Study on docking guidance algorithm for hybrid underwater glider in currents
The development of a novel type of hybrid underwater glider (HUG) that combines the advantages of buoyancy-driven underwater glider and propeller-driven autonomous underwater vehicle (AUV) has recently received considerable interest. HUG is designed with a rotatable thruster to ensure the enough man...
Gespeichert in:
| Veröffentlicht in: | Ocean engineering Jg. 125; S. 170 - 181 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.10.2016
|
| Schlagworte: | |
| ISSN: | 0029-8018, 1873-5258 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The development of a novel type of hybrid underwater glider (HUG) that combines the advantages of buoyancy-driven underwater glider and propeller-driven autonomous underwater vehicle (AUV) has recently received considerable interest. HUG is designed with a rotatable thruster to ensure the enough maneuverability of the vehicle for underwater docking. Unlike the fixed funnel-type dock, the dock proposed here can rotate actively to allow the vehicle to approach the docking station from most range of directions providing better accessibility for the vehicle. Considering that the ocean current may have a significant impact on the HUG, a pursuit guidance algorithm with current compensation is presented. The performance of the guidance algorithm is compared with other existing guidance algorithms, such as pure pursuit guidance and proportional navigation guidance by simulation based on the dynamic model of HUG. Moreover, underwater docking experiments are conducted to validate the feasibility of the docking system and the effectiveness of the proposed guidance algorithm. The experimental results indicate that the proposed algorithm compensates well for the current disturbances on HUG docking mission and the HUG can dock with the rotatable dock entrance successfully.
•A docking scheme consists of a hybrid underwater glider with a rotatable thruster for high maneuverability and a rotatable dock station providing better accessibility.•The docking control problem for underwater vehicle is described mathematically.•A pursuit guidance algorithm with current compensation is presented, which takes both the view range of the sensors and the ocean current disturbances into account. |
|---|---|
| AbstractList | The development of a novel type of hybrid underwater glider (HUG) that combines the advantages of buoyancy-driven underwater glider and propeller-driven autonomous underwater vehicle (AUV) has recently received considerable interest. HUG is designed with a rotatable thruster to ensure the enough maneuverability of the vehicle for underwater docking. Unlike the fixed funnel-type dock, the dock proposed here can rotate actively to allow the vehicle to approach the docking station from most range of directions providing better accessibility for the vehicle. Considering that the ocean current may have a significant impact on the HUG, a pursuit guidance algorithm with current compensation is presented. The performance of the guidance algorithm is compared with other existing guidance algorithms, such as pure pursuit guidance and proportional navigation guidance by simulation based on the dynamic model of HUG. Moreover, underwater docking experiments are conducted to validate the feasibility of the docking system and the effectiveness of the proposed guidance algorithm. The experimental results indicate that the proposed algorithm compensates well for the current disturbances on HUG docking mission and the HUG can dock with the rotatable dock entrance successfully.
•A docking scheme consists of a hybrid underwater glider with a rotatable thruster for high maneuverability and a rotatable dock station providing better accessibility.•The docking control problem for underwater vehicle is described mathematically.•A pursuit guidance algorithm with current compensation is presented, which takes both the view range of the sensors and the ocean current disturbances into account. |
| Author | Peng, Shilin Yang, Canjun Fan, Shuangshuang Wang, Pinfu Chen, Ying Zhang, Shaoyong |
| Author_xml | – sequence: 1 givenname: Canjun surname: Yang fullname: Yang, Canjun organization: The State Key Lab of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China – sequence: 2 givenname: Shilin surname: Peng fullname: Peng, Shilin organization: Institute of Electronics Information, Hangzhou Dianzi University, Hangzhou 310018, China – sequence: 3 givenname: Shuangshuang surname: Fan fullname: Fan, Shuangshuang email: ssfan@zju.edu.cn, fanshuangshuang@163.com organization: College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China – sequence: 4 givenname: Shaoyong surname: Zhang fullname: Zhang, Shaoyong organization: The State Key Lab of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China – sequence: 5 givenname: Pinfu surname: Wang fullname: Wang, Pinfu organization: The State Key Lab of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China – sequence: 6 givenname: Ying surname: Chen fullname: Chen, Ying organization: The State Key Lab of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China |
| BookMark | eNqFkE1LAzEQhoNUsK3-Bckf2HWym41Z8KAUv6DgQT2HNB_b1G0i2azSf29K9eKlp5l3mGdgnhma-OANQpcESgKEXW3KoIz0xndllXMJvASoTtCU8Ou6aKqGT9A0T9qCA-FnaDYMGwBgDOopWr6mUe9w8FgH9eF8h7vRaemVwbLvQnRpvcU2RLzeraLTePTaxG-ZTMRd73KPncdqjNH4NJyjUyv7wVz81jl6f7h_WzwVy5fH58XdslA1qVIhGaMGakWkJC2lkLO2Ky5bLa1mtGVE2sZUvAaqrLWqIdBQQyWtNOyX6jm6OdxVMQxDNFYol2RywacoXS8IiL0ZsRF_ZsTejAAusoeMs3_4Z3RbGXfHwdsDaPJzX85EMShnsivtolFJ6OCOnfgB-o2GBg |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2021_3083883 crossref_primary_10_3390_jmse10111790 crossref_primary_10_3389_frobt_2021_621755 crossref_primary_10_1016_j_apor_2019_102027 crossref_primary_10_1049_iet_pel_2018_5663 crossref_primary_10_3390_jmse9080884 crossref_primary_10_1109_JOE_2018_2885200 crossref_primary_10_1016_j_oceaneng_2024_117166 crossref_primary_10_1016_j_matpr_2018_10_161 crossref_primary_10_1016_j_oceaneng_2018_06_007 crossref_primary_10_1155_2018_8474389 crossref_primary_10_1016_j_oceaneng_2021_108877 crossref_primary_10_1016_j_oceaneng_2024_119017 crossref_primary_10_1016_j_robot_2019_103382 crossref_primary_10_1016_j_oceaneng_2021_109546 crossref_primary_10_1016_j_oceaneng_2022_110766 crossref_primary_10_3390_sym11030397 crossref_primary_10_1016_j_oceaneng_2020_107342 crossref_primary_10_1109_JOE_2017_2769938 crossref_primary_10_1016_j_oceaneng_2024_116802 crossref_primary_10_1016_j_oceaneng_2019_04_069 crossref_primary_10_3390_s23010241 crossref_primary_10_1007_s00773_018_0577_8 crossref_primary_10_1016_j_oceaneng_2022_113436 crossref_primary_10_3390_jmse12091493 crossref_primary_10_1016_j_jfranklin_2018_11_042 crossref_primary_10_1016_j_oceaneng_2023_114243 crossref_primary_10_1016_j_oceaneng_2022_111250 crossref_primary_10_1016_j_oceaneng_2024_118150 crossref_primary_10_3390_robotics12010008 crossref_primary_10_3390_s19030682 crossref_primary_10_1016_j_oceaneng_2021_108744 crossref_primary_10_1109_TVT_2024_3411569 crossref_primary_10_1177_00202940221106568 crossref_primary_10_1007_s00773_018_0582_y crossref_primary_10_3390_jmse10040531 crossref_primary_10_3390_robotics14010005 crossref_primary_10_1016_j_oceaneng_2022_112634 crossref_primary_10_1016_j_oceaneng_2024_119528 crossref_primary_10_1016_j_oceaneng_2022_110812 crossref_primary_10_3390_jmse9040406 |
| Cites_doi | 10.1109/IROS.2012.6385860 10.2514/3.6369 10.1109/TCST.2006.872525 10.2514/1.45779 10.1109/TMECH.2013.2279033 10.1017/S0001924000011258 10.1631/jzus.C1100381 10.1109/OCEANSSYD.2010.5603828 10.1109/JOE.2011.2180058 10.4031/MTSJ.45.4.2 10.1109/OCEANS-Yeosu.2012.6263403 10.1016/j.oceaneng.2014.02.002 10.1109/JOE.2008.2005348 10.1109/MRA.2010.935791 10.4031/MTSJ.46.3.4 10.1016/j.oceaneng.2008.08.014 10.4031/MTSJ.48.6.5 10.1109/CDC.2008.4739432 10.1109/ICMA.2013.6618141 10.1109/48.972084 10.1109/OCEANS.2006.306952 10.1109/CYBER.2015.7287904 10.1109/JOE.2014.2312593 10.1007/s13344-011-0008-7 10.1016/j.oceaneng.2014.03.024 10.1109/AUV.2012.6380742 10.2514/1.32836 10.1109/UT.2011.5774141 10.1016/j.oceaneng.2008.10.001 10.2514/1.5409 10.1109/Oceans-Spain.2011.6003574 10.1109/UT.2004.1405540 10.1007/s13344-013-0023-y |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Ltd |
| Copyright_xml | – notice: 2016 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.oceaneng.2016.08.002 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Oceanography |
| EISSN | 1873-5258 |
| EndPage | 181 |
| ExternalDocumentID | 10_1016_j_oceaneng_2016_08_002 S0029801816303286 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KCYFY KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSJ SST SSZ T5K TAE TN5 XPP ZMT ~02 ~G- 29N 6TJ 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACKIV ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SET SEW WUQ ~HD |
| ID | FETCH-LOGICAL-c312t-a664e03c1aa19440a66dfb8a9dafd64961af5e28304cfffc51054e4a42d0a9da3 |
| ISICitedReferencesCount | 51 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000384860900018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0029-8018 |
| IngestDate | Sat Nov 29 07:51:15 EST 2025 Tue Nov 18 22:43:08 EST 2025 Fri Feb 23 02:26:17 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Docking Hybrid underwater glider Guidance algorithm Current Rotatable thruster |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c312t-a664e03c1aa19440a66dfb8a9dafd64961af5e28304cfffc51054e4a42d0a9da3 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_oceaneng_2016_08_002 crossref_primary_10_1016_j_oceaneng_2016_08_002 elsevier_sciencedirect_doi_10_1016_j_oceaneng_2016_08_002 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-10-01 2016-10-00 |
| PublicationDateYYYYMMDD | 2016-10-01 |
| PublicationDate_xml | – month: 10 year: 2016 text: 2016-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Ocean engineering |
| PublicationYear | 2016 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Claus, B., Bachmayer, R., Cooney, L., 2012. Analysis and development of a buoyancy-pitch based depth control algorithm for a hybrid underwater glider. In: Proceedings of the 2012 IEEE/OES Autonomous Underwater Vehicles (AUV). IEEE, Southampton, pp. 1–6. Morel (bib25) 2002 Teo, An, Beaujean (bib37) 2012; 37 Wang, S.X., Sun, X.J., Wu, J.G., Wang, X.M., Zhang, H.W., 2010. Motion characteristic analysis of a hybrid-driven underwater glider. In: MTS/IEEE Oceans. IEEE, Sydney, Australia. Teo, Goh, Chai (bib38) 2015; 40 Fossen (bib14) 1995 Thivierge, D.P., Dooley, R.E., Menozzi, A., Treaster, A.L., Beam, M.J., Fetterolf, T.K., Metrey, D.R., 2005. Articulation Mechanism and elastomeric Nozzle for Thrust-vectored Control of an Undersea Vehicle. US7465201 B1. Park, J., Jun, B., Lee, P., Lim, Y., Oh, J., 2011a. Modified linear terminal guidance for docking and a time-varying ocean current observer. In: Proceedings of the 2011 IEEE Symposium on Underwater Technology (UT) and 2011 Workshop on Scientific Use of Submarine Cables and Related Technologies (SSC). IEEE, Tokyo, pp. 1–6. Woolsey (bib45) 2011 Caffaz, Caiti, Casalino, Turetta (bib4) 2010; 17 Crosswind landing, 2009. Retrieved 2015-3-29 from Park, Jun, Lee, Oh (bib28) 2009; 36 Hu, B., Tian, H., Qian, J., Xie, G., Mo, L., Zhang, S., 2013. A Fuzzy-PID method to improve the depth control of AUV. In: Proceedings of the 2013 IEEE International Conference on Mechatronics and Automation. IEEE, pp. 1528–1533. McEwen, Hobson, McBride, Bellingham (bib24) 2008; 33 Fan, Woolsey (bib12) 2014; 84 Singh, Bellingham, Hover, Lemer, Moran, von der Heydt, Yoerger (bib34) 2001; 26 Watson, Green (bib43) 2014; 31 Li, B., Xu, Y., Liu, C., Fan, S., Xu, W., 2015. Terminal navigation and control for docking an underactuated autonomous underwater vehicle. In: Proceedings of the 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER). IEEE, Shenyang, pp. 25–30. Chen, Yang, Li, Jin, Chen (bib5) 2012; 46 Wang (bib40) 2014 Cottrell (bib10) 1971; 9 Chen, Yang, Li, Jin, Chen (bib6) 2012; 13 Graver (bib15) 2005 Kim (bib20) 2007 Shi, J., Zhang, S., Yang, C., 2012. High frequency RF based non-contact underwater communication. In: MTS/IEEE Oceans. IEEE, Yeosu, Korea, pp. 1–6. Jenkins, S.A., Humphreys, D.E., Sherman, J., Osse, J., Jones, C., Leonard, N.E., Wasyl, J. 2003. Underwater glider system study. In: Technical report No. 53, Scripps Institution of Oceanography, San Diego, CA. Steinfeldt, Grant, Matz, Braun, Barton (bib35) 2010; 47 Feitian, Thon, Thon, Xiaobo (bib13) 2014; 19 Park, J., Jun, B., Lee, P., Lim, Y., Oh, J., 2011b. Docking problem and guidance laws considering drift for an underactuated AUV. In: MTS/IEEE Oceans. IEEE, Spain, pp. 1–7. Shaferman, Shima (bib32) 2008; 31 Wang, Sun, Wang, Wu, Wang (bib41) 2011; 25 Chen, Yang, Li, Jin, Chen (bib7) 2013; 27 Woolsey (bib44) 2005; 28 Mahmoudian, N., Woolsey, C., 2008. Underwater glider motion control. In: Proceedings of the 47th IEEE Conference on Decision and Control. IEEE, Cancun, Mexico, pp. 552–557. Peng, Yang, Fan, Zhang, Wang, Chen (bib29) 2014; 48 Claus, Bachmayer, Williams (bib9) 2010; 224 Xu, Liang (bib46) 2015; 119 . Isa, Arshad, Ishak (bib18) 2014; 81 Zhang, F., Zhang, F., Tan, X., 2012. Steady spiraling Motion of gliding Robotic Fish. In: Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Vilamoura, Algarve, Portugal, pp. 1754–1759. Bachmayer, R., Leonard, N.E., Graver, J., Fiorelli, E., Bhatta, P., Paley, D., 2004. Underwater gliders: Recent developments and future applications. In: Proceedings of the 4th International Symposium on Underwater Technology, IEEE, Taibei, pp. 195–200. Ryoo, Cho, Tahk (bib31) 2006; 14 Tan (bib36) 2011; 45 Mahmoudian (bib22) 2009 Allen, B., Austin, T., Forrester, N., Goldsborough, R., Kukulya, A., 2006. Autonomous docking demonstrations with enhanced REMUS technology. In: OCEANS 2006, Vol. 1–4, IEEE, New York, pp. 1539–1544. Isa, Arshad (bib17) 2013; 42 Peng, S., Yang, C., Fan, S., Zhang, S., Wang, P., Xie, Y., Chen, Y., 2013. A hybrid underwater glider for underwater docking. In: MTS/IEEE Oceans. IEEE, San Diego, California, pp. 1–7. Alvarez, Caffaz, Caiti, Casalino, Gualdesi, Turetta, Viviani (bib2) 2009; 36 Singh (10.1016/j.oceaneng.2016.08.002_bib34) 2001; 26 Watson (10.1016/j.oceaneng.2016.08.002_bib43) 2014; 31 Woolsey (10.1016/j.oceaneng.2016.08.002_bib44) 2005; 28 10.1016/j.oceaneng.2016.08.002_bib3 Tan (10.1016/j.oceaneng.2016.08.002_bib36) 2011; 45 Xu (10.1016/j.oceaneng.2016.08.002_bib46) 2015; 119 Alvarez (10.1016/j.oceaneng.2016.08.002_bib2) 2009; 36 Teo (10.1016/j.oceaneng.2016.08.002_bib37) 2012; 37 Wang (10.1016/j.oceaneng.2016.08.002_bib40) 2014 Woolsey (10.1016/j.oceaneng.2016.08.002_bib45) 2011 10.1016/j.oceaneng.2016.08.002_bib1 cr-split#-10.1016/j.oceaneng.2016.08.002_bib26.1 cr-split#-10.1016/j.oceaneng.2016.08.002_bib26.2 Wang (10.1016/j.oceaneng.2016.08.002_bib41) 2011; 25 10.1016/j.oceaneng.2016.08.002_bib21 10.1016/j.oceaneng.2016.08.002_bib23 Chen (10.1016/j.oceaneng.2016.08.002_bib7) 2013; 27 10.1016/j.oceaneng.2016.08.002_bib8 10.1016/j.oceaneng.2016.08.002_bib42 Fossen (10.1016/j.oceaneng.2016.08.002_bib14) 1995 10.1016/j.oceaneng.2016.08.002_bib47 McEwen (10.1016/j.oceaneng.2016.08.002_bib24) 2008; 33 10.1016/j.oceaneng.2016.08.002_bib27 Caffaz (10.1016/j.oceaneng.2016.08.002_bib4) 2010; 17 Chen (10.1016/j.oceaneng.2016.08.002_bib5) 2012; 46 Fan (10.1016/j.oceaneng.2016.08.002_bib12) 2014; 84 Feitian (10.1016/j.oceaneng.2016.08.002_bib13) 2014; 19 Morel (10.1016/j.oceaneng.2016.08.002_bib25) 2002 Kim (10.1016/j.oceaneng.2016.08.002_bib20) 2007 Mahmoudian (10.1016/j.oceaneng.2016.08.002_bib22) 2009 Cottrell (10.1016/j.oceaneng.2016.08.002_bib10) 1971; 9 Isa (10.1016/j.oceaneng.2016.08.002_bib18) 2014; 81 Steinfeldt (10.1016/j.oceaneng.2016.08.002_bib35) 2010; 47 Chen (10.1016/j.oceaneng.2016.08.002_bib6) 2012; 13 10.1016/j.oceaneng.2016.08.002_bib11 10.1016/j.oceaneng.2016.08.002_bib33 Peng (10.1016/j.oceaneng.2016.08.002_bib29) 2014; 48 Shaferman (10.1016/j.oceaneng.2016.08.002_bib32) 2008; 31 10.1016/j.oceaneng.2016.08.002_bib30 10.1016/j.oceaneng.2016.08.002_bib19 Graver (10.1016/j.oceaneng.2016.08.002_bib15) 2005 Isa (10.1016/j.oceaneng.2016.08.002_bib17) 2013; 42 Park (10.1016/j.oceaneng.2016.08.002_bib28) 2009; 36 Teo (10.1016/j.oceaneng.2016.08.002_bib38) 2015; 40 Ryoo (10.1016/j.oceaneng.2016.08.002_bib31) 2006; 14 10.1016/j.oceaneng.2016.08.002_bib39 Claus (10.1016/j.oceaneng.2016.08.002_bib9) 2010; 224 10.1016/j.oceaneng.2016.08.002_bib16 |
| References_xml | – reference: Claus, B., Bachmayer, R., Cooney, L., 2012. Analysis and development of a buoyancy-pitch based depth control algorithm for a hybrid underwater glider. In: Proceedings of the 2012 IEEE/OES Autonomous Underwater Vehicles (AUV). IEEE, Southampton, pp. 1–6. – volume: 81 start-page: 111 year: 2014 end-page: 129 ident: bib18 article-title: A hybrid-driven underwater glider model, hydrodynamics estimation, and an analysis of the motion control publication-title: Ocean Eng. – start-page: 273 year: 2005 ident: bib15 article-title: Underwater Gliders: Dynamics, Control and Design (Ph.D. thesis) – reference: Thivierge, D.P., Dooley, R.E., Menozzi, A., Treaster, A.L., Beam, M.J., Fetterolf, T.K., Metrey, D.R., 2005. Articulation Mechanism and elastomeric Nozzle for Thrust-vectored Control of an Undersea Vehicle. US7465201 B1. – year: 2014 ident: bib40 article-title: Study of Robot Vision Navigation System for Deep Sea Docking (Master thesis) – reference: Jenkins, S.A., Humphreys, D.E., Sherman, J., Osse, J., Jones, C., Leonard, N.E., Wasyl, J. 2003. Underwater glider system study. In: Technical report No. 53, Scripps Institution of Oceanography, San Diego, CA. – year: 2011 ident: bib45 article-title: Vehicle Dynamics in Currents – volume: 28 start-page: 131 year: 2005 end-page: 138 ident: bib44 article-title: Reduced Hamiltonian dynamics for a rigid body/mass particle system publication-title: J. Guid. Control Dyn. – reference: Li, B., Xu, Y., Liu, C., Fan, S., Xu, W., 2015. Terminal navigation and control for docking an underactuated autonomous underwater vehicle. In: Proceedings of the 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER). IEEE, Shenyang, pp. 25–30. – year: 2002 ident: bib25 article-title: Design of an Adaptive Nonlinear Controller for an Autonomous Underwater Vehicle Equipped With a Vectored Thruster (Master of Science thesis) – volume: 42 start-page: 971 year: 2013 end-page: 979 ident: bib17 article-title: Modeling and motion control of a hybrid-driven underwater glider publication-title: Indian J. Geo-Mar. Sci. – volume: 25 start-page: 97 year: 2011 end-page: 112 ident: bib41 article-title: Dynamic modeling and motion simulation for a winged hybrid-driven underwater glider publication-title: China Ocean Eng. – reference: Shi, J., Zhang, S., Yang, C., 2012. High frequency RF based non-contact underwater communication. In: MTS/IEEE Oceans. IEEE, Yeosu, Korea, pp. 1–6. – volume: 37 start-page: 143 year: 2012 end-page: 155 ident: bib37 article-title: A robust fuzzy autonomous underwater vehicle (AUV) docking approach for unknown current disturbances publication-title: IEEE J. Ocean. Eng. – reference: Allen, B., Austin, T., Forrester, N., Goldsborough, R., Kukulya, A., 2006. Autonomous docking demonstrations with enhanced REMUS technology. In: OCEANS 2006, Vol. 1–4, IEEE, New York, pp. 1539–1544. – start-page: 110 year: 2009 ident: bib22 article-title: Efficient Motion Planning and Control for Underwater Gliders (Ph.D. thesis) – reference: Mahmoudian, N., Woolsey, C., 2008. Underwater glider motion control. In: Proceedings of the 47th IEEE Conference on Decision and Control. IEEE, Cancun, Mexico, pp. 552–557. – volume: 13 start-page: 613 year: 2012 end-page: 623 ident: bib6 article-title: Study of a DC power system for a multi-node cabled ocean observatories system publication-title: J. Zhejiang Univ. Sci. C – volume: 48 start-page: 112 year: 2014 end-page: 124 ident: bib29 article-title: Hybrid underwater glider for underwater docking: modeling and performance evaluation publication-title: Mar. Technol. Soc. J. – reference: Hu, B., Tian, H., Qian, J., Xie, G., Mo, L., Zhang, S., 2013. A Fuzzy-PID method to improve the depth control of AUV. In: Proceedings of the 2013 IEEE International Conference on Mechatronics and Automation. IEEE, pp. 1528–1533. – reference: 〉. – volume: 31 start-page: 1 year: 2014 end-page: 10 ident: bib43 article-title: Depth control for micro-autonomous underwater vehicles (μAUVs): simulation and experimentation publication-title: Int. J. Adv. Robot. Syst. – volume: 9 start-page: 1414 year: 1971 end-page: 1415 ident: bib10 article-title: Optimal intercept guidance for short-range tactical missiles publication-title: AIAA J. – volume: 14 start-page: 483 year: 2006 end-page: 492 ident: bib31 article-title: Time-to-go weighted optimal guidance with impact angle constraints publication-title: IEEE Trans. Control Syst. Technol. – volume: 33 start-page: 550 year: 2008 end-page: 562 ident: bib24 article-title: Docking control system for a 54-cm-diameter (21-in) AUV publication-title: IEEE J. Ocean. Eng. – volume: 46 start-page: 50 year: 2012 end-page: 63 ident: bib5 article-title: Design and application of a junction box for cabled ocean observatories system publication-title: Mar. Technol. Soc. J. – volume: 31 start-page: 1400 year: 2008 end-page: 1412 ident: bib32 article-title: Linear quadratic guidance laws for imposing a terminal intercept angle publication-title: J. Guid. Control Dyn. – year: 2007 ident: bib20 article-title: Dual Control Approach for Automatic Docking Using Monocular Vision (Ph.D. thesis) – reference: Park, J., Jun, B., Lee, P., Lim, Y., Oh, J., 2011b. Docking problem and guidance laws considering drift for an underactuated AUV. In: MTS/IEEE Oceans. IEEE, Spain, pp. 1–7. – volume: 45 start-page: 31 year: 2011 end-page: 40 ident: bib36 article-title: Autonomous robotic fish as mobile sensor platforms: challenges and potential solutions publication-title: Mar. Technol. Soc. J. – reference: Zhang, F., Zhang, F., Tan, X., 2012. Steady spiraling Motion of gliding Robotic Fish. In: Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Vilamoura, Algarve, Portugal, pp. 1754–1759. – reference: Bachmayer, R., Leonard, N.E., Graver, J., Fiorelli, E., Bhatta, P., Paley, D., 2004. Underwater gliders: Recent developments and future applications. In: Proceedings of the 4th International Symposium on Underwater Technology, IEEE, Taibei, pp. 195–200. – volume: 19 start-page: 394 year: 2014 end-page: 399 ident: bib13 article-title: Miniature underwater glider: design and experimental results publication-title: IEEE/ASME Trans. Mechatron. – volume: 119 start-page: 1287 year: 2015 end-page: 1299 ident: bib46 article-title: Biased optimal guidance law with specified velocity rendezvous angle constraint publication-title: Aeronaut. J. – start-page: 162 year: 1995 ident: bib14 article-title: Guidance and Control of Ocean Vehicles – volume: 84 start-page: 249 year: 2014 end-page: 258 ident: bib12 article-title: Dynamics of underwater gliders in currents publication-title: Ocean Eng. – reference: Park, J., Jun, B., Lee, P., Lim, Y., Oh, J., 2011a. Modified linear terminal guidance for docking and a time-varying ocean current observer. In: Proceedings of the 2011 IEEE Symposium on Underwater Technology (UT) and 2011 Workshop on Scientific Use of Submarine Cables and Related Technologies (SSC). IEEE, Tokyo, pp. 1–6. – volume: 27 start-page: 265 year: 2013 end-page: 275 ident: bib7 article-title: Study on 10 publication-title: China Ocean Eng. – volume: 26 start-page: 498 year: 2001 end-page: 514 ident: bib34 article-title: Docking for an autonomous ocean sampling network publication-title: IEEE J. Ocean. Eng. – volume: 47 start-page: 188 year: 2010 end-page: 198 ident: bib35 article-title: Guidance, navigation, and control system performance trades for Mars pinpoint landing publication-title: J. Spacecr. Rockets – volume: 17 start-page: 31 year: 2010 end-page: 44 ident: bib4 article-title: The hybrid glider/AUV Folaga field experience at the GLINT'08 experiment publication-title: IEEE Robot. Autom. Mag. – reference: Wang, S.X., Sun, X.J., Wu, J.G., Wang, X.M., Zhang, H.W., 2010. Motion characteristic analysis of a hybrid-driven underwater glider. In: MTS/IEEE Oceans. IEEE, Sydney, Australia. – volume: 36 start-page: 24 year: 2009 end-page: 38 ident: bib2 article-title: Folaga: a low-cost autonomous underwater vehicle combining glider and AUV capabilities publication-title: Ocean Eng. – volume: 224 start-page: 255 year: 2010 end-page: 266 ident: bib9 article-title: Development of an auxiliary propulsion module for an autonomous underwater glider publication-title: Proc. Inst. Mech. Eng. Part M: J. Eng. Marit. Environ. – volume: 40 start-page: 349 year: 2015 end-page: 361 ident: bib38 article-title: Fuzzy docking guidance using augmented navigation system on an AUV publication-title: IEEE J. Ocean. Eng. – reference: Crosswind landing, 2009. Retrieved 2015-3-29 from 〈 – volume: 36 start-page: 48 year: 2009 end-page: 61 ident: bib28 article-title: Experiments on vision guided docking of an autonomous underwater vehicle using one camera publication-title: Ocean Eng. – reference: Peng, S., Yang, C., Fan, S., Zhang, S., Wang, P., Xie, Y., Chen, Y., 2013. A hybrid underwater glider for underwater docking. In: MTS/IEEE Oceans. IEEE, San Diego, California, pp. 1–7. – ident: 10.1016/j.oceaneng.2016.08.002_bib11 – volume: 224 start-page: 255 issue: 4 year: 2010 ident: 10.1016/j.oceaneng.2016.08.002_bib9 article-title: Development of an auxiliary propulsion module for an autonomous underwater glider publication-title: Proc. Inst. Mech. Eng. Part M: J. Eng. Marit. Environ. – ident: 10.1016/j.oceaneng.2016.08.002_bib47 doi: 10.1109/IROS.2012.6385860 – volume: 42 start-page: 971 issue: 8 year: 2013 ident: 10.1016/j.oceaneng.2016.08.002_bib17 article-title: Modeling and motion control of a hybrid-driven underwater glider publication-title: Indian J. Geo-Mar. Sci. – volume: 9 start-page: 1414 issue: 7 year: 1971 ident: 10.1016/j.oceaneng.2016.08.002_bib10 article-title: Optimal intercept guidance for short-range tactical missiles publication-title: AIAA J. doi: 10.2514/3.6369 – ident: 10.1016/j.oceaneng.2016.08.002_bib30 – year: 2011 ident: 10.1016/j.oceaneng.2016.08.002_bib45 – ident: #cr-split#-10.1016/j.oceaneng.2016.08.002_bib26.2 – ident: 10.1016/j.oceaneng.2016.08.002_bib19 – year: 2014 ident: 10.1016/j.oceaneng.2016.08.002_bib40 – volume: 14 start-page: 483 issue: 3 year: 2006 ident: 10.1016/j.oceaneng.2016.08.002_bib31 article-title: Time-to-go weighted optimal guidance with impact angle constraints publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2006.872525 – start-page: 273 year: 2005 ident: 10.1016/j.oceaneng.2016.08.002_bib15 – volume: 47 start-page: 188 issue: 1 year: 2010 ident: 10.1016/j.oceaneng.2016.08.002_bib35 article-title: Guidance, navigation, and control system performance trades for Mars pinpoint landing publication-title: J. Spacecr. Rockets doi: 10.2514/1.45779 – volume: 19 start-page: 394 issue: 1 year: 2014 ident: 10.1016/j.oceaneng.2016.08.002_bib13 article-title: Miniature underwater glider: design and experimental results publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2013.2279033 – volume: 119 start-page: 1287 issue: 1220 year: 2015 ident: 10.1016/j.oceaneng.2016.08.002_bib46 article-title: Biased optimal guidance law with specified velocity rendezvous angle constraint publication-title: Aeronaut. J. doi: 10.1017/S0001924000011258 – volume: 13 start-page: 613 issue: 8 year: 2012 ident: 10.1016/j.oceaneng.2016.08.002_bib6 article-title: Study of a DC power system for a multi-node cabled ocean observatories system publication-title: J. Zhejiang Univ. Sci. C doi: 10.1631/jzus.C1100381 – ident: 10.1016/j.oceaneng.2016.08.002_bib42 doi: 10.1109/OCEANSSYD.2010.5603828 – volume: 37 start-page: 143 issue: 2 year: 2012 ident: 10.1016/j.oceaneng.2016.08.002_bib37 article-title: A robust fuzzy autonomous underwater vehicle (AUV) docking approach for unknown current disturbances publication-title: IEEE J. Ocean. Eng. doi: 10.1109/JOE.2011.2180058 – volume: 31 start-page: 1 issue: 11 year: 2014 ident: 10.1016/j.oceaneng.2016.08.002_bib43 article-title: Depth control for micro-autonomous underwater vehicles (μAUVs): simulation and experimentation publication-title: Int. J. Adv. Robot. Syst. – year: 2007 ident: 10.1016/j.oceaneng.2016.08.002_bib20 – volume: 45 start-page: 31 issue: 4 year: 2011 ident: 10.1016/j.oceaneng.2016.08.002_bib36 article-title: Autonomous robotic fish as mobile sensor platforms: challenges and potential solutions publication-title: Mar. Technol. Soc. J. doi: 10.4031/MTSJ.45.4.2 – ident: 10.1016/j.oceaneng.2016.08.002_bib33 doi: 10.1109/OCEANS-Yeosu.2012.6263403 – volume: 81 start-page: 111 issue: 2 year: 2014 ident: 10.1016/j.oceaneng.2016.08.002_bib18 article-title: A hybrid-driven underwater glider model, hydrodynamics estimation, and an analysis of the motion control publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2014.02.002 – volume: 33 start-page: 550 issue: 4 year: 2008 ident: 10.1016/j.oceaneng.2016.08.002_bib24 article-title: Docking control system for a 54-cm-diameter (21-in) AUV publication-title: IEEE J. Ocean. Eng. doi: 10.1109/JOE.2008.2005348 – volume: 17 start-page: 31 issue: 1 year: 2010 ident: 10.1016/j.oceaneng.2016.08.002_bib4 article-title: The hybrid glider/AUV Folaga field experience at the GLINT'08 experiment publication-title: IEEE Robot. Autom. Mag. doi: 10.1109/MRA.2010.935791 – volume: 46 start-page: 50 issue: 3 year: 2012 ident: 10.1016/j.oceaneng.2016.08.002_bib5 article-title: Design and application of a junction box for cabled ocean observatories system publication-title: Mar. Technol. Soc. J. doi: 10.4031/MTSJ.46.3.4 – volume: 36 start-page: 24 issue: 1 year: 2009 ident: 10.1016/j.oceaneng.2016.08.002_bib2 article-title: Folaga: a low-cost autonomous underwater vehicle combining glider and AUV capabilities publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2008.08.014 – start-page: 162 year: 1995 ident: 10.1016/j.oceaneng.2016.08.002_bib14 – volume: 48 start-page: 112 issue: 6 year: 2014 ident: 10.1016/j.oceaneng.2016.08.002_bib29 article-title: Hybrid underwater glider for underwater docking: modeling and performance evaluation publication-title: Mar. Technol. Soc. J. doi: 10.4031/MTSJ.48.6.5 – ident: 10.1016/j.oceaneng.2016.08.002_bib23 doi: 10.1109/CDC.2008.4739432 – ident: 10.1016/j.oceaneng.2016.08.002_bib39 – year: 2002 ident: 10.1016/j.oceaneng.2016.08.002_bib25 – ident: 10.1016/j.oceaneng.2016.08.002_bib16 doi: 10.1109/ICMA.2013.6618141 – volume: 26 start-page: 498 issue: 4 year: 2001 ident: 10.1016/j.oceaneng.2016.08.002_bib34 article-title: Docking for an autonomous ocean sampling network publication-title: IEEE J. Ocean. Eng. doi: 10.1109/48.972084 – ident: 10.1016/j.oceaneng.2016.08.002_bib1 doi: 10.1109/OCEANS.2006.306952 – ident: 10.1016/j.oceaneng.2016.08.002_bib21 doi: 10.1109/CYBER.2015.7287904 – volume: 40 start-page: 349 issue: 2 year: 2015 ident: 10.1016/j.oceaneng.2016.08.002_bib38 article-title: Fuzzy docking guidance using augmented navigation system on an AUV publication-title: IEEE J. Ocean. Eng. doi: 10.1109/JOE.2014.2312593 – volume: 25 start-page: 97 issue: 1 year: 2011 ident: 10.1016/j.oceaneng.2016.08.002_bib41 article-title: Dynamic modeling and motion simulation for a winged hybrid-driven underwater glider publication-title: China Ocean Eng. doi: 10.1007/s13344-011-0008-7 – volume: 84 start-page: 249 year: 2014 ident: 10.1016/j.oceaneng.2016.08.002_bib12 article-title: Dynamics of underwater gliders in currents publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2014.03.024 – ident: 10.1016/j.oceaneng.2016.08.002_bib8 doi: 10.1109/AUV.2012.6380742 – volume: 31 start-page: 1400 issue: 5 year: 2008 ident: 10.1016/j.oceaneng.2016.08.002_bib32 article-title: Linear quadratic guidance laws for imposing a terminal intercept angle publication-title: J. Guid. Control Dyn. doi: 10.2514/1.32836 – ident: #cr-split#-10.1016/j.oceaneng.2016.08.002_bib26.1 doi: 10.1109/UT.2011.5774141 – volume: 36 start-page: 48 issue: 1 year: 2009 ident: 10.1016/j.oceaneng.2016.08.002_bib28 article-title: Experiments on vision guided docking of an autonomous underwater vehicle using one camera publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2008.10.001 – volume: 28 start-page: 131 issue: 1 year: 2005 ident: 10.1016/j.oceaneng.2016.08.002_bib44 article-title: Reduced Hamiltonian dynamics for a rigid body/mass particle system publication-title: J. Guid. Control Dyn. doi: 10.2514/1.5409 – ident: 10.1016/j.oceaneng.2016.08.002_bib27 doi: 10.1109/Oceans-Spain.2011.6003574 – ident: 10.1016/j.oceaneng.2016.08.002_bib3 doi: 10.1109/UT.2004.1405540 – start-page: 110 year: 2009 ident: 10.1016/j.oceaneng.2016.08.002_bib22 – volume: 27 start-page: 265 issue: 2 year: 2013 ident: 10.1016/j.oceaneng.2016.08.002_bib7 article-title: Study on 10kV DC powered junction box for cabled ocean observatory system publication-title: China Ocean Eng. doi: 10.1007/s13344-013-0023-y |
| SSID | ssj0006603 |
| Score | 2.3583612 |
| Snippet | The development of a novel type of hybrid underwater glider (HUG) that combines the advantages of buoyancy-driven underwater glider and propeller-driven... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 170 |
| SubjectTerms | Current Docking Guidance algorithm Hybrid underwater glider Rotatable thruster |
| Title | Study on docking guidance algorithm for hybrid underwater glider in currents |
| URI | https://dx.doi.org/10.1016/j.oceaneng.2016.08.002 |
| Volume | 125 |
| WOSCitedRecordID | wos000384860900018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-5258 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006603 issn: 0029-8018 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZWLQdAQqWAKI_KB24oZZPYTnysqla0QgWJIu0tcmxnH9o61T7K9t_jie0k0IrSAxcr66y9yc63M5Nv54HQh5TGWUkzEelUyYhURFk9SNJIl4oIxZU1yaJpNpGdn-ejEf82GGxCLsz1PDMm32z41X8VtZ2zwobU2QeIu93UTthjK3Q7WrHb8Z8E_92ViTYflVV1QASM11PlEgPm43oxXU0um9jCyQ0kazV9cBc_BdRKHM8hJw8YEOmqNi37rutXCaS97uoXtgrDU85HwszWptO1nogGxqadPfF862RtFy2b8TZ1PRH1Te1PeEIiZm1oW5cgwMHw5b8p2YT21GTsmoV4ixu7pi23lLnjFWYHNdyfvWgIxGMHLvi1M1_hL_s_rFobaxjC2GZF2KeAfQrovglVSLeTjHKrD7cPT49HZ60VZ2yYhvAguJledvndV3S3Y9NzVi520DP_lIEPHTqeo4E2u-hJr_bkLnrayNMXLH-BvjSwwbXBHjY4wAa3sMEWNtjBBnewwQ42eGpwgM1L9OPk-OLoc-Q7bUQyjZNVJBgjepjKWIiYEzK0r1VV5oIrUSlGOItFRTXUiiOyqioJXjnRRJBEDeFN6Su0ZWqjXyOclYlMtM7yvEwIpaWQQjDFZEIFK-Ms30M0fE2F9GXooRvKvPi7oPbQp3bdlSvEcu8KHqRQeHfSuYmFBdg9a988-NPeosfdj-Ed2lot1vo9eiSvV9PlYt-j6xf1p527 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+on+docking+guidance+algorithm+for+hybrid+underwater+glider+in+currents&rft.jtitle=Ocean+engineering&rft.au=Yang%2C+Canjun&rft.au=Peng%2C+Shilin&rft.au=Fan%2C+Shuangshuang&rft.au=Zhang%2C+Shaoyong&rft.date=2016-10-01&rft.issn=0029-8018&rft.volume=125&rft.spage=170&rft.epage=181&rft_id=info:doi/10.1016%2Fj.oceaneng.2016.08.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_oceaneng_2016_08_002 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon |