A multi-input and dual-output wind speed interval forecasting system based on constrained multi-objective optimization problem and model averaging

[Display omitted] •A multi-input dual-output neural network is constructed to obtain the best interval.•Two constrained bi-objective optimization problems are established and solved.•An algorithm specifically solving constrained multi-objective problem is employed.•Coverage constraint is introduced...

Full description

Saved in:
Bibliographic Details
Published in:Energy conversion and management Vol. 319; p. 118909
Main Authors: Lv, Mengzheng, Wang, Jianzhou, Wang, Shuai, Zhao, Yang, Gao, Jialu, Wang, Kang
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.11.2024
Subjects:
ISSN:0196-8904
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract [Display omitted] •A multi-input dual-output neural network is constructed to obtain the best interval.•Two constrained bi-objective optimization problems are established and solved.•An algorithm specifically solving constrained multi-objective problem is employed.•Coverage constraint is introduced to optimize the two optimal interval coefficients.•Model averaging is used to combine advantages to skillfully solve “no free lunch” The uncertainty analysis of wind speed forecasting using the Lower Upper Bound Estimation (LUBE) is an advanced interval prediction method that does not require assumptions about data distribution. However, previous studies have primarily relied on single neural network models, overlooking the benefits of model averaging. Moreover, they assumed symmetric upper and lower bounds of true values in training data, which may not hold for real data with asymmetric features. To address these issues, we propose a multi-input dual-output wind speed interval forecasting system (MDWSIFS). Utilizing neural network models, we create two different outputs for each model by scaling the output values with interval scaling coefficients 1 + γ1 and 1 - γ2, respectively. Subsequently, we propose two constrained multi-objective optimization problems and introduce non-dominated sorting genetic algorithm II (NSGA-II), a method that has been proven to be highly suitable for solving constrained bi-objective optimization problems. By using NSGA-II to optimize a multi-objective problem with coverage probability constraints, the optimal coefficients γ1 and γ2 are determined, thereby the prediction interval is defined. Finally, through a model averaging strategy integrated with several neural network models, we use NSGA-II to optimize the weights of sub-models to achieve a more accurate final prediction interval. The test results indicate the superiority of MDWSIFS over existing models, with the metric reaching unprecedented levels across multiple datasets. These findings not only signify an advancement in wind speed forecasting but also promise improved efficiency in wind energy utilization and reduced operational costs for power systems.
AbstractList [Display omitted] •A multi-input dual-output neural network is constructed to obtain the best interval.•Two constrained bi-objective optimization problems are established and solved.•An algorithm specifically solving constrained multi-objective problem is employed.•Coverage constraint is introduced to optimize the two optimal interval coefficients.•Model averaging is used to combine advantages to skillfully solve “no free lunch” The uncertainty analysis of wind speed forecasting using the Lower Upper Bound Estimation (LUBE) is an advanced interval prediction method that does not require assumptions about data distribution. However, previous studies have primarily relied on single neural network models, overlooking the benefits of model averaging. Moreover, they assumed symmetric upper and lower bounds of true values in training data, which may not hold for real data with asymmetric features. To address these issues, we propose a multi-input dual-output wind speed interval forecasting system (MDWSIFS). Utilizing neural network models, we create two different outputs for each model by scaling the output values with interval scaling coefficients 1 + γ1 and 1 - γ2, respectively. Subsequently, we propose two constrained multi-objective optimization problems and introduce non-dominated sorting genetic algorithm II (NSGA-II), a method that has been proven to be highly suitable for solving constrained bi-objective optimization problems. By using NSGA-II to optimize a multi-objective problem with coverage probability constraints, the optimal coefficients γ1 and γ2 are determined, thereby the prediction interval is defined. Finally, through a model averaging strategy integrated with several neural network models, we use NSGA-II to optimize the weights of sub-models to achieve a more accurate final prediction interval. The test results indicate the superiority of MDWSIFS over existing models, with the metric reaching unprecedented levels across multiple datasets. These findings not only signify an advancement in wind speed forecasting but also promise improved efficiency in wind energy utilization and reduced operational costs for power systems.
ArticleNumber 118909
Author Lv, Mengzheng
Gao, Jialu
Wang, Jianzhou
Wang, Kang
Wang, Shuai
Zhao, Yang
Author_xml – sequence: 1
  givenname: Mengzheng
  orcidid: 0000-0002-5035-4822
  surname: Lv
  fullname: Lv, Mengzheng
  organization: School of Statistics, Dongbei University of Finance and Economics, Dalian 116025, China
– sequence: 2
  givenname: Jianzhou
  surname: Wang
  fullname: Wang, Jianzhou
  email: wangjz@dufe.edu.cn
  organization: School of Statistics, Dongbei University of Finance and Economics, Dalian 116025, China
– sequence: 3
  givenname: Shuai
  surname: Wang
  fullname: Wang, Shuai
  organization: School of Statistics, Dongbei University of Finance and Economics, Dalian 116025, China
– sequence: 4
  givenname: Yang
  surname: Zhao
  fullname: Zhao, Yang
  organization: School of Statistics, Dongbei University of Finance and Economics, Dalian 116025, China
– sequence: 5
  givenname: Jialu
  surname: Gao
  fullname: Gao, Jialu
  organization: Institute of Systems Engineering, Macau University of Science and Technology, Macau, 999078, China
– sequence: 6
  givenname: Kang
  surname: Wang
  fullname: Wang, Kang
  organization: School of Statistics, Dongbei University of Finance and Economics, Dalian 116025, China
BookMark eNqFkM9OAyEQxjloYv3zCoYX2ArdLtsmHjSN_xITL3omAwyGZhc2QGvqY_jEslYvXnqaGfL9vmG-U3Lkg0dCLjmbcsbF1XqKXgffg5_O2Gw-5XyxZMsjMmF8KarSz0_IaUprxljdMDEhX7e033TZVc4Pm0zBG2o20FVhk8f5w5WHNCAa6nzGuIWO2hBRQ8rOv9O0Sxl7qiAVRfC07E45gvNl3PsGtUad3RZpGLLr3SdkV4RDDKor5LiwDwY7CluM8F5Mz8mxhS7hxW89I2_3d6-rx-r55eFpdftc6ZrPcgWiqVHxhmvWqpYpWJj5UihuwSJTjW6VbbFI0IAFY2phrBFKWLHAVqvG1Gfkeu-rY0gpopXa5Z_fjRd0kjM5ZirX8i9TOWYq95kWXPzDh-h6iLvD4M0exHLc1mGUSbuiRONKsFma4A5ZfANNeqB_
CitedBy_id crossref_primary_10_1016_j_apenergy_2025_126615
crossref_primary_10_1016_j_energy_2025_136060
crossref_primary_10_1016_j_energy_2024_133920
crossref_primary_10_1016_j_energy_2025_137229
crossref_primary_10_1016_j_ins_2025_122531
crossref_primary_10_1109_TSTE_2024_3478760
crossref_primary_10_1016_j_awe_2025_100055
crossref_primary_10_1111_mice_70049
crossref_primary_10_1016_j_asoc_2025_113829
Cites_doi 10.1109/TSTE.2021.3086851
10.1109/TII.2020.3006928
10.1109/4235.585893
10.1109/TNN.2010.2096824
10.1109/59.41700
10.1016/j.ijepes.2014.03.060
10.1109/72.97934
10.1016/j.enconman.2023.117868
10.1109/TNN.2003.809428
10.1109/5.726791
10.1080/07350015.1995.10524599
10.1109/TPWRS.2013.2287871
10.1016/j.apenergy.2022.118796
10.2307/2532360
10.1016/j.eswa.2022.118419
10.1049/iet-rpg.2018.5643
10.1016/j.jenvman.2022.116282
10.1007/s10489-024-05350-z
10.1016/j.eswa.2023.122924
10.1016/j.renene.2018.09.087
10.1016/j.ins.2022.11.145
10.1016/j.apenergy.2022.118938
10.1016/j.apm.2023.06.040
10.1016/j.enconman.2022.115583
10.1016/j.compeleceng.2022.108000
10.1109/4235.996017
10.1016/j.knosys.2021.107435
10.1016/j.eswa.2023.119539
10.1007/BF00114844
10.1093/biomet/asm068
10.1038/323533a0
10.1016/j.rser.2023.113497
10.1080/01621459.1972.10481224
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.enconman.2024.118909
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_enconman_2024_118909
S0196890424008501
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXKI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFJKZ
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
8WZ
9DU
A6W
AAQXK
AATTM
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SAC
WUQ
~HD
ID FETCH-LOGICAL-c312t-a653eb151c07b70ba8d496b1fafe0b5c7bf7e53eedafadd36dfd6b6f68e7cb5d3
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001302022900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-8904
IngestDate Sat Nov 29 04:26:14 EST 2025
Tue Nov 18 22:00:31 EST 2025
Tue Dec 03 03:44:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Dual-output neural network
Constrained multi-objective optimization problem
Lower and upper bound estimation
Wind speed interval forecasting
Model averaging
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-a653eb151c07b70ba8d496b1fafe0b5c7bf7e53eedafadd36dfd6b6f68e7cb5d3
ORCID 0000-0002-5035-4822
ParticipantIDs crossref_citationtrail_10_1016_j_enconman_2024_118909
crossref_primary_10_1016_j_enconman_2024_118909
elsevier_sciencedirect_doi_10_1016_j_enconman_2024_118909
PublicationCentury 2000
PublicationDate 2024-11-01
2024-11-00
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Energy conversion and management
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References An, Yin, Wu, She, Chen (b0005) 2021
Jones, Henderson (b0045) 2007
El-Dakkak, Feng, Wahbah, EL-Fouly, Zahawi (b0075) 2019
Specht (b0230) 1991
Zhang, Wang, Li, Zeng, Huang (bib281) 2022
Chung J, Gulcehre C, Cho K, Bengio Y. Gated feedback recurrent neural networks. 32nd International Conference on Machine Learning, ICML 2015, 2015.
Xing, Wang, Lu, Wang (b0140) 2022; 263
Wang, Wang, Li, Lu, Jiang, Xing (b0130) 2023
Wang, Wang, Zeng, Lu (b0255) 2022; 313
Zhang, Yan, Liu, Gao, Han, Li (b0015) 2021
Zhao, Wang, Niu, Wang, Lv (b0275) 2024
Lian, Zeng, Wang, Yao, Su, Tang (b0105) 2020
Li, Wang, Zhang (b0090) 2021; 231
Gao, Wang, Zhou, Lv, Wei (b0125) 2024; 244
Bin, Zhu, Siew (b0220) 2006
Rumelhart, Hinton, Williams (b0215) 1986
Khosravi, Nahavandi (b0060) 2014
Odell, Anderson, D’Agostino (b0040) 1992
Heskes (b0050) 1997
Wolpert, Macready (b0260) 1997
Winkler (b0280) 1972
GWEC. Global Wind Report 2023. Global Wind Energy Council 2023.
Liu C, Zhu H, Ren Y, Wang Z. A Novel Intelligent Forecasting Framework for Quarterly or Monthly Energy Consumption. IEEE Transactions on Industrial Informatics 2023;PP:1–12. 10.1109/TII.2023.3330299.
Choi, Park, Choi, Lee, Lee (b0020) 2023
Almutairi, Alrumayh (b0095) 2022; 101
Yang, Hao, Hao (b0030) 2023; 622
Wang, Wang, Zeng, Lu (b0080) 2022; 314
Wang, Lv, Li, Zeng (b0265) 2023
Wang, Zhang, Liu, Huang (b0115) 2023
Seo, Oh, Kwak (b0070) 2019
Lv, Li, Niu, Wang (b0135) 2022; 52
Wan, Xu, Pinson, Dong, Wong (b0085) 2014
Zhao, Ye, Pinson, Tang, Lu (b0025) 2018
Nix, Weigend (b0035) 1994
Deb, Pratap, Agarwal, Meyarivan (b0170) 2002
Jaeger H. Adaptive Nonlinear System Identification with Echo State Networks. NIPS 2002: Proceedings of the 15th International Conference on Neural Information Processing Systems, 2002.
Elman (b0225) 1991
Gao, Wang, Wei, Jiang (b0160) 2023; 123
Diebold, Mariano (b0270) 1995; 13
Ding, He (b0065) 2003
Zheng, Wang (b0155) 2024
Khosravi, Nahavandi, Creighton, Atiya (b0055) 2011; 22
Wang, Qian, Zhang, Wang, Zhang (b0145) 2024
Wang, Li, Zhang, Wang (b0110) 2023; 211
Wang, Zhou, Jiang (b0100) 2023; 217
Moghram, Rahman (b0120) 1989
LeCun, Bottou, Bengio, Haffner (b0245) 1998
Hao, Wang, Wang, Yang (b0150) 2024; 299
Heskes (10.1016/j.enconman.2024.118909_b0050) 1997
Lian (10.1016/j.enconman.2024.118909_b0105) 2020
Deb (10.1016/j.enconman.2024.118909_b0170) 2002
LeCun (10.1016/j.enconman.2024.118909_b0245) 1998
Wang (10.1016/j.enconman.2024.118909_b0130) 2023
Wang (10.1016/j.enconman.2024.118909_b0265) 2023
Khosravi (10.1016/j.enconman.2024.118909_b0060) 2014
Choi (10.1016/j.enconman.2024.118909_b0020) 2023
El-Dakkak (10.1016/j.enconman.2024.118909_b0075) 2019
10.1016/j.enconman.2024.118909_b0235
10.1016/j.enconman.2024.118909_b0210
Gao (10.1016/j.enconman.2024.118909_b0125) 2024; 244
10.1016/j.enconman.2024.118909_b0010
Odell (10.1016/j.enconman.2024.118909_b0040) 1992
Jones (10.1016/j.enconman.2024.118909_b0045) 2007
Wang (10.1016/j.enconman.2024.118909_b0080) 2022; 314
Xing (10.1016/j.enconman.2024.118909_b0140) 2022; 263
Zhang (10.1016/j.enconman.2024.118909_bib281) 2022
Wang (10.1016/j.enconman.2024.118909_b0100) 2023; 217
Seo (10.1016/j.enconman.2024.118909_b0070) 2019
Nix (10.1016/j.enconman.2024.118909_b0035) 1994
Wang (10.1016/j.enconman.2024.118909_b0145) 2024
Ding (10.1016/j.enconman.2024.118909_b0065) 2003
Wang (10.1016/j.enconman.2024.118909_b0115) 2023
Zhang (10.1016/j.enconman.2024.118909_b0015) 2021
Bin (10.1016/j.enconman.2024.118909_b0220) 2006
Zhao (10.1016/j.enconman.2024.118909_b0025) 2018
Moghram (10.1016/j.enconman.2024.118909_b0120) 1989
Gao (10.1016/j.enconman.2024.118909_b0160) 2023; 123
Wang (10.1016/j.enconman.2024.118909_b0110) 2023; 211
Zhao (10.1016/j.enconman.2024.118909_b0275) 2024
Wang (10.1016/j.enconman.2024.118909_b0255) 2022; 313
Wolpert (10.1016/j.enconman.2024.118909_b0260) 1997
Winkler (10.1016/j.enconman.2024.118909_b0280) 1972
Rumelhart (10.1016/j.enconman.2024.118909_b0215) 1986
Li (10.1016/j.enconman.2024.118909_b0090) 2021; 231
Lv (10.1016/j.enconman.2024.118909_b0135) 2022; 52
Hao (10.1016/j.enconman.2024.118909_b0150) 2024; 299
Diebold (10.1016/j.enconman.2024.118909_b0270) 1995; 13
Wan (10.1016/j.enconman.2024.118909_b0085) 2014
Zheng (10.1016/j.enconman.2024.118909_b0155) 2024
10.1016/j.enconman.2024.118909_b0240
Elman (10.1016/j.enconman.2024.118909_b0225) 1991
Almutairi (10.1016/j.enconman.2024.118909_b0095) 2022; 101
An (10.1016/j.enconman.2024.118909_b0005) 2021
Khosravi (10.1016/j.enconman.2024.118909_b0055) 2011; 22
Yang (10.1016/j.enconman.2024.118909_b0030) 2023; 622
Specht (10.1016/j.enconman.2024.118909_b0230) 1991
References_xml – year: 2024
  ident: b0155
  article-title: Short-term wind speed forecasting based on recurrent neural networks and Levy crystal structure algorithm
  publication-title: Energy
– volume: 263
  year: 2022
  ident: b0140
  article-title: Research of a novel short-term wind forecasting system based on multi-objective Aquila optimizer for point and interval forecast
  publication-title: Energ Conver Manage
– reference: Liu C, Zhu H, Ren Y, Wang Z. A Novel Intelligent Forecasting Framework for Quarterly or Monthly Energy Consumption. IEEE Transactions on Industrial Informatics 2023;PP:1–12. 10.1109/TII.2023.3330299.
– year: 1994
  ident: b0035
  article-title: Estimating the mean and variance of the target probability distribution
  publication-title: IEEE International Conference on Neural Networks - Conference Proceedings
– year: 1972
  ident: b0280
  article-title: A decision-theoretic approach to interval estimation
  publication-title: J Am Stat Assoc
– reference: Jaeger H. Adaptive Nonlinear System Identification with Echo State Networks. NIPS 2002: Proceedings of the 15th International Conference on Neural Information Processing Systems, 2002.
– volume: 101
  year: 2022
  ident: b0095
  article-title: An intelligent deep learning based prediction model for wind power generation
  publication-title: Comput Electr Eng
– volume: 217
  year: 2023
  ident: b0100
  article-title: A novel interval forecasting system based on multi-objective optimization and hybrid data reconstruct strategy
  publication-title: Expert Syst Appl
– volume: 13
  start-page: 253
  year: 1995
  end-page: 263
  ident: b0270
  article-title: Comparing predictive accuracy
  publication-title: J Bus Econ Stat
– year: 2014
  ident: b0060
  article-title: An optimized mean variance estimation method for uncertainty quantification of wind power forecasts
  publication-title: Int J Electr Power Energy Syst
– year: 1989
  ident: b0120
  article-title: Analysis and evaluation of five short-term load forecasting techniques
  publication-title: IEEE Trans Power Syst
– volume: 52
  year: 2022
  ident: b0135
  article-title: Novel deterministic and probabilistic combined system based on deep learning and self-improved optimization algorithm for wind speed forecasting
  publication-title: Sustainable Energy Technol Assess
– volume: 231
  year: 2021
  ident: b0090
  article-title: A wind speed interval forecasting system based on constrained lower upper bound estimation and parallel feature selection
  publication-title: Knowl-Based Syst
– reference: Chung J, Gulcehre C, Cho K, Bengio Y. Gated feedback recurrent neural networks. 32nd International Conference on Machine Learning, ICML 2015, 2015.
– volume: 22
  start-page: 337
  year: 2011
  end-page: 346
  ident: b0055
  article-title: Lower upper bound estimation method for construction of neural network-based prediction intervals
  publication-title: IEEE Trans Neural Netw
– year: 2023
  ident: b0265
  article-title: Multivariate selection-combination short-term wind speed forecasting system based on convolution-recurrent network and multi-objective chameleon swarm algorithm
  publication-title: Expert Syst Appl
– year: 2002
  ident: b0170
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans Evol Comput
– year: 2007
  ident: b0045
  article-title: Miscellanea kernel-type density estimation on the unit interval
  publication-title: Biometrika
– year: 2014
  ident: b0085
  article-title: Probabilistic forecasting of wind power generation using extreme learning machine
  publication-title: IEEE Trans Power Syst
– year: 1997
  ident: b0050
  article-title: Practical confidence and prediction intervals
  publication-title: Adv Neural Inf Proces Syst
– volume: 299
  year: 2024
  ident: b0150
  article-title: A new perspective of wind speed forecasting: Multi-objective and model selection-based ensemble interval-valued wind speed forecasting system
  publication-title: Energ Conver Manage
– year: 2019
  ident: b0075
  article-title: Combinatorial method for bandwidth selection in wind speed kernel density estimation
  publication-title: IET Renew Power Gener
– year: 2023
  ident: b0020
  article-title: Evaluating offshore wind power potential in the context of climate change and technological advancement: Insights from Republic of Korea
  publication-title: Renew Sustain Energy Rev
– year: 2019
  ident: b0070
  article-title: Wind turbine power curve modeling using maximum likelihood estimation method
  publication-title: Renew Energy
– year: 1991
  ident: b0230
  article-title: A general regression neural network
  publication-title: IEEE Trans Neural Netw
– year: 1992
  ident: b0040
  article-title: Maximum likelihood estimation for interval-censored data using a weibull- based accelerated failure time model
  publication-title: Biometrics
– year: 2023
  ident: b0115
  article-title: Tourism demand interval forecasting amid COVID-19: A hybrid model with a modified multi-objective optimization algorithm
  publication-title: J Hosp Tour Res
– year: 1986
  ident: b0215
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
– reference: GWEC. Global Wind Report 2023. Global Wind Energy Council 2023.
– volume: 622
  start-page: 560
  year: 2023
  end-page: 586
  ident: b0030
  article-title: Innovative ensemble system based on mixed frequency modeling for wind speed point and interval forecasting
  publication-title: Inf Sci
– volume: 314
  year: 2022
  ident: b0080
  article-title: An integrated power load point-interval forecasting system based on information entropy and multi-objective optimization
  publication-title: Appl Energy
– year: 2006
  ident: b0220
  article-title: Extreme learning machine: Theory and applications
  publication-title: Neurocomputing
– year: 2024
  ident: b0275
  article-title: A novel fuzzification - forecasting - optimization ensemble system for wind speed based on fuzzy theory and a multiobjective optimizer
  publication-title: Appl Intell
– volume: 211
  year: 2023
  ident: b0110
  article-title: A deep-learning wind speed interval forecasting architecture based on modified scaling approach with feature ranking and two-output gated recurrent unit
  publication-title: Expert Syst Appl
– year: 2018
  ident: b0025
  article-title: Correlation-constrained and sparsity-controlled vector autoregressive model for spatio-temporal wind power forecasting
  publication-title: IEEE Trans Power Syst
– year: 1998
  ident: b0245
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc IEEE
– year: 2021
  ident: b0015
  article-title: Multi-source and temporal attention network for probabilistic wind power prediction
  publication-title: IEEE Trans Sustainable Energy
– start-page: 1
  year: 2023
  end-page: 11
  ident: b0130
  article-title: A Multitask integrated deep-learning probabilistic prediction for load forecasting
  publication-title: IEEE Trans Power Syst
– year: 2024
  ident: b0145
  article-title: A novel wind power forecasting system integrating time series refining, nonlinear multi-objective optimized deep learning and linear error correction
  publication-title: Energ Conver Manage
– volume: 313
  year: 2022
  ident: b0255
  article-title: A novel ensemble probabilistic forecasting system for uncertainty in wind speed
  publication-title: Appl Energy
– year: 2003
  ident: b0065
  article-title: Backpropagation of pseudoerrors: Neural networks that are adaptive to heterogeneous noise
  publication-title: IEEE Trans Neural Netw
– year: 2020
  ident: b0105
  article-title: Jou rna lP
  publication-title: Neural Netw
– year: 2021
  ident: b0005
  article-title: Multisource wind speed fusion method for short-term wind power prediction
  publication-title: IEEE Trans Ind Inf
– year: 2022
  ident: bib281
  article-title: Uncertainty quantification of PM2.5 concentrations using a hybrid model based on characteristic decomposition and fuzzy granulation
  publication-title: J Environ Manage
– year: 1991
  ident: b0225
  article-title: Distributed representations, simple recurrent networks and grammatical structure
  publication-title: Mach Learn
– volume: 123
  start-page: 566
  year: 2023
  end-page: 589
  ident: b0160
  article-title: Combined interval prediction algorithm based on optimal relevancy
  publication-title: Redundancy and Synergy Applied Mathematical Modelling
– year: 1997
  ident: b0260
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans Evol Comput
– volume: 244
  year: 2024
  ident: b0125
  article-title: Enhancing investment performance of Black-Litterman model with AI hybrid system: Can it be done?
  publication-title: Expert Syst Appl
– year: 2021
  ident: 10.1016/j.enconman.2024.118909_b0015
  article-title: Multi-source and temporal attention network for probabilistic wind power prediction
  publication-title: IEEE Trans Sustainable Energy
  doi: 10.1109/TSTE.2021.3086851
– year: 2021
  ident: 10.1016/j.enconman.2024.118909_b0005
  article-title: Multisource wind speed fusion method for short-term wind power prediction
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2020.3006928
– year: 1997
  ident: 10.1016/j.enconman.2024.118909_b0260
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.585893
– start-page: 1
  year: 2023
  ident: 10.1016/j.enconman.2024.118909_b0130
  article-title: A Multitask integrated deep-learning probabilistic prediction for load forecasting
  publication-title: IEEE Trans Power Syst
– volume: 22
  start-page: 337
  year: 2011
  ident: 10.1016/j.enconman.2024.118909_b0055
  article-title: Lower upper bound estimation method for construction of neural network-based prediction intervals
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2010.2096824
– ident: 10.1016/j.enconman.2024.118909_b0010
– year: 1989
  ident: 10.1016/j.enconman.2024.118909_b0120
  article-title: Analysis and evaluation of five short-term load forecasting techniques
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/59.41700
– year: 2014
  ident: 10.1016/j.enconman.2024.118909_b0060
  article-title: An optimized mean variance estimation method for uncertainty quantification of wind power forecasts
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2014.03.060
– year: 1991
  ident: 10.1016/j.enconman.2024.118909_b0230
  article-title: A general regression neural network
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.97934
– volume: 299
  year: 2024
  ident: 10.1016/j.enconman.2024.118909_b0150
  article-title: A new perspective of wind speed forecasting: Multi-objective and model selection-based ensemble interval-valued wind speed forecasting system
  publication-title: Energ Conver Manage
  doi: 10.1016/j.enconman.2023.117868
– year: 2003
  ident: 10.1016/j.enconman.2024.118909_b0065
  article-title: Backpropagation of pseudoerrors: Neural networks that are adaptive to heterogeneous noise
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2003.809428
– ident: 10.1016/j.enconman.2024.118909_b0210
– year: 1998
  ident: 10.1016/j.enconman.2024.118909_b0245
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc IEEE
  doi: 10.1109/5.726791
– volume: 13
  start-page: 253
  year: 1995
  ident: 10.1016/j.enconman.2024.118909_b0270
  article-title: Comparing predictive accuracy
  publication-title: J Bus Econ Stat
  doi: 10.1080/07350015.1995.10524599
– year: 2014
  ident: 10.1016/j.enconman.2024.118909_b0085
  article-title: Probabilistic forecasting of wind power generation using extreme learning machine
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2013.2287871
– volume: 313
  year: 2022
  ident: 10.1016/j.enconman.2024.118909_b0255
  article-title: A novel ensemble probabilistic forecasting system for uncertainty in wind speed
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.118796
– year: 1992
  ident: 10.1016/j.enconman.2024.118909_b0040
  article-title: Maximum likelihood estimation for interval-censored data using a weibull- based accelerated failure time model
  publication-title: Biometrics
  doi: 10.2307/2532360
– volume: 211
  year: 2023
  ident: 10.1016/j.enconman.2024.118909_b0110
  article-title: A deep-learning wind speed interval forecasting architecture based on modified scaling approach with feature ranking and two-output gated recurrent unit
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.118419
– ident: 10.1016/j.enconman.2024.118909_b0235
– year: 2019
  ident: 10.1016/j.enconman.2024.118909_b0075
  article-title: Combinatorial method for bandwidth selection in wind speed kernel density estimation
  publication-title: IET Renew Power Gener
  doi: 10.1049/iet-rpg.2018.5643
– ident: 10.1016/j.enconman.2024.118909_b0240
– year: 2022
  ident: 10.1016/j.enconman.2024.118909_bib281
  article-title: Uncertainty quantification of PM2.5 concentrations using a hybrid model based on characteristic decomposition and fuzzy granulation
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2022.116282
– year: 2024
  ident: 10.1016/j.enconman.2024.118909_b0275
  article-title: A novel fuzzification - forecasting - optimization ensemble system for wind speed based on fuzzy theory and a multiobjective optimizer
  publication-title: Appl Intell
  doi: 10.1007/s10489-024-05350-z
– volume: 244
  year: 2024
  ident: 10.1016/j.enconman.2024.118909_b0125
  article-title: Enhancing investment performance of Black-Litterman model with AI hybrid system: Can it be done?
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.122924
– year: 2019
  ident: 10.1016/j.enconman.2024.118909_b0070
  article-title: Wind turbine power curve modeling using maximum likelihood estimation method
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2018.09.087
– volume: 622
  start-page: 560
  year: 2023
  ident: 10.1016/j.enconman.2024.118909_b0030
  article-title: Innovative ensemble system based on mixed frequency modeling for wind speed point and interval forecasting
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2022.11.145
– volume: 314
  year: 2022
  ident: 10.1016/j.enconman.2024.118909_b0080
  article-title: An integrated power load point-interval forecasting system based on information entropy and multi-objective optimization
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.118938
– volume: 123
  start-page: 566
  year: 2023
  ident: 10.1016/j.enconman.2024.118909_b0160
  article-title: Combined interval prediction algorithm based on optimal relevancy
  publication-title: Redundancy and Synergy Applied Mathematical Modelling
  doi: 10.1016/j.apm.2023.06.040
– year: 2023
  ident: 10.1016/j.enconman.2024.118909_b0265
  article-title: Multivariate selection-combination short-term wind speed forecasting system based on convolution-recurrent network and multi-objective chameleon swarm algorithm
  publication-title: Expert Syst Appl
– volume: 263
  year: 2022
  ident: 10.1016/j.enconman.2024.118909_b0140
  article-title: Research of a novel short-term wind forecasting system based on multi-objective Aquila optimizer for point and interval forecast
  publication-title: Energ Conver Manage
  doi: 10.1016/j.enconman.2022.115583
– volume: 101
  year: 2022
  ident: 10.1016/j.enconman.2024.118909_b0095
  article-title: An intelligent deep learning based prediction model for wind power generation
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2022.108000
– volume: 52
  year: 2022
  ident: 10.1016/j.enconman.2024.118909_b0135
  article-title: Novel deterministic and probabilistic combined system based on deep learning and self-improved optimization algorithm for wind speed forecasting
  publication-title: Sustainable Energy Technol Assess
– year: 2020
  ident: 10.1016/j.enconman.2024.118909_b0105
  article-title: Jou rna lP
  publication-title: Neural Netw
– year: 2024
  ident: 10.1016/j.enconman.2024.118909_b0155
  article-title: Short-term wind speed forecasting based on recurrent neural networks and Levy crystal structure algorithm
  publication-title: Energy
– year: 2002
  ident: 10.1016/j.enconman.2024.118909_b0170
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.996017
– volume: 231
  year: 2021
  ident: 10.1016/j.enconman.2024.118909_b0090
  article-title: A wind speed interval forecasting system based on constrained lower upper bound estimation and parallel feature selection
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2021.107435
– volume: 217
  year: 2023
  ident: 10.1016/j.enconman.2024.118909_b0100
  article-title: A novel interval forecasting system based on multi-objective optimization and hybrid data reconstruct strategy
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.119539
– year: 2018
  ident: 10.1016/j.enconman.2024.118909_b0025
  article-title: Correlation-constrained and sparsity-controlled vector autoregressive model for spatio-temporal wind power forecasting
  publication-title: IEEE Trans Power Syst
– year: 2024
  ident: 10.1016/j.enconman.2024.118909_b0145
  article-title: A novel wind power forecasting system integrating time series refining, nonlinear multi-objective optimized deep learning and linear error correction
  publication-title: Energ Conver Manage
– year: 1991
  ident: 10.1016/j.enconman.2024.118909_b0225
  article-title: Distributed representations, simple recurrent networks and grammatical structure
  publication-title: Mach Learn
  doi: 10.1007/BF00114844
– year: 1994
  ident: 10.1016/j.enconman.2024.118909_b0035
  article-title: Estimating the mean and variance of the target probability distribution
  publication-title: IEEE International Conference on Neural Networks - Conference Proceedings
– year: 2007
  ident: 10.1016/j.enconman.2024.118909_b0045
  article-title: Miscellanea kernel-type density estimation on the unit interval
  publication-title: Biometrika
  doi: 10.1093/biomet/asm068
– year: 2023
  ident: 10.1016/j.enconman.2024.118909_b0115
  article-title: Tourism demand interval forecasting amid COVID-19: A hybrid model with a modified multi-objective optimization algorithm
  publication-title: J Hosp Tour Res
– year: 1986
  ident: 10.1016/j.enconman.2024.118909_b0215
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– year: 2006
  ident: 10.1016/j.enconman.2024.118909_b0220
  article-title: Extreme learning machine: Theory and applications
  publication-title: Neurocomputing
– year: 2023
  ident: 10.1016/j.enconman.2024.118909_b0020
  article-title: Evaluating offshore wind power potential in the context of climate change and technological advancement: Insights from Republic of Korea
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2023.113497
– year: 1972
  ident: 10.1016/j.enconman.2024.118909_b0280
  article-title: A decision-theoretic approach to interval estimation
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1972.10481224
– year: 1997
  ident: 10.1016/j.enconman.2024.118909_b0050
  article-title: Practical confidence and prediction intervals
  publication-title: Adv Neural Inf Proces Syst
SSID ssj0003506
Score 2.501351
Snippet [Display omitted] •A multi-input dual-output neural network is constructed to obtain the best interval.•Two constrained bi-objective optimization problems are...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 118909
SubjectTerms Constrained multi-objective optimization problem
Dual-output neural network
Lower and upper bound estimation
Model averaging
Wind speed interval forecasting
Title A multi-input and dual-output wind speed interval forecasting system based on constrained multi-objective optimization problem and model averaging
URI https://dx.doi.org/10.1016/j.enconman.2024.118909
Volume 319
WOSCitedRecordID wos001302022900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0196-8904
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0003506
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBYh3cP2MHZl3Q097C24cyzLlh7D6NhGKYN2kD0ZSZaXhFYOaZyV_ow-9tfu6GLHawvdGHsxsciRYn-fdY5PzgWhd6WQWUWVjJKkTKNUZHEkhVDwxDOZ0AreGHzXkoP88JBNp_zrYHDV5sJsTnJj2Pk5X_5XqGEMwLaps38BdzcpDMBnAB2OADsc_wj4iQ8SjOZm2fjwcZtuFdXN2p7_nFtH-RJ0lqsUsdr4BEatxJkLgPaVnUdWuZX2jwRl7UfbRgJO_by1XPhNclTDdnMa8jhHoTONW9C11xkJuHWuB9Jv3n-fa-iC3Z2nzgvcCMI52DhXrTY_LmY6TOH8_iGCGFh9Maub6-NHs0bMe85w5wj-LsIEwbuRpCHNr3O5tWk32xgn5wXlWcS471vcbuPEb703VIL3Tiz2bF1QA5ezZ5cBTQHyfKsEu9DEIzu5ndsG1zJqUwN3kpxyNkQ7k8_70y-dnifUdW7tfkwv__z21W43fXrmzPEj9DC8h-CJ589jNNDmCXrQq075FF1OcI9JGHDCPSZhyyTsmIRbJuEek7BnEnZMwrXBPSbha0zCfSbhwCS3oGMS7pj0DH37uH_84VMUWnhEioyTdSQySsAaoGMV5zKPpWBlyjM5rkSlY0lVLqtcw1d0KSrQtCQrqzKD3SNjOleSluQ5Gpra6BcIw43kKkmquCICtDsgohWRTJE0VUzGahfR9u4WKtS3t1d1UrSBjIuiRaWwqBQelV30vpNb-govd0rwFrwi2Kne_iyAc3fIvvwH2Vfo_vYReY2G61Wj36B7arOen63eBnr-AlUUx_I
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-input+and+dual-output+wind+speed+interval+forecasting+system+based+on+constrained+multi-objective+optimization+problem+and+model+averaging&rft.jtitle=Energy+conversion+and+management&rft.au=Lv%2C+Mengzheng&rft.au=Wang%2C+Jianzhou&rft.au=Wang%2C+Shuai&rft.au=Zhao%2C+Yang&rft.date=2024-11-01&rft.pub=Elsevier+Ltd&rft.issn=0196-8904&rft.volume=319&rft_id=info:doi/10.1016%2Fj.enconman.2024.118909&rft.externalDocID=S0196890424008501
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon