Estimating 1-km PM2.5 concentrations based on a novel spatiotemporal parallel network STMSPNet in the Beijing-Tianjin-Hebei region

With the development of industry, the issue of air pollution is of great concern. Due to the sparsity of monitoring stations, acquiring full-coverage PM2.5 concentration remains challenging. The satellite remote sensing datasets provide a potential solution for estimation tasks by its spatiotemporal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric environment (1994) Jg. 338; S. 120796
Hauptverfasser: Zeng, Qiaolin, Li, Mingzheng, Fan, Meng, Tao, Jinhua, Chen, Liangfu, Zhang, Ying, Zhu, Hao, Zhu, Yuanyuan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.12.2024
Schlagworte:
ISSN:1352-2310
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract With the development of industry, the issue of air pollution is of great concern. Due to the sparsity of monitoring stations, acquiring full-coverage PM2.5 concentration remains challenging. The satellite remote sensing datasets provide a potential solution for estimation tasks by its spatiotemporal virtue. In this study, the ellipsoidal coordinate system was introduced for the first time to improve the spatial coding method. A two-stage algorithm using satellite datasets and ground-site values was proposed to impute the missing AOD and estimate PM2.5 concentrations. Firstly, the Multilayer Perceptron (MLP) model was utilized for imputing the missing AOD, achieving superior accuracy (R2 = 0.929). Secondly, the training efficiency and the accuracy of traditional algorithm were enhanced by innovatively utilizing an efficient attention mechanism and a novel embedding layer. The concept of combining convolutional layers with different output channels and novel spatial preprocessing methods were also innovatively proposed. Consequently, the Spatiotemporal Multi-Sample Parallel Network (STMSPNet) was constructed to estimate daily PM2.5 concentrations. Finally, the best performance of this model was obtained by 10-fold cross-validation with R2 of 0.913 and RMSE of 10.637 μg/m3. In addition, this study analyses the changing patterns of PM2.5 concentrations in the Beijing-Tianjin-Hebei region from 2019 to 2023, taking into account the COVID-19 outbreak and extreme weather. The reasons for the changes are also discussed in depth through the air pollution control policies enacted by the Chinese government and regional factors. The results show that STMSPNet has a strong estimation advantage. [Display omitted] •We developed a two-stage model for AOD imputing and PM2.5 concentration estimation.•Using MLP model to obtain full-coverage AOD datasets.•Constructing spatiotemporal model with temporal and multi-sample module.•Application of Efficient Attention and new Embedding layer.
AbstractList With the development of industry, the issue of air pollution is of great concern. Due to the sparsity of monitoring stations, acquiring full-coverage PM2.5 concentration remains challenging. The satellite remote sensing datasets provide a potential solution for estimation tasks by its spatiotemporal virtue. In this study, the ellipsoidal coordinate system was introduced for the first time to improve the spatial coding method. A two-stage algorithm using satellite datasets and ground-site values was proposed to impute the missing AOD and estimate PM2.5 concentrations. Firstly, the Multilayer Perceptron (MLP) model was utilized for imputing the missing AOD, achieving superior accuracy (R2 = 0.929). Secondly, the training efficiency and the accuracy of traditional algorithm were enhanced by innovatively utilizing an efficient attention mechanism and a novel embedding layer. The concept of combining convolutional layers with different output channels and novel spatial preprocessing methods were also innovatively proposed. Consequently, the Spatiotemporal Multi-Sample Parallel Network (STMSPNet) was constructed to estimate daily PM2.5 concentrations. Finally, the best performance of this model was obtained by 10-fold cross-validation with R2 of 0.913 and RMSE of 10.637 μg/m3. In addition, this study analyses the changing patterns of PM2.5 concentrations in the Beijing-Tianjin-Hebei region from 2019 to 2023, taking into account the COVID-19 outbreak and extreme weather. The reasons for the changes are also discussed in depth through the air pollution control policies enacted by the Chinese government and regional factors. The results show that STMSPNet has a strong estimation advantage. [Display omitted] •We developed a two-stage model for AOD imputing and PM2.5 concentration estimation.•Using MLP model to obtain full-coverage AOD datasets.•Constructing spatiotemporal model with temporal and multi-sample module.•Application of Efficient Attention and new Embedding layer.
ArticleNumber 120796
Author Zhu, Yuanyuan
Zeng, Qiaolin
Chen, Liangfu
Li, Mingzheng
Zhang, Ying
Fan, Meng
Tao, Jinhua
Zhu, Hao
Author_xml – sequence: 1
  givenname: Qiaolin
  surname: Zeng
  fullname: Zeng, Qiaolin
  organization: School of Computer Science and Technology/School of Artificial Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
– sequence: 2
  givenname: Mingzheng
  surname: Li
  fullname: Li, Mingzheng
  organization: School of Computer Science and Technology/School of Artificial Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
– sequence: 3
  givenname: Meng
  surname: Fan
  fullname: Fan, Meng
  email: zengqiaolin2008@hotmail.com
  organization: The Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
– sequence: 4
  givenname: Jinhua
  surname: Tao
  fullname: Tao, Jinhua
  organization: The Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
– sequence: 5
  givenname: Liangfu
  surname: Chen
  fullname: Chen, Liangfu
  organization: The Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
– sequence: 6
  givenname: Ying
  orcidid: 0000-0001-6577-2376
  surname: Zhang
  fullname: Zhang, Ying
  organization: The Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
– sequence: 7
  givenname: Hao
  surname: Zhu
  fullname: Zhu, Hao
  organization: Chongqing Institute of Meteorological Sciences, Chongqing, 401147, China
– sequence: 8
  givenname: Yuanyuan
  surname: Zhu
  fullname: Zhu, Yuanyuan
  organization: China National Environmental Monitoring Center, Beijing, 100012, China
BookMark eNqFkM9OAjEQxnvARFBfwfQFdu0fdssmHlSCYgJKAp6bbpnFwtKStsF49cktohcvXGYmM_N9k_n1UMc6CwhdU5JTQsubda7i1gWw-5wR1s8pI6IqO6hLecEyxik5R70Q1oQQLirRRV-jEM1WRWNXmGabLZ5NWV5g7awGG30aOBtwrQIssbNYYev20OKwO0wibHfOqxbvVIpt6luIH85v8Hwxnc9eIGJjcXwH_ABmnU5kC6NsKrIx1GCwh1Wyv0RnjWoDXP3mC_T2OFoMx9nk9el5eD_JNKcsZkoUQCohdJ-oquCMFaVgmkMlKs3rQQOaadEwrolOW4w2FS_qvm4GoKGmrOIXqDz6au9C8NDInU-v-09JiTzQk2v5R08e6MkjvSS8_SfUJv6QSYBMe1p-d5RDem5vwMugDSS-S-NBR7l05pTFN-Qdlhg
CitedBy_id crossref_primary_10_1016_j_atmosenv_2025_121470
crossref_primary_10_1007_s11869_025_01771_y
crossref_primary_10_1007_s10901_025_10207_z
Cites_doi 10.1109/TGRS.2023.3334492
10.1016/j.envpol.2017.12.070
10.1016/j.jclepro.2024.141259
10.1016/j.chemosphere.2020.128801
10.1016/j.scitotenv.2022.159673
10.1016/j.envsoft.2019.104600
10.1080/15481603.2022.2051382
10.1109/ACCESS.2020.2968744
10.1016/j.partic.2013.11.001
10.1016/j.jenvman.2023.118252
10.1016/j.jclepro.2020.123742
10.1016/j.scitotenv.2022.160446
10.3390/rs15164104
10.1080/15481603.2023.2262836
10.1016/j.scitotenv.2019.133983
10.1145/3586074
10.1016/j.atmosenv.2023.120193
10.1016/j.scitotenv.2019.04.299
10.1016/j.scitotenv.2018.02.255
10.1016/j.scitotenv.2023.169801
10.3390/rs14061515
10.1016/j.scitotenv.2020.141765
10.1016/j.atmosenv.2021.118212
10.1016/j.rse.2019.111221
10.3390/rs15174271
10.3390/rs14235967
10.3390/rs12020264
10.1016/j.envpol.2020.115042
10.1088/1748-9326/ad0dd9
10.1016/j.accre.2022.11.008
10.3390/rs14184432
10.1016/j.envpol.2022.120419
10.5194/essd-14-907-2022
10.1016/j.atmosenv.2023.119956
10.1016/j.atmosres.2020.105146
10.5194/acp-19-11031-2019
10.1016/j.rse.2021.112828
10.1109/ACCESS.2023.3266377
10.1016/j.jenvman.2023.118145
10.1016/j.atmosenv.2023.120216
10.1016/j.scs.2020.102329
10.1016/j.atmosenv.2022.119362
10.1139/er-2022-0125
10.1016/j.atmosenv.2013.07.012
10.1109/ACCESS.2024.3368034
10.1115/1.2128636
10.1016/j.atmosenv.2013.04.015
10.1016/j.scitotenv.2023.165061
10.3390/rs14205239
10.1016/j.jes.2020.06.031
10.1016/j.rse.2020.112136
10.1016/j.scitotenv.2024.170777
10.5194/acp-20-3273-2020
10.1016/j.buildenv.2023.110521
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.atmosenv.2024.120796
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
ExternalDocumentID 10_1016_j_atmosenv_2024_120796
S1352231024004710
GroupedDBID ---
--K
--M
-DZ
-~X
..I
.DC
.~1
0R~
0SF
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABEFU
ABFNM
ABFYP
ABLJU
ABLST
ABMAC
ABQEM
ABQYD
ACDAQ
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TAE
~02
~G-
.HR
186
3O-
53G
9DU
AAFWJ
AAQXK
AATTM
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HMA
HMC
HVGLF
HZ~
LY3
LY9
R2-
SEP
T9H
VH1
WUQ
~HD
ID FETCH-LOGICAL-c312t-a75e0977c40a953225672c3e979c3b8fec2c7f23c0c97721f935b4cf8eceb1293
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001314145400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1352-2310
IngestDate Sat Nov 29 05:44:45 EST 2025
Tue Nov 18 22:39:58 EST 2025
Wed Dec 04 16:47:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Efficient attention
Full-coverage
AOD
Spatiotemporal model
PM2.5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-a75e0977c40a953225672c3e979c3b8fec2c7f23c0c97721f935b4cf8eceb1293
ORCID 0000-0001-6577-2376
ParticipantIDs crossref_primary_10_1016_j_atmosenv_2024_120796
crossref_citationtrail_10_1016_j_atmosenv_2024_120796
elsevier_sciencedirect_doi_10_1016_j_atmosenv_2024_120796
PublicationCentury 2000
PublicationDate 2024-12-01
2024-12-00
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Atmospheric environment (1994)
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – sequence: 0
  name: Elsevier Ltd
References Lin, Liang, Liu, Zhang, Xie, Yin, Ashraf (bib25) 2022; 14
Fournier, Caron, Aloise (bib13) 2023; 55
Chen, Huang, Xie, Liu, Hu (bib9) 2024; 912
Wang, Yao, Luo, Huang (bib41) 2022; 14
He, Ye, Wang, Luo, Song, Zhang (bib17) 2023; 342
Zeng, Wang, Zhu, Liu, Wang, Chen, Tao (bib55) 2024; 316
Chen, Yang, He, Yuan, Li, Zhu (bib5) 2023; 857
Gu, Chen, Wang, Gao, Wang, Liu (bib14) 2022; 13
Yu, Xi, Wu, Zheng (bib53) 2023; 15
Yu, Wong, Nazeer, Li, Kwok (bib52) 2024; 318
Yi, Mengfan, Kun, Yu, Xiaolu, Miao, Yan (bib50) 2019; 696
Pui, Chen, Zuo (bib33) 2014; 13
Wang, Wu, Wu (bib43) 2023; 9
Chen, Guo, Gu, Cheng, Yang, Zhan, Wei (bib8) 2023; 61
Chu, Zhang, Zhao, Li, Wu (bib11) 2022; 14
Sun, Fan, Zhang, Wang, Wang, Lyu, Zheng (bib39) 2022; 14
Chen, Gu, Guo, Cheng, Yang, Zhan, Fu (bib7) 2024; 914
Wei, Huang, Li, Xue, Peng, Sun, Cribb (bib44) 2019; 231
Patil, Boit, Gudivada, Nandigam (bib31) 2023; 11
Shen, Mingyuan, Haiyu, Shuai, Hongsheng (bib38) 2021
Sampson, Richards, Szpiro, Bergen, Sheppard, Larson, Kaufman (bib37) 2013; 75
Wang, Wu, Mao, Chen (bib42) 2024; 238
Qian, Ye, Jiang, Zhong, Zhang, Pinto, Huang, Li, Wei (bib35) 2024; 19
Byun, Schere (bib3) 2006; 59
Zhao, Zhang, Cheng, Fang, Wang, Zhou (bib62) 2023; 242
Zeng, Li, Tao, Fan, Chen, Wang, Wang (bib54) 2023; 309
Zhang, He, Zheng, Cui, Song, Fu (bib59) 2021; 268
Ding, Chen, Lu, Wang (bib12) 2021; 249
Li, Cheng (bib23) 2021; 101
Jiang, Chen, Nie, Ren, Xu, Tang (bib18) 2021; 248
Zeng, Wang, Tao, Fan, Zhu, Chen, Wang, Li (bib56) 2023; 896
Wei, Li, Cribb, Huang, Xue, Sun, Guo, Peng, Li, Lyapustin, Liu, Wu, Song (bib45) 2020; 20
Benas, Beloconi, Chrysoulakis (bib2) 2013; 79
Li (bib21) 2020; 12
Chu, Zhang, Liu, Ma, He (bib10) 2021; 99
Chen, Ye, Tong, Deng, Wang, Hong (bib6) 2022; 59
Ma, Zhang, Chen, Zhang, Liu (bib28) 2023; 15
Lei, Xu, Ma, Jin, Liu, Gong (bib20) 2022; 60
Liu, Zou, Li, Li, Li, Wu, Chen (bib26) 2023; 61
Yang, Meng, Wang (bib48) 2020; 8
Cai, Zhong, Liu, Du, Liu, Wu, Li, Yang, Wu, Gu, Jiang (bib4) 2023; 60
Miao, Tang, Ren, Kwan, Zhang (bib29) 2022; 290
Han, Zhao, Gao, Gu, Xin, Zhang (bib16) 2020; 61
Putri, Caraka, Toharudin, Kim, Chen, Gio, Sakti, Pontoh, Pratiwi, Nugraha, Azzahra, Cerelia, Darmawan, Faidah, Pardamean (bib34) 2024; 12
Zhu, Tang, Zhou, Li, Liu, Zhang, Zou, Li, Peng (bib63) 2023
Li, Zhao, Feng, Tian (bib22) 2024; 920
Xue, Zhang, Zhong, Li, Wei (bib47) 2021; 279
Wei, Li, Lyapustin, Sun, Peng, Xue, Su, Cribb (bib46) 2021; 252
Zhang, Chu, Wang, Zhang (bib61) 2018; 631–632
Liu, Cao, Zhao, Mulligan, Ye (bib27) 2018; 235
Nguyen, Le, Sung, Cheng, Wen, Wu, Aggarwal, Tsai (bib30) 2023; 343
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (bib40) 2017
Rodríguez-Urrego, Rodríguez-Urrego (bib36) 2020; 266
Yu, Masrur, Blaszczak-Boxe (bib51) 2023; 860
Bai, Li, Ma, Li, Li, Guo, Chang, Tan, Han (bib1) 2022; 14
Kumar, Kumar (bib19) 2024; 444
Guo, Wang, Pei, Su, Zhang, Wang (bib15) 2021; 751
Yang, Shi, Tang, Yang (bib49) 2022; 269
Zhai, Jacob, Wang, Shen, Li, Zhang, Gui, Zhao, Liao (bib57) 2019
Liang, Xia, Ke, Wang, Wen, Zhang, Zheng, Zimmermann (bib24) 2023; 37
Pu, Yoo (bib32) 2022; 315
Zhang, Zhang, Zhao, Lian (bib58) 2020; 124
Zhang, Zang, Wan, Wang, Zhang (bib60) 2019; 676
Jiang (10.1016/j.atmosenv.2024.120796_bib18) 2021; 248
Wang (10.1016/j.atmosenv.2024.120796_bib43) 2023; 9
Zhu (10.1016/j.atmosenv.2024.120796_bib63) 2023
Wei (10.1016/j.atmosenv.2024.120796_bib44) 2019; 231
Zhang (10.1016/j.atmosenv.2024.120796_bib58) 2020; 124
Ma (10.1016/j.atmosenv.2024.120796_bib28) 2023; 15
Yu (10.1016/j.atmosenv.2024.120796_bib51) 2023; 860
Chen (10.1016/j.atmosenv.2024.120796_bib8) 2023; 61
Ding (10.1016/j.atmosenv.2024.120796_bib12) 2021; 249
Zeng (10.1016/j.atmosenv.2024.120796_bib56) 2023; 896
Yang (10.1016/j.atmosenv.2024.120796_bib48) 2020; 8
Liu (10.1016/j.atmosenv.2024.120796_bib26) 2023; 61
Gu (10.1016/j.atmosenv.2024.120796_bib14) 2022; 13
Sun (10.1016/j.atmosenv.2024.120796_bib39) 2022; 14
Zhang (10.1016/j.atmosenv.2024.120796_bib61) 2018; 631–632
Fournier (10.1016/j.atmosenv.2024.120796_bib13) 2023; 55
Yu (10.1016/j.atmosenv.2024.120796_bib53) 2023; 15
Qian (10.1016/j.atmosenv.2024.120796_bib35) 2024; 19
Bai (10.1016/j.atmosenv.2024.120796_bib1) 2022; 14
Liang (10.1016/j.atmosenv.2024.120796_bib24) 2023; 37
Benas (10.1016/j.atmosenv.2024.120796_bib2) 2013; 79
Patil (10.1016/j.atmosenv.2024.120796_bib31) 2023; 11
Rodríguez-Urrego (10.1016/j.atmosenv.2024.120796_bib36) 2020; 266
Xue (10.1016/j.atmosenv.2024.120796_bib47) 2021; 279
Yang (10.1016/j.atmosenv.2024.120796_bib49) 2022; 269
Chen (10.1016/j.atmosenv.2024.120796_bib5) 2023; 857
Kumar (10.1016/j.atmosenv.2024.120796_bib19) 2024; 444
Shen (10.1016/j.atmosenv.2024.120796_bib38) 2021
Li (10.1016/j.atmosenv.2024.120796_bib23) 2021; 101
Chu (10.1016/j.atmosenv.2024.120796_bib10) 2021; 99
Wang (10.1016/j.atmosenv.2024.120796_bib42) 2024; 238
Wei (10.1016/j.atmosenv.2024.120796_bib45) 2020; 20
He (10.1016/j.atmosenv.2024.120796_bib17) 2023; 342
Pu (10.1016/j.atmosenv.2024.120796_bib32) 2022; 315
Lei (10.1016/j.atmosenv.2024.120796_bib20) 2022; 60
Lin (10.1016/j.atmosenv.2024.120796_bib25) 2022; 14
Yi (10.1016/j.atmosenv.2024.120796_bib50) 2019; 696
Liu (10.1016/j.atmosenv.2024.120796_bib27) 2018; 235
Guo (10.1016/j.atmosenv.2024.120796_bib15) 2021; 751
Sampson (10.1016/j.atmosenv.2024.120796_bib37) 2013; 75
Yu (10.1016/j.atmosenv.2024.120796_bib52) 2024; 318
Zhai (10.1016/j.atmosenv.2024.120796_bib57) 2019
Han (10.1016/j.atmosenv.2024.120796_bib16) 2020; 61
Pui (10.1016/j.atmosenv.2024.120796_bib33) 2014; 13
Zhao (10.1016/j.atmosenv.2024.120796_bib62) 2023; 242
Cai (10.1016/j.atmosenv.2024.120796_bib4) 2023; 60
Zhang (10.1016/j.atmosenv.2024.120796_bib60) 2019; 676
Chen (10.1016/j.atmosenv.2024.120796_bib6) 2022; 59
Chen (10.1016/j.atmosenv.2024.120796_bib9) 2024; 912
Li (10.1016/j.atmosenv.2024.120796_bib22) 2024; 920
Wei (10.1016/j.atmosenv.2024.120796_bib46) 2021; 252
Nguyen (10.1016/j.atmosenv.2024.120796_bib30) 2023; 343
Li (10.1016/j.atmosenv.2024.120796_bib21) 2020; 12
Wang (10.1016/j.atmosenv.2024.120796_bib41) 2022; 14
Chu (10.1016/j.atmosenv.2024.120796_bib11) 2022; 14
Byun (10.1016/j.atmosenv.2024.120796_bib3) 2006; 59
Miao (10.1016/j.atmosenv.2024.120796_bib29) 2022; 290
Vaswani (10.1016/j.atmosenv.2024.120796_bib40)
Zhang (10.1016/j.atmosenv.2024.120796_bib59) 2021; 268
Putri (10.1016/j.atmosenv.2024.120796_bib34) 2024; 12
Zeng (10.1016/j.atmosenv.2024.120796_bib54) 2023; 309
Zeng (10.1016/j.atmosenv.2024.120796_bib55) 2024; 316
Chen (10.1016/j.atmosenv.2024.120796_bib7) 2024; 914
References_xml – volume: 79
  start-page: 448
  year: 2013
  end-page: 454
  ident: bib2
  article-title: Estimation of urban PM10 concentration, based on MODIS and MERIS/AATSR synergistic observations
  publication-title: Atmos. Environ.
– volume: 914
  year: 2024
  ident: bib7
  article-title: Spatiotemporally continuous PM2.5 dataset in the Mekong River Basin from 2015 to 2022 using a stacking model
  publication-title: Sci. Total Environ.
– volume: 235
  start-page: 272
  year: 2018
  end-page: 282
  ident: bib27
  article-title: Improve ground-level PM2.5 concentration mapping using a random forests-based geostatistical approach
  publication-title: Environ. Pollut.
– volume: 342
  year: 2023
  ident: bib17
  article-title: Spatiotemporally continuous estimates of daily 1-km PM2.5 concentrations and their long-term exposure in China from 2000 to 2020
  publication-title: J. Environ. Manag.
– volume: 920
  year: 2024
  ident: bib22
  article-title: Development and application of a multi-task oriented deep learning model for quantifying drivers of air pollutant variations: a case study in Taiyuan
  publication-title: China. Sci. Total Environ.
– volume: 238
  year: 2024
  ident: bib42
  article-title: A forecasting framework on fusion of spatiotemporal features for multi-station PM2.5
  publication-title: Expert Syst. Appl.
– volume: 231
  year: 2019
  ident: bib44
  article-title: Estimating 1-km-resolution PM2.5 concentrations across China using the space-time random forest approach
  publication-title: Remote Sens. Environ.
– volume: 696
  year: 2019
  ident: bib50
  article-title: Research on PM2.5 estimation and prediction method and changing characteristics analysis under long temporal and large spatial scale - a case study in China typical regions
  publication-title: Sci. Total Environ.
– volume: 316
  year: 2024
  ident: bib55
  article-title: Estimating daily concentrations of near-surface CO, NO2, and O3 simultaneously over China based on spatiotemporal multi-task transformer model
  publication-title: Atmos. Environ.
– volume: 11
  start-page: 36120
  year: 2023
  end-page: 36146
  ident: bib31
  article-title: A survey of text representation and embedding techniques in NLP
  publication-title: IEEE Access
– volume: 676
  start-page: 535
  year: 2019
  end-page: 544
  ident: bib60
  article-title: Ground-level PM2.5 estimation over urban agglomerations in China with high spatiotemporal resolution based on Himawari-8
  publication-title: Sci. Total Environ.
– volume: 55
  start-page: 1
  year: 2023
  end-page: 40
  ident: bib13
  article-title: A practical survey on faster and lighter transformers
  publication-title: ACM Comput. Surv.
– volume: 59
  start-page: 51
  year: 2006
  end-page: 77
  ident: bib3
  article-title: Review of the governing equations, computational algorithms, and other components of the models-3 community multiscale air quality (CMAQ) modeling system
  publication-title: Appl. Mech. Rev.
– volume: 9
  year: 2023
  ident: bib43
  article-title: A spatiotemporal XGBoost model for PM2.5 concentration prediction and its application in Shanghai
  publication-title: Heliyon
– volume: 309
  year: 2023
  ident: bib54
  article-title: Full-coverage estimation of PM2.5 in the Beijing-Tianjin-Hebei region by using a two-stage model
  publication-title: Atmos. Environ.
– volume: 37
  start-page: 14329
  year: 2023
  end-page: 14337
  ident: bib24
  article-title: AirFormer: predicting nationwide air quality in China with transformers
  publication-title: Proc. AAAI Conf. Artif. Intell.
– volume: 14
  start-page: 5239
  year: 2022
  ident: bib25
  article-title: Estimating PM2.5 concentrations using the machine learning RF-XGBoost model in guanzhong urban agglomeration, China
  publication-title: Remote Sens.
– volume: 249
  year: 2021
  ident: bib12
  article-title: A CatBoost approach with wavelet decomposition to improve satellite-derived high-resolution PM2.5 estimates in Beijing-Tianjin-Hebei
  publication-title: Atmos. Environ.
– volume: 896
  year: 2023
  ident: bib56
  article-title: Estimation of ground-level O3 concentration in the Yangtze River Delta region based on a high-performance spatiotemporal model MixNet
  publication-title: Sci. Total Environ.
– volume: 59
  start-page: 670
  year: 2022
  end-page: 685
  ident: bib6
  article-title: A novel big data mining framework for reconstructing large-scale daily MAIAC AOD data across China from 2000 to 2020
  publication-title: GIScience Remote Sens.
– volume: 60
  start-page: 1
  year: 2022
  end-page: 14
  ident: bib20
  article-title: Full coverage estimation of the PM concentration across China based on an adaptive spatiotemporal approach
  publication-title: IEEE Trans. Geosci. Rem. Sens.
– year: 2017
  ident: bib40
  article-title: Attention is all you need
– volume: 75
  start-page: 383
  year: 2013
  end-page: 392
  ident: bib37
  article-title: A regionalized national universal kriging model using Partial Least Squares regression for estimating annual PM2.5 concentrations in epidemiology
  publication-title: Atmos. Environ.
– volume: 269
  year: 2022
  ident: bib49
  article-title: Geographical and temporal encoding for improving the estimation of PM2.5 concentrations in China using end-to-end gradient boosting
  publication-title: Remote Sens. Environ.
– volume: 857
  year: 2023
  ident: bib5
  article-title: High spatiotemporal resolution estimation of AOD from Himawari-8 using an ensemble machine learning gap-filling method
  publication-title: Sci. Total Environ.
– volume: 61
  start-page: 1
  year: 2023
  end-page: 17
  ident: bib26
  article-title: An efficient and accurate model coupled with spatiotemporal kalman filter and linear mixed effect for hourly PM
  publication-title: IEEE Trans. Geosci. Rem. Sens.
– volume: 14
  start-page: 907
  year: 2022
  end-page: 927
  ident: bib1
  article-title: LGHAP: the Long-term Gap-free High-resolution Air Pollutant concentration dataset, derived via tensor-flow-based multimodal data fusion
  publication-title: Earth Syst. Sci. Data
– volume: 12
  start-page: 28988
  year: 2024
  end-page: 29003
  ident: bib34
  article-title: Fine-tuning of predictive models CNN-LSTM and CONV-LSTM for nowcasting PM
  publication-title: IEEE Access
– volume: 99
  start-page: 346
  year: 2021
  end-page: 353
  ident: bib10
  article-title: Significant concurrent decrease in PM2.5 and NO2 concentrations in China during COVID-19 epidemic
  publication-title: J. Environ. Sci.
– volume: 20
  start-page: 3273
  year: 2020
  end-page: 3289
  ident: bib45
  article-title: Improved 1 km resolution PM2.5 estimates across China using enhanced space–time extremely randomized trees
  publication-title: Atmos. Chem. Phys.
– volume: 101
  year: 2021
  ident: bib23
  article-title: Estimating daily full-coverage surface ozone concentration using satellite observations and a spatiotemporally embedded deep learning approach
  publication-title: Int. J. Appl. Earth Obs. Geoinformation
– volume: 912
  year: 2024
  ident: bib9
  article-title: Improved prediction of hourly PM2.5 concentrations with a long short-term memory and spatio-temporal causal convolutional network deep learning model
  publication-title: Sci. Total Environ.
– volume: 279
  year: 2021
  ident: bib47
  article-title: Spatiotemporal PM2.5 variations and its response to the industrial structure from 2000 to 2018 in the Beijing-Tianjin-Hebei region
  publication-title: J. Clean. Prod.
– year: 2019
  ident: bib57
  article-title: Fine particulate matter (PM2.5) trends in China, 2013–2018: separating contributions from anthropogenic emissions and meteorology
  publication-title: Atmos. Chem. Phys.
– volume: 124
  year: 2020
  ident: bib58
  article-title: Constructing a PM2.5 concentration prediction model by combining auto-encoder with Bi-LSTM neural networks
  publication-title: Environ. Model. Software
– volume: 444
  year: 2024
  ident: bib19
  article-title: Multi-view Stacked CNN-BiLSTM (MvS CNN-BiLSTM) for urban P M 2 . 5 concentration prediction of India's polluted cities
  publication-title: J. Clean. Prod.
– volume: 19
  year: 2024
  ident: bib35
  article-title: Rapid attribution of the record-breaking heatwave event in North China in June 2023 and future risks
  publication-title: Environ. Res. Lett.
– volume: 252
  year: 2021
  ident: bib46
  article-title: Reconstructing 1-km-resolution high-quality PM2.5 data records from 2000 to 2018 in China: spatiotemporal variations and policy implications
  publication-title: Remote Sens. Environ.
– volume: 15
  start-page: 4104
  year: 2023
  ident: bib53
  article-title: Spatiotemporal weighted for improving the satellite-based high-resolution ground PM2.5 estimation using the Light gradient boosting machine
  publication-title: Rem. Sens.
– volume: 15
  start-page: 4271
  year: 2023
  ident: bib28
  article-title: High spatial resolution nighttime PM2.5 datasets in the Beijing–Tianjin–Hebei region from 2015 to 2021 using VIIRS/DNB and deep learning model
  publication-title: Rem. Sens.
– volume: 266
  year: 2020
  ident: bib36
  article-title: Air quality during the COVID-19: PM2.5 analysis in the 50 most polluted capital cities in the world
  publication-title: Environ. Pollut.
– volume: 242
  year: 2023
  ident: bib62
  article-title: Investigate the effects of urban land use on PM2.5 concentration: an application of deep learning simulation
  publication-title: Build. Environ.
– volume: 248
  year: 2021
  ident: bib18
  article-title: Estimation of hourly full-coverage PM2.5 concentrations at 1-km resolution in China using a two-stage random forest model
  publication-title: Atmos. Res.
– volume: 14
  start-page: 4432
  year: 2022
  ident: bib11
  article-title: Spatiotemporally continuous reconstruction of retrieved PM2.5 data using an autogeoi-stacking model in the beijing-tianjin-hebei region, China
  publication-title: Rem. Sens.
– volume: 318
  year: 2024
  ident: bib52
  article-title: A novel algorithm for full-coverage daily aerosol optical depth retrievals using machine learning-based reconstruction technique
  publication-title: Atmos. Environ.
– volume: 860
  year: 2023
  ident: bib51
  article-title: Predicting hourly PM2.5 concentrations in wildfire-prone areas using a SpatioTemporal Transformer model
  publication-title: Sci. Total Environ.
– volume: 61
  start-page: 1
  year: 2023
  end-page: 15
  ident: bib8
  article-title: A spatial neighborhood deep neural network model for PM
  publication-title: IEEE Trans. Geosci. Rem. Sens.
– volume: 14
  start-page: 5967
  year: 2022
  ident: bib39
  article-title: Tempo-spatial distributions and transport characteristics of two dust events over northern China in March 2021
  publication-title: Rem. Sens.
– volume: 631–632
  start-page: 904
  year: 2018
  end-page: 911
  ident: bib61
  article-title: Predicting daily PM2.5 concentrations in Texas using high-resolution satellite aerosol optical depth
  publication-title: Sci. Total Environ.
– volume: 290
  year: 2022
  ident: bib29
  article-title: Estimation of daily ground-level PM2.5 concentrations over the Pearl River Delta using 1 km resolution MODIS AOD based on multi-feature BiLSTM
  publication-title: Atmos. Environ.
– volume: 13
  start-page: 835
  year: 2022
  end-page: 842
  ident: bib14
  article-title: Extreme precipitation over northern China in autumn 2021 and joint contributions of tropical and mid-latitude factors
  publication-title: Adv. Clim. Change Res.
– volume: 61
  year: 2020
  ident: bib16
  article-title: Spatial distribution characteristics of PM2.5 and PM10 in Xi’an City predicted by land use regression models
  publication-title: Sustain. Cities Soc.
– volume: 14
  start-page: 1515
  year: 2022
  ident: bib41
  article-title: Estimating high-resolution PM2.5 concentrations by fusing satellite AOD and smartphone photographs using a convolutional neural network and ensemble learning
  publication-title: Rem. Sens.
– volume: 13
  start-page: 1
  year: 2014
  end-page: 26
  ident: bib33
  article-title: PM 2.5 in China: measurements, sources, visibility and health effects, and mitigation
  publication-title: Particuology
– volume: 12
  start-page: 264
  year: 2020
  ident: bib21
  article-title: A robust deep learning approach for spatiotemporal estimation of satellite AOD and PM2.5
  publication-title: Rem. Sens.
– start-page: 3530
  year: 2021
  end-page: 3538
  ident: bib38
  article-title: Efficient attention: attention with linear complexities
  publication-title: 2021 IEEE Winter Conference on Applications of Computer Vision (WACV). Presented at the 2021 IEEE Winter Conference on Applications of Computer Vision (WACV)
– volume: 343
  year: 2023
  ident: bib30
  article-title: The influence of COVID-19 pandemic on PM2.5 air quality in Northern Taiwan from Q1 2020 to Q2 2021
  publication-title: J. Environ. Manag.
– volume: 60
  year: 2023
  ident: bib4
  article-title: An improved deep learning network for AOD retrieving from remote sensing imagery focusing on sub-pixel cloud
  publication-title: GIScience Remote Sens.
– year: 2023
  ident: bib63
  article-title: Research progress, challenges, and prospects of PM
  publication-title: Environ. Rev.
– volume: 8
  start-page: 18305
  year: 2020
  end-page: 18315
  ident: bib48
  article-title: Data-driven feature extraction for analog circuit fault diagnosis using 1-D convolutional neural network
  publication-title: IEEE Access
– volume: 268
  year: 2021
  ident: bib59
  article-title: Satellite-based ground PM2.5 estimation using a gradient boosting decision tree
  publication-title: Chemosphere
– volume: 751
  year: 2021
  ident: bib15
  article-title: Identifying the spatiotemporal dynamic of PM2.5 concentrations at multiple scales using geographically and temporally weighted regression model across China during 2015–2018
  publication-title: Sci. Total Environ.
– volume: 315
  year: 2022
  ident: bib32
  article-title: A gap-filling hybrid approach for hourly PM2.5 prediction at high spatial resolution from multi-sourced AOD data
  publication-title: Environ. Pollut.
– volume: 61
  start-page: 1
  year: 2023
  ident: 10.1016/j.atmosenv.2024.120796_bib26
  article-title: An efficient and accurate model coupled with spatiotemporal kalman filter and linear mixed effect for hourly PM 2.5 mapping
  publication-title: IEEE Trans. Geosci. Rem. Sens.
  doi: 10.1109/TGRS.2023.3334492
– volume: 235
  start-page: 272
  year: 2018
  ident: 10.1016/j.atmosenv.2024.120796_bib27
  article-title: Improve ground-level PM2.5 concentration mapping using a random forests-based geostatistical approach
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.12.070
– ident: 10.1016/j.atmosenv.2024.120796_bib40
– volume: 444
  year: 2024
  ident: 10.1016/j.atmosenv.2024.120796_bib19
  article-title: Multi-view Stacked CNN-BiLSTM (MvS CNN-BiLSTM) for urban P M 2 . 5 concentration prediction of India's polluted cities
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2024.141259
– volume: 268
  year: 2021
  ident: 10.1016/j.atmosenv.2024.120796_bib59
  article-title: Satellite-based ground PM2.5 estimation using a gradient boosting decision tree
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.128801
– volume: 857
  year: 2023
  ident: 10.1016/j.atmosenv.2024.120796_bib5
  article-title: High spatiotemporal resolution estimation of AOD from Himawari-8 using an ensemble machine learning gap-filling method
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.159673
– volume: 124
  year: 2020
  ident: 10.1016/j.atmosenv.2024.120796_bib58
  article-title: Constructing a PM2.5 concentration prediction model by combining auto-encoder with Bi-LSTM neural networks
  publication-title: Environ. Model. Software
  doi: 10.1016/j.envsoft.2019.104600
– volume: 59
  start-page: 670
  year: 2022
  ident: 10.1016/j.atmosenv.2024.120796_bib6
  article-title: A novel big data mining framework for reconstructing large-scale daily MAIAC AOD data across China from 2000 to 2020
  publication-title: GIScience Remote Sens.
  doi: 10.1080/15481603.2022.2051382
– volume: 912
  year: 2024
  ident: 10.1016/j.atmosenv.2024.120796_bib9
  article-title: Improved prediction of hourly PM2.5 concentrations with a long short-term memory and spatio-temporal causal convolutional network deep learning model
  publication-title: Sci. Total Environ.
– volume: 8
  start-page: 18305
  year: 2020
  ident: 10.1016/j.atmosenv.2024.120796_bib48
  article-title: Data-driven feature extraction for analog circuit fault diagnosis using 1-D convolutional neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2968744
– volume: 13
  start-page: 1
  year: 2014
  ident: 10.1016/j.atmosenv.2024.120796_bib33
  article-title: PM 2.5 in China: measurements, sources, visibility and health effects, and mitigation
  publication-title: Particuology
  doi: 10.1016/j.partic.2013.11.001
– volume: 343
  year: 2023
  ident: 10.1016/j.atmosenv.2024.120796_bib30
  article-title: The influence of COVID-19 pandemic on PM2.5 air quality in Northern Taiwan from Q1 2020 to Q2 2021
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2023.118252
– volume: 279
  year: 2021
  ident: 10.1016/j.atmosenv.2024.120796_bib47
  article-title: Spatiotemporal PM2.5 variations and its response to the industrial structure from 2000 to 2018 in the Beijing-Tianjin-Hebei region
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.123742
– volume: 860
  year: 2023
  ident: 10.1016/j.atmosenv.2024.120796_bib51
  article-title: Predicting hourly PM2.5 concentrations in wildfire-prone areas using a SpatioTemporal Transformer model
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.160446
– volume: 15
  start-page: 4104
  year: 2023
  ident: 10.1016/j.atmosenv.2024.120796_bib53
  article-title: Spatiotemporal weighted for improving the satellite-based high-resolution ground PM2.5 estimation using the Light gradient boosting machine
  publication-title: Rem. Sens.
  doi: 10.3390/rs15164104
– volume: 60
  year: 2023
  ident: 10.1016/j.atmosenv.2024.120796_bib4
  article-title: An improved deep learning network for AOD retrieving from remote sensing imagery focusing on sub-pixel cloud
  publication-title: GIScience Remote Sens.
  doi: 10.1080/15481603.2023.2262836
– start-page: 3530
  year: 2021
  ident: 10.1016/j.atmosenv.2024.120796_bib38
  article-title: Efficient attention: attention with linear complexities
– volume: 696
  year: 2019
  ident: 10.1016/j.atmosenv.2024.120796_bib50
  article-title: Research on PM2.5 estimation and prediction method and changing characteristics analysis under long temporal and large spatial scale - a case study in China typical regions
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.133983
– volume: 55
  start-page: 1
  year: 2023
  ident: 10.1016/j.atmosenv.2024.120796_bib13
  article-title: A practical survey on faster and lighter transformers
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3586074
– volume: 316
  year: 2024
  ident: 10.1016/j.atmosenv.2024.120796_bib55
  article-title: Estimating daily concentrations of near-surface CO, NO2, and O3 simultaneously over China based on spatiotemporal multi-task transformer model
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2023.120193
– volume: 37
  start-page: 14329
  year: 2023
  ident: 10.1016/j.atmosenv.2024.120796_bib24
  article-title: AirFormer: predicting nationwide air quality in China with transformers
  publication-title: Proc. AAAI Conf. Artif. Intell.
– volume: 676
  start-page: 535
  year: 2019
  ident: 10.1016/j.atmosenv.2024.120796_bib60
  article-title: Ground-level PM2.5 estimation over urban agglomerations in China with high spatiotemporal resolution based on Himawari-8
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.04.299
– volume: 631–632
  start-page: 904
  year: 2018
  ident: 10.1016/j.atmosenv.2024.120796_bib61
  article-title: Predicting daily PM2.5 concentrations in Texas using high-resolution satellite aerosol optical depth
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.02.255
– volume: 914
  year: 2024
  ident: 10.1016/j.atmosenv.2024.120796_bib7
  article-title: Spatiotemporally continuous PM2.5 dataset in the Mekong River Basin from 2015 to 2022 using a stacking model
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2023.169801
– volume: 9
  year: 2023
  ident: 10.1016/j.atmosenv.2024.120796_bib43
  article-title: A spatiotemporal XGBoost model for PM2.5 concentration prediction and its application in Shanghai
  publication-title: Heliyon
– volume: 14
  start-page: 1515
  year: 2022
  ident: 10.1016/j.atmosenv.2024.120796_bib41
  article-title: Estimating high-resolution PM2.5 concentrations by fusing satellite AOD and smartphone photographs using a convolutional neural network and ensemble learning
  publication-title: Rem. Sens.
  doi: 10.3390/rs14061515
– volume: 751
  year: 2021
  ident: 10.1016/j.atmosenv.2024.120796_bib15
  article-title: Identifying the spatiotemporal dynamic of PM2.5 concentrations at multiple scales using geographically and temporally weighted regression model across China during 2015–2018
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.141765
– volume: 249
  year: 2021
  ident: 10.1016/j.atmosenv.2024.120796_bib12
  article-title: A CatBoost approach with wavelet decomposition to improve satellite-derived high-resolution PM2.5 estimates in Beijing-Tianjin-Hebei
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2021.118212
– volume: 231
  year: 2019
  ident: 10.1016/j.atmosenv.2024.120796_bib44
  article-title: Estimating 1-km-resolution PM2.5 concentrations across China using the space-time random forest approach
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111221
– volume: 15
  start-page: 4271
  year: 2023
  ident: 10.1016/j.atmosenv.2024.120796_bib28
  article-title: High spatial resolution nighttime PM2.5 datasets in the Beijing–Tianjin–Hebei region from 2015 to 2021 using VIIRS/DNB and deep learning model
  publication-title: Rem. Sens.
  doi: 10.3390/rs15174271
– volume: 14
  start-page: 5967
  year: 2022
  ident: 10.1016/j.atmosenv.2024.120796_bib39
  article-title: Tempo-spatial distributions and transport characteristics of two dust events over northern China in March 2021
  publication-title: Rem. Sens.
  doi: 10.3390/rs14235967
– volume: 238
  year: 2024
  ident: 10.1016/j.atmosenv.2024.120796_bib42
  article-title: A forecasting framework on fusion of spatiotemporal features for multi-station PM2.5
  publication-title: Expert Syst. Appl.
– volume: 12
  start-page: 264
  year: 2020
  ident: 10.1016/j.atmosenv.2024.120796_bib21
  article-title: A robust deep learning approach for spatiotemporal estimation of satellite AOD and PM2.5
  publication-title: Rem. Sens.
  doi: 10.3390/rs12020264
– volume: 61
  start-page: 1
  year: 2023
  ident: 10.1016/j.atmosenv.2024.120796_bib8
  article-title: A spatial neighborhood deep neural network model for PM 2.5 estimation across China
  publication-title: IEEE Trans. Geosci. Rem. Sens.
– volume: 60
  start-page: 1
  year: 2022
  ident: 10.1016/j.atmosenv.2024.120796_bib20
  article-title: Full coverage estimation of the PM concentration across China based on an adaptive spatiotemporal approach
  publication-title: IEEE Trans. Geosci. Rem. Sens.
– volume: 266
  year: 2020
  ident: 10.1016/j.atmosenv.2024.120796_bib36
  article-title: Air quality during the COVID-19: PM2.5 analysis in the 50 most polluted capital cities in the world
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2020.115042
– volume: 19
  year: 2024
  ident: 10.1016/j.atmosenv.2024.120796_bib35
  article-title: Rapid attribution of the record-breaking heatwave event in North China in June 2023 and future risks
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ad0dd9
– volume: 13
  start-page: 835
  year: 2022
  ident: 10.1016/j.atmosenv.2024.120796_bib14
  article-title: Extreme precipitation over northern China in autumn 2021 and joint contributions of tropical and mid-latitude factors
  publication-title: Adv. Clim. Change Res.
  doi: 10.1016/j.accre.2022.11.008
– volume: 14
  start-page: 4432
  year: 2022
  ident: 10.1016/j.atmosenv.2024.120796_bib11
  article-title: Spatiotemporally continuous reconstruction of retrieved PM2.5 data using an autogeoi-stacking model in the beijing-tianjin-hebei region, China
  publication-title: Rem. Sens.
  doi: 10.3390/rs14184432
– volume: 315
  year: 2022
  ident: 10.1016/j.atmosenv.2024.120796_bib32
  article-title: A gap-filling hybrid approach for hourly PM2.5 prediction at high spatial resolution from multi-sourced AOD data
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2022.120419
– volume: 14
  start-page: 907
  year: 2022
  ident: 10.1016/j.atmosenv.2024.120796_bib1
  article-title: LGHAP: the Long-term Gap-free High-resolution Air Pollutant concentration dataset, derived via tensor-flow-based multimodal data fusion
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-14-907-2022
– volume: 309
  year: 2023
  ident: 10.1016/j.atmosenv.2024.120796_bib54
  article-title: Full-coverage estimation of PM2.5 in the Beijing-Tianjin-Hebei region by using a two-stage model
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2023.119956
– volume: 248
  year: 2021
  ident: 10.1016/j.atmosenv.2024.120796_bib18
  article-title: Estimation of hourly full-coverage PM2.5 concentrations at 1-km resolution in China using a two-stage random forest model
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2020.105146
– year: 2019
  ident: 10.1016/j.atmosenv.2024.120796_bib57
  article-title: Fine particulate matter (PM2.5) trends in China, 2013–2018: separating contributions from anthropogenic emissions and meteorology
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-19-11031-2019
– volume: 269
  year: 2022
  ident: 10.1016/j.atmosenv.2024.120796_bib49
  article-title: Geographical and temporal encoding for improving the estimation of PM2.5 concentrations in China using end-to-end gradient boosting
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112828
– volume: 11
  start-page: 36120
  year: 2023
  ident: 10.1016/j.atmosenv.2024.120796_bib31
  article-title: A survey of text representation and embedding techniques in NLP
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3266377
– volume: 342
  year: 2023
  ident: 10.1016/j.atmosenv.2024.120796_bib17
  article-title: Spatiotemporally continuous estimates of daily 1-km PM2.5 concentrations and their long-term exposure in China from 2000 to 2020
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2023.118145
– volume: 318
  year: 2024
  ident: 10.1016/j.atmosenv.2024.120796_bib52
  article-title: A novel algorithm for full-coverage daily aerosol optical depth retrievals using machine learning-based reconstruction technique
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2023.120216
– volume: 61
  year: 2020
  ident: 10.1016/j.atmosenv.2024.120796_bib16
  article-title: Spatial distribution characteristics of PM2.5 and PM10 in Xi’an City predicted by land use regression models
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2020.102329
– volume: 290
  year: 2022
  ident: 10.1016/j.atmosenv.2024.120796_bib29
  article-title: Estimation of daily ground-level PM2.5 concentrations over the Pearl River Delta using 1 km resolution MODIS AOD based on multi-feature BiLSTM
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2022.119362
– year: 2023
  ident: 10.1016/j.atmosenv.2024.120796_bib63
  article-title: Research progress, challenges, and prospects of PM 2.5 concentration estimation using satellite data
  publication-title: Environ. Rev.
  doi: 10.1139/er-2022-0125
– volume: 79
  start-page: 448
  year: 2013
  ident: 10.1016/j.atmosenv.2024.120796_bib2
  article-title: Estimation of urban PM10 concentration, based on MODIS and MERIS/AATSR synergistic observations
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2013.07.012
– volume: 12
  start-page: 28988
  year: 2024
  ident: 10.1016/j.atmosenv.2024.120796_bib34
  article-title: Fine-tuning of predictive models CNN-LSTM and CONV-LSTM for nowcasting PM 2.5 level
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3368034
– volume: 59
  start-page: 51
  year: 2006
  ident: 10.1016/j.atmosenv.2024.120796_bib3
  article-title: Review of the governing equations, computational algorithms, and other components of the models-3 community multiscale air quality (CMAQ) modeling system
  publication-title: Appl. Mech. Rev.
  doi: 10.1115/1.2128636
– volume: 75
  start-page: 383
  year: 2013
  ident: 10.1016/j.atmosenv.2024.120796_bib37
  article-title: A regionalized national universal kriging model using Partial Least Squares regression for estimating annual PM2.5 concentrations in epidemiology
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2013.04.015
– volume: 101
  year: 2021
  ident: 10.1016/j.atmosenv.2024.120796_bib23
  article-title: Estimating daily full-coverage surface ozone concentration using satellite observations and a spatiotemporally embedded deep learning approach
  publication-title: Int. J. Appl. Earth Obs. Geoinformation
– volume: 896
  year: 2023
  ident: 10.1016/j.atmosenv.2024.120796_bib56
  article-title: Estimation of ground-level O3 concentration in the Yangtze River Delta region based on a high-performance spatiotemporal model MixNet
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2023.165061
– volume: 14
  start-page: 5239
  year: 2022
  ident: 10.1016/j.atmosenv.2024.120796_bib25
  article-title: Estimating PM2.5 concentrations using the machine learning RF-XGBoost model in guanzhong urban agglomeration, China
  publication-title: Remote Sens.
  doi: 10.3390/rs14205239
– volume: 99
  start-page: 346
  year: 2021
  ident: 10.1016/j.atmosenv.2024.120796_bib10
  article-title: Significant concurrent decrease in PM2.5 and NO2 concentrations in China during COVID-19 epidemic
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2020.06.031
– volume: 252
  year: 2021
  ident: 10.1016/j.atmosenv.2024.120796_bib46
  article-title: Reconstructing 1-km-resolution high-quality PM2.5 data records from 2000 to 2018 in China: spatiotemporal variations and policy implications
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112136
– volume: 920
  year: 2024
  ident: 10.1016/j.atmosenv.2024.120796_bib22
  article-title: Development and application of a multi-task oriented deep learning model for quantifying drivers of air pollutant variations: a case study in Taiyuan
  publication-title: China. Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2024.170777
– volume: 20
  start-page: 3273
  year: 2020
  ident: 10.1016/j.atmosenv.2024.120796_bib45
  article-title: Improved 1 km resolution PM2.5 estimates across China using enhanced space–time extremely randomized trees
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-20-3273-2020
– volume: 242
  year: 2023
  ident: 10.1016/j.atmosenv.2024.120796_bib62
  article-title: Investigate the effects of urban land use on PM2.5 concentration: an application of deep learning simulation
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2023.110521
SSID ssj0003797
Score 2.4845574
Snippet With the development of industry, the issue of air pollution is of great concern. Due to the sparsity of monitoring stations, acquiring full-coverage PM2.5...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 120796
SubjectTerms AOD
Efficient attention
Full-coverage
PM2.5
Spatiotemporal model
Title Estimating 1-km PM2.5 concentrations based on a novel spatiotemporal parallel network STMSPNet in the Beijing-Tianjin-Hebei region
URI https://dx.doi.org/10.1016/j.atmosenv.2024.120796
Volume 338
WOSCitedRecordID wos001314145400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1352-2310
  databaseCode: AIEXJ
  dateStart: 20161201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0003797
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Bb9MwFLZKxwEOEwwmxgD5wC1ySZ14iY8DFQ2kVUUrUsUlcl17S5e505pVE0eO_GqeYyfNRqWBEJcosmI78ffF78X5_B5Cb5kCqzJjnGg6FSSOtF1okoykUy4OZkyESrhkE8lwmE4mfNTp_Kz3wqyKxJj05oZf_leooQzAtltn_wLuplEogHMAHY4AOxz_CPgBvLTWDTWnQZ-cXwSjY9pjVl3udJhO-WaN18z-KBCBWaxUESwrZbUPVFUENiJ4UUC5cTJx8ByPT0ZDVda6yPcqn0MXZAz0ghNyBDDlgU3z4HGuI9uWF4ulDV2Qy_amuio-FOdxayHim3LTzpdc2ERCjVIod-p-c_r9THkzWwWPdCLkVtFYuL9IuTm7Fu3VDBrfUYY022zWmiY7K4OXSKwj2p62IxcV5jcT4FYj5jDo8HzwYD3bTa9Pw4TfibldWfET27ht24ppwVKHD9AWTRhPu2jr8NNg8rmx61HiUvXUN9Pab765t82uTst9GT9B2_67Ax86vjxFHWV20ONWNModtDtY4wOX-ll_-Qz9WFMKW0rhilL4NqVwRSm8MFjgilL4NqVwTSnsKYVrSuHcYKAU3kgp7Cj1HH39OBh_OCI-dweRUZ-WRCRMhfBtIeNQcGatxkFCZaR4wmU0TbWSVCaaRjKUcBXtax6xaSx1qiR4D-CD7qKuWRj1AmE90yyVPAwlDG0cpkJorpRkWsczpSO6h1g9zJn0ge1tfpUiqxWM86yGJ7PwZA6ePfSuqXfpQrvcW4PXKGbeQXWOZwbku6fuy3-ou48erd-VV6hbXl2r1-ihXJX58uqN5-kvYYq8jw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+1-km+PM2.5+concentrations+based+on+a+novel+spatiotemporal+parallel+network+STMSPNet+in+the+Beijing-Tianjin-Hebei+region&rft.jtitle=Atmospheric+environment+%281994%29&rft.au=Zeng%2C+Qiaolin&rft.au=Li%2C+Mingzheng&rft.au=Fan%2C+Meng&rft.au=Tao%2C+Jinhua&rft.date=2024-12-01&rft.pub=Elsevier+Ltd&rft.issn=1352-2310&rft.volume=338&rft_id=info:doi/10.1016%2Fj.atmosenv.2024.120796&rft.externalDocID=S1352231024004710
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1352-2310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1352-2310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1352-2310&client=summon