Boosting algorithms for network intrusion detection: A comparative evaluation of Real AdaBoost, Gentle AdaBoost and Modest AdaBoost

Computer networks have been experienced ever-increasing growth since they play a critical role in different aspects of human life. Regarding the vulnerabilities of computer networks, they should be monitored regularly to detect intrusions and attacks by using high-performance Intrusion Detection Sys...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Engineering applications of artificial intelligence Ročník 94; s. 103770
Hlavní autori: Shahraki, Amin, Abbasi, Mahmoud, Haugen, Øystein
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.09.2020
Predmet:
ISSN:0952-1976, 1873-6769
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Computer networks have been experienced ever-increasing growth since they play a critical role in different aspects of human life. Regarding the vulnerabilities of computer networks, they should be monitored regularly to detect intrusions and attacks by using high-performance Intrusion Detection Systems (IDSs). IDSs try to differentiate between normal and abnormal behaviors to recognize intrusions. Due to the complex behavior of malicious entities, it is crucially important to adopt machine learning methods for intrusion detection with a fine performance and low time complexity. Boosting approach is considered as a way to deal with this challenge. In this paper, we prepare a clear summary of the latest progress in the context of intrusion detection methods, present a technical background on boosting, and demonstrate the ability of the three well-known boosting algorithms (Real Adaboost, Gentle Adaboost, and Modest Adaboost) as IDSs by using five IDS public benchmark datasets. The results show that the Modest AdaBoost has a higher error rate compared to Gentle and Real AdaBoost in IDSs. Besides, in the case of IDSs, Gentle and Real AdaBoost show the same performance as they have about 70% lower error rates compared to Modest Adaboost, however, Modest AdaBoost is about 7% faster than them. In addition, as IDSs need to retrain the model frequently, the results show that Modest AdaBoost has a much lower performance than Gentle and Real AdaBoost in case of error rate stability.
AbstractList Computer networks have been experienced ever-increasing growth since they play a critical role in different aspects of human life. Regarding the vulnerabilities of computer networks, they should be monitored regularly to detect intrusions and attacks by using high-performance Intrusion Detection Systems (IDSs). IDSs try to differentiate between normal and abnormal behaviors to recognize intrusions. Due to the complex behavior of malicious entities, it is crucially important to adopt machine learning methods for intrusion detection with a fine performance and low time complexity. Boosting approach is considered as a way to deal with this challenge. In this paper, we prepare a clear summary of the latest progress in the context of intrusion detection methods, present a technical background on boosting, and demonstrate the ability of the three well-known boosting algorithms (Real Adaboost, Gentle Adaboost, and Modest Adaboost) as IDSs by using five IDS public benchmark datasets. The results show that the Modest AdaBoost has a higher error rate compared to Gentle and Real AdaBoost in IDSs. Besides, in the case of IDSs, Gentle and Real AdaBoost show the same performance as they have about 70% lower error rates compared to Modest Adaboost, however, Modest AdaBoost is about 7% faster than them. In addition, as IDSs need to retrain the model frequently, the results show that Modest AdaBoost has a much lower performance than Gentle and Real AdaBoost in case of error rate stability.
ArticleNumber 103770
Author Haugen, Øystein
Abbasi, Mahmoud
Shahraki, Amin
Author_xml – sequence: 1
  givenname: Amin
  surname: Shahraki
  fullname: Shahraki, Amin
  email: am.shahraki@ieee.org
  organization: Department of Informatics, University of Oslo, Oslo, Norway
– sequence: 2
  givenname: Mahmoud
  surname: Abbasi
  fullname: Abbasi, Mahmoud
  organization: Faculty of Engineering, Islamic Azad University of Mashhad, Mashhad, Iran
– sequence: 3
  givenname: Øystein
  surname: Haugen
  fullname: Haugen, Øystein
  organization: Faculty of Computer Sciences, Østfold University College, Halden, Norway
BookMark eNqFkE9LAzEQxYNUsFa_guQDuDXZbZNd8WAt_oOKIN7DmExq6jYpSax49ou7terBi6d5vOE9Zn77pOeDR0KOOBtyxsXJYoh-DqsVuGHJyo1ZScl2SJ_XsiqEFE2P9FkzLgveSLFH9lNaMMaqeiT65OMihJSdn1No5yG6_LxM1IZIPea3EF-o8zm-Jhc8NZhR506d0gnVYbmCCNmtkeIa2lfYbGiw9AGhpRMDX8XH9Bp9bvHXoOANvQsGO_njHZBdC23Cw-85II9Xl4_Tm2J2f307ncwKXfEyF2DrxhirWQljfBIg-RjsCJqSc67HrAZjGs5qy-XI1HaETAppAEVTN4LXvBqQs22tjiGliFZpl7_OzhFcqzhTG55qoX54qg1PteXZxcWf-Cq6JcT3_4Pn2yB2v60dRpW0Q6_RuNgBVSa4_yo-AbHrmJ0
CitedBy_id crossref_primary_10_1007_s42243_023_01060_x
crossref_primary_10_3390_bioengineering9080350
crossref_primary_10_1051_e3sconf_202339003005
crossref_primary_10_1109_TNSE_2022_3206353
crossref_primary_10_32604_cmc_2023_038864
crossref_primary_10_1016_j_comcom_2021_01_021
crossref_primary_10_1049_ipr2_70177
crossref_primary_10_1016_j_comnet_2022_108836
crossref_primary_10_1016_j_egyr_2022_02_290
crossref_primary_10_1007_s10207_023_00682_2
crossref_primary_10_1016_j_istruc_2024_107893
crossref_primary_10_1093_jcde_qwad047
crossref_primary_10_3390_su15053982
crossref_primary_10_1016_j_engappai_2021_104234
crossref_primary_10_3934_mbe_2025021
crossref_primary_10_1016_j_cmpbup_2025_100184
crossref_primary_10_3390_info15070394
crossref_primary_10_1109_LSENS_2023_3296347
crossref_primary_10_1016_j_cosrev_2020_100357
crossref_primary_10_1016_j_psep_2024_05_036
crossref_primary_10_1016_j_ipm_2025_104176
crossref_primary_10_1007_s11053_022_10017_y
crossref_primary_10_1002_er_7505
crossref_primary_10_1002_suco_202300401
crossref_primary_10_1080_1023666X_2025_2477557
crossref_primary_10_3390_bdcc5040072
crossref_primary_10_1093_jee_toaf035
crossref_primary_10_1007_s10489_020_02090_8
crossref_primary_10_1109_ACCESS_2024_3462170
crossref_primary_10_1186_s42400_023_00203_7
crossref_primary_10_1016_j_asoc_2025_112719
crossref_primary_10_1021_acspolymersau_5c00057
crossref_primary_10_1142_S0218488525500242
crossref_primary_10_1016_j_powtec_2023_118480
crossref_primary_10_1016_j_jfranklin_2025_108038
crossref_primary_10_1016_j_psep_2024_04_097
crossref_primary_10_1016_j_cose_2025_104527
crossref_primary_10_1016_j_engappai_2022_105760
crossref_primary_10_3390_batteries9010013
crossref_primary_10_3390_bdcc5040066
crossref_primary_10_3390_jsan12050067
crossref_primary_10_1016_j_energy_2025_134401
crossref_primary_10_1016_j_comnet_2021_108125
crossref_primary_10_1016_j_mtcomm_2025_112630
crossref_primary_10_1371_journal_pone_0331307
crossref_primary_10_1109_JSEN_2022_3229030
crossref_primary_10_1109_TKDE_2024_3512793
crossref_primary_10_1016_j_health_2022_100118
crossref_primary_10_1007_s40747_025_02014_4
crossref_primary_10_1109_ACCESS_2022_3205351
crossref_primary_10_1109_TNSM_2022_3223881
crossref_primary_10_1007_s11276_023_03495_2
crossref_primary_10_1049_ntw2_12128
crossref_primary_10_1177_0958305X251315408
crossref_primary_10_1109_ACCESS_2024_3519219
crossref_primary_10_1016_j_jmgm_2025_109116
crossref_primary_10_1007_s10098_024_02852_9
crossref_primary_10_3390_math11020431
crossref_primary_10_3390_molecules28052326
crossref_primary_10_1007_s10586_025_05378_x
crossref_primary_10_1051_matecconf_202440002007
crossref_primary_10_1007_s10489_023_04920_x
crossref_primary_10_1155_2023_5542049
crossref_primary_10_1016_j_compeleceng_2025_110553
crossref_primary_10_1016_j_scitotenv_2023_167386
crossref_primary_10_1109_JIOT_2024_3415499
crossref_primary_10_3390_s21175682
crossref_primary_10_1155_2024_1635337
crossref_primary_10_1016_j_rineng_2023_101745
crossref_primary_10_3390_su142416692
crossref_primary_10_1002_ett_4394
crossref_primary_10_1016_j_firesaf_2024_104103
crossref_primary_10_1007_s12633_025_03375_8
crossref_primary_10_1016_j_pce_2024_103561
crossref_primary_10_1111_exsy_12934
crossref_primary_10_3390_su16219476
crossref_primary_10_1038_s41598_022_11395_2
crossref_primary_10_1109_ACCESS_2024_3510636
crossref_primary_10_32604_cmc_2024_048755
crossref_primary_10_61435_ijred_2024_60387
crossref_primary_10_1109_TNSM_2020_3035315
crossref_primary_10_1109_JSTARS_2021_3069013
crossref_primary_10_1109_ACCESS_2021_3126834
crossref_primary_10_1088_1742_6596_2312_1_012082
crossref_primary_10_1016_j_engfailanal_2023_107506
crossref_primary_10_1080_10106049_2022_2076910
crossref_primary_10_1109_ACCESS_2025_3538170
crossref_primary_10_32604_cmc_2022_031734
crossref_primary_10_1109_JSEN_2025_3547062
crossref_primary_10_1016_j_cie_2025_111023
crossref_primary_10_1142_S021964922250071X
crossref_primary_10_1007_s11042_022_14219_7
crossref_primary_10_1016_j_engappai_2022_105461
crossref_primary_10_1016_j_asoc_2022_109799
crossref_primary_10_1007_s12539_021_00430_x
crossref_primary_10_3390_s21113814
crossref_primary_10_1016_j_measurement_2023_113485
crossref_primary_10_1007_s40747_021_00498_4
crossref_primary_10_1109_ACCESS_2024_3373558
crossref_primary_10_1007_s11277_022_09726_7
crossref_primary_10_1016_j_engappai_2021_104216
crossref_primary_10_3390_computers12030047
crossref_primary_10_1016_j_engstruct_2023_115601
crossref_primary_10_1016_j_health_2023_100290
crossref_primary_10_1109_TIM_2025_3552442
crossref_primary_10_1515_polyeng_2025_0066
crossref_primary_10_32604_cmc_2023_033153
crossref_primary_10_1016_j_forsciint_2025_112579
crossref_primary_10_1007_s10586_024_05087_x
crossref_primary_10_1016_j_csite_2025_105912
Cites_doi 10.1016/j.knosys.2017.03.012
10.1006/jcss.1997.1504
10.1109/LNET.2019.2901792
10.1007/s12083-017-0630-0
10.1109/TII.2019.2938778
10.1145/3122983
10.1016/j.comnet.2007.02.001
10.1016/j.knosys.2019.104930
10.1214/aos/1016218223
10.1145/238061.238163
10.1016/j.eswa.2009.05.029
10.1109/ACCESS.2019.2899721
10.1109/ACCESS.2018.2807385
10.5220/0006639801080116
10.1109/TKDE.2019.2891622
10.1109/COMST.2015.2444095
10.1109/ACCESS.2017.2780250
10.1016/j.future.2019.12.034
10.1016/j.eswa.2011.06.013
10.1016/j.jvcir.2019.05.001
10.5937/vojtehg66-16670
10.1016/j.jnca.2012.09.004
10.1016/j.aci.2017.10.003
10.1109/PROC.1979.11321
10.1016/j.procs.2015.08.220
10.1109/COMST.2019.2904897
10.1016/j.eswa.2013.08.066
10.1109/TWC.2017.2655044
10.1109/COMST.2018.2854724
10.1109/ACCESS.2019.2895334
10.1109/TNSM.2019.2933358
10.1109/JIOT.2018.2871719
10.1109/34.982906
10.1109/ACCESS.2019.2923640
10.1109/ACCESS.2018.2820092
10.1016/j.dss.2006.04.004
10.1109/ACCESS.2019.2908225
10.1109/COMST.2018.2844341
10.1186/s42400-019-0038-7
10.1023/A:1022648800760
10.1016/j.engappai.2020.103631
10.1109/ACCESS.2018.2844794
10.1109/COMST.2015.2494502
10.1109/TETCI.2017.2772792
10.1016/j.comnet.2017.08.013
10.1145/972374.972384
10.1016/j.cose.2017.09.001
10.1109/TPWRS.2016.2631891
10.1016/j.jocs.2017.03.006
10.1007/s00500-018-3577-z
10.1109/COMST.2018.2843533
10.1109/34.58871
10.1109/TBDATA.2017.2715166
10.1109/ACCESS.2019.2894176
10.1109/ACCESS.2019.2912115
10.1109/ACCESS.2018.2810198
10.1016/j.cose.2011.08.009
10.1109/ACCESS.2019.2893871
10.1109/JAS.2017.7510730
10.1023/A:1007614523901
ContentType Journal Article
Copyright 2020
Copyright_xml – notice: 2020
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2020.103770
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
ExternalDocumentID 10_1016_j_engappai_2020_103770
S0952197620301706
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c312t-af89ddfc02a5eb6a715af4a92111c508add9108f174d8f4e0767dae698961813
ISICitedReferencesCount 136
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000564244500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0952-1976
IngestDate Sat Nov 29 07:06:02 EST 2025
Tue Nov 18 22:12:19 EST 2025
Fri Feb 23 02:46:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords AdaBoost
Boosting techniques
Machine learning
Ensemble learning
Malware detection
Anomaly detection
Intrusion detection systems
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-af89ddfc02a5eb6a715af4a92111c508add9108f174d8f4e0767dae698961813
ParticipantIDs crossref_citationtrail_10_1016_j_engappai_2020_103770
crossref_primary_10_1016_j_engappai_2020_103770
elsevier_sciencedirect_doi_10_1016_j_engappai_2020_103770
PublicationCentury 2000
PublicationDate September 2020
2020-09-00
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: September 2020
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Sindhu, Geetha, Kannan (b60) 2012; 39
D’Alconzo, Drago, Morichetta, Mellia, Casas (b15) 2019; 16
Freund, Schapire (b21) 1996
Ali, Al Mohammed, Ismail, Zolkipli (b6) 2018; 6
Liao, Lin, Lin, Tung (b42) 2013; 36
Friedman, Hastie, Tibshirani (b23) 2000; 28
He, Zhao, Hu, Yan, Zhu, Xu (b29) 2020; 91
Alhakami, A.L.harbi, Bourouis, Alroobaea, Bouguila (b5) 2019; 7
Protić (b55) 2018; 66
Freund, Schapire (b20) 1997; 55
Zhao, Yu, Li, Mao, Zhu (b78) 2019; 7
Kuncheva (b40) 2014
Otoum, Kantarci, Mouftah (b52) 2019; 1
Breiman (b11) 2017
Agrawal, Agrawal (b2) 2015; 60
Kolias, Kambourakis, Maragoudakis (b37) 2011; 30
Vinayakumar, Alazab, Soman, Poornachandran, AlNemrat, Venkatraman (b72) 2019; 7
Freund, Y., Schapire, R.E., 1996. Game theory, on-line prediction and boosting. In: Proceedings of the ninth annual conference on Computational learning theory, pp. 325–332.
Gosztolya, Busa-Fekete (b25) 2019; 23
Friedman, Hastie, Tibshirani (b22) 2001; vol. 1
Moustafa, Turnbull, Choo (b50) 2019; 6
Tavallaee, Bagheri, Lu, Ghorbani (b65) 2009
Moustafa, Slay (b48) 2015
Hansen, Salamon (b28) 1990; 12
Tao, Sun, Sun (b64) 2018; 6
Hansen, Lowry, Meservy, McDonald (b27) 2007; 43
Schapire, Singer (b57) 1999; 37
Gao, Shan, Hu, Niu, Liu (b24) 2019; 7
Viegas, Santin, Oliveira (b71) 2017; 127
Yuan, Kaklamanos, Hogrefe (b75) 2016
METIS (b45) 2020
Wang, Sheng, Wang, Zeng, Ye, Huang, Zhu (b74) 2018; 6
Mohammadi, Al-Fuqaha, Sorour, Guizani (b46) 2018; 20
Moustafa, Adi, Turnbull, Hu (b47) 2018; 6
Jemili, Zaghdoud, Ahmed (b33) 2007
Papamartzivanos, Gómez Mármol, Kambourakis (b53) 2019; 7
Wang, Shen, Zhang (b73) 2016
Tang, Tang, Dai, Chen, Li, Rodrigues (b63) 2020; 106
Patcha, Park (b54) 2007; 51
Kuncheva (b39) 2002; 24
Bilge, L., Kirda, E., Kruegel, C., Balduzzi, M., 2011. Exposure: Finding malicious domains using passive dns analysis. In: Ndss, pp. 1–17.
Liang, Weller, Zhao, Luo, Dong (b41) 2016; 32
Meir, Rätsch (b44) 2003
Beyene, Jäntti, Ruttik (b9) 2017; 16
Tsai, Hsu, Lin, Lin (b69) 2009; 36
Akhtar, Mian (b3) 2018; 6
Sreeram, Vuppala (b61) 2019; 15
Dasarathy, Sheela (b16) 1979; 67
Moustafa, Slay, Creech (b49) 2019; 5
Zeng, Gu, Wei, Guo (b76) 2019; 7
Aljawarneh, Aldwairi, Yassein (b7) 2018; 25
Khraisat, Gondal, Vamplew, Kamruzzaman (b35) 2019; 2
Dua, Du (b17) 2016
Bamakan, Wang, Shi (b8) 2017; 126
Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A., 2018. Toward generating a new intrusion detection dataset and intrusion traffic characterization. In: ICISSP, pp. 108–116.
Graves, Acquisti, Christin (b26) 2018; 18
Khan, Gumaei, Derhab, Hussain (b34) 2019; 7
Tian, Luo, Qiu, Du, Guizani (b67) 2019; 16
Kim, Lee, Kim (b36) 2014; 41
Conti, Li, Maragno, Spolaor (b14) 2018; 20
Hindy, Brosset, Bayne, Seeam, Tachtatzis, Atkinson, Bellekens (b30) 2018
Huang, Chen, Liu, Tao, Li (b31) 2019; 32
Tounsi, Rais (b68) 2018; 72
Javaid, Niyaz, Sun, Alam (b32) 2016
Vezhnevets, Vezhnevets (b70) 2005
Teng, Wu, Zhu, Teng, Zhang (b66) 2018; 5
Afifi, Abdelhamed (b1) 2019; 62
Kreibich, Crowcroft (b38) 2004; 34
Al-Fuqaha, Guizani, Mohammadi, Aledhari, Ayyash (b4) 2015; 17
Liu, Zhang, Zhang (b43) 2019; 186
Sultana, Chilamkurti, Peng, Alhadad (b62) 2019; 12
Shone, Ngoc, Phai, Shi (b59) 2018; 2
Faker, Dogdu (b18) 2019
Breiman, Friedman, Stone, Olshen (b12) 1984
Nisioti, Mylonas, Yoo, Katos (b51) 2018; 20
Zhang, Patras, Haddadi (b77) 2019; 21
Buczak, Guven (b13) 2015; 18
Schapire (b56) 1990; 5
Conti (10.1016/j.engappai.2020.103770_b14) 2018; 20
Schapire (10.1016/j.engappai.2020.103770_b57) 1999; 37
Nisioti (10.1016/j.engappai.2020.103770_b51) 2018; 20
Zhao (10.1016/j.engappai.2020.103770_b78) 2019; 7
Agrawal (10.1016/j.engappai.2020.103770_b2) 2015; 60
Ali (10.1016/j.engappai.2020.103770_b6) 2018; 6
Patcha (10.1016/j.engappai.2020.103770_b54) 2007; 51
D’Alconzo (10.1016/j.engappai.2020.103770_b15) 2019; 16
Khan (10.1016/j.engappai.2020.103770_b34) 2019; 7
Kim (10.1016/j.engappai.2020.103770_b36) 2014; 41
Bamakan (10.1016/j.engappai.2020.103770_b8) 2017; 126
Breiman (10.1016/j.engappai.2020.103770_b12) 1984
Yuan (10.1016/j.engappai.2020.103770_b75) 2016
Shone (10.1016/j.engappai.2020.103770_b59) 2018; 2
Hansen (10.1016/j.engappai.2020.103770_b28) 1990; 12
Buczak (10.1016/j.engappai.2020.103770_b13) 2015; 18
Tian (10.1016/j.engappai.2020.103770_b67) 2019; 16
Vezhnevets (10.1016/j.engappai.2020.103770_b70) 2005
Protić (10.1016/j.engappai.2020.103770_b55) 2018; 66
Freund (10.1016/j.engappai.2020.103770_b21) 1996
Kuncheva (10.1016/j.engappai.2020.103770_b40) 2014
Aljawarneh (10.1016/j.engappai.2020.103770_b7) 2018; 25
Freund (10.1016/j.engappai.2020.103770_b20) 1997; 55
Hansen (10.1016/j.engappai.2020.103770_b27) 2007; 43
Wang (10.1016/j.engappai.2020.103770_b74) 2018; 6
Dasarathy (10.1016/j.engappai.2020.103770_b16) 1979; 67
Huang (10.1016/j.engappai.2020.103770_b31) 2019; 32
Khraisat (10.1016/j.engappai.2020.103770_b35) 2019; 2
Wang (10.1016/j.engappai.2020.103770_b73) 2016
Zeng (10.1016/j.engappai.2020.103770_b76) 2019; 7
Friedman (10.1016/j.engappai.2020.103770_b23) 2000; 28
Gao (10.1016/j.engappai.2020.103770_b24) 2019; 7
He (10.1016/j.engappai.2020.103770_b29) 2020; 91
Kuncheva (10.1016/j.engappai.2020.103770_b39) 2002; 24
Moustafa (10.1016/j.engappai.2020.103770_b47) 2018; 6
Liu (10.1016/j.engappai.2020.103770_b43) 2019; 186
Javaid (10.1016/j.engappai.2020.103770_b32) 2016
Meir (10.1016/j.engappai.2020.103770_b44) 2003
Viegas (10.1016/j.engappai.2020.103770_b71) 2017; 127
Beyene (10.1016/j.engappai.2020.103770_b9) 2017; 16
Vinayakumar (10.1016/j.engappai.2020.103770_b72) 2019; 7
Sreeram (10.1016/j.engappai.2020.103770_b61) 2019; 15
Moustafa (10.1016/j.engappai.2020.103770_b49) 2019; 5
Tsai (10.1016/j.engappai.2020.103770_b69) 2009; 36
METIS (10.1016/j.engappai.2020.103770_b45) 2020
Tao (10.1016/j.engappai.2020.103770_b64) 2018; 6
Faker (10.1016/j.engappai.2020.103770_b18) 2019
Afifi (10.1016/j.engappai.2020.103770_b1) 2019; 62
Sindhu (10.1016/j.engappai.2020.103770_b60) 2012; 39
Liang (10.1016/j.engappai.2020.103770_b41) 2016; 32
Sultana (10.1016/j.engappai.2020.103770_b62) 2019; 12
Zhang (10.1016/j.engappai.2020.103770_b77) 2019; 21
Dua (10.1016/j.engappai.2020.103770_b17) 2016
Liao (10.1016/j.engappai.2020.103770_b42) 2013; 36
10.1016/j.engappai.2020.103770_b58
10.1016/j.engappai.2020.103770_b19
Graves (10.1016/j.engappai.2020.103770_b26) 2018; 18
Otoum (10.1016/j.engappai.2020.103770_b52) 2019; 1
Tang (10.1016/j.engappai.2020.103770_b63) 2020; 106
Friedman (10.1016/j.engappai.2020.103770_b22) 2001; vol. 1
Papamartzivanos (10.1016/j.engappai.2020.103770_b53) 2019; 7
Gosztolya (10.1016/j.engappai.2020.103770_b25) 2019; 23
Moustafa (10.1016/j.engappai.2020.103770_b50) 2019; 6
Kolias (10.1016/j.engappai.2020.103770_b37) 2011; 30
Tavallaee (10.1016/j.engappai.2020.103770_b65) 2009
Alhakami (10.1016/j.engappai.2020.103770_b5) 2019; 7
Al-Fuqaha (10.1016/j.engappai.2020.103770_b4) 2015; 17
Jemili (10.1016/j.engappai.2020.103770_b33) 2007
Teng (10.1016/j.engappai.2020.103770_b66) 2018; 5
Tounsi (10.1016/j.engappai.2020.103770_b68) 2018; 72
Kreibich (10.1016/j.engappai.2020.103770_b38) 2004; 34
Mohammadi (10.1016/j.engappai.2020.103770_b46) 2018; 20
Moustafa (10.1016/j.engappai.2020.103770_b48) 2015
Schapire (10.1016/j.engappai.2020.103770_b56) 1990; 5
Breiman (10.1016/j.engappai.2020.103770_b11) 2017
Akhtar (10.1016/j.engappai.2020.103770_b3) 2018; 6
10.1016/j.engappai.2020.103770_b10
Hindy (10.1016/j.engappai.2020.103770_b30) 2018
References_xml – volume: 7
  start-page: 30373
  year: 2019
  end-page: 30385
  ident: b34
  article-title: A novel two-stage deep learning model for efficient network intrusion detection
  publication-title: IEEE Access
– volume: 5
  start-page: 197
  year: 1990
  end-page: 227
  ident: b56
  article-title: The strength of weak learnability
  publication-title: Mach. Learn.
– volume: 6
  start-page: 32910
  year: 2018
  end-page: 32924
  ident: b47
  article-title: A new threat intelligence scheme for safeguarding industry 4.0 systems
  publication-title: IEEE Access
– volume: 67
  start-page: 708
  year: 1979
  end-page: 713
  ident: b16
  article-title: A composite classifier system design: concepts and methodology
  publication-title: Proc. IEEE
– volume: 51
  start-page: 3448
  year: 2007
  end-page: 3470
  ident: b54
  article-title: An overview of anomaly detection techniques: Existing solutions and latest technological trends
  publication-title: Comput. Netw.
– volume: 127
  start-page: 200
  year: 2017
  end-page: 216
  ident: b71
  article-title: Toward a reliable anomalybased intrusion detection in real-world environments
  publication-title: Comput. Netw.
– volume: 1
  start-page: 68
  year: 2019
  end-page: 71
  ident: b52
  article-title: On the feasibility of deep learning in sensor network intrusion detection
  publication-title: IEEE Netw. Lett.
– volume: 23
  start-page: 115
  year: 2019
  end-page: 128
  ident: b25
  article-title: Calibrating AdaBoost for phoneme classification
  publication-title: Soft Comput.
– volume: 106
  start-page: 347
  year: 2020
  end-page: 359
  ident: b63
  article-title: Mf-adaboost: Ldos attack detection based on multi-features and improved adaboost
  publication-title: Future Gener. Comput. Syst.
– volume: 7
  start-page: 52181
  year: 2019
  end-page: 52190
  ident: b5
  article-title: Network anomaly intrusion detection using a nonparametric bayesian approach and feature selection
  publication-title: IEEE Access
– volume: 6
  start-page: 20255
  year: 2018
  end-page: 20261
  ident: b6
  article-title: A new intrusion detection system based on fast learning network and particle swarm optimization
  publication-title: IEEE Access
– volume: 6
  start-page: 14410
  year: 2018
  end-page: 14430
  ident: b3
  article-title: Threat of adversarial attacks on deep learning in computer vision: A survey
  publication-title: IEEE Access
– volume: 20
  start-page: 3369
  year: 2018
  end-page: 3388
  ident: b51
  article-title: From intrusion detection to attacker attribution: A comprehensive survey of unsupervised methods
  publication-title: IEEE Commun. Surv. Tutor.
– volume: 5
  start-page: 481
  year: 2019
  end-page: 494
  ident: b49
  article-title: Novel geometric area analysis technique for anomaly detection using trapezoidal area estimation on large-scale networks
  publication-title: IEEE Trans. Big Data
– reference: Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A., 2018. Toward generating a new intrusion detection dataset and intrusion traffic characterization. In: ICISSP, pp. 108–116.
– volume: 16
  start-page: 800
  year: 2019
  end-page: 813
  ident: b15
  article-title: A survey on big data for network traffic monitoring and analysis
  publication-title: IEEE Trans. Netw. Serv. Manag.
– volume: 12
  start-page: 993
  year: 1990
  end-page: 1001
  ident: b28
  article-title: Neural network ensembles
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2017
  ident: b11
  article-title: Classification and Regression Trees
– volume: 20
  start-page: 2658
  year: 2018
  end-page: 2713
  ident: b14
  article-title: The dark side (- channel) of mobile devices: A survey on network traffic analysis
  publication-title: IEEE Commun. Surv. Tutor.
– volume: 7
  start-page: 82512
  year: 2019
  end-page: 82521
  ident: b24
  article-title: An adaptive ensemble machine learning model for intrusion detection
  publication-title: IEEE Access
– volume: 55
  start-page: 119
  year: 1997
  end-page: 139
  ident: b20
  article-title: A decision-theoretic generalization of online learning and an application to boosting
  publication-title: J. Comput. System Sci.
– year: 2020
  ident: b45
  article-title: Mobile and wireless communications enablers for the 2020 information society
– volume: 7
  start-page: 45182
  year: 2019
  end-page: 45190
  ident: b76
  article-title: Deep-full-range : A deep learning based network encrypted traffic classification and intrusion detection framework
  publication-title: IEEE Access
– volume: 6
  start-page: 1792
  year: 2018
  end-page: 1806
  ident: b74
  article-title: Hastids: Learning hierarchical spatial–temporal features using deep neural networks to improve intrusion detection
  publication-title: IEEE Access
– start-page: 111
  year: 2016
  end-page: 114
  ident: b75
  article-title: A novel semi-supervised adaboost technique for network anomaly detection
  publication-title: Proceedings of the 19th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems
– reference: Bilge, L., Kirda, E., Kruegel, C., Balduzzi, M., 2011. Exposure: Finding malicious domains using passive dns analysis. In: Ndss, pp. 1–17.
– year: 1984
  ident: b12
  article-title: Classification and Regression Trees
– volume: vol. 1
  year: 2001
  ident: b22
  publication-title: The Elements of Statistical Learning
– volume: 7
  start-page: 41525
  year: 2019
  end-page: 41550
  ident: b72
  article-title: Deep learning approach for intelligent intrusion detection system
  publication-title: IEEE Access
– volume: 18
  start-page: 1153
  year: 2015
  end-page: 1176
  ident: b13
  article-title: A survey of data mining and machine learning methods for cyber security intrusion detection
  publication-title: IEEE Commun. Surv. Tutor.
– volume: 126
  start-page: 113
  year: 2017
  end-page: 126
  ident: b8
  article-title: Ramp loss k-support vector classification-regression; a robust and sparse multi-class approach to the intrusion detection problem
  publication-title: Knowl.-Based Syst.
– start-page: 118
  year: 2003
  end-page: 183
  ident: b44
  article-title: An introduction to boosting and leveraging
  publication-title: Advanced Lectures on Machine Learning
– start-page: 1
  year: 2009
  end-page: 6
  ident: b65
  article-title: A detailed analysis of the kdd cup 99 data set
  publication-title: 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications
– volume: 16
  start-page: 1963
  year: 2019
  end-page: 1971
  ident: b67
  article-title: A distributed deep learning system for web attack detection on edge devices
  publication-title: IEEE Trans. Ind. Inf.
– volume: 91
  year: 2020
  ident: b29
  article-title: Fault diagnosis using novel adaboost based discriminant locality preserving projection with resamples
  publication-title: Eng. Appl. Artif. Intell.
– volume: 6
  start-page: 4815
  year: 2019
  end-page: 4830
  ident: b50
  article-title: An ensemble intrusion detection technique based on proposed statistical flow features for protecting network traffic of internet of things
  publication-title: IEEE Internet Things J.
– year: 2016
  ident: b17
  article-title: Data Mining and Machine Learning in Cybersecurity
– volume: 2
  start-page: 20
  year: 2019
  ident: b35
  article-title: Survey of intrusion detection systems: techniques datasets and challenges
  publication-title: Cybersecurity
– volume: 32
  start-page: 3317
  year: 2016
  end-page: 3318
  ident: b41
  article-title: The 2015 ukraine blackout: Implications for false data injection attacks
  publication-title: IEEE Trans. Power Syst.
– volume: 6
  start-page: 13624
  year: 2018
  end-page: 13631
  ident: b64
  article-title: An improved intrusion detection algorithm based on ga and svm
  publication-title: IEEE Access
– volume: 7
  start-page: 14549
  year: 2019
  end-page: 14557
  ident: b78
  article-title: Vehicle accident risk prediction based on adaboost-so in vanets
  publication-title: IEEE Access
– volume: 41
  start-page: 1690
  year: 2014
  end-page: 1700
  ident: b36
  article-title: A novel hybrid intrusion detection method integrating anomaly detection with misuse detection
  publication-title: Expert Syst. Appl.
– volume: 15
  start-page: 59
  year: 2019
  end-page: 66
  ident: b61
  article-title: Http flood attack detection in application layer using machine learning metrics and bio inspired bat algorithm
  publication-title: Appl. Comput. Inform.
– start-page: 422
  year: 2016
  end-page: 425
  ident: b73
  article-title: Research on intrusion detection model using ensemble learning methods
  publication-title: 2016 7th IEEE International Conference on Software Engineering and Service Science
– start-page: 21
  year: 2016
  end-page: 26
  ident: b32
  article-title: A deep learning approach for network intrusion detection system
  publication-title: Proceedings of the 9th EAI International Conference on Bio-Inspired Information and Communications Technologies
– volume: 62
  start-page: 77
  year: 2019
  end-page: 86
  ident: b1
  article-title: Afif4: deep gender classification based on adaboost-based fusion of isolated facial features and foggy faces
  publication-title: J. Vis. Commun. Image Represent.
– volume: 43
  start-page: 1362
  year: 2007
  end-page: 1374
  ident: b27
  article-title: Genetic programming for prevention of cyberterrorism through dynamic and evolving intrusion detection
  publication-title: Decis. Support Syst.
– volume: 20
  start-page: 2923
  year: 2018
  end-page: 2960
  ident: b46
  article-title: Deep learning for iot big data and streaming analytics: A survey
  publication-title: IEEE Commun. Surv. Tutor.
– reference: Freund, Y., Schapire, R.E., 1996. Game theory, on-line prediction and boosting. In: Proceedings of the ninth annual conference on Computational learning theory, pp. 325–332.
– volume: 36
  start-page: 16
  year: 2013
  end-page: 24
  ident: b42
  article-title: Intrusion detection system: A comprehensive review
  publication-title: J. Netw. Comput. Appl.
– volume: 186
  year: 2019
  ident: b43
  article-title: Pwadaboost: Possible world based adaboost algorithm for classifying uncertain data
  publication-title: Knowl.-Based Syst.
– start-page: 148
  year: 1996
  end-page: 156
  ident: b21
  article-title: Experiments with a new boosting algorithm
  publication-title: Icml, Vol. 96
– volume: 34
  start-page: 51
  year: 2004
  end-page: 56
  ident: b38
  article-title: Honeycomb: creating intrusion detection signatures using honeypots
  publication-title: ACM SIGCOMM Comput. Commun. Rev.
– start-page: 1
  year: 2015
  end-page: 6
  ident: b48
  article-title: Unsw-nb15: a comprehensive data set for network intrusion detection systems (unsw-nb15 network data set)
  publication-title: 2015 Military Communications and Information Systems Conference
– volume: 18
  start-page: 54
  year: 2018
  ident: b26
  article-title: Should credit card issuers reissue cards in response to a data breach?: Uncertainty and transparency in metrics for data security policymaking
  publication-title: ACM Trans. Internet Technol. (TOIT)
– volume: 66
  start-page: 580
  year: 2018
  end-page: 596
  ident: b55
  article-title: Review of kdd cup’99, nsl-kdd and kyoto 2006+ datasets
  publication-title: Vojnotehnički glasnik
– volume: 12
  start-page: 493
  year: 2019
  end-page: 501
  ident: b62
  article-title: Survey on sdn based network intrusion detection system using machine learning approaches
  publication-title: Peer-to-Peer Netw. Appl.
– start-page: 66
  year: 2007
  end-page: 70
  ident: b33
  article-title: A framework for an adaptive intrusion detection system using bayesian network
  publication-title: 2007 IEEE Intelligence and Security Informatics
– start-page: 987
  year: 2005
  end-page: 997
  ident: b70
  article-title: Modest adaboost-teaching adaboost to generalize better
  publication-title: Graphicon, Vol. 12
– volume: 5
  start-page: 108
  year: 2018
  end-page: 118
  ident: b66
  article-title: Svm-dt-based adaptive and collaborative intrusion detection
  publication-title: IEEE/CAA J. Automat. Sinica
– volume: 72
  start-page: 212
  year: 2018
  end-page: 233
  ident: b68
  article-title: A survey on technical threat intelligence in the age of sophisticated cyber attacks
  publication-title: Comput. Secur.
– volume: 28
  start-page: 337
  year: 2000
  end-page: 407
  ident: b23
  article-title: Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors)
  publication-title: Ann. Statist.
– volume: 30
  start-page: 625
  year: 2011
  end-page: 642
  ident: b37
  article-title: Swarm intelligence in intrusion detection: A survey
  publication-title: Comput. Secur.
– volume: 32
  start-page: 728
  year: 2019
  end-page: 738
  ident: b31
  article-title: On combining biclustering mining and AdaBoost for breast tumor classification
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 60
  start-page: 708
  year: 2015
  end-page: 713
  ident: b2
  article-title: Survey on anomaly detection using data mining techniques
  publication-title: Procedia Comput. Sci.
– volume: 7
  start-page: 13546
  year: 2019
  end-page: 13560
  ident: b53
  article-title: Introducing deep learning self-adaptive misuse network intrusion detection systems
  publication-title: IEEE Access
– volume: 21
  start-page: 2224
  year: 2019
  end-page: 2287
  ident: b77
  article-title: Deep learning in mobile and wireless networking: A survey
  publication-title: IEEE Commun. Surv. Tutor.
– volume: 37
  start-page: 297
  year: 1999
  end-page: 336
  ident: b57
  article-title: Improved boosting algorithms using confidence-rated predictions
  publication-title: Mach. Learn.
– volume: 39
  start-page: 129
  year: 2012
  end-page: 141
  ident: b60
  article-title: Decision tree based light weight intrusion detection using a wrapper approach
  publication-title: Expert Syst. Appl.
– volume: 24
  start-page: 281
  year: 2002
  end-page: 286
  ident: b39
  article-title: A theoretical study on six classifier fusion strategies
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 17
  start-page: 2347
  year: 2015
  end-page: 2376
  ident: b4
  article-title: Internet of things: A survey on enabling technologies, protocols, and applications
  publication-title: IEEE Commun. Surv. Tutor.
– year: 2018
  ident: b30
  article-title: A taxonomy and survey of intrusion detection system design techniques, network threats and datasets
– year: 2014
  ident: b40
  article-title: Combining Pattern Classifiers: Methods and Algorithms
– start-page: 86
  year: 2019
  end-page: 93
  ident: b18
  article-title: Intrusion detection using big data and deep learning techniques
  publication-title: Proceedings of the 2019 ACM Southeast Conference
– volume: 25
  start-page: 152
  year: 2018
  end-page: 160
  ident: b7
  article-title: Anomaly-based intrusion detection system through feature selection analysis and building hybrid efficient model
  publication-title: J. Comput. Sci.
– volume: 36
  start-page: 11994
  year: 2009
  end-page: 12000
  ident: b69
  article-title: Intrusion detection by machine learning: A review
  publication-title: Expert Syst. Appl.
– volume: 16
  start-page: 1823
  year: 2017
  end-page: 1833
  ident: b9
  article-title: Random access scheme for sporadic users in 5g
  publication-title: IEEE Trans. Wireless Commun.
– volume: 2
  start-page: 41
  year: 2018
  end-page: 50
  ident: b59
  article-title: A deep learning approach to network intrusion detection
  publication-title: IEEE Trans. Emerg. Topics Comput. Intell.
– volume: 126
  start-page: 113
  year: 2017
  ident: 10.1016/j.engappai.2020.103770_b8
  article-title: Ramp loss k-support vector classification-regression; a robust and sparse multi-class approach to the intrusion detection problem
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.03.012
– volume: 55
  start-page: 119
  year: 1997
  ident: 10.1016/j.engappai.2020.103770_b20
  article-title: A decision-theoretic generalization of online learning and an application to boosting
  publication-title: J. Comput. System Sci.
  doi: 10.1006/jcss.1997.1504
– volume: 1
  start-page: 68
  year: 2019
  ident: 10.1016/j.engappai.2020.103770_b52
  article-title: On the feasibility of deep learning in sensor network intrusion detection
  publication-title: IEEE Netw. Lett.
  doi: 10.1109/LNET.2019.2901792
– volume: 12
  start-page: 493
  year: 2019
  ident: 10.1016/j.engappai.2020.103770_b62
  article-title: Survey on sdn based network intrusion detection system using machine learning approaches
  publication-title: Peer-to-Peer Netw. Appl.
  doi: 10.1007/s12083-017-0630-0
– volume: 16
  start-page: 1963
  year: 2019
  ident: 10.1016/j.engappai.2020.103770_b67
  article-title: A distributed deep learning system for web attack detection on edge devices
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2019.2938778
– volume: 18
  start-page: 54
  year: 2018
  ident: 10.1016/j.engappai.2020.103770_b26
  article-title: Should credit card issuers reissue cards in response to a data breach?: Uncertainty and transparency in metrics for data security policymaking
  publication-title: ACM Trans. Internet Technol. (TOIT)
  doi: 10.1145/3122983
– volume: 51
  start-page: 3448
  year: 2007
  ident: 10.1016/j.engappai.2020.103770_b54
  article-title: An overview of anomaly detection techniques: Existing solutions and latest technological trends
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2007.02.001
– start-page: 21
  year: 2016
  ident: 10.1016/j.engappai.2020.103770_b32
  article-title: A deep learning approach for network intrusion detection system
– volume: 186
  year: 2019
  ident: 10.1016/j.engappai.2020.103770_b43
  article-title: Pwadaboost: Possible world based adaboost algorithm for classifying uncertain data
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.104930
– volume: 28
  start-page: 337
  year: 2000
  ident: 10.1016/j.engappai.2020.103770_b23
  article-title: Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors)
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1016218223
– ident: 10.1016/j.engappai.2020.103770_b19
  doi: 10.1145/238061.238163
– volume: 36
  start-page: 11994
  year: 2009
  ident: 10.1016/j.engappai.2020.103770_b69
  article-title: Intrusion detection by machine learning: A review
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.05.029
– volume: 7
  start-page: 30373
  year: 2019
  ident: 10.1016/j.engappai.2020.103770_b34
  article-title: A novel two-stage deep learning model for efficient network intrusion detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2899721
– volume: 6
  start-page: 14410
  year: 2018
  ident: 10.1016/j.engappai.2020.103770_b3
  article-title: Threat of adversarial attacks on deep learning in computer vision: A survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2807385
– start-page: 66
  year: 2007
  ident: 10.1016/j.engappai.2020.103770_b33
  article-title: A framework for an adaptive intrusion detection system using bayesian network
– ident: 10.1016/j.engappai.2020.103770_b58
  doi: 10.5220/0006639801080116
– start-page: 1
  year: 2009
  ident: 10.1016/j.engappai.2020.103770_b65
  article-title: A detailed analysis of the kdd cup 99 data set
– volume: 32
  start-page: 728
  year: 2019
  ident: 10.1016/j.engappai.2020.103770_b31
  article-title: On combining biclustering mining and AdaBoost for breast tumor classification
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2019.2891622
– volume: 17
  start-page: 2347
  year: 2015
  ident: 10.1016/j.engappai.2020.103770_b4
  article-title: Internet of things: A survey on enabling technologies, protocols, and applications
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2015.2444095
– volume: 6
  start-page: 1792
  year: 2018
  ident: 10.1016/j.engappai.2020.103770_b74
  article-title: Hastids: Learning hierarchical spatial–temporal features using deep neural networks to improve intrusion detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2780250
– volume: 106
  start-page: 347
  year: 2020
  ident: 10.1016/j.engappai.2020.103770_b63
  article-title: Mf-adaboost: Ldos attack detection based on multi-features and improved adaboost
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.12.034
– start-page: 422
  year: 2016
  ident: 10.1016/j.engappai.2020.103770_b73
  article-title: Research on intrusion detection model using ensemble learning methods
– volume: 39
  start-page: 129
  year: 2012
  ident: 10.1016/j.engappai.2020.103770_b60
  article-title: Decision tree based light weight intrusion detection using a wrapper approach
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.06.013
– volume: 62
  start-page: 77
  year: 2019
  ident: 10.1016/j.engappai.2020.103770_b1
  article-title: Afif4: deep gender classification based on adaboost-based fusion of isolated facial features and foggy faces
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2019.05.001
– year: 1984
  ident: 10.1016/j.engappai.2020.103770_b12
– start-page: 86
  year: 2019
  ident: 10.1016/j.engappai.2020.103770_b18
  article-title: Intrusion detection using big data and deep learning techniques
– volume: 66
  start-page: 580
  year: 2018
  ident: 10.1016/j.engappai.2020.103770_b55
  article-title: Review of kdd cup’99, nsl-kdd and kyoto 2006+ datasets
  publication-title: Vojnotehnički glasnik
  doi: 10.5937/vojtehg66-16670
– volume: 36
  start-page: 16
  year: 2013
  ident: 10.1016/j.engappai.2020.103770_b42
  article-title: Intrusion detection system: A comprehensive review
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2012.09.004
– volume: 15
  start-page: 59
  year: 2019
  ident: 10.1016/j.engappai.2020.103770_b61
  article-title: Http flood attack detection in application layer using machine learning metrics and bio inspired bat algorithm
  publication-title: Appl. Comput. Inform.
  doi: 10.1016/j.aci.2017.10.003
– volume: 67
  start-page: 708
  year: 1979
  ident: 10.1016/j.engappai.2020.103770_b16
  article-title: A composite classifier system design: concepts and methodology
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1979.11321
– volume: 60
  start-page: 708
  year: 2015
  ident: 10.1016/j.engappai.2020.103770_b2
  article-title: Survey on anomaly detection using data mining techniques
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.08.220
– volume: 21
  start-page: 2224
  year: 2019
  ident: 10.1016/j.engappai.2020.103770_b77
  article-title: Deep learning in mobile and wireless networking: A survey
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2019.2904897
– start-page: 148
  year: 1996
  ident: 10.1016/j.engappai.2020.103770_b21
  article-title: Experiments with a new boosting algorithm
– volume: 41
  start-page: 1690
  year: 2014
  ident: 10.1016/j.engappai.2020.103770_b36
  article-title: A novel hybrid intrusion detection method integrating anomaly detection with misuse detection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.08.066
– year: 2014
  ident: 10.1016/j.engappai.2020.103770_b40
– volume: 16
  start-page: 1823
  year: 2017
  ident: 10.1016/j.engappai.2020.103770_b9
  article-title: Random access scheme for sporadic users in 5g
  publication-title: IEEE Trans. Wireless Commun.
  doi: 10.1109/TWC.2017.2655044
– volume: 20
  start-page: 3369
  year: 2018
  ident: 10.1016/j.engappai.2020.103770_b51
  article-title: From intrusion detection to attacker attribution: A comprehensive survey of unsupervised methods
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2018.2854724
– year: 2020
  ident: 10.1016/j.engappai.2020.103770_b45
– volume: 7
  start-page: 41525
  year: 2019
  ident: 10.1016/j.engappai.2020.103770_b72
  article-title: Deep learning approach for intelligent intrusion detection system
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2895334
– start-page: 111
  year: 2016
  ident: 10.1016/j.engappai.2020.103770_b75
  article-title: A novel semi-supervised adaboost technique for network anomaly detection
– volume: 16
  start-page: 800
  year: 2019
  ident: 10.1016/j.engappai.2020.103770_b15
  article-title: A survey on big data for network traffic monitoring and analysis
  publication-title: IEEE Trans. Netw. Serv. Manag.
  doi: 10.1109/TNSM.2019.2933358
– year: 2016
  ident: 10.1016/j.engappai.2020.103770_b17
– volume: 6
  start-page: 4815
  year: 2019
  ident: 10.1016/j.engappai.2020.103770_b50
  article-title: An ensemble intrusion detection technique based on proposed statistical flow features for protecting network traffic of internet of things
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2871719
– volume: 24
  start-page: 281
  year: 2002
  ident: 10.1016/j.engappai.2020.103770_b39
  article-title: A theoretical study on six classifier fusion strategies
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.982906
– volume: 7
  start-page: 82512
  year: 2019
  ident: 10.1016/j.engappai.2020.103770_b24
  article-title: An adaptive ensemble machine learning model for intrusion detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2923640
– volume: 6
  start-page: 20255
  year: 2018
  ident: 10.1016/j.engappai.2020.103770_b6
  article-title: A new intrusion detection system based on fast learning network and particle swarm optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2820092
– volume: 43
  start-page: 1362
  year: 2007
  ident: 10.1016/j.engappai.2020.103770_b27
  article-title: Genetic programming for prevention of cyberterrorism through dynamic and evolving intrusion detection
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2006.04.004
– ident: 10.1016/j.engappai.2020.103770_b10
– volume: 7
  start-page: 45182
  year: 2019
  ident: 10.1016/j.engappai.2020.103770_b76
  article-title: Deep-full-range : A deep learning based network encrypted traffic classification and intrusion detection framework
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2908225
– volume: 20
  start-page: 2923
  year: 2018
  ident: 10.1016/j.engappai.2020.103770_b46
  article-title: Deep learning for iot big data and streaming analytics: A survey
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2018.2844341
– start-page: 118
  year: 2003
  ident: 10.1016/j.engappai.2020.103770_b44
  article-title: An introduction to boosting and leveraging
– volume: 2
  start-page: 20
  year: 2019
  ident: 10.1016/j.engappai.2020.103770_b35
  article-title: Survey of intrusion detection systems: techniques datasets and challenges
  publication-title: Cybersecurity
  doi: 10.1186/s42400-019-0038-7
– volume: 5
  start-page: 197
  year: 1990
  ident: 10.1016/j.engappai.2020.103770_b56
  article-title: The strength of weak learnability
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022648800760
– volume: 91
  year: 2020
  ident: 10.1016/j.engappai.2020.103770_b29
  article-title: Fault diagnosis using novel adaboost based discriminant locality preserving projection with resamples
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103631
– year: 2017
  ident: 10.1016/j.engappai.2020.103770_b11
– volume: 6
  start-page: 32910
  year: 2018
  ident: 10.1016/j.engappai.2020.103770_b47
  article-title: A new threat intelligence scheme for safeguarding industry 4.0 systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2844794
– volume: 18
  start-page: 1153
  year: 2015
  ident: 10.1016/j.engappai.2020.103770_b13
  article-title: A survey of data mining and machine learning methods for cyber security intrusion detection
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2015.2494502
– volume: 2
  start-page: 41
  year: 2018
  ident: 10.1016/j.engappai.2020.103770_b59
  article-title: A deep learning approach to network intrusion detection
  publication-title: IEEE Trans. Emerg. Topics Comput. Intell.
  doi: 10.1109/TETCI.2017.2772792
– volume: 127
  start-page: 200
  year: 2017
  ident: 10.1016/j.engappai.2020.103770_b71
  article-title: Toward a reliable anomalybased intrusion detection in real-world environments
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2017.08.013
– volume: 34
  start-page: 51
  year: 2004
  ident: 10.1016/j.engappai.2020.103770_b38
  article-title: Honeycomb: creating intrusion detection signatures using honeypots
  publication-title: ACM SIGCOMM Comput. Commun. Rev.
  doi: 10.1145/972374.972384
– volume: 72
  start-page: 212
  year: 2018
  ident: 10.1016/j.engappai.2020.103770_b68
  article-title: A survey on technical threat intelligence in the age of sophisticated cyber attacks
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2017.09.001
– year: 2018
  ident: 10.1016/j.engappai.2020.103770_b30
– volume: vol. 1
  year: 2001
  ident: 10.1016/j.engappai.2020.103770_b22
– volume: 32
  start-page: 3317
  year: 2016
  ident: 10.1016/j.engappai.2020.103770_b41
  article-title: The 2015 ukraine blackout: Implications for false data injection attacks
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2016.2631891
– start-page: 987
  year: 2005
  ident: 10.1016/j.engappai.2020.103770_b70
  article-title: Modest adaboost-teaching adaboost to generalize better
– start-page: 1
  year: 2015
  ident: 10.1016/j.engappai.2020.103770_b48
  article-title: Unsw-nb15: a comprehensive data set for network intrusion detection systems (unsw-nb15 network data set)
– volume: 25
  start-page: 152
  year: 2018
  ident: 10.1016/j.engappai.2020.103770_b7
  article-title: Anomaly-based intrusion detection system through feature selection analysis and building hybrid efficient model
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2017.03.006
– volume: 23
  start-page: 115
  year: 2019
  ident: 10.1016/j.engappai.2020.103770_b25
  article-title: Calibrating AdaBoost for phoneme classification
  publication-title: Soft Comput.
  doi: 10.1007/s00500-018-3577-z
– volume: 20
  start-page: 2658
  year: 2018
  ident: 10.1016/j.engappai.2020.103770_b14
  article-title: The dark side (- channel) of mobile devices: A survey on network traffic analysis
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2018.2843533
– volume: 12
  start-page: 993
  year: 1990
  ident: 10.1016/j.engappai.2020.103770_b28
  article-title: Neural network ensembles
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.58871
– volume: 5
  start-page: 481
  year: 2019
  ident: 10.1016/j.engappai.2020.103770_b49
  article-title: Novel geometric area analysis technique for anomaly detection using trapezoidal area estimation on large-scale networks
  publication-title: IEEE Trans. Big Data
  doi: 10.1109/TBDATA.2017.2715166
– volume: 7
  start-page: 14549
  year: 2019
  ident: 10.1016/j.engappai.2020.103770_b78
  article-title: Vehicle accident risk prediction based on adaboost-so in vanets
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2894176
– volume: 7
  start-page: 52181
  year: 2019
  ident: 10.1016/j.engappai.2020.103770_b5
  article-title: Network anomaly intrusion detection using a nonparametric bayesian approach and feature selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2912115
– volume: 6
  start-page: 13624
  year: 2018
  ident: 10.1016/j.engappai.2020.103770_b64
  article-title: An improved intrusion detection algorithm based on ga and svm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2810198
– volume: 30
  start-page: 625
  year: 2011
  ident: 10.1016/j.engappai.2020.103770_b37
  article-title: Swarm intelligence in intrusion detection: A survey
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2011.08.009
– volume: 7
  start-page: 13546
  year: 2019
  ident: 10.1016/j.engappai.2020.103770_b53
  article-title: Introducing deep learning self-adaptive misuse network intrusion detection systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2893871
– volume: 5
  start-page: 108
  year: 2018
  ident: 10.1016/j.engappai.2020.103770_b66
  article-title: Svm-dt-based adaptive and collaborative intrusion detection
  publication-title: IEEE/CAA J. Automat. Sinica
  doi: 10.1109/JAS.2017.7510730
– volume: 37
  start-page: 297
  year: 1999
  ident: 10.1016/j.engappai.2020.103770_b57
  article-title: Improved boosting algorithms using confidence-rated predictions
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007614523901
SSID ssj0003846
Score 2.6003897
Snippet Computer networks have been experienced ever-increasing growth since they play a critical role in different aspects of human life. Regarding the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103770
SubjectTerms AdaBoost
Anomaly detection
Boosting techniques
Ensemble learning
Intrusion detection systems
Machine learning
Malware detection
Title Boosting algorithms for network intrusion detection: A comparative evaluation of Real AdaBoost, Gentle AdaBoost and Modest AdaBoost
URI https://dx.doi.org/10.1016/j.engappai.2020.103770
Volume 94
WOSCitedRecordID wos000564244500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaqLgcuvBHLSz5wK1mSNIltbgEtAg4rJHroLXJip-2qm6z6WO2dv7M_cscZ2wmw0oIQl6gayXHa-eJ5dOYbQt5ozaNQpVmQpAIClCytAhkqFahKR7IUiahT2Q2bYCcnfD4X30ajK9cLc7FmTcMvL8X5f1U1yEDZpnX2L9TtbwoC-AxKhyuoHa5_pPgPbbvtapnletFC6L9EyoVJgwXfhiBiszc5sonSu64Qq8H29GpABN6TgCNbiVGkkt2tMZPewFZehNUarQIL42U_pfx70sPJ8B_zrghh01UrdbNDBvSgPvOzlMuNxNna-dnKQzkvwf6usNtoedbuVX-U7hd4lJoaAMENU7VdZpMbEMm66i2bcXNdN32JE6Yu4yASzFJo48HN2TQw5brDkx3HJ_9mJDBfcXqkmwV8Z7k6Mjt37AM4w-QXAu7vZj-zXWzCR2b43Q9ilgo-Jgf5l-P5V2_5pxwbw9zzDTrSb97tZmdo4ODMHpB7NjKhOSLqIRnp5hG5b6MUam3AFkRuEIiTPSY_HOZojzkKmKMWc9RjjnrMvac5HSCO9oijbU0N4qiD0luKePMCCnijiDcve0Jmn45nHz8HdrpHUE2jeBfImgul6iqMZarLTLIolXUiRQzWt4KwAQwvuLK8hpBZ8TrRIcuYktoMPM3ALZ0-JeOmbfQzQlVcRkJVcZqUMhEllxD0sLLiOqx1nfDkkKTuVy4qy3xvBrCsC1fieFo47RRGOwVq55C88-vOkfvl1hXCKbGwHix6pgVg75a1z_9h7Qtyt397XpIx6FS_Ineqi91qu3ltYXoNX6_KEA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boosting+algorithms+for+network+intrusion+detection%3A+A+comparative+evaluation+of+Real+AdaBoost%2C+Gentle+AdaBoost+and+Modest+AdaBoost&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Shahraki%2C+Amin&rft.au=Abbasi%2C+Mahmoud&rft.au=Haugen%2C+%C3%98ystein&rft.date=2020-09-01&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.eissn=1873-6769&rft.volume=94&rft_id=info:doi/10.1016%2Fj.engappai.2020.103770&rft.externalDocID=S0952197620301706
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon