 article-title: A new intrusion detection system based on fast learning network and particle swarm optimization publication-title: IEEE Access – volume: 6 start-page: 14410 year: 2018 end-page: 14430 ident: b3 article-title: Threat of adversarial attacks on deep learning in computer vision: A survey publication-title: IEEE Access – volume: 20 start-page: 3369 year: 2018 end-page: 3388 ident: b51 article-title: From intrusion detection to attacker attribution: A comprehensive survey of unsupervised methods publication-title: IEEE Commun. Surv. Tutor. – volume: 5 start-page: 481 year: 2019 end-page: 494 ident: b49 article-title: Novel geometric area analysis technique for anomaly detection using trapezoidal area estimation on large-scale networks publication-title: IEEE Trans. Big Data – reference: Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A., 2018. Toward generating a new intrusion detection dataset and intrusion traffic characterization. In: ICISSP, pp. 108–116. – volume: 16 start-page: 800 year: 2019 end-page: 813 ident: b15 article-title: A survey on big data for network traffic monitoring and analysis publication-title: IEEE Trans. Netw. Serv. Manag. – volume: 12 start-page: 993 year: 1990 end-page: 1001 ident: b28 article-title: Neural network ensembles publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2017 ident: b11 article-title: Classification and Regression Trees – volume: 20 start-page: 2658 year: 2018 end-page: 2713 ident: b14 article-title: The dark side (- channel) of mobile devices: A survey on network traffic analysis publication-title: IEEE Commun. Surv. Tutor. – volume: 7 start-page: 82512 year: 2019 end-page: 82521 ident: b24 article-title: An adaptive ensemble machine learning model for intrusion detection publication-title: IEEE Access – volume: 55 start-page: 119 year: 1997 end-page: 139 ident: b20 article-title: A decision-theoretic generalization of online learning and an application to boosting publication-title: J. Comput. System Sci. – year: 2020 ident: b45 article-title: Mobile and wireless communications enablers for the 2020 information society – volume: 7 start-page: 45182 year: 2019 end-page: 45190 ident: b76 article-title: Deep-full-range : A deep learning based network encrypted traffic classification and intrusion detection framework publication-title: IEEE Access – volume: 6 start-page: 1792 year: 2018 end-page: 1806 ident: b74 article-title: Hastids: Learning hierarchical spatial–temporal features using deep neural networks to improve intrusion detection publication-title: IEEE Access – start-page: 111 year: 2016 end-page: 114 ident: b75 article-title: A novel semi-supervised adaboost technique for network anomaly detection publication-title: Proceedings of the 19th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems – reference: Bilge, L., Kirda, E., Kruegel, C., Balduzzi, M., 2011. Exposure: Finding malicious domains using passive dns analysis. In: Ndss, pp. 1–17. – year: 1984 ident: b12 article-title: Classification and Regression Trees – volume: vol. 1 year: 2001 ident: b22 publication-title: The Elements of Statistical Learning – volume: 7 start-page: 41525 year: 2019 end-page: 41550 ident: b72 article-title: Deep learning approach for intelligent intrusion detection system publication-title: IEEE Access – volume: 18 start-page: 1153 year: 2015 end-page: 1176 ident: b13 article-title: A survey of data mining and machine learning methods for cyber security intrusion detection publication-title: IEEE Commun. Surv. Tutor. – volume: 126 start-page: 113 year: 2017 end-page: 126 ident: b8 article-title: Ramp loss k-support vector classification-regression; a robust and sparse multi-class approach to the intrusion detection problem publication-title: Knowl.-Based Syst. – start-page: 118 year: 2003 end-page: 183 ident: b44 article-title: An introduction to boosting and leveraging publication-title: Advanced Lectures on Machine Learning – start-page: 1 year: 2009 end-page: 6 ident: b65 article-title: A detailed analysis of the kdd cup 99 data set publication-title: 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications – volume: 16 start-page: 1963 year: 2019 end-page: 1971 ident: b67 article-title: A distributed deep learning system for web attack detection on edge devices publication-title: IEEE Trans. Ind. Inf. – volume: 91 year: 2020 ident: b29 article-title: Fault diagnosis using novel adaboost based discriminant locality preserving projection with resamples publication-title: Eng. Appl. Artif. Intell. – volume: 6 start-page: 4815 year: 2019 end-page: 4830 ident: b50 article-title: An ensemble intrusion detection technique based on proposed statistical flow features for protecting network traffic of internet of things publication-title: IEEE Internet Things J. – year: 2016 ident: b17 article-title: Data Mining and Machine Learning in Cybersecurity – volume: 2 start-page: 20 year: 2019 ident: b35 article-title: Survey of intrusion detection systems: techniques datasets and challenges publication-title: Cybersecurity – volume: 32 start-page: 3317 year: 2016 end-page: 3318 ident: b41 article-title: The 2015 ukraine blackout: Implications for false data injection attacks publication-title: IEEE Trans. Power Syst. – volume: 6 start-page: 13624 year: 2018 end-page: 13631 ident: b64 article-title: An improved intrusion detection algorithm based on ga and svm publication-title: IEEE Access – volume: 7 start-page: 14549 year: 2019 end-page: 14557 ident: b78 article-title: Vehicle accident risk prediction based on adaboost-so in vanets publication-title: IEEE Access – volume: 41 start-page: 1690 year: 2014 end-page: 1700 ident: b36 article-title: A novel hybrid intrusion detection method integrating anomaly detection with misuse detection publication-title: Expert Syst. Appl. – volume: 15 start-page: 59 year: 2019 end-page: 66 ident: b61 article-title: Http flood attack detection in application layer using machine learning metrics and bio inspired bat algorithm publication-title: Appl. Comput. Inform. – start-page: 422 year: 2016 end-page: 425 ident: b73 article-title: Research on intrusion detection model using ensemble learning methods publication-title: 2016 7th IEEE International Conference on Software Engineering and Service Science – start-page: 21 year: 2016 end-page: 26 ident: b32 article-title: A deep learning approach for network intrusion detection system publication-title: Proceedings of the 9th EAI International Conference on Bio-Inspired Information and Communications Technologies – volume: 62 start-page: 77 year: 2019 end-page: 86 ident: b1 article-title: Afif4: deep gender classification based on adaboost-based fusion of isolated facial features and foggy faces publication-title: J. Vis. Commun. Image Represent. – volume: 43 start-page: 1362 year: 2007 end-page: 1374 ident: b27 article-title: Genetic programming for prevention of cyberterrorism through dynamic and evolving intrusion detection publication-title: Decis. Support Syst. – volume: 20 start-page: 2923 year: 2018 end-page: 2960 ident: b46 article-title: Deep learning for iot big data and streaming analytics: A survey publication-title: IEEE Commun. Surv. Tutor. – reference: Freund, Y., Schapire, R.E., 1996. Game theory, on-line prediction and boosting. In: Proceedings of the ninth annual conference on Computational learning theory, pp. 325–332. – volume: 36 start-page: 16 year: 2013 end-page: 24 ident: b42 article-title: Intrusion detection system: A comprehensive review publication-title: J. Netw. Comput. Appl. – volume: 186 year: 2019 ident: b43 article-title: Pwadaboost: Possible world based adaboost algorithm for classifying uncertain data publication-title: Knowl.-Based Syst. – start-page: 148 year: 1996 end-page: 156 ident: b21 article-title: Experiments with a new boosting algorithm publication-title: Icml, Vol. 96 – volume: 34 start-page: 51 year: 2004 end-page: 56 ident: b38 article-title: Honeycomb: creating intrusion detection signatures using honeypots publication-title: ACM SIGCOMM Comput. Commun. Rev. – start-page: 1 year: 2015 end-page: 6 ident: b48 article-title: Unsw-nb15: a comprehensive data set for network intrusion detection systems (unsw-nb15 network data set) publication-title: 2015 Military Communications and Information Systems Conference – volume: 18 start-page: 54 year: 2018 ident: b26 article-title: Should credit card issuers reissue cards in response to a data breach?: Uncertainty and transparency in metrics for data security policymaking publication-title: ACM Trans. Internet Technol. (TOIT) – volume: 66 start-page: 580 year: 2018 end-page: 596 ident: b55 article-title: Review of kdd cup’99, nsl-kdd and kyoto 2006+ datasets publication-title: Vojnotehnički glasnik – volume: 12 start-page: 493 year: 2019 end-page: 501 ident: b62 article-title: Survey on sdn based network intrusion detection system using machine learning approaches publication-title: Peer-to-Peer Netw. Appl. – start-page: 66 year: 2007 end-page: 70 ident: b33 article-title: A framework for an adaptive intrusion detection system using bayesian network publication-title: 2007 IEEE Intelligence and Security Informatics – start-page: 987 year: 2005 end-page: 997 ident: b70 article-title: Modest adaboost-teaching adaboost to generalize better publication-title: Graphicon, Vol. 12 – volume: 5 start-page: 108 year: 2018 end-page: 118 ident: b66 article-title: Svm-dt-based adaptive and collaborative intrusion detection publication-title: IEEE/CAA J. Automat. Sinica – volume: 72 start-page: 212 year: 2018 end-page: 233 ident: b68 article-title: A survey on technical threat intelligence in the age of sophisticated cyber attacks publication-title: Comput. Secur. – volume: 28 start-page: 337 year: 2000 end-page: 407 ident: b23 article-title: Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors) publication-title: Ann. Statist. – volume: 30 start-page: 625 year: 2011 end-page: 642 ident: b37 article-title: Swarm intelligence in intrusion detection: A survey publication-title: Comput. Secur. – volume: 32 start-page: 728 year: 2019 end-page: 738 ident: b31 article-title: On combining biclustering mining and AdaBoost for breast tumor classification publication-title: IEEE Trans. Knowl. Data Eng. – volume: 60 start-page: 708 year: 2015 end-page: 713 ident: b2 article-title: Survey on anomaly detection using data mining techniques publication-title: Procedia Comput. Sci. – volume: 7 start-page: 13546 year: 2019 end-page: 13560 ident: b53 article-title: Introducing deep learning self-adaptive misuse network intrusion detection systems publication-title: IEEE Access – volume: 21 start-page: 2224 year: 2019 end-page: 2287 ident: b77 article-title: Deep learning in mobile and wireless networking: A survey publication-title: IEEE Commun. Surv. Tutor. – volume: 37 start-page: 297 year: 1999 end-page: 336 ident: b57 article-title: Improved boosting algorithms using confidence-rated predictions publication-title: Mach. Learn. – volume: 39 start-page: 129 year: 2012 end-page: 141 ident: b60 article-title: Decision tree based light weight intrusion detection using a wrapper approach publication-title: Expert Syst. Appl. – volume: 24 start-page: 281 year: 2002 end-page: 286 ident: b39 article-title: A theoretical study on six classifier fusion strategies publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 17 start-page: 2347 year: 2015 end-page: 2376 ident: b4 article-title: Internet of things: A survey on enabling technologies, protocols, and applications publication-title: IEEE Commun. Surv. Tutor. – year: 2018 ident: b30 article-title: A taxonomy and survey of intrusion detection system design techniques, network threats and datasets – year: 2014 ident: b40 article-title: Combining Pattern Classifiers: Methods and Algorithms – start-page: 86 year: 2019 end-page: 93 ident: b18 article-title: Intrusion detection using big data and deep learning techniques publication-title: Proceedings of the 2019 ACM Southeast Conference – volume: 25 start-page: 152 year: 2018 end-page: 160 ident: b7 article-title: Anomaly-based intrusion detection system through feature selection analysis and building hybrid efficient model publication-title: J. Comput. Sci. – volume: 36 start-page: 11994 year: 2009 end-page: 12000 ident: b69 article-title: Intrusion detection by machine learning: A review publication-title: Expert Syst. Appl. – volume: 16 start-page: 1823 year: 2017 end-page: 1833 ident: b9 article-title: Random access scheme for sporadic users in 5g publication-title: IEEE Trans. Wireless Commun. – volume: 2 start-page: 41 year: 2018 end-page: 50 ident: b59 article-title: A deep learning approach to network intrusion detection publication-title: IEEE Trans. Emerg. Topics Comput. Intell. – volume: 126 start-page: 113 year: 2017 ident: 10.1016/j.engappai.2020.103770_b8 article-title: Ramp loss k-support vector classification-regression; a robust and sparse multi-class approach to the intrusion detection problem publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2017.03.012 – volume: 55 start-page: 119 year: 1997 ident: 10.1016/j.engappai.2020.103770_b20 article-title: A decision-theoretic generalization of online learning and an application to boosting publication-title: J. Comput. System Sci. doi: 10.1006/jcss.1997.1504 – volume: 1 start-page: 68 year: 2019 ident: 10.1016/j.engappai.2020.103770_b52 article-title: On the feasibility of deep learning in sensor network intrusion detection publication-title: IEEE Netw. Lett. doi: 10.1109/LNET.2019.2901792 – volume: 12 start-page: 493 year: 2019 ident: 10.1016/j.engappai.2020.103770_b62 article-title: Survey on sdn based network intrusion detection system using machine learning approaches publication-title: Peer-to-Peer Netw. Appl. doi: 10.1007/s12083-017-0630-0 – volume: 16 start-page: 1963 year: 2019 ident: 10.1016/j.engappai.2020.103770_b67 article-title: A distributed deep learning system for web attack detection on edge devices publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2019.2938778 – volume: 18 start-page: 54 year: 2018 ident: 10.1016/j.engappai.2020.103770_b26 article-title: Should credit card issuers reissue cards in response to a data breach?: Uncertainty and transparency in metrics for data security policymaking publication-title: ACM Trans. Internet Technol. (TOIT) doi: 10.1145/3122983 – volume: 51 start-page: 3448 year: 2007 ident: 10.1016/j.engappai.2020.103770_b54 article-title: An overview of anomaly detection techniques: Existing solutions and latest technological trends publication-title: Comput. Netw. doi: 10.1016/j.comnet.2007.02.001 – start-page: 21 year: 2016 ident: 10.1016/j.engappai.2020.103770_b32 article-title: A deep learning approach for network intrusion detection system – volume: 186 year: 2019 ident: 10.1016/j.engappai.2020.103770_b43 article-title: Pwadaboost: Possible world based adaboost algorithm for classifying uncertain data publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.104930 – volume: 28 start-page: 337 year: 2000 ident: 10.1016/j.engappai.2020.103770_b23 article-title: Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors) publication-title: Ann. Statist. doi: 10.1214/aos/1016218223 – ident: 10.1016/j.engappai.2020.103770_b19 doi: 10.1145/238061.238163 – volume: 36 start-page: 11994 year: 2009 ident: 10.1016/j.engappai.2020.103770_b69 article-title: Intrusion detection by machine learning: A review publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.05.029 – volume: 7 start-page: 30373 year: 2019 ident: 10.1016/j.engappai.2020.103770_b34 article-title: A novel two-stage deep learning model for efficient network intrusion detection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2899721 – volume: 6 start-page: 14410 year: 2018 ident: 10.1016/j.engappai.2020.103770_b3 article-title: Threat of adversarial attacks on deep learning in computer vision: A survey publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2807385 – start-page: 66 year: 2007 ident: 10.1016/j.engappai.2020.103770_b33 article-title: A framework for an adaptive intrusion detection system using bayesian network – ident: 10.1016/j.engappai.2020.103770_b58 doi: 10.5220/0006639801080116 – start-page: 1 year: 2009 ident: 10.1016/j.engappai.2020.103770_b65 article-title: A detailed analysis of the kdd cup 99 data set – volume: 32 start-page: 728 year: 2019 ident: 10.1016/j.engappai.2020.103770_b31 article-title: On combining biclustering mining and AdaBoost for breast tumor classification publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2019.2891622 – volume: 17 start-page: 2347 year: 2015 ident: 10.1016/j.engappai.2020.103770_b4 article-title: Internet of things: A survey on enabling technologies, protocols, and applications publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2015.2444095 – volume: 6 start-page: 1792 year: 2018 ident: 10.1016/j.engappai.2020.103770_b74 article-title: Hastids: Learning hierarchical spatial–temporal features using deep neural networks to improve intrusion detection publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2780250 – volume: 106 start-page: 347 year: 2020 ident: 10.1016/j.engappai.2020.103770_b63 article-title: Mf-adaboost: Ldos attack detection based on multi-features and improved adaboost publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.12.034 – start-page: 422 year: 2016 ident: 10.1016/j.engappai.2020.103770_b73 article-title: Research on intrusion detection model using ensemble learning methods – volume: 39 start-page: 129 year: 2012 ident: 10.1016/j.engappai.2020.103770_b60 article-title: Decision tree based light weight intrusion detection using a wrapper approach publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.06.013 – volume: 62 start-page: 77 year: 2019 ident: 10.1016/j.engappai.2020.103770_b1 article-title: Afif4: deep gender classification based on adaboost-based fusion of isolated facial features and foggy faces publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2019.05.001 – year: 1984 ident: 10.1016/j.engappai.2020.103770_b12 – start-page: 86 year: 2019 ident: 10.1016/j.engappai.2020.103770_b18 article-title: Intrusion detection using big data and deep learning techniques – volume: 66 start-page: 580 year: 2018 ident: 10.1016/j.engappai.2020.103770_b55 article-title: Review of kdd cup’99, nsl-kdd and kyoto 2006+ datasets publication-title: Vojnotehnički glasnik doi: 10.5937/vojtehg66-16670 – volume: 36 start-page: 16 year: 2013 ident: 10.1016/j.engappai.2020.103770_b42 article-title: Intrusion detection system: A comprehensive review publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2012.09.004 – volume: 15 start-page: 59 year: 2019 ident: 10.1016/j.engappai.2020.103770_b61 article-title: Http flood attack detection in application layer using machine learning metrics and bio inspired bat algorithm publication-title: Appl. Comput. Inform. doi: 10.1016/j.aci.2017.10.003 – volume: 67 start-page: 708 year: 1979 ident: 10.1016/j.engappai.2020.103770_b16 article-title: A composite classifier system design: concepts and methodology publication-title: Proc. IEEE doi: 10.1109/PROC.1979.11321 – volume: 60 start-page: 708 year: 2015 ident: 10.1016/j.engappai.2020.103770_b2 article-title: Survey on anomaly detection using data mining techniques publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2015.08.220 – volume: 21 start-page: 2224 year: 2019 ident: 10.1016/j.engappai.2020.103770_b77 article-title: Deep learning in mobile and wireless networking: A survey publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2019.2904897 – start-page: 148 year: 1996 ident: 10.1016/j.engappai.2020.103770_b21 article-title: Experiments with a new boosting algorithm – volume: 41 start-page: 1690 year: 2014 ident: 10.1016/j.engappai.2020.103770_b36 article-title: A novel hybrid intrusion detection method integrating anomaly detection with misuse detection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.08.066 – year: 2014 ident: 10.1016/j.engappai.2020.103770_b40 – volume: 16 start-page: 1823 year: 2017 ident: 10.1016/j.engappai.2020.103770_b9 article-title: Random access scheme for sporadic users in 5g publication-title: IEEE Trans. Wireless Commun. doi: 10.1109/TWC.2017.2655044 – volume: 20 start-page: 3369 year: 2018 ident: 10.1016/j.engappai.2020.103770_b51 article-title: From intrusion detection to attacker attribution: A comprehensive survey of unsupervised methods publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2018.2854724 – year: 2020 ident: 10.1016/j.engappai.2020.103770_b45 – volume: 7 start-page: 41525 year: 2019 ident: 10.1016/j.engappai.2020.103770_b72 article-title: Deep learning approach for intelligent intrusion detection system publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2895334 – start-page: 111 year: 2016 ident: 10.1016/j.engappai.2020.103770_b75 article-title: A novel semi-supervised adaboost technique for network anomaly detection – volume: 16 start-page: 800 year: 2019 ident: 10.1016/j.engappai.2020.103770_b15 article-title: A survey on big data for network traffic monitoring and analysis publication-title: IEEE Trans. Netw. Serv. Manag. doi: 10.1109/TNSM.2019.2933358 – year: 2016 ident: 10.1016/j.engappai.2020.103770_b17 – volume: 6 start-page: 4815 year: 2019 ident: 10.1016/j.engappai.2020.103770_b50 article-title: An ensemble intrusion detection technique based on proposed statistical flow features for protecting network traffic of internet of things publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2018.2871719 – volume: 24 start-page: 281 year: 2002 ident: 10.1016/j.engappai.2020.103770_b39 article-title: A theoretical study on six classifier fusion strategies publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.982906 – volume: 7 start-page: 82512 year: 2019 ident: 10.1016/j.engappai.2020.103770_b24 article-title: An adaptive ensemble machine learning model for intrusion detection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2923640 – volume: 6 start-page: 20255 year: 2018 ident: 10.1016/j.engappai.2020.103770_b6 article-title: A new intrusion detection system based on fast learning network and particle swarm optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2820092 – volume: 43 start-page: 1362 year: 2007 ident: 10.1016/j.engappai.2020.103770_b27 article-title: Genetic programming for prevention of cyberterrorism through dynamic and evolving intrusion detection publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2006.04.004 – ident: 10.1016/j.engappai.2020.103770_b10 – volume: 7 start-page: 45182 year: 2019 ident: 10.1016/j.engappai.2020.103770_b76 article-title: Deep-full-range : A deep learning based network encrypted traffic classification and intrusion detection framework publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2908225 – volume: 20 start-page: 2923 year: 2018 ident: 10.1016/j.engappai.2020.103770_b46 article-title: Deep learning for iot big data and streaming analytics: A survey publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2018.2844341 – start-page: 118 year: 2003 ident: 10.1016/j.engappai.2020.103770_b44 article-title: An introduction to boosting and leveraging – volume: 2 start-page: 20 year: 2019 ident: 10.1016/j.engappai.2020.103770_b35 article-title: Survey of intrusion detection systems: techniques datasets and challenges publication-title: Cybersecurity doi: 10.1186/s42400-019-0038-7 – volume: 5 start-page: 197 year: 1990 ident: 10.1016/j.engappai.2020.103770_b56 article-title: The strength of weak learnability publication-title: Mach. Learn. doi: 10.1023/A:1022648800760 – volume: 91 year: 2020 ident: 10.1016/j.engappai.2020.103770_b29 article-title: Fault diagnosis using novel adaboost based discriminant locality preserving projection with resamples publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103631 – year: 2017 ident: 10.1016/j.engappai.2020.103770_b11 – volume: 6 start-page: 32910 year: 2018 ident: 10.1016/j.engappai.2020.103770_b47 article-title: A new threat intelligence scheme for safeguarding industry 4.0 systems publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2844794 – volume: 18 start-page: 1153 year: 2015 ident: 10.1016/j.engappai.2020.103770_b13 article-title: A survey of data mining and machine learning methods for cyber security intrusion detection publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2015.2494502 – volume: 2 start-page: 41 year: 2018 ident: 10.1016/j.engappai.2020.103770_b59 article-title: A deep learning approach to network intrusion detection publication-title: IEEE Trans. Emerg. Topics Comput. Intell. doi: 10.1109/TETCI.2017.2772792 – volume: 127 start-page: 200 year: 2017 ident: 10.1016/j.engappai.2020.103770_b71 article-title: Toward a reliable anomalybased intrusion detection in real-world environments publication-title: Comput. Netw. doi: 10.1016/j.comnet.2017.08.013 – volume: 34 start-page: 51 year: 2004 ident: 10.1016/j.engappai.2020.103770_b38 article-title: Honeycomb: creating intrusion detection signatures using honeypots publication-title: ACM SIGCOMM Comput. Commun. Rev. doi: 10.1145/972374.972384 – volume: 72 start-page: 212 year: 2018 ident: 10.1016/j.engappai.2020.103770_b68 article-title: A survey on technical threat intelligence in the age of sophisticated cyber attacks publication-title: Comput. Secur. doi: 10.1016/j.cose.2017.09.001 – year: 2018 ident: 10.1016/j.engappai.2020.103770_b30 – volume: vol. 1 year: 2001 ident: 10.1016/j.engappai.2020.103770_b22 – volume: 32 start-page: 3317 year: 2016 ident: 10.1016/j.engappai.2020.103770_b41 article-title: The 2015 ukraine blackout: Implications for false data injection attacks publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2016.2631891 – start-page: 987 year: 2005 ident: 10.1016/j.engappai.2020.103770_b70 article-title: Modest adaboost-teaching adaboost to generalize better – start-page: 1 year: 2015 ident: 10.1016/j.engappai.2020.103770_b48 article-title: Unsw-nb15: a comprehensive data set for network intrusion detection systems (unsw-nb15 network data set) – volume: 25 start-page: 152 year: 2018 ident: 10.1016/j.engappai.2020.103770_b7 article-title: Anomaly-based intrusion detection system through feature selection analysis and building hybrid efficient model publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2017.03.006 – volume: 23 start-page: 115 year: 2019 ident: 10.1016/j.engappai.2020.103770_b25 article-title: Calibrating AdaBoost for phoneme classification publication-title: Soft Comput. doi: 10.1007/s00500-018-3577-z – volume: 20 start-page: 2658 year: 2018 ident: 10.1016/j.engappai.2020.103770_b14 article-title: The dark side (- channel) of mobile devices: A survey on network traffic analysis publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2018.2843533 – volume: 12 start-page: 993 year: 1990 ident: 10.1016/j.engappai.2020.103770_b28 article-title: Neural network ensembles publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.58871 – volume: 5 start-page: 481 year: 2019 ident: 10.1016/j.engappai.2020.103770_b49 article-title: Novel geometric area analysis technique for anomaly detection using trapezoidal area estimation on large-scale networks publication-title: IEEE Trans. Big Data doi: 10.1109/TBDATA.2017.2715166 – volume: 7 start-page: 14549 year: 2019 ident: 10.1016/j.engappai.2020.103770_b78 article-title: Vehicle accident risk prediction based on adaboost-so in vanets publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2894176 – volume: 7 start-page: 52181 year: 2019 ident: 10.1016/j.engappai.2020.103770_b5 article-title: Network anomaly intrusion detection using a nonparametric bayesian approach and feature selection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2912115 – volume: 6 start-page: 13624 year: 2018 ident: 10.1016/j.engappai.2020.103770_b64 article-title: An improved intrusion detection algorithm based on ga and svm publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2810198 – volume: 30 start-page: 625 year: 2011 ident: 10.1016/j.engappai.2020.103770_b37 article-title: Swarm intelligence in intrusion detection: A survey publication-title: Comput. Secur. doi: 10.1016/j.cose.2011.08.009 – volume: 7 start-page: 13546 year: 2019 ident: 10.1016/j.engappai.2020.103770_b53 article-title: Introducing deep learning self-adaptive misuse network intrusion detection systems publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2893871 – volume: 5 start-page: 108 year: 2018 ident: 10.1016/j.engappai.2020.103770_b66 article-title: Svm-dt-based adaptive and collaborative intrusion detection publication-title: IEEE/CAA J. Automat. Sinica doi: 10.1109/JAS.2017.7510730 – volume: 37 start-page: 297 year: 1999 ident: 10.1016/j.engappai.2020.103770_b57 article-title: Improved boosting algorithms using confidence-rated predictions publication-title: Mach. Learn. doi: 10.1023/A:1007614523901 |
| SSID | ssj0003846 |
| Score | 2.6003897 |
| Snippet | Computer networks have been experienced ever-increasing growth since they play a critical role in different aspects of human life. Regarding the... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 103770 |
| SubjectTerms | AdaBoost Anomaly detection Boosting techniques Ensemble learning Intrusion detection systems Machine learning Malware detection |
| Title | Boosting algorithms for network intrusion detection: A comparative evaluation of Real AdaBoost, Gentle AdaBoost and Modest AdaBoost |
| URI | https://dx.doi.org/10.1016/j.engappai.2020.103770 |
| Volume | 94 |
| WOSCitedRecordID | wos000564244500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaqLgcuvBHLSz5wK1mSNIltbgEtAg4rJHroLXJip-2qm6z6WO2dv7M_cscZ2wmw0oIQl6gayXHa-eJ5dOYbQt5ozaNQpVmQpAIClCytAhkqFahKR7IUiahT2Q2bYCcnfD4X30ajK9cLc7FmTcMvL8X5f1U1yEDZpnX2L9TtbwoC-AxKhyuoHa5_pPgPbbvtapnletFC6L9EyoVJgwXfhiBiszc5sonSu64Qq8H29GpABN6TgCNbiVGkkt2tMZPewFZehNUarQIL42U_pfx70sPJ8B_zrghh01UrdbNDBvSgPvOzlMuNxNna-dnKQzkvwf6usNtoedbuVX-U7hd4lJoaAMENU7VdZpMbEMm66i2bcXNdN32JE6Yu4yASzFJo48HN2TQw5brDkx3HJ_9mJDBfcXqkmwV8Z7k6Mjt37AM4w-QXAu7vZj-zXWzCR2b43Q9ilgo-Jgf5l-P5V2_5pxwbw9zzDTrSb97tZmdo4ODMHpB7NjKhOSLqIRnp5hG5b6MUam3AFkRuEIiTPSY_HOZojzkKmKMWc9RjjnrMvac5HSCO9oijbU0N4qiD0luKePMCCnijiDcve0Jmn45nHz8HdrpHUE2jeBfImgul6iqMZarLTLIolXUiRQzWt4KwAQwvuLK8hpBZ8TrRIcuYktoMPM3ALZ0-JeOmbfQzQlVcRkJVcZqUMhEllxD0sLLiOqx1nfDkkKTuVy4qy3xvBrCsC1fieFo47RRGOwVq55C88-vOkfvl1hXCKbGwHix6pgVg75a1z_9h7Qtyt397XpIx6FS_Ineqi91qu3ltYXoNX6_KEA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boosting+algorithms+for+network+intrusion+detection%3A+A+comparative+evaluation+of+Real+AdaBoost%2C+Gentle+AdaBoost+and+Modest+AdaBoost&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Shahraki%2C+Amin&rft.au=Abbasi%2C+Mahmoud&rft.au=Haugen%2C+%C3%98ystein&rft.date=2020-09-01&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.eissn=1873-6769&rft.volume=94&rft_id=info:doi/10.1016%2Fj.engappai.2020.103770&rft.externalDocID=S0952197620301706 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |