Improved state estimator for linear-Gaussian systems subject to initialization errors

This paper proposes an improved state estimator for linear-Gaussian systems subject to initialization errors. A one-step prediction function depicted by the Student-t is reconstructed artificially by inserting an auxiliary variable into the original Gaussian distribution. The variational Bayesian (V...

Full description

Saved in:
Bibliographic Details
Published in:Chemometrics and intelligent laboratory systems Vol. 227; p. 104608
Main Authors: Zhang, Tianyu, Zhao, Shunyi, Luan, Xiaoli, Liu, Fei
Format: Journal Article
Language:English
Published: Elsevier B.V 15.08.2022
Subjects:
ISSN:0169-7439, 1873-3239
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper proposes an improved state estimator for linear-Gaussian systems subject to initialization errors. A one-step prediction function depicted by the Student-t is reconstructed artificially by inserting an auxiliary variable into the original Gaussian distribution. The variational Bayesian (VB) technique is then employed to obtain the approximated posterior joint distribution of the additional variable and the state. A fixed-point iteration is used for recursions to calculate the necessary moments of state with the updated distribution of the auxiliary variable. Simulation and experiment verify the performance of the proposed algorithm. It shows that the proposed method yields significant improvements over the existing initialization approaches, such as the practical Kalman filter (KF) and the recently-developed Bayesian initialization algorithm. •We propose to model one-step predicted function as the Student-t distribution to reduce the negative effects of the uncertain initializers.•By constructing the extended state-space model, we make use of the batch form of Kalman filter to analyze how the initial state affects the current state estimate and how the proposed scheme compensates for the initialization errors.•We reveal the essence of the compensating factor on the current state estimate.
AbstractList This paper proposes an improved state estimator for linear-Gaussian systems subject to initialization errors. A one-step prediction function depicted by the Student-t is reconstructed artificially by inserting an auxiliary variable into the original Gaussian distribution. The variational Bayesian (VB) technique is then employed to obtain the approximated posterior joint distribution of the additional variable and the state. A fixed-point iteration is used for recursions to calculate the necessary moments of state with the updated distribution of the auxiliary variable. Simulation and experiment verify the performance of the proposed algorithm. It shows that the proposed method yields significant improvements over the existing initialization approaches, such as the practical Kalman filter (KF) and the recently-developed Bayesian initialization algorithm. •We propose to model one-step predicted function as the Student-t distribution to reduce the negative effects of the uncertain initializers.•By constructing the extended state-space model, we make use of the batch form of Kalman filter to analyze how the initial state affects the current state estimate and how the proposed scheme compensates for the initialization errors.•We reveal the essence of the compensating factor on the current state estimate.
ArticleNumber 104608
Author Zhao, Shunyi
Liu, Fei
Zhang, Tianyu
Luan, Xiaoli
Author_xml – sequence: 1
  givenname: Tianyu
  surname: Zhang
  fullname: Zhang, Tianyu
– sequence: 2
  givenname: Shunyi
  surname: Zhao
  fullname: Zhao, Shunyi
  email: shunyi.s.y@gmail.com
– sequence: 3
  givenname: Xiaoli
  surname: Luan
  fullname: Luan, Xiaoli
– sequence: 4
  givenname: Fei
  surname: Liu
  fullname: Liu, Fei
BookMark eNqFkFFLwzAQx4NMcJt-BckX6GyaNk3BB2XoHAx8cc8hTa-Y0jYjlw3mpzdz-uLLHo7jjvv_uf9vRiajG4GQe5YuWMrEQ7cwnzC4XteLLM2yuMxFKq_IlMmSJzzj1YRM42GVlDmvbsgMsUtPc86mZLsedt4doKEYdAAKGOygg_O0jdXbEbRPVnqPaPVI8YgBBqS4rzswgQZH7WiD1b390sG6kYL3zuMtuW51j3D32-dk-_rysXxLNu-r9fJ5kxjOspBoKKTkWhgBBQDLJavKomS6qOq8zjljRmYNF0UjRSFLUZdVW_O8LguQrAVh-Jw8nn2Nd4geWmVs-HkkeG17xVJ1QqQ69YdInRCpM6IoF__kOx_T--Nl4dNZCDHcwYJXaCyMBhrrIxfVOHvJ4htrlIiN
CitedBy_id crossref_primary_10_1016_j_ces_2024_121046
crossref_primary_10_1016_j_chemolab_2024_105220
Cites_doi 10.1021/ie5023282
10.1109/7.106121
10.1016/j.automatica.2020.109184
10.1109/TAC.2016.2557999
10.1016/0009-2509(92)80270-M
10.1109/TAC.2020.2995674
10.1109/TII.2021.3057421
10.1016/j.chemolab.2021.104403
10.1109/TIT.2014.2320500
10.1109/TAC.2008.2008348
10.1109/9.989082
10.1109/TAES.2017.2651684
10.1002/rnc.1366
10.1016/j.jprocont.2009.03.006
10.1109/TII.2019.2924421
10.1109/TSP.2008.928969
10.1016/0005-1098(87)90026-4
10.1016/j.jprocont.2021.07.005
10.1016/S0005-1098(97)00188-X
10.1109/TASE.2019.2915286
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.chemolab.2022.104608
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3239
ExternalDocumentID 10_1016_j_chemolab_2022_104608
S0169743922001198
GroupedDBID ---
--K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABAOU
ABFRF
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M36
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCH
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSW
SSZ
T5K
UNMZH
YK3
~02
~G-
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
R2-
SCB
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c312t-ae5883a6c6e5ee148197571a59b4b4311c82d365d865876b79fb34b75e81fe6c3
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000829614400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0169-7439
IngestDate Tue Nov 18 22:41:15 EST 2025
Sat Nov 29 07:25:02 EST 2025
Fri Feb 23 02:40:39 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Variational Bayesian approximation
Student-t distribution
Linear Gaussian systems
State estimation
Initialization strategy
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-ae5883a6c6e5ee148197571a59b4b4311c82d365d865876b79fb34b75e81fe6c3
ParticipantIDs crossref_citationtrail_10_1016_j_chemolab_2022_104608
crossref_primary_10_1016_j_chemolab_2022_104608
elsevier_sciencedirect_doi_10_1016_j_chemolab_2022_104608
PublicationCentury 2000
PublicationDate 2022-08-15
PublicationDateYYYYMMDD 2022-08-15
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-15
  day: 15
PublicationDecade 2020
PublicationTitle Chemometrics and intelligent laboratory systems
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Yu, Zhao (bib5) 2019; 16
Van Erven, Harremos (bib22) 2014; 60
Zhu, Huang, Xue, Mihaylova, Chambers (bib13) 2022
Henson, Seborg (bib27) 1992; 47
Boel, James, Petersen (bib10) 2002; 47
Petersen, Savkin (bib7) 1999
Piché, Särkkä, Hartikainen (bib31) 2012
Särkkä, Nummenmaa (bib20) 2009; 54
Smidl, Quinn (bib21) 2008; 56
Farooq, Bruder (bib14) 1990; 26
Johnson (bib28) 1987; 23
Savkin, Petersen (bib8) 1998; 34
Huang, Zhang, Shi, Chambers (bib12) 2020; 66
Särkkä (bib19) 2013
Simon (bib3) 2006; vol. 10
Li, Zhang, Zhao, Liu (bib4) 2021; 105
Huang, Zhang, Li, Wu, Chambers (bib11) 2017; 53
Zhao, Shmaliy, Ahn, Luo (bib18) 2019; 16
Zhao, Huang, Liu (bib1) 2014; 53
Foo (bib9) 2009; 19
Bishop, Nasrabadi (bib23) 2006; 4
Ashoori, Moshiri, Khaki-Sedigh, Bakhtiari (bib29) 2009; 19
Anderson, Moore (bib16) 2012
Stark, Woods (bib26) 1986
Barfoot (bib25) 2017
Liu, Zhao, Luan, Liu (bib2) 2021; 217
Reid, Term (bib6) 2001
Gao, Zhao, Luan, Liu (bib30) 2021; 17
Zhao, Huang (bib15) 2020; 121
Orguner (bib24) 2005
Zhao, Huang, Liu (bib17) 2016; 62
Anderson (10.1016/j.chemolab.2022.104608_bib16) 2012
Farooq (10.1016/j.chemolab.2022.104608_bib14) 1990; 26
Särkkä (10.1016/j.chemolab.2022.104608_bib19) 2013
Li (10.1016/j.chemolab.2022.104608_bib4) 2021; 105
Savkin (10.1016/j.chemolab.2022.104608_bib8) 1998; 34
Orguner (10.1016/j.chemolab.2022.104608_bib24) 2005
Zhao (10.1016/j.chemolab.2022.104608_bib15) 2020; 121
Van Erven (10.1016/j.chemolab.2022.104608_bib22) 2014; 60
Särkkä (10.1016/j.chemolab.2022.104608_bib20) 2009; 54
Piché (10.1016/j.chemolab.2022.104608_bib31) 2012
Gao (10.1016/j.chemolab.2022.104608_bib30) 2021; 17
Smidl (10.1016/j.chemolab.2022.104608_bib21) 2008; 56
Zhao (10.1016/j.chemolab.2022.104608_bib1) 2014; 53
Petersen (10.1016/j.chemolab.2022.104608_bib7) 1999
Stark (10.1016/j.chemolab.2022.104608_bib26) 1986
Simon (10.1016/j.chemolab.2022.104608_bib3) 2006; vol. 10
Bishop (10.1016/j.chemolab.2022.104608_bib23) 2006; 4
Henson (10.1016/j.chemolab.2022.104608_bib27) 1992; 47
Yu (10.1016/j.chemolab.2022.104608_bib5) 2019; 16
Liu (10.1016/j.chemolab.2022.104608_bib2) 2021; 217
Huang (10.1016/j.chemolab.2022.104608_bib12) 2020; 66
Barfoot (10.1016/j.chemolab.2022.104608_bib25) 2017
Zhu (10.1016/j.chemolab.2022.104608_bib13) 2022
Reid (10.1016/j.chemolab.2022.104608_bib6) 2001
Boel (10.1016/j.chemolab.2022.104608_bib10) 2002; 47
Ashoori (10.1016/j.chemolab.2022.104608_bib29) 2009; 19
Johnson (10.1016/j.chemolab.2022.104608_bib28) 1987; 23
Huang (10.1016/j.chemolab.2022.104608_bib11) 2017; 53
Zhao (10.1016/j.chemolab.2022.104608_bib17) 2016; 62
Zhao (10.1016/j.chemolab.2022.104608_bib18) 2019; 16
Foo (10.1016/j.chemolab.2022.104608_bib9) 2009; 19
References_xml – volume: 17
  start-page: 8429
  year: 2021
  end-page: 8437
  ident: bib30
  article-title: Intelligent state estimation for continuous fermenters using variational bayesian learning
  publication-title: IEEE Trans. Ind. Inf.
– volume: vol. 10
  year: 2006
  ident: bib3
  publication-title: Optimal State Estimation: Kalman,
– volume: 54
  start-page: 596
  year: 2009
  end-page: 600
  ident: bib20
  article-title: Recursive noise adaptive kalman filtering by variational bayesian approximations
  publication-title: IEEE Trans. Automat. Control
– volume: 217
  year: 2021
  ident: bib2
  article-title: Online state and inputs identification for stochastic systems using recursive expectation-maximization algorithm
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 66
  start-page: 1786
  year: 2020
  end-page: 1793
  ident: bib12
  article-title: Variational adaptive kalman filter with Gaussian-inverse-wishart mixture distribution
  publication-title: IEEE Trans. Automat. Control
– start-page: 1
  year: 2012
  end-page: 6
  ident: bib31
  article-title: Recursive outlier-robust filtering and smoothing for nonlinear systems using the multivariate student-t distribution
  publication-title: 2012 IEEE International Workshop on Machine Learning for Signal Processing
– volume: 34
  start-page: 271
  year: 1998
  end-page: 274
  ident: bib8
  article-title: Robust state estimation and model validation for discrete-time uncertain systems with a deterministic description of noise and uncertainty
  publication-title: Automatica
– volume: 16
  start-page: 1003
  year: 2019
  end-page: 1012
  ident: bib18
  article-title: An improved iterative fir state estimator and its applications
  publication-title: IEEE Trans. Ind. Inf.
– volume: 47
  start-page: 821
  year: 1992
  end-page: 835
  ident: bib27
  article-title: Nonlinear control strategies for continuous fermenters
  publication-title: Chem. Eng. Sci.
– year: 1999
  ident: bib7
  article-title: Robust Kalman Filtering for Signals and Systems with Large Uncertainties
– volume: 56
  start-page: 5020
  year: 2008
  end-page: 5030
  ident: bib21
  article-title: Variational bayesian filtering
  publication-title: IEEE Trans. Signal Process.
– volume: 4
  year: 2006
  ident: bib23
  publication-title: Pattern Recogn. Mach. Learn.
– volume: 62
  start-page: 882
  year: 2016
  end-page: 887
  ident: bib17
  article-title: Linear optimal unbiased filter for time-variant systems without apriori information on initial conditions
  publication-title: IEEE Trans. Automat. Control
– volume: 19
  start-page: 1162
  year: 2009
  end-page: 1173
  ident: bib29
  article-title: Optimal control of a nonlinear fed-batch fermentation process using model predictive approach
  publication-title: J. Process Control
– volume: 23
  start-page: 691
  year: 1987
  end-page: 705
  ident: bib28
  article-title: The control of fed-batch fermentation processes—a survey
  publication-title: Automatica
– volume: 26
  start-page: 441
  year: 1990
  end-page: 454
  ident: bib14
  article-title: Information type filters for tracking a maneuvering target
  publication-title: IEEE Trans. Aero. Electron. Syst.
– year: 2001
  ident: bib6
  article-title: Estimation Ii
– start-page: 3
  year: 2013
  ident: bib19
  article-title: . Plus 0.5em Minus 0
– year: 2005
  ident: bib24
  article-title: Improved State Estimation for Jump Markov Linear Systems
– volume: 60
  start-page: 3797
  year: 2014
  end-page: 3820
  ident: bib22
  article-title: Rényi divergence and kullback-leibler divergence
  publication-title: IEEE Trans. Inf. Theor.
– volume: 105
  start-page: 88
  year: 2021
  end-page: 98
  ident: bib4
  article-title: Suboptimal bayesian state estimators for linear high-dimensional dynamic processes
  publication-title: J. Process Control
– volume: 47
  start-page: 451
  year: 2002
  end-page: 461
  ident: bib10
  article-title: Robustness and risk-sensitive filtering
  publication-title: IEEE Trans. Automat. Control
– year: 2022
  ident: bib13
  article-title: A sliding window variational outlier-robust kalman filter based on student's t noise modelling
  publication-title: IEEE Trans. Aero. Electron. Syst.
– volume: 16
  start-page: 1922
  year: 2019
  ident: bib5
  article-title: Online fault diagnosis for industrial processes with bayesian network-based probabilistic ensemble learning strategy
  publication-title: IEEE Trans. Autom. Sci. Eng.
– year: 2012
  ident: bib16
  article-title: Optimal Filtering
– year: 1986
  ident: bib26
  article-title: Probability, Random Processes, and Estimation Theory for Engineers
– volume: 19
  start-page: 1065
  year: 2009
  end-page: 1075
  ident: bib9
  article-title: Robust discrete-time
  publication-title: Int. J. Robust Nonlinear Control: IFAC-Affiliated J.
– volume: 53
  start-page: 1545
  year: 2017
  end-page: 1554
  ident: bib11
  article-title: A novel robust student's t-based kalman filter
  publication-title: IEEE Trans. Aero. Electron. Syst.
– volume: 121
  year: 2020
  ident: bib15
  article-title: Trial-and-error or avoiding a guess? initialization of the kalman filter
  publication-title: Automatica
– volume: 53
  year: 2014
  ident: bib1
  article-title: State estimation in batch process based on two-dimensional state-space model
  publication-title: Ind. Eng. Chem. Res.
– year: 2017
  ident: bib25
  article-title: State Estimation for Robotics
– year: 2012
  ident: 10.1016/j.chemolab.2022.104608_bib16
– volume: 53
  issue: 50
  year: 2014
  ident: 10.1016/j.chemolab.2022.104608_bib1
  article-title: State estimation in batch process based on two-dimensional state-space model
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie5023282
– volume: 26
  start-page: 441
  issue: 3
  year: 1990
  ident: 10.1016/j.chemolab.2022.104608_bib14
  article-title: Information type filters for tracking a maneuvering target
  publication-title: IEEE Trans. Aero. Electron. Syst.
  doi: 10.1109/7.106121
– volume: 121
  year: 2020
  ident: 10.1016/j.chemolab.2022.104608_bib15
  article-title: Trial-and-error or avoiding a guess? initialization of the kalman filter
  publication-title: Automatica
  doi: 10.1016/j.automatica.2020.109184
– volume: 62
  start-page: 882
  issue: 2
  year: 2016
  ident: 10.1016/j.chemolab.2022.104608_bib17
  article-title: Linear optimal unbiased filter for time-variant systems without apriori information on initial conditions
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2016.2557999
– year: 2022
  ident: 10.1016/j.chemolab.2022.104608_bib13
  article-title: A sliding window variational outlier-robust kalman filter based on student's t noise modelling
  publication-title: IEEE Trans. Aero. Electron. Syst.
– volume: 47
  start-page: 821
  issue: 4
  year: 1992
  ident: 10.1016/j.chemolab.2022.104608_bib27
  article-title: Nonlinear control strategies for continuous fermenters
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(92)80270-M
– volume: 66
  start-page: 1786
  issue: 4
  year: 2020
  ident: 10.1016/j.chemolab.2022.104608_bib12
  article-title: Variational adaptive kalman filter with Gaussian-inverse-wishart mixture distribution
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2020.2995674
– volume: 17
  start-page: 8429
  issue: 12
  year: 2021
  ident: 10.1016/j.chemolab.2022.104608_bib30
  article-title: Intelligent state estimation for continuous fermenters using variational bayesian learning
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2021.3057421
– volume: 217
  year: 2021
  ident: 10.1016/j.chemolab.2022.104608_bib2
  article-title: Online state and inputs identification for stochastic systems using recursive expectation-maximization algorithm
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2021.104403
– start-page: 1
  year: 2012
  ident: 10.1016/j.chemolab.2022.104608_bib31
  article-title: Recursive outlier-robust filtering and smoothing for nonlinear systems using the multivariate student-t distribution
– start-page: 3
  year: 2013
  ident: 10.1016/j.chemolab.2022.104608_bib19
– volume: 60
  start-page: 3797
  issue: 7
  year: 2014
  ident: 10.1016/j.chemolab.2022.104608_bib22
  article-title: Rényi divergence and kullback-leibler divergence
  publication-title: IEEE Trans. Inf. Theor.
  doi: 10.1109/TIT.2014.2320500
– volume: 54
  start-page: 596
  issue: 3
  year: 2009
  ident: 10.1016/j.chemolab.2022.104608_bib20
  article-title: Recursive noise adaptive kalman filtering by variational bayesian approximations
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2008.2008348
– year: 2005
  ident: 10.1016/j.chemolab.2022.104608_bib24
– volume: 47
  start-page: 451
  issue: 3
  year: 2002
  ident: 10.1016/j.chemolab.2022.104608_bib10
  article-title: Robustness and risk-sensitive filtering
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/9.989082
– volume: 53
  start-page: 1545
  issue: 3
  year: 2017
  ident: 10.1016/j.chemolab.2022.104608_bib11
  article-title: A novel robust student's t-based kalman filter
  publication-title: IEEE Trans. Aero. Electron. Syst.
  doi: 10.1109/TAES.2017.2651684
– volume: 19
  start-page: 1065
  issue: 9
  year: 2009
  ident: 10.1016/j.chemolab.2022.104608_bib9
  article-title: Robust discrete-time H∞ filtering with uncertain initial state
  publication-title: Int. J. Robust Nonlinear Control: IFAC-Affiliated J.
  doi: 10.1002/rnc.1366
– volume: 19
  start-page: 1162
  issue: 7
  year: 2009
  ident: 10.1016/j.chemolab.2022.104608_bib29
  article-title: Optimal control of a nonlinear fed-batch fermentation process using model predictive approach
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2009.03.006
– volume: 16
  start-page: 1003
  issue: 2
  year: 2019
  ident: 10.1016/j.chemolab.2022.104608_bib18
  article-title: An improved iterative fir state estimator and its applications
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2019.2924421
– year: 1986
  ident: 10.1016/j.chemolab.2022.104608_bib26
– volume: 56
  start-page: 5020
  issue: 10
  year: 2008
  ident: 10.1016/j.chemolab.2022.104608_bib21
  article-title: Variational bayesian filtering
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2008.928969
– volume: 23
  start-page: 691
  issue: 6
  year: 1987
  ident: 10.1016/j.chemolab.2022.104608_bib28
  article-title: The control of fed-batch fermentation processes—a survey
  publication-title: Automatica
  doi: 10.1016/0005-1098(87)90026-4
– year: 1999
  ident: 10.1016/j.chemolab.2022.104608_bib7
– year: 2017
  ident: 10.1016/j.chemolab.2022.104608_bib25
– volume: 105
  start-page: 88
  year: 2021
  ident: 10.1016/j.chemolab.2022.104608_bib4
  article-title: Suboptimal bayesian state estimators for linear high-dimensional dynamic processes
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2021.07.005
– year: 2001
  ident: 10.1016/j.chemolab.2022.104608_bib6
– volume: vol. 10
  year: 2006
  ident: 10.1016/j.chemolab.2022.104608_bib3
– volume: 34
  start-page: 271
  issue: 2
  year: 1998
  ident: 10.1016/j.chemolab.2022.104608_bib8
  article-title: Robust state estimation and model validation for discrete-time uncertain systems with a deterministic description of noise and uncertainty
  publication-title: Automatica
  doi: 10.1016/S0005-1098(97)00188-X
– volume: 4
  issue: 4
  year: 2006
  ident: 10.1016/j.chemolab.2022.104608_bib23
  publication-title: Pattern Recogn. Mach. Learn.
– volume: 16
  start-page: 1922
  issue: 4
  year: 2019
  ident: 10.1016/j.chemolab.2022.104608_bib5
  article-title: Online fault diagnosis for industrial processes with bayesian network-based probabilistic ensemble learning strategy
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2019.2915286
SSID ssj0016941
Score 2.373331
Snippet This paper proposes an improved state estimator for linear-Gaussian systems subject to initialization errors. A one-step prediction function depicted by the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104608
SubjectTerms Initialization strategy
Linear Gaussian systems
State estimation
Student-t distribution
Variational Bayesian approximation
Title Improved state estimator for linear-Gaussian systems subject to initialization errors
URI https://dx.doi.org/10.1016/j.chemolab.2022.104608
Volume 227
WOSCitedRecordID wos000829614400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-3239
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016941
  issn: 0169-7439
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbbTaG9lD5p-kKH3hZtsWVZ0jGE9HUIhW5gb0aWZeKwawc_QvIT-q87smSvk4amOfRiFoGkledD_mak-Qahj5kQeRZQTWBbNCSK8oikNA4IuAYs0DJMI5X2xSb48bFYr-WP2ezXkAtzseFlKS4v5fl_NTW0gbFt6uw9zD0OCg3wG4wOTzA7PP_J8C5MADyyzxVaWBWNrfWs-wuFllSqmnxRXdNnTzoh52bRdKkNyFgmWtjrRGrj8zMXpq4rf-IzCBqcmm21tZW4vMBzMcp6tgsPKnty30zE0Keh6RVMfNVNmvto7c_TrrwqxvtBnQvMrgtVbXatRdeTbVNMgxXg51rxWDaNX8aSWB9ougGHTh3Ab6H20LmXevhzd3eBhrOltuuE9SztFMtdh-ty2jc-c-Plw-Fe21kyjJPYcRI3zgO0F3ImxRztHXw7Wn8fj6Rsxq8TincrmKSb3_6Pbmc6E_ayeoqeeLcDHzi4PEMzUz5Hjw6Han8v0MkAG9zDBo-wwQAbfAM22JsWe9jgtsLXYYMdbF6ik89Hq8OvxJfcIJoGYUuUYUJQFevYMGPAVQ4kZzxQTKZRClwz0CLMaMwyAcyVxymXeUqjlDMjgtzEmr5C87IqzWuEQ5rlKgo0zYGlCq6lyoQWUWbgs8YzSfcRG15Por0evS2Lskn-bqB99Gnsd-4UWe7sIYe3n3he6fhiAsC6o--be8_2Fj3eIf8dmrd1Z96jh_qiLZr6g0fVb7ZloWQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+state+estimator+for+linear-Gaussian+systems+subject+to+initialization+errors&rft.jtitle=Chemometrics+and+intelligent+laboratory+systems&rft.au=Zhang%2C+Tianyu&rft.au=Zhao%2C+Shunyi&rft.au=Luan%2C+Xiaoli&rft.au=Liu%2C+Fei&rft.date=2022-08-15&rft.issn=0169-7439&rft.volume=227&rft.spage=104608&rft_id=info:doi/10.1016%2Fj.chemolab.2022.104608&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chemolab_2022_104608
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-7439&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-7439&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-7439&client=summon