Mixed local channel attention for object detection

Attention mechanism, one of the most extensively utilized components in computer vision, can assist neural networks in emphasizing significant elements and suppressing irrelevant ones. However, the vast majority of channel attention mechanisms only contain channel feature information and ignore spat...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Engineering applications of artificial intelligence Ročník 123; s. 106442
Hlavní autoři: Wan, Dahang, Lu, Rongsheng, Shen, Siyuan, Xu, Ting, Lang, Xianli, Ren, Zhijie
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.08.2023
Témata:
ISSN:0952-1976
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Attention mechanism, one of the most extensively utilized components in computer vision, can assist neural networks in emphasizing significant elements and suppressing irrelevant ones. However, the vast majority of channel attention mechanisms only contain channel feature information and ignore spatial feature information, resulting in poor model representation effect or object detection performance, and the spatial attention modules were often complex and expensive. In order to strike a balance between performance and complexity, this paper proposes a lightweight Mixed Local Channel Attention (MLCA) module to improve the performance of the object detection network, and it can simultaneously incorporate both channel information and spatial information, as well as local information and global information to improve the expression effect of the network. On this basis, the MobileNet-Attention-YOLO(MAY) algorithm for comparing the performance of various attention modules is presented. On the Pascal VOC and SMID datasets, MLCA achieves a better balance between model representation efficacy, performance, and complexity than alternative attention techniques. Against the Squeeze-and-Excitation(SE) attention mechanism on the PASCAL VOC dataset and the Coordinate Attention(CA) method on the SIMD dataset, the mAP is enhanced by 1.0 % and 1.5 %, respectively. [Display omitted] •Proposed a lightweight Mixed Local Channel Attention (MLCA) method.•Proposed a new object detection network called MobileNet-Attention-YOLO (MAY).•Verified the feasibility and effectiveness of MLCA and MAY.
AbstractList Attention mechanism, one of the most extensively utilized components in computer vision, can assist neural networks in emphasizing significant elements and suppressing irrelevant ones. However, the vast majority of channel attention mechanisms only contain channel feature information and ignore spatial feature information, resulting in poor model representation effect or object detection performance, and the spatial attention modules were often complex and expensive. In order to strike a balance between performance and complexity, this paper proposes a lightweight Mixed Local Channel Attention (MLCA) module to improve the performance of the object detection network, and it can simultaneously incorporate both channel information and spatial information, as well as local information and global information to improve the expression effect of the network. On this basis, the MobileNet-Attention-YOLO(MAY) algorithm for comparing the performance of various attention modules is presented. On the Pascal VOC and SMID datasets, MLCA achieves a better balance between model representation efficacy, performance, and complexity than alternative attention techniques. Against the Squeeze-and-Excitation(SE) attention mechanism on the PASCAL VOC dataset and the Coordinate Attention(CA) method on the SIMD dataset, the mAP is enhanced by 1.0 % and 1.5 %, respectively. [Display omitted] •Proposed a lightweight Mixed Local Channel Attention (MLCA) method.•Proposed a new object detection network called MobileNet-Attention-YOLO (MAY).•Verified the feasibility and effectiveness of MLCA and MAY.
