A new form of Wigner functions on the noncommutative space

Wigner quasi-probability distribution function in phase space is a special (Weyl) representation of the density matrix. It has been very useful in many areas of quantum mechanics. Starting from fundamental principle of the Weyl correspondence, we derive explicit form of the Wigner function (WF) for...

Full description

Saved in:
Bibliographic Details
Published in:Physics letters. A Vol. 335; no. 2; pp. 185 - 190
Main Authors: Jing, Sicong, Heng, Taihua, Zuo, Fen
Format: Journal Article
Language:English
Published: Elsevier B.V 07.02.2005
Subjects:
ISSN:0375-9601, 1873-2429
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Wigner quasi-probability distribution function in phase space is a special (Weyl) representation of the density matrix. It has been very useful in many areas of quantum mechanics. Starting from fundamental principle of the Weyl correspondence, we derive explicit form of the Wigner function (WF) for noncommutative quantum mechanics (NCQM), and prove that it satisfies a generalized *-genvalue equation. We also give some examples to show that the new form of WF indeed has this property.
AbstractList Wigner quasi-probability distribution function in phase space is a special (Weyl) representation of the density matrix. It has been very useful in many areas of quantum mechanics. Starting from fundamental principle of the Weyl correspondence, we derive explicit form of the Wigner function (WF) for noncommutative quantum mechanics (NCQM), and prove that it satisfies a generalized *-genvalue equation. We also give some examples to show that the new form of WF indeed has this property.
Author Heng, Taihua
Jing, Sicong
Zuo, Fen
Author_xml – sequence: 1
  givenname: Sicong
  surname: Jing
  fullname: Jing, Sicong
  email: sjing@ustc.edu.cn
– sequence: 2
  givenname: Taihua
  surname: Heng
  fullname: Heng, Taihua
– sequence: 3
  givenname: Fen
  surname: Zuo
  fullname: Zuo, Fen
BookMark eNqFkM1KAzEUhYMo2FZfQfICMyZ3JvMjLizFPyi4UVyGNHNjUzpJSdJK394p1Y2brs7qO_eeb0zOnXdIyA1nOWe8ul3lm-U-rjGpHBgrcw45A35GRrypiwxKaM_JiBW1yNqK8UsyjnHF2ECydkTuptThNzU-9NQb-mm_HAZqtk4n612k3tG0RDqc1L7vt0klu0MaN0rjFbkwah3x-jcn5OPp8X32ks3fnl9n03mmCw4pUwujRak6qBtlDNPMcMNbLBtggKUwddGJEhYCOiNErUVjFrzjSlRdBaB0W0zI_bFXBx9jQCO1PfzhXQrKriVn8uBBruSfB3nwIDnIwcOAV__wTbC9CvvT4MMRxGHczmKQUVt0GjsbUCfZeXuq4gfYbn8P
CitedBy_id crossref_primary_10_1088_0253_6102_54_5_06
crossref_primary_10_1007_s10773_009_0186_8
crossref_primary_10_1007_s10773_014_2248_9
crossref_primary_10_1088_0256_307X_27_9_090302
crossref_primary_10_1088_0256_307X_25_10_005
crossref_primary_10_1016_j_aop_2025_170154
Cites_doi 10.1142/S0217732302008356
10.1063/1.1416196
10.1088/1126-6708/1999/09/032
10.1016/S0031-8914(46)80059-4
10.1017/S0305004100000487
10.1088/0305-4470/34/47/319
10.1016/0370-1573(84)90151-0
10.1016/0370-1573(86)90103-1
10.1016/0370-1573(84)90160-1
10.1103/PhysRev.40.749
10.1016/S0370-2693(97)00551-0
10.1142/S0217732398000322
10.1016/0370-1573(95)00007-4
10.1088/0305-4470/24/16/018
10.1007/BF02055756
10.1103/PhysRevD.58.025002
ContentType Journal Article
Copyright 2004 Elsevier B.V.
Copyright_xml – notice: 2004 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.physleta.2004.12.021
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-2429
EndPage 190
ExternalDocumentID 10_1016_j_physleta_2004_12_021
S037596010401727X
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
5VS
6TJ
7-5
71M
8P~
8WZ
9JN
A6W
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYJJ
ABFNM
ABLJU
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACKIV
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
K-O
KOM
M38
M41
MO0
MVM
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
TN5
WH7
WUQ
XJT
XOL
YYP
ZCG
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c312t-abfc54ad278aff0c0f1f19e48202e45f73d542b52df557c58fb1d1a56d622ac93
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000226848200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0375-9601
IngestDate Sat Nov 29 03:34:29 EST 2025
Tue Nov 18 21:55:30 EST 2025
Fri Feb 23 02:29:52 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 05.10.-a
03.65.-w
02.40.Gh
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-abfc54ad278aff0c0f1f19e48202e45f73d542b52df557c58fb1d1a56d622ac93
PageCount 6
ParticipantIDs crossref_citationtrail_10_1016_j_physleta_2004_12_021
crossref_primary_10_1016_j_physleta_2004_12_021
elsevier_sciencedirect_doi_10_1016_j_physleta_2004_12_021
PublicationCentury 2000
PublicationDate 2005-02-07
PublicationDateYYYYMMDD 2005-02-07
PublicationDate_xml – month: 02
  year: 2005
  text: 2005-02-07
  day: 07
PublicationDecade 2000
PublicationTitle Physics letters. A
PublicationYear 2005
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Groenewold (bib003) 1946; 12
Seiberg, Witten, Moyal (bib005) 1999; 9909
Hatzinkitas, Smymakis (bib006) 2002; 43
Weyl (bib008) 1927; 46
Wigner (bib002) 1932; 40
Hillery, O'Conell, Scully, Wigner, Lee, Balasz, Jennings, Littlejohn, Curtright, Fairlie, Zachos, Fairlie (bib001) 1984; 106
Curtright, Fairlie, Zachos, Zachos, Fairlie, Manogue (bib004) 1998; 58
Dayi, Kelleyane, Jellal, Kinani, Schreiber (bib007) 2002; 17
Jellal (bib009) 2001; 34
Moyal (10.1016/j.physleta.2004.12.021_bib005_2) 1949; 45
Weyl (10.1016/j.physleta.2004.12.021_bib008) 1927; 46
Littlejohn (10.1016/j.physleta.2004.12.021_bib001_4) 1986; 138
Wigner (10.1016/j.physleta.2004.12.021_bib002) 1932; 40
Seiberg (10.1016/j.physleta.2004.12.021_bib005_1) 1999; 9909
Zachos (10.1016/j.physleta.2004.12.021_bib004_2)
Jellal (10.1016/j.physleta.2004.12.021_bib007_2)
Hillery (10.1016/j.physleta.2004.12.021_bib001_1) 1984; 106
Fairlie (10.1016/j.physleta.2004.12.021_bib004_3) 1991; 24
Dayi (10.1016/j.physleta.2004.12.021_bib007_1) 2002; 17
Jellal (10.1016/j.physleta.2004.12.021_bib009) 2001; 34
Fairlie (10.1016/j.physleta.2004.12.021_bib001_6) 1998; 13
Balasz (10.1016/j.physleta.2004.12.021_bib001_3) 1984; 104
Lee (10.1016/j.physleta.2004.12.021_bib001_2) 1995; 259
Groenewold (10.1016/j.physleta.2004.12.021_bib003) 1946; 12
Curtright (10.1016/j.physleta.2004.12.021_bib001_5) 1997; 405
Hatzinkitas (10.1016/j.physleta.2004.12.021_bib006) 2002; 43
Curtright (10.1016/j.physleta.2004.12.021_bib004_1) 1998; 58
References_xml – volume: 34
  start-page: 10159
  year: 2001
  ident: bib009
  publication-title: J. Phys. A: Math. Gen.
– volume: 58
  start-page: 025002
  year: 1998
  ident: bib004
  publication-title: Phys. Rev. D
– volume: 43
  start-page: 113
  year: 2002
  ident: bib006
  publication-title: J. Math. Phys.
– volume: 106
  start-page: 121
  year: 1984
  ident: bib001
  publication-title: Phys. Rep.
– volume: 12
  start-page: 405
  year: 1946
  ident: bib003
  publication-title: Physica (Amsterdam)
– volume: 17
  start-page: 1937
  year: 2002
  ident: bib007
  publication-title: Mod. Phys. Lett. A
– volume: 46
  start-page: 1
  year: 1927
  ident: bib008
  publication-title: Z. Phys.
– volume: 9909
  start-page: 032
  year: 1999
  ident: bib005
  publication-title: JHEP
– volume: 40
  start-page: 749
  year: 1932
  ident: bib002
  publication-title: Phys. Rev.
– volume: 17
  start-page: 1937
  year: 2002
  ident: 10.1016/j.physleta.2004.12.021_bib007_1
  publication-title: Mod. Phys. Lett. A
  doi: 10.1142/S0217732302008356
– volume: 43
  start-page: 113
  year: 2002
  ident: 10.1016/j.physleta.2004.12.021_bib006
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1416196
– ident: 10.1016/j.physleta.2004.12.021_bib004_2
– volume: 9909
  start-page: 032
  year: 1999
  ident: 10.1016/j.physleta.2004.12.021_bib005_1
  publication-title: JHEP
  doi: 10.1088/1126-6708/1999/09/032
– ident: 10.1016/j.physleta.2004.12.021_bib007_2
– volume: 12
  start-page: 405
  year: 1946
  ident: 10.1016/j.physleta.2004.12.021_bib003
  publication-title: Physica (Amsterdam)
  doi: 10.1016/S0031-8914(46)80059-4
– volume: 45
  start-page: 99
  year: 1949
  ident: 10.1016/j.physleta.2004.12.021_bib005_2
  publication-title: Proc. Cambridge Philos. Soc.
  doi: 10.1017/S0305004100000487
– volume: 34
  start-page: 10159
  year: 2001
  ident: 10.1016/j.physleta.2004.12.021_bib009
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/34/47/319
– volume: 104
  start-page: 347
  year: 1984
  ident: 10.1016/j.physleta.2004.12.021_bib001_3
  publication-title: Phys. Rep.
  doi: 10.1016/0370-1573(84)90151-0
– volume: 138
  start-page: 193
  year: 1986
  ident: 10.1016/j.physleta.2004.12.021_bib001_4
  publication-title: Phys. Rep.
  doi: 10.1016/0370-1573(86)90103-1
– volume: 106
  start-page: 121
  year: 1984
  ident: 10.1016/j.physleta.2004.12.021_bib001_1
  publication-title: Phys. Rep.
  doi: 10.1016/0370-1573(84)90160-1
– volume: 40
  start-page: 749
  year: 1932
  ident: 10.1016/j.physleta.2004.12.021_bib002
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.40.749
– volume: 405
  start-page: 37
  year: 1997
  ident: 10.1016/j.physleta.2004.12.021_bib001_5
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(97)00551-0
– volume: 13
  start-page: 263
  year: 1998
  ident: 10.1016/j.physleta.2004.12.021_bib001_6
  publication-title: Mod. Phys. Lett. A
  doi: 10.1142/S0217732398000322
– volume: 259
  start-page: 147
  year: 1995
  ident: 10.1016/j.physleta.2004.12.021_bib001_2
  publication-title: Phys. Rep.
  doi: 10.1016/0370-1573(95)00007-4
– volume: 24
  start-page: 3607
  year: 1991
  ident: 10.1016/j.physleta.2004.12.021_bib004_3
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/24/16/018
– volume: 46
  start-page: 1
  year: 1927
  ident: 10.1016/j.physleta.2004.12.021_bib008
  publication-title: Z. Phys.
  doi: 10.1007/BF02055756
– volume: 58
  start-page: 025002
  year: 1998
  ident: 10.1016/j.physleta.2004.12.021_bib004_1
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.58.025002
SSID ssj0001609
Score 1.7886454
Snippet Wigner quasi-probability distribution function in phase space is a special (Weyl) representation of the density matrix. It has been very useful in many areas...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 185
Title A new form of Wigner functions on the noncommutative space
URI https://dx.doi.org/10.1016/j.physleta.2004.12.021
Volume 335
WOSCitedRecordID wos000226848200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2429
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001609
  issn: 0375-9601
  databaseCode: AIEXJ
  dateStart: 19950102
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbLpoVeSp80bVJ06C04tWTJsnJbSkKSQyhkS5dejKxHu2Fxwj5Cfn5HDzu7bWiSQy_GCCTZ_oaZ0Xi-GYQ-cWLzUtkyA1feZEwWMqtMLjJmwTtV_teXiM0mxNlZNZnIr4PBeceFuZ6Jtq1ubuTVf4UaxgBsT519BNz9ojAA9wA6XAF2uD4I-JHvEh5Iid4R_D792dr5njdfKect5jXCqV97bsgyFv4GvaI3koJCZqhe7M0C3WexfxvzPE1dUM5BhpLZi2SHMDpW01-rXtX_WIVI7FHim3XRhcDWjm1oO1aV4Bmccsi6xixihZEkGjQr1jQgiR14kjElsRfoX3o6hgwu9n34Bl4kFIBiIS4b-dKbhbH_MFh9GmGXoXZRd-v4rpqsJrTOfXGBLSq4rIZoa3RyODntDTQpY-ZP92prxPG7n-hun2XNDxm_QM_TAQKPIvAv0cC2r9DTBNdrdDDCAD_28ONLhyP8uIcfX7YY4Meb8OMA_xv07ehw_OU4S_0xMl0QusxU4zRnylBRKedynTviiLQMnDpqGXeiMJzRhlPjOBeaV64hhihempJSpWXxFg1hO_sOYSuV5cqostCGNUQ3VlAnjDKssoo1-Tbi3ReodSoe73uYzOp_Y7CNPvfzrmL5lHtnyO4D18kJjM5dDbJzz9z3j97tA3p2K_U7aLicr-wueqKvl9PF_GMSnN8HpYEV
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+form+of+Wigner+functions+on+the+noncommutative+space&rft.jtitle=Physics+letters.+A&rft.au=Jing%2C+Sicong&rft.au=Heng%2C+Taihua&rft.au=Zuo%2C+Fen&rft.date=2005-02-07&rft.issn=0375-9601&rft.volume=335&rft.issue=2-3&rft.spage=185&rft.epage=190&rft_id=info:doi/10.1016%2Fj.physleta.2004.12.021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_physleta_2004_12_021
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0375-9601&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0375-9601&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0375-9601&client=summon