Study on docking guidance algorithm for hybrid underwater glider in currents

The development of a novel type of hybrid underwater glider (HUG) that combines the advantages of buoyancy-driven underwater glider and propeller-driven autonomous underwater vehicle (AUV) has recently received considerable interest. HUG is designed with a rotatable thruster to ensure the enough man...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ocean engineering Jg. 125; S. 170 - 181
Hauptverfasser: Yang, Canjun, Peng, Shilin, Fan, Shuangshuang, Zhang, Shaoyong, Wang, Pinfu, Chen, Ying
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.10.2016
Schlagworte:
ISSN:0029-8018, 1873-5258
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The development of a novel type of hybrid underwater glider (HUG) that combines the advantages of buoyancy-driven underwater glider and propeller-driven autonomous underwater vehicle (AUV) has recently received considerable interest. HUG is designed with a rotatable thruster to ensure the enough maneuverability of the vehicle for underwater docking. Unlike the fixed funnel-type dock, the dock proposed here can rotate actively to allow the vehicle to approach the docking station from most range of directions providing better accessibility for the vehicle. Considering that the ocean current may have a significant impact on the HUG, a pursuit guidance algorithm with current compensation is presented. The performance of the guidance algorithm is compared with other existing guidance algorithms, such as pure pursuit guidance and proportional navigation guidance by simulation based on the dynamic model of HUG. Moreover, underwater docking experiments are conducted to validate the feasibility of the docking system and the effectiveness of the proposed guidance algorithm. The experimental results indicate that the proposed algorithm compensates well for the current disturbances on HUG docking mission and the HUG can dock with the rotatable dock entrance successfully. •A docking scheme consists of a hybrid underwater glider with a rotatable thruster for high maneuverability and a rotatable dock station providing better accessibility.•The docking control problem for underwater vehicle is described mathematically.•A pursuit guidance algorithm with current compensation is presented, which takes both the view range of the sensors and the ocean current disturbances into account.
AbstractList The development of a novel type of hybrid underwater glider (HUG) that combines the advantages of buoyancy-driven underwater glider and propeller-driven autonomous underwater vehicle (AUV) has recently received considerable interest. HUG is designed with a rotatable thruster to ensure the enough maneuverability of the vehicle for underwater docking. Unlike the fixed funnel-type dock, the dock proposed here can rotate actively to allow the vehicle to approach the docking station from most range of directions providing better accessibility for the vehicle. Considering that the ocean current may have a significant impact on the HUG, a pursuit guidance algorithm with current compensation is presented. The performance of the guidance algorithm is compared with other existing guidance algorithms, such as pure pursuit guidance and proportional navigation guidance by simulation based on the dynamic model of HUG. Moreover, underwater docking experiments are conducted to validate the feasibility of the docking system and the effectiveness of the proposed guidance algorithm. The experimental results indicate that the proposed algorithm compensates well for the current disturbances on HUG docking mission and the HUG can dock with the rotatable dock entrance successfully. •A docking scheme consists of a hybrid underwater glider with a rotatable thruster for high maneuverability and a rotatable dock station providing better accessibility.•The docking control problem for underwater vehicle is described mathematically.•A pursuit guidance algorithm with current compensation is presented, which takes both the view range of the sensors and the ocean current disturbances into account.
Author Peng, Shilin
Yang, Canjun
Fan, Shuangshuang
Wang, Pinfu
Chen, Ying
Zhang, Shaoyong
Author_xml – sequence: 1
  givenname: Canjun
  surname: Yang
  fullname: Yang, Canjun
  organization: The State Key Lab of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China
– sequence: 2
  givenname: Shilin
  surname: Peng
  fullname: Peng, Shilin
  organization: Institute of Electronics Information, Hangzhou Dianzi University, Hangzhou 310018, China
– sequence: 3
  givenname: Shuangshuang
  surname: Fan
  fullname: Fan, Shuangshuang
  email: ssfan@zju.edu.cn, fanshuangshuang@163.com
  organization: College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
– sequence: 4
  givenname: Shaoyong
  surname: Zhang
  fullname: Zhang, Shaoyong
  organization: The State Key Lab of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China
– sequence: 5
  givenname: Pinfu
  surname: Wang
  fullname: Wang, Pinfu
  organization: The State Key Lab of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China
– sequence: 6
  givenname: Ying
  surname: Chen
  fullname: Chen, Ying
  organization: The State Key Lab of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China
BookMark eNqFkE1LAzEQhoNUsK3-Bckf2HWym41Z8KAUv6DgQT2HNB_b1G0i2azSf29K9eKlp5l3mGdgnhma-OANQpcESgKEXW3KoIz0xndllXMJvASoTtCU8Ou6aKqGT9A0T9qCA-FnaDYMGwBgDOopWr6mUe9w8FgH9eF8h7vRaemVwbLvQnRpvcU2RLzeraLTePTaxG-ZTMRd73KPncdqjNH4NJyjUyv7wVz81jl6f7h_WzwVy5fH58XdslA1qVIhGaMGakWkJC2lkLO2Ky5bLa1mtGVE2sZUvAaqrLWqIdBQQyWtNOyX6jm6OdxVMQxDNFYol2RywacoXS8IiL0ZsRF_ZsTejAAusoeMs3_4Z3RbGXfHwdsDaPJzX85EMShnsivtolFJ6OCOnfgB-o2GBg
CitedBy_id crossref_primary_10_1109_ACCESS_2021_3083883
crossref_primary_10_3390_jmse10111790
crossref_primary_10_3389_frobt_2021_621755
crossref_primary_10_1016_j_apor_2019_102027
crossref_primary_10_1049_iet_pel_2018_5663
crossref_primary_10_3390_jmse9080884
crossref_primary_10_1109_JOE_2018_2885200
crossref_primary_10_1016_j_oceaneng_2024_117166
crossref_primary_10_1016_j_matpr_2018_10_161
crossref_primary_10_1016_j_oceaneng_2018_06_007
crossref_primary_10_1155_2018_8474389
crossref_primary_10_1016_j_oceaneng_2021_108877
crossref_primary_10_1016_j_oceaneng_2024_119017
crossref_primary_10_1016_j_robot_2019_103382
crossref_primary_10_1016_j_oceaneng_2021_109546
crossref_primary_10_1016_j_oceaneng_2022_110766
crossref_primary_10_3390_sym11030397
crossref_primary_10_1016_j_oceaneng_2020_107342
crossref_primary_10_1109_JOE_2017_2769938
crossref_primary_10_1016_j_oceaneng_2024_116802
crossref_primary_10_1016_j_oceaneng_2019_04_069
crossref_primary_10_3390_s23010241
crossref_primary_10_1007_s00773_018_0577_8
crossref_primary_10_1016_j_oceaneng_2022_113436
crossref_primary_10_3390_jmse12091493
crossref_primary_10_1016_j_jfranklin_2018_11_042
crossref_primary_10_1016_j_oceaneng_2023_114243
crossref_primary_10_1016_j_oceaneng_2022_111250
crossref_primary_10_1016_j_oceaneng_2024_118150
crossref_primary_10_3390_robotics12010008
crossref_primary_10_3390_s19030682
crossref_primary_10_1016_j_oceaneng_2021_108744
crossref_primary_10_1109_TVT_2024_3411569
crossref_primary_10_1177_00202940221106568
crossref_primary_10_1007_s00773_018_0582_y
crossref_primary_10_3390_jmse10040531
crossref_primary_10_3390_robotics14010005
crossref_primary_10_1016_j_oceaneng_2022_112634
crossref_primary_10_1016_j_oceaneng_2024_119528
crossref_primary_10_1016_j_oceaneng_2022_110812
crossref_primary_10_3390_jmse9040406
Cites_doi 10.1109/IROS.2012.6385860
10.2514/3.6369
10.1109/TCST.2006.872525
10.2514/1.45779
10.1109/TMECH.2013.2279033
10.1017/S0001924000011258
10.1631/jzus.C1100381
10.1109/OCEANSSYD.2010.5603828
10.1109/JOE.2011.2180058
10.4031/MTSJ.45.4.2
10.1109/OCEANS-Yeosu.2012.6263403
10.1016/j.oceaneng.2014.02.002
10.1109/JOE.2008.2005348
10.1109/MRA.2010.935791
10.4031/MTSJ.46.3.4
10.1016/j.oceaneng.2008.08.014
10.4031/MTSJ.48.6.5
10.1109/CDC.2008.4739432
10.1109/ICMA.2013.6618141
10.1109/48.972084
10.1109/OCEANS.2006.306952
10.1109/CYBER.2015.7287904
10.1109/JOE.2014.2312593
10.1007/s13344-011-0008-7
10.1016/j.oceaneng.2014.03.024
10.1109/AUV.2012.6380742
10.2514/1.32836
10.1109/UT.2011.5774141
10.1016/j.oceaneng.2008.10.001
10.2514/1.5409
10.1109/Oceans-Spain.2011.6003574
10.1109/UT.2004.1405540
10.1007/s13344-013-0023-y
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.oceaneng.2016.08.002
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Oceanography
EISSN 1873-5258
EndPage 181
ExternalDocumentID 10_1016_j_oceaneng_2016_08_002
S0029801816303286
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KCYFY
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSJ
SST
SSZ
T5K
TAE
TN5
XPP
ZMT
~02
~G-
29N
6TJ
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACKIV
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SET
SEW
WUQ
~HD
ID FETCH-LOGICAL-c312t-a664e03c1aa19440a66dfb8a9dafd64961af5e28304cfffc51054e4a42d0a9da3
ISICitedReferencesCount 51
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000384860900018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-8018
IngestDate Sat Nov 29 07:51:15 EST 2025
Tue Nov 18 22:43:08 EST 2025
Fri Feb 23 02:26:17 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Docking
Hybrid underwater glider
Guidance algorithm
Current
Rotatable thruster
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-a664e03c1aa19440a66dfb8a9dafd64961af5e28304cfffc51054e4a42d0a9da3
PageCount 12
ParticipantIDs crossref_citationtrail_10_1016_j_oceaneng_2016_08_002
crossref_primary_10_1016_j_oceaneng_2016_08_002
elsevier_sciencedirect_doi_10_1016_j_oceaneng_2016_08_002
PublicationCentury 2000
PublicationDate 2016-10-01
2016-10-00
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Ocean engineering
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Claus, B., Bachmayer, R., Cooney, L., 2012. Analysis and development of a buoyancy-pitch based depth control algorithm for a hybrid underwater glider. In: Proceedings of the 2012 IEEE/OES Autonomous Underwater Vehicles (AUV). IEEE, Southampton, pp. 1–6.
Morel (bib25) 2002
Teo, An, Beaujean (bib37) 2012; 37
Wang, S.X., Sun, X.J., Wu, J.G., Wang, X.M., Zhang, H.W., 2010. Motion characteristic analysis of a hybrid-driven underwater glider. In: MTS/IEEE Oceans. IEEE, Sydney, Australia.
Teo, Goh, Chai (bib38) 2015; 40
Fossen (bib14) 1995
Thivierge, D.P., Dooley, R.E., Menozzi, A., Treaster, A.L., Beam, M.J., Fetterolf, T.K., Metrey, D.R., 2005. Articulation Mechanism and elastomeric Nozzle for Thrust-vectored Control of an Undersea Vehicle. US7465201 B1.
Park, J., Jun, B., Lee, P., Lim, Y., Oh, J., 2011a. Modified linear terminal guidance for docking and a time-varying ocean current observer. In: Proceedings of the 2011 IEEE Symposium on Underwater Technology (UT) and 2011 Workshop on Scientific Use of Submarine Cables and Related Technologies (SSC). IEEE, Tokyo, pp. 1–6.
Woolsey (bib45) 2011
Caffaz, Caiti, Casalino, Turetta (bib4) 2010; 17
Crosswind landing, 2009. Retrieved 2015-3-29 from
Park, Jun, Lee, Oh (bib28) 2009; 36
Hu, B., Tian, H., Qian, J., Xie, G., Mo, L., Zhang, S., 2013. A Fuzzy-PID method to improve the depth control of AUV. In: Proceedings of the 2013 IEEE International Conference on Mechatronics and Automation. IEEE, pp. 1528–1533.
McEwen, Hobson, McBride, Bellingham (bib24) 2008; 33
Fan, Woolsey (bib12) 2014; 84
Singh, Bellingham, Hover, Lemer, Moran, von der Heydt, Yoerger (bib34) 2001; 26
Watson, Green (bib43) 2014; 31
Li, B., Xu, Y., Liu, C., Fan, S., Xu, W., 2015. Terminal navigation and control for docking an underactuated autonomous underwater vehicle. In: Proceedings of the 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER). IEEE, Shenyang, pp. 25–30.
Chen, Yang, Li, Jin, Chen (bib5) 2012; 46
Wang (bib40) 2014
Cottrell (bib10) 1971; 9
Chen, Yang, Li, Jin, Chen (bib6) 2012; 13
Graver (bib15) 2005
Kim (bib20) 2007
Shi, J., Zhang, S., Yang, C., 2012. High frequency RF based non-contact underwater communication. In: MTS/IEEE Oceans. IEEE, Yeosu, Korea, pp. 1–6.
Jenkins, S.A., Humphreys, D.E., Sherman, J., Osse, J., Jones, C., Leonard, N.E., Wasyl, J. 2003. Underwater glider system study. In: Technical report No. 53, Scripps Institution of Oceanography, San Diego, CA.
Steinfeldt, Grant, Matz, Braun, Barton (bib35) 2010; 47
Feitian, Thon, Thon, Xiaobo (bib13) 2014; 19
Park, J., Jun, B., Lee, P., Lim, Y., Oh, J., 2011b. Docking problem and guidance laws considering drift for an underactuated AUV. In: MTS/IEEE Oceans. IEEE, Spain, pp. 1–7.
Shaferman, Shima (bib32) 2008; 31
Wang, Sun, Wang, Wu, Wang (bib41) 2011; 25
Chen, Yang, Li, Jin, Chen (bib7) 2013; 27
Woolsey (bib44) 2005; 28
Mahmoudian, N., Woolsey, C., 2008. Underwater glider motion control. In: Proceedings of the 47th IEEE Conference on Decision and Control. IEEE, Cancun, Mexico, pp. 552–557.
Peng, Yang, Fan, Zhang, Wang, Chen (bib29) 2014; 48
Claus, Bachmayer, Williams (bib9) 2010; 224
Xu, Liang (bib46) 2015; 119
.
Isa, Arshad, Ishak (bib18) 2014; 81
Zhang, F., Zhang, F., Tan, X., 2012. Steady spiraling Motion of gliding Robotic Fish. In: Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Vilamoura, Algarve, Portugal, pp. 1754–1759.
Bachmayer, R., Leonard, N.E., Graver, J., Fiorelli, E., Bhatta, P., Paley, D., 2004. Underwater gliders: Recent developments and future applications. In: Proceedings of the 4th International Symposium on Underwater Technology, IEEE, Taibei, pp. 195–200.
Ryoo, Cho, Tahk (bib31) 2006; 14
Tan (bib36) 2011; 45
Mahmoudian (bib22) 2009
Allen, B., Austin, T., Forrester, N., Goldsborough, R., Kukulya, A., 2006. Autonomous docking demonstrations with enhanced REMUS technology. In: OCEANS 2006, Vol. 1–4, IEEE, New York, pp. 1539–1544.
Isa, Arshad (bib17) 2013; 42
Peng, S., Yang, C., Fan, S., Zhang, S., Wang, P., Xie, Y., Chen, Y., 2013. A hybrid underwater glider for underwater docking. In: MTS/IEEE Oceans. IEEE, San Diego, California, pp. 1–7.
Alvarez, Caffaz, Caiti, Casalino, Gualdesi, Turetta, Viviani (bib2) 2009; 36
Singh (10.1016/j.oceaneng.2016.08.002_bib34) 2001; 26
Watson (10.1016/j.oceaneng.2016.08.002_bib43) 2014; 31
Woolsey (10.1016/j.oceaneng.2016.08.002_bib44) 2005; 28
10.1016/j.oceaneng.2016.08.002_bib3
Tan (10.1016/j.oceaneng.2016.08.002_bib36) 2011; 45
Xu (10.1016/j.oceaneng.2016.08.002_bib46) 2015; 119
Alvarez (10.1016/j.oceaneng.2016.08.002_bib2) 2009; 36
Teo (10.1016/j.oceaneng.2016.08.002_bib37) 2012; 37
Wang (10.1016/j.oceaneng.2016.08.002_bib40) 2014
Woolsey (10.1016/j.oceaneng.2016.08.002_bib45) 2011
10.1016/j.oceaneng.2016.08.002_bib1
cr-split#-10.1016/j.oceaneng.2016.08.002_bib26.1
cr-split#-10.1016/j.oceaneng.2016.08.002_bib26.2
Wang (10.1016/j.oceaneng.2016.08.002_bib41) 2011; 25
10.1016/j.oceaneng.2016.08.002_bib21
10.1016/j.oceaneng.2016.08.002_bib23
Chen (10.1016/j.oceaneng.2016.08.002_bib7) 2013; 27
10.1016/j.oceaneng.2016.08.002_bib8
10.1016/j.oceaneng.2016.08.002_bib42
Fossen (10.1016/j.oceaneng.2016.08.002_bib14) 1995
10.1016/j.oceaneng.2016.08.002_bib47
McEwen (10.1016/j.oceaneng.2016.08.002_bib24) 2008; 33
10.1016/j.oceaneng.2016.08.002_bib27
Caffaz (10.1016/j.oceaneng.2016.08.002_bib4) 2010; 17
Chen (10.1016/j.oceaneng.2016.08.002_bib5) 2012; 46
Fan (10.1016/j.oceaneng.2016.08.002_bib12) 2014; 84
Feitian (10.1016/j.oceaneng.2016.08.002_bib13) 2014; 19
Morel (10.1016/j.oceaneng.2016.08.002_bib25) 2002
Kim (10.1016/j.oceaneng.2016.08.002_bib20) 2007
Mahmoudian (10.1016/j.oceaneng.2016.08.002_bib22) 2009
Cottrell (10.1016/j.oceaneng.2016.08.002_bib10) 1971; 9
Isa (10.1016/j.oceaneng.2016.08.002_bib18) 2014; 81
Steinfeldt (10.1016/j.oceaneng.2016.08.002_bib35) 2010; 47
Chen (10.1016/j.oceaneng.2016.08.002_bib6) 2012; 13
10.1016/j.oceaneng.2016.08.002_bib11
10.1016/j.oceaneng.2016.08.002_bib33
Peng (10.1016/j.oceaneng.2016.08.002_bib29) 2014; 48
Shaferman (10.1016/j.oceaneng.2016.08.002_bib32) 2008; 31
10.1016/j.oceaneng.2016.08.002_bib30
10.1016/j.oceaneng.2016.08.002_bib19
Graver (10.1016/j.oceaneng.2016.08.002_bib15) 2005
Isa (10.1016/j.oceaneng.2016.08.002_bib17) 2013; 42
Park (10.1016/j.oceaneng.2016.08.002_bib28) 2009; 36
Teo (10.1016/j.oceaneng.2016.08.002_bib38) 2015; 40
Ryoo (10.1016/j.oceaneng.2016.08.002_bib31) 2006; 14
10.1016/j.oceaneng.2016.08.002_bib39
Claus (10.1016/j.oceaneng.2016.08.002_bib9) 2010; 224
10.1016/j.oceaneng.2016.08.002_bib16
References_xml – reference: Claus, B., Bachmayer, R., Cooney, L., 2012. Analysis and development of a buoyancy-pitch based depth control algorithm for a hybrid underwater glider. In: Proceedings of the 2012 IEEE/OES Autonomous Underwater Vehicles (AUV). IEEE, Southampton, pp. 1–6.
– volume: 81
  start-page: 111
  year: 2014
  end-page: 129
  ident: bib18
  article-title: A hybrid-driven underwater glider model, hydrodynamics estimation, and an analysis of the motion control
  publication-title: Ocean Eng.
– start-page: 273
  year: 2005
  ident: bib15
  article-title: Underwater Gliders: Dynamics, Control and Design (Ph.D. thesis)
– reference: Thivierge, D.P., Dooley, R.E., Menozzi, A., Treaster, A.L., Beam, M.J., Fetterolf, T.K., Metrey, D.R., 2005. Articulation Mechanism and elastomeric Nozzle for Thrust-vectored Control of an Undersea Vehicle. US7465201 B1.
– year: 2014
  ident: bib40
  article-title: Study of Robot Vision Navigation System for Deep Sea Docking (Master thesis)
– reference: Jenkins, S.A., Humphreys, D.E., Sherman, J., Osse, J., Jones, C., Leonard, N.E., Wasyl, J. 2003. Underwater glider system study. In: Technical report No. 53, Scripps Institution of Oceanography, San Diego, CA.
– year: 2011
  ident: bib45
  article-title: Vehicle Dynamics in Currents
– volume: 28
  start-page: 131
  year: 2005
  end-page: 138
  ident: bib44
  article-title: Reduced Hamiltonian dynamics for a rigid body/mass particle system
  publication-title: J. Guid. Control Dyn.
– reference: Li, B., Xu, Y., Liu, C., Fan, S., Xu, W., 2015. Terminal navigation and control for docking an underactuated autonomous underwater vehicle. In: Proceedings of the 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER). IEEE, Shenyang, pp. 25–30.
– year: 2002
  ident: bib25
  article-title: Design of an Adaptive Nonlinear Controller for an Autonomous Underwater Vehicle Equipped With a Vectored Thruster (Master of Science thesis)
– volume: 42
  start-page: 971
  year: 2013
  end-page: 979
  ident: bib17
  article-title: Modeling and motion control of a hybrid-driven underwater glider
  publication-title: Indian J. Geo-Mar. Sci.
– volume: 25
  start-page: 97
  year: 2011
  end-page: 112
  ident: bib41
  article-title: Dynamic modeling and motion simulation for a winged hybrid-driven underwater glider
  publication-title: China Ocean Eng.
– reference: Shi, J., Zhang, S., Yang, C., 2012. High frequency RF based non-contact underwater communication. In: MTS/IEEE Oceans. IEEE, Yeosu, Korea, pp. 1–6.
– volume: 37
  start-page: 143
  year: 2012
  end-page: 155
  ident: bib37
  article-title: A robust fuzzy autonomous underwater vehicle (AUV) docking approach for unknown current disturbances
  publication-title: IEEE J. Ocean. Eng.
– reference: Allen, B., Austin, T., Forrester, N., Goldsborough, R., Kukulya, A., 2006. Autonomous docking demonstrations with enhanced REMUS technology. In: OCEANS 2006, Vol. 1–4, IEEE, New York, pp. 1539–1544.
– start-page: 110
  year: 2009
  ident: bib22
  article-title: Efficient Motion Planning and Control for Underwater Gliders (Ph.D. thesis)
– reference: Mahmoudian, N., Woolsey, C., 2008. Underwater glider motion control. In: Proceedings of the 47th IEEE Conference on Decision and Control. IEEE, Cancun, Mexico, pp. 552–557.
– volume: 13
  start-page: 613
  year: 2012
  end-page: 623
  ident: bib6
  article-title: Study of a DC power system for a multi-node cabled ocean observatories system
  publication-title: J. Zhejiang Univ. Sci. C
– volume: 48
  start-page: 112
  year: 2014
  end-page: 124
  ident: bib29
  article-title: Hybrid underwater glider for underwater docking: modeling and performance evaluation
  publication-title: Mar. Technol. Soc. J.
– reference: Hu, B., Tian, H., Qian, J., Xie, G., Mo, L., Zhang, S., 2013. A Fuzzy-PID method to improve the depth control of AUV. In: Proceedings of the 2013 IEEE International Conference on Mechatronics and Automation. IEEE, pp. 1528–1533.
– reference: 〉.
– volume: 31
  start-page: 1
  year: 2014
  end-page: 10
  ident: bib43
  article-title: Depth control for micro-autonomous underwater vehicles (μAUVs): simulation and experimentation
  publication-title: Int. J. Adv. Robot. Syst.
– volume: 9
  start-page: 1414
  year: 1971
  end-page: 1415
  ident: bib10
  article-title: Optimal intercept guidance for short-range tactical missiles
  publication-title: AIAA J.
– volume: 14
  start-page: 483
  year: 2006
  end-page: 492
  ident: bib31
  article-title: Time-to-go weighted optimal guidance with impact angle constraints
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 33
  start-page: 550
  year: 2008
  end-page: 562
  ident: bib24
  article-title: Docking control system for a 54-cm-diameter (21-in) AUV
  publication-title: IEEE J. Ocean. Eng.
– volume: 46
  start-page: 50
  year: 2012
  end-page: 63
  ident: bib5
  article-title: Design and application of a junction box for cabled ocean observatories system
  publication-title: Mar. Technol. Soc. J.
– volume: 31
  start-page: 1400
  year: 2008
  end-page: 1412
  ident: bib32
  article-title: Linear quadratic guidance laws for imposing a terminal intercept angle
  publication-title: J. Guid. Control Dyn.
– year: 2007
  ident: bib20
  article-title: Dual Control Approach for Automatic Docking Using Monocular Vision (Ph.D. thesis)
– reference: Park, J., Jun, B., Lee, P., Lim, Y., Oh, J., 2011b. Docking problem and guidance laws considering drift for an underactuated AUV. In: MTS/IEEE Oceans. IEEE, Spain, pp. 1–7.
– volume: 45
  start-page: 31
  year: 2011
  end-page: 40
  ident: bib36
  article-title: Autonomous robotic fish as mobile sensor platforms: challenges and potential solutions
  publication-title: Mar. Technol. Soc. J.
– reference: Zhang, F., Zhang, F., Tan, X., 2012. Steady spiraling Motion of gliding Robotic Fish. In: Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Vilamoura, Algarve, Portugal, pp. 1754–1759.
– reference: Bachmayer, R., Leonard, N.E., Graver, J., Fiorelli, E., Bhatta, P., Paley, D., 2004. Underwater gliders: Recent developments and future applications. In: Proceedings of the 4th International Symposium on Underwater Technology, IEEE, Taibei, pp. 195–200.
– volume: 19
  start-page: 394
  year: 2014
  end-page: 399
  ident: bib13
  article-title: Miniature underwater glider: design and experimental results
  publication-title: IEEE/ASME Trans. Mechatron.
– volume: 119
  start-page: 1287
  year: 2015
  end-page: 1299
  ident: bib46
  article-title: Biased optimal guidance law with specified velocity rendezvous angle constraint
  publication-title: Aeronaut. J.
– start-page: 162
  year: 1995
  ident: bib14
  article-title: Guidance and Control of Ocean Vehicles
– volume: 84
  start-page: 249
  year: 2014
  end-page: 258
  ident: bib12
  article-title: Dynamics of underwater gliders in currents
  publication-title: Ocean Eng.
– reference: Park, J., Jun, B., Lee, P., Lim, Y., Oh, J., 2011a. Modified linear terminal guidance for docking and a time-varying ocean current observer. In: Proceedings of the 2011 IEEE Symposium on Underwater Technology (UT) and 2011 Workshop on Scientific Use of Submarine Cables and Related Technologies (SSC). IEEE, Tokyo, pp. 1–6.
– volume: 27
  start-page: 265
  year: 2013
  end-page: 275
  ident: bib7
  article-title: Study on 10
  publication-title: China Ocean Eng.
– volume: 26
  start-page: 498
  year: 2001
  end-page: 514
  ident: bib34
  article-title: Docking for an autonomous ocean sampling network
  publication-title: IEEE J. Ocean. Eng.
– volume: 47
  start-page: 188
  year: 2010
  end-page: 198
  ident: bib35
  article-title: Guidance, navigation, and control system performance trades for Mars pinpoint landing
  publication-title: J. Spacecr. Rockets
– volume: 17
  start-page: 31
  year: 2010
  end-page: 44
  ident: bib4
  article-title: The hybrid glider/AUV Folaga field experience at the GLINT'08 experiment
  publication-title: IEEE Robot. Autom. Mag.
– reference: Wang, S.X., Sun, X.J., Wu, J.G., Wang, X.M., Zhang, H.W., 2010. Motion characteristic analysis of a hybrid-driven underwater glider. In: MTS/IEEE Oceans. IEEE, Sydney, Australia.
– volume: 36
  start-page: 24
  year: 2009
  end-page: 38
  ident: bib2
  article-title: Folaga: a low-cost autonomous underwater vehicle combining glider and AUV capabilities
  publication-title: Ocean Eng.
– volume: 224
  start-page: 255
  year: 2010
  end-page: 266
  ident: bib9
  article-title: Development of an auxiliary propulsion module for an autonomous underwater glider
  publication-title: Proc. Inst. Mech. Eng. Part M: J. Eng. Marit. Environ.
– volume: 40
  start-page: 349
  year: 2015
  end-page: 361
  ident: bib38
  article-title: Fuzzy docking guidance using augmented navigation system on an AUV
  publication-title: IEEE J. Ocean. Eng.
– reference: Crosswind landing, 2009. Retrieved 2015-3-29 from 〈
– volume: 36
  start-page: 48
  year: 2009
  end-page: 61
  ident: bib28
  article-title: Experiments on vision guided docking of an autonomous underwater vehicle using one camera
  publication-title: Ocean Eng.
– reference: Peng, S., Yang, C., Fan, S., Zhang, S., Wang, P., Xie, Y., Chen, Y., 2013. A hybrid underwater glider for underwater docking. In: MTS/IEEE Oceans. IEEE, San Diego, California, pp. 1–7.
– ident: 10.1016/j.oceaneng.2016.08.002_bib11
– volume: 224
  start-page: 255
  issue: 4
  year: 2010
  ident: 10.1016/j.oceaneng.2016.08.002_bib9
  article-title: Development of an auxiliary propulsion module for an autonomous underwater glider
  publication-title: Proc. Inst. Mech. Eng. Part M: J. Eng. Marit. Environ.
– ident: 10.1016/j.oceaneng.2016.08.002_bib47
  doi: 10.1109/IROS.2012.6385860
– volume: 42
  start-page: 971
  issue: 8
  year: 2013
  ident: 10.1016/j.oceaneng.2016.08.002_bib17
  article-title: Modeling and motion control of a hybrid-driven underwater glider
  publication-title: Indian J. Geo-Mar. Sci.
– volume: 9
  start-page: 1414
  issue: 7
  year: 1971
  ident: 10.1016/j.oceaneng.2016.08.002_bib10
  article-title: Optimal intercept guidance for short-range tactical missiles
  publication-title: AIAA J.
  doi: 10.2514/3.6369
– ident: 10.1016/j.oceaneng.2016.08.002_bib30
– year: 2011
  ident: 10.1016/j.oceaneng.2016.08.002_bib45
– ident: #cr-split#-10.1016/j.oceaneng.2016.08.002_bib26.2
– ident: 10.1016/j.oceaneng.2016.08.002_bib19
– year: 2014
  ident: 10.1016/j.oceaneng.2016.08.002_bib40
– volume: 14
  start-page: 483
  issue: 3
  year: 2006
  ident: 10.1016/j.oceaneng.2016.08.002_bib31
  article-title: Time-to-go weighted optimal guidance with impact angle constraints
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2006.872525
– start-page: 273
  year: 2005
  ident: 10.1016/j.oceaneng.2016.08.002_bib15
– volume: 47
  start-page: 188
  issue: 1
  year: 2010
  ident: 10.1016/j.oceaneng.2016.08.002_bib35
  article-title: Guidance, navigation, and control system performance trades for Mars pinpoint landing
  publication-title: J. Spacecr. Rockets
  doi: 10.2514/1.45779
– volume: 19
  start-page: 394
  issue: 1
  year: 2014
  ident: 10.1016/j.oceaneng.2016.08.002_bib13
  article-title: Miniature underwater glider: design and experimental results
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2013.2279033
– volume: 119
  start-page: 1287
  issue: 1220
  year: 2015
  ident: 10.1016/j.oceaneng.2016.08.002_bib46
  article-title: Biased optimal guidance law with specified velocity rendezvous angle constraint
  publication-title: Aeronaut. J.
  doi: 10.1017/S0001924000011258
– volume: 13
  start-page: 613
  issue: 8
  year: 2012
  ident: 10.1016/j.oceaneng.2016.08.002_bib6
  article-title: Study of a DC power system for a multi-node cabled ocean observatories system
  publication-title: J. Zhejiang Univ. Sci. C
  doi: 10.1631/jzus.C1100381
– ident: 10.1016/j.oceaneng.2016.08.002_bib42
  doi: 10.1109/OCEANSSYD.2010.5603828
– volume: 37
  start-page: 143
  issue: 2
  year: 2012
  ident: 10.1016/j.oceaneng.2016.08.002_bib37
  article-title: A robust fuzzy autonomous underwater vehicle (AUV) docking approach for unknown current disturbances
  publication-title: IEEE J. Ocean. Eng.
  doi: 10.1109/JOE.2011.2180058
– volume: 31
  start-page: 1
  issue: 11
  year: 2014
  ident: 10.1016/j.oceaneng.2016.08.002_bib43
  article-title: Depth control for micro-autonomous underwater vehicles (μAUVs): simulation and experimentation
  publication-title: Int. J. Adv. Robot. Syst.
– year: 2007
  ident: 10.1016/j.oceaneng.2016.08.002_bib20
– volume: 45
  start-page: 31
  issue: 4
  year: 2011
  ident: 10.1016/j.oceaneng.2016.08.002_bib36
  article-title: Autonomous robotic fish as mobile sensor platforms: challenges and potential solutions
  publication-title: Mar. Technol. Soc. J.
  doi: 10.4031/MTSJ.45.4.2
– ident: 10.1016/j.oceaneng.2016.08.002_bib33
  doi: 10.1109/OCEANS-Yeosu.2012.6263403
– volume: 81
  start-page: 111
  issue: 2
  year: 2014
  ident: 10.1016/j.oceaneng.2016.08.002_bib18
  article-title: A hybrid-driven underwater glider model, hydrodynamics estimation, and an analysis of the motion control
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2014.02.002
– volume: 33
  start-page: 550
  issue: 4
  year: 2008
  ident: 10.1016/j.oceaneng.2016.08.002_bib24
  article-title: Docking control system for a 54-cm-diameter (21-in) AUV
  publication-title: IEEE J. Ocean. Eng.
  doi: 10.1109/JOE.2008.2005348
– volume: 17
  start-page: 31
  issue: 1
  year: 2010
  ident: 10.1016/j.oceaneng.2016.08.002_bib4
  article-title: The hybrid glider/AUV Folaga field experience at the GLINT'08 experiment
  publication-title: IEEE Robot. Autom. Mag.
  doi: 10.1109/MRA.2010.935791
– volume: 46
  start-page: 50
  issue: 3
  year: 2012
  ident: 10.1016/j.oceaneng.2016.08.002_bib5
  article-title: Design and application of a junction box for cabled ocean observatories system
  publication-title: Mar. Technol. Soc. J.
  doi: 10.4031/MTSJ.46.3.4
– volume: 36
  start-page: 24
  issue: 1
  year: 2009
  ident: 10.1016/j.oceaneng.2016.08.002_bib2
  article-title: Folaga: a low-cost autonomous underwater vehicle combining glider and AUV capabilities
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2008.08.014
– start-page: 162
  year: 1995
  ident: 10.1016/j.oceaneng.2016.08.002_bib14
– volume: 48
  start-page: 112
  issue: 6
  year: 2014
  ident: 10.1016/j.oceaneng.2016.08.002_bib29
  article-title: Hybrid underwater glider for underwater docking: modeling and performance evaluation
  publication-title: Mar. Technol. Soc. J.
  doi: 10.4031/MTSJ.48.6.5
– ident: 10.1016/j.oceaneng.2016.08.002_bib23
  doi: 10.1109/CDC.2008.4739432
– ident: 10.1016/j.oceaneng.2016.08.002_bib39
– year: 2002
  ident: 10.1016/j.oceaneng.2016.08.002_bib25
– ident: 10.1016/j.oceaneng.2016.08.002_bib16
  doi: 10.1109/ICMA.2013.6618141
– volume: 26
  start-page: 498
  issue: 4
  year: 2001
  ident: 10.1016/j.oceaneng.2016.08.002_bib34
  article-title: Docking for an autonomous ocean sampling network
  publication-title: IEEE J. Ocean. Eng.
  doi: 10.1109/48.972084
– ident: 10.1016/j.oceaneng.2016.08.002_bib1
  doi: 10.1109/OCEANS.2006.306952
– ident: 10.1016/j.oceaneng.2016.08.002_bib21
  doi: 10.1109/CYBER.2015.7287904
– volume: 40
  start-page: 349
  issue: 2
  year: 2015
  ident: 10.1016/j.oceaneng.2016.08.002_bib38
  article-title: Fuzzy docking guidance using augmented navigation system on an AUV
  publication-title: IEEE J. Ocean. Eng.
  doi: 10.1109/JOE.2014.2312593
– volume: 25
  start-page: 97
  issue: 1
  year: 2011
  ident: 10.1016/j.oceaneng.2016.08.002_bib41
  article-title: Dynamic modeling and motion simulation for a winged hybrid-driven underwater glider
  publication-title: China Ocean Eng.
  doi: 10.1007/s13344-011-0008-7
– volume: 84
  start-page: 249
  year: 2014
  ident: 10.1016/j.oceaneng.2016.08.002_bib12
  article-title: Dynamics of underwater gliders in currents
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2014.03.024
– ident: 10.1016/j.oceaneng.2016.08.002_bib8
  doi: 10.1109/AUV.2012.6380742
– volume: 31
  start-page: 1400
  issue: 5
  year: 2008
  ident: 10.1016/j.oceaneng.2016.08.002_bib32
  article-title: Linear quadratic guidance laws for imposing a terminal intercept angle
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/1.32836
– ident: #cr-split#-10.1016/j.oceaneng.2016.08.002_bib26.1
  doi: 10.1109/UT.2011.5774141
– volume: 36
  start-page: 48
  issue: 1
  year: 2009
  ident: 10.1016/j.oceaneng.2016.08.002_bib28
  article-title: Experiments on vision guided docking of an autonomous underwater vehicle using one camera
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2008.10.001
– volume: 28
  start-page: 131
  issue: 1
  year: 2005
  ident: 10.1016/j.oceaneng.2016.08.002_bib44
  article-title: Reduced Hamiltonian dynamics for a rigid body/mass particle system
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/1.5409
– ident: 10.1016/j.oceaneng.2016.08.002_bib27
  doi: 10.1109/Oceans-Spain.2011.6003574
– ident: 10.1016/j.oceaneng.2016.08.002_bib3
  doi: 10.1109/UT.2004.1405540
– start-page: 110
  year: 2009
  ident: 10.1016/j.oceaneng.2016.08.002_bib22
– volume: 27
  start-page: 265
  issue: 2
  year: 2013
  ident: 10.1016/j.oceaneng.2016.08.002_bib7
  article-title: Study on 10kV DC powered junction box for cabled ocean observatory system
  publication-title: China Ocean Eng.
  doi: 10.1007/s13344-013-0023-y
SSID ssj0006603
Score 2.3583612
Snippet The development of a novel type of hybrid underwater glider (HUG) that combines the advantages of buoyancy-driven underwater glider and propeller-driven...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 170
SubjectTerms Current
Docking
Guidance algorithm
Hybrid underwater glider
Rotatable thruster
Title Study on docking guidance algorithm for hybrid underwater glider in currents
URI https://dx.doi.org/10.1016/j.oceaneng.2016.08.002
Volume 125
WOSCitedRecordID wos000384860900018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5258
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006603
  issn: 0029-8018
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZWLQdAQqWAKI_KB24oZZPYTnysqla0QgWJIu0tcmxnH9o61T7K9t_jie0k0IrSAxcr66y9yc63M5Nv54HQh5TGWUkzEelUyYhURFk9SNJIl4oIxZU1yaJpNpGdn-ejEf82GGxCLsz1PDMm32z41X8VtZ2zwobU2QeIu93UTthjK3Q7WrHb8Z8E_92ViTYflVV1QASM11PlEgPm43oxXU0um9jCyQ0kazV9cBc_BdRKHM8hJw8YEOmqNi37rutXCaS97uoXtgrDU85HwszWptO1nogGxqadPfF862RtFy2b8TZ1PRH1Te1PeEIiZm1oW5cgwMHw5b8p2YT21GTsmoV4ixu7pi23lLnjFWYHNdyfvWgIxGMHLvi1M1_hL_s_rFobaxjC2GZF2KeAfQrovglVSLeTjHKrD7cPT49HZ60VZ2yYhvAguJledvndV3S3Y9NzVi520DP_lIEPHTqeo4E2u-hJr_bkLnrayNMXLH-BvjSwwbXBHjY4wAa3sMEWNtjBBnewwQ42eGpwgM1L9OPk-OLoc-Q7bUQyjZNVJBgjepjKWIiYEzK0r1VV5oIrUSlGOItFRTXUiiOyqioJXjnRRJBEDeFN6Su0ZWqjXyOclYlMtM7yvEwIpaWQQjDFZEIFK-Ms30M0fE2F9GXooRvKvPi7oPbQp3bdlSvEcu8KHqRQeHfSuYmFBdg9a988-NPeosfdj-Ed2lot1vo9eiSvV9PlYt-j6xf1p527
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+on+docking+guidance+algorithm+for+hybrid+underwater+glider+in+currents&rft.jtitle=Ocean+engineering&rft.au=Yang%2C+Canjun&rft.au=Peng%2C+Shilin&rft.au=Fan%2C+Shuangshuang&rft.au=Zhang%2C+Shaoyong&rft.date=2016-10-01&rft.issn=0029-8018&rft.volume=125&rft.spage=170&rft.epage=181&rft_id=info:doi/10.1016%2Fj.oceaneng.2016.08.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_oceaneng_2016_08_002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon