A new form of Wigner functions on the noncommutative space

Wigner quasi-probability distribution function in phase space is a special (Weyl) representation of the density matrix. It has been very useful in many areas of quantum mechanics. Starting from fundamental principle of the Weyl correspondence, we derive explicit form of the Wigner function (WF) for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics letters. A Jg. 335; H. 2; S. 185 - 190
Hauptverfasser: Jing, Sicong, Heng, Taihua, Zuo, Fen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 07.02.2005
Schlagworte:
ISSN:0375-9601, 1873-2429
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wigner quasi-probability distribution function in phase space is a special (Weyl) representation of the density matrix. It has been very useful in many areas of quantum mechanics. Starting from fundamental principle of the Weyl correspondence, we derive explicit form of the Wigner function (WF) for noncommutative quantum mechanics (NCQM), and prove that it satisfies a generalized *-genvalue equation. We also give some examples to show that the new form of WF indeed has this property.
ISSN:0375-9601
1873-2429
DOI:10.1016/j.physleta.2004.12.021