ArticleNumber 106442
Author Lu, Rongsheng
Shen, Siyuan
Lang, Xianli
Ren, Zhijie
Wan, Dahang
Xu, Ting
Author_xml – sequence: 1
  givenname: Dahang
  orcidid: 0000-0002-7442-5752
  surname: Wan
  fullname: Wan, Dahang
  email: wandahang@mail.hfut.edu.cn
– sequence: 2
  givenname: Rongsheng
  orcidid: 0000-0002-9794-9428
  surname: Lu
  fullname: Lu, Rongsheng
  email: rslu@hfut.edu.cn
– sequence: 3
  givenname: Siyuan
  surname: Shen
  fullname: Shen, Siyuan
  email: shensiyuan@mail.hfut.edu.cn
– sequence: 4
  givenname: Ting
  surname: Xu
  fullname: Xu, Ting
  email: xuting@mail.hfut.edu.cn
– sequence: 5
  givenname: Xianli
  surname: Lang
  fullname: Lang, Xianli
  email: langxl@hfut.edu.cn
– sequence: 6
  givenname: Zhijie
  surname: Ren
  fullname: Ren, Zhijie
  email: renzhijie@ustc.hfut.edu.cn
BookMark eNqFkE1LAzEQhnOoYFv9C7J_YGs-ttkGPCjFL6h40XOYZCeaZU1KNoj-e1NWL156GniH52WeWZBZiAEJuWB0xSiTl_0Kwxvs9-BXnHJRQtk0fEbmVK15zVQrT8liHHtKqdg0ck74k__CrhqihaGy7xACDhXkjCH7GCoXUxVNjzZXHeYySnhGThwMI57_ziV5vbt92T7Uu-f7x-3NrraC8VzDGhvWomuNVdI0VJq2LDaGKWPRgTWiZVzRzrXCgOmc4UpQhUYgOrQgxJJcTb02xXFM6LT1GQ4X5AR-0Izqg7Pu9Z-zPjjrybng8h--T_4D0vdx8HoCsch9ekx6tB6Dxc6n8gHdRX-s4gcNAnq5
CitedBy_id crossref_primary_10_1016_j_neunet_2025_107182
crossref_primary_10_3390_agronomy15092195
crossref_primary_10_3390_agriculture15010037
crossref_primary_10_1080_10589759_2025_2515572
crossref_primary_10_3788_LOP241509
crossref_primary_10_1109_ACCESS_2024_3436709
crossref_primary_10_3390_met15020109
crossref_primary_10_3389_fpls_2025_1663813
crossref_primary_10_3390_s25103052
crossref_primary_10_1016_j_measurement_2025_118429
crossref_primary_10_3390_agriculture15151707
crossref_primary_10_54097_cx9bbk52
crossref_primary_10_1007_s11554_025_01633_x
crossref_primary_10_1007_s11760_025_03958_3
crossref_primary_10_1002_ima_70178
crossref_primary_10_1016_j_bspc_2024_106607
crossref_primary_10_3390_su16177539
crossref_primary_10_1007_s10044_025_01466_1
crossref_primary_10_3390_rs16173251
crossref_primary_10_3390_app142110004
crossref_primary_10_1007_s11760_024_03387_8
crossref_primary_10_1109_TAI_2024_3385387
crossref_primary_10_1016_j_eswa_2024_124893
crossref_primary_10_1016_j_dsp_2025_105029
crossref_primary_10_1016_j_dsp_2025_105425
crossref_primary_10_1016_j_jpse_2025_100322
crossref_primary_10_1088_1361_6501_adf2d0
crossref_primary_10_1016_j_engappai_2025_110918
crossref_primary_10_3390_f15071188
crossref_primary_10_3390_s24134371
crossref_primary_10_1016_j_measurement_2025_118833
crossref_primary_10_3390_rs17020249
crossref_primary_10_1088_1361_6501_ad86db
crossref_primary_10_1371_journal_pone_0320653
crossref_primary_10_3390_electronics14152952
crossref_primary_10_1016_j_autcon_2025_106100
crossref_primary_10_1016_j_compag_2025_110413
crossref_primary_10_1080_15440478_2025_2476634
crossref_primary_10_3390_s24237640
crossref_primary_10_1016_j_measurement_2025_118680
crossref_primary_10_1016_j_engappai_2024_108261
crossref_primary_10_1007_s11227_024_06611_x
crossref_primary_10_3390_biomimetics10090564
crossref_primary_10_1007_s44443_025_00117_z
crossref_primary_10_1016_j_engappai_2025_111968
crossref_primary_10_1007_s11554_024_01607_5
crossref_primary_10_1016_j_neucom_2024_128670
crossref_primary_10_1088_2631_8695_ae0246
crossref_primary_10_37661_1816_0301_2025_22_2_33_47
crossref_primary_10_1016_j_imavis_2025_105442
crossref_primary_10_3390_agriculture15080798
crossref_primary_10_3390_wevj16010036
crossref_primary_10_3390_fire8040138
crossref_primary_10_1080_17445760_2025_2519741
crossref_primary_10_3390_drones8120713
crossref_primary_10_3390_sym16060730
crossref_primary_10_1016_j_autcon_2025_106330
crossref_primary_10_1016_j_engappai_2024_109139
crossref_primary_10_1049_ipr2_70034
crossref_primary_10_1038_s41598_025_09825_y
crossref_primary_10_1007_s13042_023_02034_x
crossref_primary_10_3390_jmse12101885
crossref_primary_10_1016_j_engappai_2024_108697
crossref_primary_10_1016_j_imavis_2024_105339
crossref_primary_10_1088_2631_8695_ad6af6
crossref_primary_10_1016_j_eswa_2024_124282
crossref_primary_10_1038_s41598_025_92696_0
crossref_primary_10_1007_s11554_024_01562_1
crossref_primary_10_1016_j_imavis_2025_105693
crossref_primary_10_3390_e25091333
crossref_primary_10_1016_j_engappai_2025_110646
crossref_primary_10_7717_peerj_cs_3151
crossref_primary_10_3390_agronomy15081948
crossref_primary_10_1038_s41598_025_07610_5
crossref_primary_10_3390_s24227347
crossref_primary_10_1016_j_jvcir_2025_104560
crossref_primary_10_1155_2024_8628149
crossref_primary_10_3390_ijgi13110395
crossref_primary_10_1016_j_apor_2025_104551
crossref_primary_10_1016_j_measurement_2025_116994
crossref_primary_10_3390_plants13192808
crossref_primary_10_1016_j_aei_2025_103200
crossref_primary_10_3390_agronomy15040981
crossref_primary_10_1080_10589759_2025_2478259
crossref_primary_10_3390_agriculture14122169
crossref_primary_10_1016_j_psep_2025_107783
crossref_primary_10_1038_s41598_025_02865_4
crossref_primary_10_1038_s41598_024_76662_w
crossref_primary_10_3390_automation5020011
crossref_primary_10_1016_j_atech_2025_101047
crossref_primary_10_1109_ACCESS_2024_3494241
crossref_primary_10_1016_j_engappai_2024_109134
crossref_primary_10_3390_fire8050170
crossref_primary_10_1038_s41598_024_78578_x
crossref_primary_10_1016_j_measurement_2024_116220
crossref_primary_10_1109_ACCESS_2024_3452129
crossref_primary_10_3390_s24227197
crossref_primary_10_1007_s10694_025_01733_x
crossref_primary_10_1038_s41598_025_87848_1
crossref_primary_10_1109_ACCESS_2024_3481031
crossref_primary_10_1080_17538947_2025_2498604
crossref_primary_10_1038_s41598_024_77878_6
crossref_primary_10_3390_electronics14112113
crossref_primary_10_3390_su16135783
crossref_primary_10_1016_j_dsp_2025_105456
crossref_primary_10_1109_ACCESS_2024_3393934
crossref_primary_10_1109_OJCS_2025_3586682
crossref_primary_10_1007_s11554_025_01724_9
crossref_primary_10_1016_j_engappai_2024_108110
crossref_primary_10_1371_journal_pone_0311173
crossref_primary_10_3233_JIFS_233440
crossref_primary_10_3390_a18090537
crossref_primary_10_3390_agriculture15181968
crossref_primary_10_3390_agronomy15040839
crossref_primary_10_1109_ACCESS_2025_3570455
crossref_primary_10_1007_s00371_025_03826_8
crossref_primary_10_3390_electronics14010208
crossref_primary_10_1016_j_compag_2025_109975
crossref_primary_10_1109_ACCESS_2024_3521652
crossref_primary_10_3390_s24134331
crossref_primary_10_1080_10589759_2025_2536072
crossref_primary_10_3390_rs17010109
crossref_primary_10_3390_drones9080554
crossref_primary_10_1088_2631_8695_adea31
crossref_primary_10_3389_fpls_2025_1571228
crossref_primary_10_1016_j_bspc_2025_108262
crossref_primary_10_1016_j_ecoinf_2025_103256
crossref_primary_10_3390_s25165106
crossref_primary_10_1016_j_jvcir_2024_104289
crossref_primary_10_1007_s00371_025_03927_4
crossref_primary_10_1038_s41598_024_80265_w
crossref_primary_10_3390_electronics13183726
crossref_primary_10_1016_j_compag_2025_110736
crossref_primary_10_3389_fpls_2025_1588626
crossref_primary_10_3390_microorganisms13071617
crossref_primary_10_1016_j_engappai_2025_111247
crossref_primary_10_1371_journal_pone_0318817
crossref_primary_10_1007_s00607_024_01398_4
crossref_primary_10_1016_j_engappai_2025_111648
crossref_primary_10_1109_ACCESS_2025_3581234
crossref_primary_10_1007_s44443_025_00069_4
crossref_primary_10_1007_s11554_025_01685_z
crossref_primary_10_1080_15435075_2025_2471988
crossref_primary_10_1371_journal_pone_0315267
crossref_primary_10_1016_j_imavis_2025_105485
crossref_primary_10_1109_ACCESS_2024_3382817
crossref_primary_10_3390_s25082446
crossref_primary_10_3390_s25113433
crossref_primary_10_1109_TSMC_2025_3552621
crossref_primary_10_1088_1361_6501_addbfd
crossref_primary_10_1109_TIM_2025_3584147
crossref_primary_10_1117_1_JEI_33_6_063047
crossref_primary_10_1364_AO_566416
crossref_primary_10_3390_s25010196
crossref_primary_10_1016_j_engappai_2024_109859
crossref_primary_10_1088_2631_8695_addd5d
crossref_primary_10_1109_TIM_2025_3551459
crossref_primary_10_3390_sym16040450
crossref_primary_10_1109_ACCESS_2025_3593021
crossref_primary_10_1371_journal_pone_0329555
crossref_primary_10_3390_jmse12101726
crossref_primary_10_1109_LSP_2025_3591730
crossref_primary_10_1007_s11554_024_01610_w
crossref_primary_10_3390_s24155059
crossref_primary_10_3788_IRLA20250223
crossref_primary_10_1016_j_displa_2025_103203
crossref_primary_10_1016_j_patcog_2025_112375
crossref_primary_10_1016_j_measurement_2024_115221
crossref_primary_10_3390_agriculture15131354
crossref_primary_10_1088_2631_8695_adeefe
crossref_primary_10_1371_journal_pone_0329447
crossref_primary_10_3390_s24206506
crossref_primary_10_1016_j_aei_2024_102709
crossref_primary_10_1016_j_eswa_2024_125727
crossref_primary_10_1038_s41598_025_11689_1
crossref_primary_10_1007_s11760_025_04310_5
crossref_primary_10_1088_1361_6501_adbe96
crossref_primary_10_1007_s13042_025_02566_4
crossref_primary_10_1002_fsn3_70576
crossref_primary_10_1016_j_compag_2025_110753
crossref_primary_10_1016_j_infrared_2024_105487
crossref_primary_10_1016_j_measurement_2025_117490
crossref_primary_10_1109_JSTARS_2025_3585103
crossref_primary_10_3390_app15094902
crossref_primary_10_1016_j_patrec_2024_11_027
crossref_primary_10_1109_ACCESS_2025_3545670
crossref_primary_10_1007_s40031_024_01152_6
crossref_primary_10_3389_fphy_2025_1603047
crossref_primary_10_1177_00405175251356191
crossref_primary_10_3390_s24154813
crossref_primary_10_1007_s11554_025_01669_z
crossref_primary_10_1016_j_eswa_2024_125682
Cites_doi 10.1016/j.procs.2020.06.115
10.1007/s11263-019-01228-7
10.1109/JSTARS.2020.3000317
10.1002/ima.22608
10.1155/2022/3424819
10.1016/j.engappai.2022.105157
10.1016/j.engappai.2022.105084
10.1016/j.engappai.2022.104914
10.1016/j.engappai.2022.105225
10.1016/j.eswa.2022.117847
10.1016/j.saa.2021.120155
10.1016/j.chaos.2021.111304
10.1155/2021/5592878
10.3390/rs13214384
10.1007/s11263-014-0733-5
10.1109/TPAMI.2016.2577031
10.1016/j.displa.2021.102043
10.3390/rs14184676
10.3390/rs11070765
10.1016/j.engappai.2022.105628
10.3390/rs15030614
10.3390/rs14071743
10.1016/j.ecoinf.2022.101844
10.1016/j.jag.2022.102676
10.3390/s21165460
10.1016/j.engappai.2022.104739
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2023.106442
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
ExternalDocumentID 10_1016_j_engappai_2023_106442
S0952197623006267
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
9DU
AATTM
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c312t-a5e417ef7bc96b406b7c318b19bcefacb371290df73babdfb29309eb3eefeca33
ISICitedReferencesCount 239
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001007120300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0952-1976
IngestDate Sat Nov 29 02:18:07 EST 2025
Tue Nov 18 21:48:13 EST 2025
Sat Oct 05 15:37:15 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Attention mechanism
Convolutional neural network
Local channel attention
Object detection
Deep learning algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-a5e417ef7bc96b406b7c318b19bcefacb371290df73babdfb29309eb3eefeca33
ORCID 0000-0002-7442-5752
0000-0002-9794-9428
ParticipantIDs crossref_citationtrail_10_1016_j_engappai_2023_106442
crossref_primary_10_1016_j_engappai_2023_106442
elsevier_sciencedirect_doi_10_1016_j_engappai_2023_106442
PublicationCentury 2000
PublicationDate August 2023
2023-08-00
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhang, Winn, Tomioka (b81) 2016
Misra, Nalamada, Arasanipalai, Hou (b44) 2020
Redmon, Farhadi (b52) 2018
Zou, Chen, Shi, Guo, Ye (b87) 2023
Liu, Jiang, Jin, Feng, Wang, Liao, Lee, Yao (b39) 2022; 114
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b65) 2017
Redmon, Divvala, Girshick, Farhadi (b50) 2016
Ultralytics (b64) 2023
Xu, Li, Wang, Xu, Meng, Zhang (b74) 2022; 110
Schwartz, Schwing, Hazan (b57) 2017
Zhang, Lan, Zeng, Jin, Chen (b77) 2020
Qin, Zhang, Wu, Li (b49) 2021
Wang, Bochkovskiy, Liao (b68) 2022
Steiniger, Kraus, Meisen (b61) 2022; 114
Ma, Zhan, Yang (b42) 2022; 77
Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Andreetto, Adam (b25) 2017
Liu, Qi, Qin, Shi, Jia (b41) 2018
Cao, Feng, Zhang, Huang (b4) 2020; 174
Wan, Lu, Wang, Shen, Xu, Lang (b67) 2023; 15
Guo, Xu, Si, Razmjooy (b18) 2021; 31
Hou, Zhang, Cheng, Feng (b22) 2020
Hassanin, Anwar, Radwan, Khan, Mian (b20) 2022
Liang, Lin, Lu (b35) 2022; 206
Hu, Shen, Albanie, Sun, Wu (b27) 2019
Ioffe, Szegedy (b29) 2015
Wang, Girshick, Gupta, He (b69) 2018
Hu, Yao, Wan, Bao, Zeng (b28) 2022; 72
Zhao, Zhu, Qi, Qi, Su, Shi (b84) 2021; 13
Klambauer, Unterthiner, Mayr, Hochreiter (b30) 2017
Diba, Fayyaz, Sharma, Arzani, Yousefzadeh, Gall, Van Gool (b11) 2018
Hu, Gu, Zhang, Dai, Wei (b26) 2018
Lin, Cheng, Wu, Yang, Shen, Wang, Song, Yuan (b36) 2021
Lang, Xu, Zhang, Wang (b31) 2021; 21
Pan, Cui, An, Huang, Zhang, Zhang, Zhang, Li, Cheng, Hu (b47) 2022; 108
Rennie, Marcheret, Mroueh, Ross, Goel (b54) 2017
Zhang, Wu, Zhang, Zhu, Lin, Zhang, Sun, He, Mueller, Manmatha, Li, Smola (b82) 2020
Chen, Deng, Hu (b6) 2019
Li, Zhong, Wu, Yang, Lin, Liu (b34) 2019
Roy, Navab, Wachinger (b55) 2018
Woo, Park, Lee, Kweon (b72) 2018
Pan, Yao, Li, Mei (b48) 2020
,
Lin, Feng, dos Santos, Yu, Xiang, Zhou, Bengio (b37) 2017
.
Zheng, Fu, Zha, Luo (b85) 2019
Chen, Wang, Pang, Cao, Xiong, Li, Sun, Feng, Liu, Xu, Zhang, Cheng, Zhu, Cheng, Zhao, Li, Lu, Zhu, Wu, Dai, Wang, Shi, Ouyang, Loy, Lin (b8) 2019
Cheng, Wang, Peng, Ren, Shuai, Zang, Liu, Cheng, Wu (b9) 2021; 152
DeVries, Taylor (b10) 2017
Wang, Wang, Zhang, Dong, Wei (b70) 2019; 11
Yoo, Shin, Lee (b76) 2017
Ren, He, Girshick, Sun (b53) 2017; 39
Ho, Kalchbrenner, Weissenborn, Salimans (b21) 2019
Hou, Zhou, Feng (b23) 2021
Song, Zhang, Li, Xie, Yang, Zhou, Zhang (b60) 2022
Zoph, B., Le, Q., 2016. Neural architecture search with reinforcement learning
Liu, Lin, Cao, Hu, Wei, Zhang, Lin, Guo (b40) 2021
Ultralytics (b63) 2020
Veličković, Cucurull, Casanova, Romero, Liò, Bengio (b66) 2018
Everingham, Eslami, Van Gool, Williams, Winn, Zisserman (b13) 2015; 111
Tan, Wang, Xie, Chen, Shi (b62) 2017
Ge, Liu, Wang, Li, Sun (b17) 2021
Fan, Zhang, Chen, Zhou (b14) 2020
Men, Yuan, Shi, Liu, Wang, Liu (b43) 2021; 263
Haroon, Shahzad, Fraz (b19) 2020; 13
Dong, Yan, Duan (b12) 2022; 113
Howard, Sandler, Chu, Chen, Chen, Tan, Wang, Zhu, Pang, Vasudevan, Le, Adam (b24) 2019
Zhang, Wang, Li, Shu, Lang, Zhang, Dong (b80) 2023; 117
Xu, Gao, Huang, Xu (b73) 2022; 14
Zhao, Chen, Huang, Li, Cheng (b83) 2021; 2021
Bochkovskiy, Wang, Liao (b2) 2020
Li, Wang, Hu, Yang (b33) 2019
Gao, Xie, Wang, Li (b16) 2018
Li, C., Li, L., Jiang, H., Weng, K., Geng, Y., Li, L., Ke, Z., Li, Q., Cheng, M., Nie, W., Li, Y., Zhang, B., Liang, Y., Zhou, L., Xu, X., Chu, X., Wei, X., Wei, X., 2022. YOLOv6: A single-stage object detection framework for industrial applications
Niu, Nan, Wang (b46) 2021; 69
Fu, Liu, Tian, Li, Bao, Fang, Lu (b15) 2019
Selvaraju, Cogswell, Das, Vedantam, Parikh, Batra (b58) 2020; 128
Chen, Miao (b7) 2021
Alferaidi, Yadav, Alharbi, Razmjooy, Viriyasitavat, Gulati, Kautish, Dhiman (b1) 2022; 2022
SIfre, Mallat (b59) 2014
Sandler, Howard, Zhu, Zhmoginov, Chen (b56) 2019
Liu, Huang, Li (b38) 2022; 14
Redmon, Farhadi (b51) 2016
Mnih, Heess, Graves, Kavukcuoglu (b45) 2014
Wang, Wu, Zhu, Li, Zuo, Hu (b71) 2020
Canayaz (b3) 2020; 151
Zhang, Qian, Tan (b78) 2022; 115
Zhang, Ren, Zhang, Jia, Wang, Tan (b79) 2022
Yang, Bender, Le, Ngiam (b75) 2020
Chen, Dai, Liu, Chen, Yuan, Liu (b5) 2020
Ultralytics (10.1016/j.engappai.2023.106442_b64) 2023
Zhang (10.1016/j.engappai.2023.106442_b77) 2020
Rennie (10.1016/j.engappai.2023.106442_b54) 2017
Wan (10.1016/j.engappai.2023.106442_b67) 2023; 15
Tan (10.1016/j.engappai.2023.106442_b62) 2017
Sandler (10.1016/j.engappai.2023.106442_b56) 2019
Veličković (10.1016/j.engappai.2023.106442_b66) 2018
Zhang (10.1016/j.engappai.2023.106442_b78) 2022; 115
Liang (10.1016/j.engappai.2023.106442_b35) 2022; 206
Hassanin (10.1016/j.engappai.2023.106442_b20) 2022
Xu (10.1016/j.engappai.2023.106442_b73) 2022; 14
Chen (10.1016/j.engappai.2023.106442_b8) 2019
Fan (10.1016/j.engappai.2023.106442_b14) 2020
Alferaidi (10.1016/j.engappai.2023.106442_b1) 2022; 2022
Fu (10.1016/j.engappai.2023.106442_b15) 2019
Diba (10.1016/j.engappai.2023.106442_b11) 2018
Schwartz (10.1016/j.engappai.2023.106442_b57) 2017
Steiniger (10.1016/j.engappai.2023.106442_b61) 2022; 114
Howard (10.1016/j.engappai.2023.106442_b24) 2019
Ren (10.1016/j.engappai.2023.106442_b53) 2017; 39
Woo (10.1016/j.engappai.2023.106442_b72) 2018
Lang (10.1016/j.engappai.2023.106442_b31) 2021; 21
Ma (10.1016/j.engappai.2023.106442_b42) 2022; 77
Everingham (10.1016/j.engappai.2023.106442_b13) 2015; 111
Howard (10.1016/j.engappai.2023.106442_b25) 2017
Chen (10.1016/j.engappai.2023.106442_b6) 2019
Dong (10.1016/j.engappai.2023.106442_b12) 2022; 113
Lin (10.1016/j.engappai.2023.106442_b37) 2017
Men (10.1016/j.engappai.2023.106442_b43) 2021; 263
Wang (10.1016/j.engappai.2023.106442_b71) 2020
Ioffe (10.1016/j.engappai.2023.106442_b29) 2015
Zou (10.1016/j.engappai.2023.106442_b87) 2023
Niu (10.1016/j.engappai.2023.106442_b46) 2021; 69
Redmon (10.1016/j.engappai.2023.106442_b50) 2016
Canayaz (10.1016/j.engappai.2023.106442_b3) 2020; 151
Zheng (10.1016/j.engappai.2023.106442_b85) 2019
Ho (10.1016/j.engappai.2023.106442_b21) 2019
Song (10.1016/j.engappai.2023.106442_b60) 2022
Chen (10.1016/j.engappai.2023.106442_b5) 2020
Hu (10.1016/j.engappai.2023.106442_b27) 2019
Klambauer (10.1016/j.engappai.2023.106442_b30) 2017
Zhang (10.1016/j.engappai.2023.106442_b80) 2023; 117
Liu (10.1016/j.engappai.2023.106442_b38) 2022; 14
Misra (10.1016/j.engappai.2023.106442_b44) 2020
Li (10.1016/j.engappai.2023.106442_b34) 2019
Liu (10.1016/j.engappai.2023.106442_b41) 2018
Zhang (10.1016/j.engappai.2023.106442_b79) 2022
Guo (10.1016/j.engappai.2023.106442_b18) 2021; 31
Hou (10.1016/j.engappai.2023.106442_b23) 2021
Haroon (10.1016/j.engappai.2023.106442_b19) 2020; 13
Mnih (10.1016/j.engappai.2023.106442_b45) 2014
Pan (10.1016/j.engappai.2023.106442_b48) 2020
Zhao (10.1016/j.engappai.2023.106442_b83) 2021; 2021
Liu (10.1016/j.engappai.2023.106442_b39) 2022; 114
Vaswani (10.1016/j.engappai.2023.106442_b65) 2017
Redmon (10.1016/j.engappai.2023.106442_b51) 2016
Hu (10.1016/j.engappai.2023.106442_b28) 2022; 72
Zhang (10.1016/j.engappai.2023.106442_b82) 2020
Ge (10.1016/j.engappai.2023.106442_b17) 2021
10.1016/j.engappai.2023.106442_b32
Bochkovskiy (10.1016/j.engappai.2023.106442_b2) 2020
Zhang (10.1016/j.engappai.2023.106442_b81) 2016
Ultralytics (10.1016/j.engappai.2023.106442_b63) 2020
DeVries (10.1016/j.engappai.2023.106442_b10) 2017
Hou (10.1016/j.engappai.2023.106442_b22) 2020
Lin (10.1016/j.engappai.2023.106442_b36) 2021
Hu (10.1016/j.engappai.2023.106442_b26) 2018
Zhao (10.1016/j.engappai.2023.106442_b84) 2021; 13
Cao (10.1016/j.engappai.2023.106442_b4) 2020; 174
SIfre (10.1016/j.engappai.2023.106442_b59) 2014
Cheng (10.1016/j.engappai.2023.106442_b9) 2021; 152
Wang (10.1016/j.engappai.2023.106442_b69) 2018
Wang (10.1016/j.engappai.2023.106442_b70) 2019; 11
Li (10.1016/j.engappai.2023.106442_b33) 2019
Roy (10.1016/j.engappai.2023.106442_b55) 2018
Xu (10.1016/j.engappai.2023.106442_b74) 2022; 110
Yang (10.1016/j.engappai.2023.106442_b75) 2020
Chen (10.1016/j.engappai.2023.106442_b7) 2021
Qin (10.1016/j.engappai.2023.106442_b49) 2021
Wang (10.1016/j.engappai.2023.106442_b68) 2022
Pan (10.1016/j.engappai.2023.106442_b47) 2022; 108
Yoo (10.1016/j.engappai.2023.106442_b76) 2017
10.1016/j.engappai.2023.106442_b86
Redmon (10.1016/j.engappai.2023.106442_b52) 2018
Selvaraju (10.1016/j.engappai.2023.106442_b58) 2020; 128
Gao (10.1016/j.engappai.2023.106442_b16) 2018
Liu (10.1016/j.engappai.2023.106442_b40) 2021
References_xml – year: 2017
  ident: b57
  article-title: High-order attention models for visual question answering
– year: 2019
  ident: b85
  article-title: Looking for the devil in the details: learning trilinear attention sampling network for fine-grained image recognition
– volume: 174
  start-page: 463
  year: 2020
  end-page: 477
  ident: b4
  article-title: Facial expression recognition via a CBAM embedded network
  publication-title: Proc. Comput. Sci.
– year: 2022
  ident: b20
  article-title: Visual attention methods in deep learning: An in-depth survey
– year: 2016
  ident: b51
  article-title: YOLO9000: Better, faster, stronger
– volume: 13
  start-page: 3032
  year: 2020
  end-page: 3046
  ident: b19
  article-title: Multisized object detection using spaceborne optical imagery
  publication-title: IEEE J. Selected Top. Appl. Earth Observ. Remote Sens.
– year: 2018
  ident: b66
  article-title: Graph attention networks
– year: 2019
  ident: b21
  article-title: Axial attention in multidimensional transformers
– volume: 2022
  year: 2022
  ident: b1
  article-title: Distributed deep CNN-LSTM model for intrusion detection method in IoT-based vehicles
  publication-title: Math. Problems Eng.
– volume: 114
  year: 2022
  ident: b61
  article-title: Survey on deep learning based computer vision for sonar imagery
  publication-title: Eng. Appl. Artif. Intell.
– volume: 15
  start-page: 614
  year: 2023
  ident: b67
  article-title: YOLO-HR: improved YOLOv5 for object detection in high-resolution optical remote sensing images
  publication-title: Remote Sens.
– year: 2022
  ident: b68
  article-title: YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors
– year: 2021
  ident: b7
  article-title: Control distance IoU and control distance IoU loss function for better bounding box regression
– volume: 14
  start-page: 4676
  year: 2022
  ident: b73
  article-title: Triangle distance IoU loss, attention-weighted feature pyramid network, and rotated-sarship dataset for arbitrary-oriented SAR ship detection
  publication-title: Remote Sens.
– reference: Zoph, B., Le, Q., 2016. Neural architecture search with reinforcement learning,
– volume: 152
  year: 2021
  ident: b9
  article-title: High-efficiency chaotic time series prediction based on time convolution neural network
  publication-title: Chaos Solitons Fractals
– year: 2017
  ident: b54
  article-title: Self-critical sequence training for image captioning
– volume: 110
  year: 2022
  ident: b74
  article-title: Instance segmentation of biological images using graph convolutional network
  publication-title: Eng. Appl. Artif. Intell.
– year: 2023
  ident: b64
  article-title: YOLOv8
– year: 2019
  ident: b6
  article-title: Mixed high-order attention network for person re-identification
– volume: 72
  year: 2022
  ident: b28
  article-title: Detection and classification of diseased pine trees with different levels of severity from UAV remote sensing images
  publication-title: Ecol. Inform.
– volume: 77
  year: 2022
  ident: b42
  article-title: Multi-classification of arrhythmias using ResNet with CBAM on CWGAN-GP augmented ECG gramian angular summation field
  publication-title: Biomed. Signal Process. Control
– year: 2020
  ident: b75
  article-title: CondConv: Conditionally parameterized convolutions for efficient inference
– year: 2020
  ident: b71
  article-title: ECA-Net: Efficient channel attention for deep convolutional neural networks
– volume: 31
  year: 2021
  ident: b18
  article-title: Novel computer-aided lung cancer detection based on convolutional neural network-based and feature-based classifiers using metaheuristics
  publication-title: Int. J. Imaging Syst. Technol.
– year: 2019
  ident: b15
  article-title: Dual attention network for scene segmentation
– volume: 39
  start-page: 1137
  year: 2017
  end-page: 1149
  ident: b53
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2020
  ident: b82
  article-title: ResNeSt: split-attention networks
– volume: 108
  year: 2022
  ident: b47
  article-title: MapsNet: Multi-level feature constraint and fusion network for change detection
  publication-title: Int. J. Appl. Earth Observ. Geoinform.
– year: 2017
  ident: b76
  article-title: Improving visually grounded sentence representations with self-attention
– year: 2021
  ident: b40
  article-title: Swin transformer: hierarchical vision transformer using shifted windows
– year: 2020
  ident: b5
  article-title: Dynamic convolution: attention over convolution kernels
– year: 2017
  ident: b10
  article-title: Improved regularization of convolutional neural networks with cutout
– volume: 69
  year: 2021
  ident: b46
  article-title: A super resolution frontal face generation model based on 3DDFA and CBAM
  publication-title: Displays
– year: 2017
  ident: b62
  article-title: Deep semantic role labeling with self-attention
– year: 2016
  ident: b81
  article-title: Gaussian attention model and its application to knowledge base embedding and question answering
– year: 2019
  ident: b33
  article-title: Selective kernel networks
– volume: 14
  start-page: 1743
  year: 2022
  ident: b38
  article-title: Eagle-eye-inspired attention for object detection in remote sensing
  publication-title: Remote Sens.
– volume: 113
  year: 2022
  ident: b12
  article-title: A lightweight vehicles detection network model based on YOLOv5
  publication-title: Eng. Appl. Artif. Intell.
– year: 2017
  ident: b37
  article-title: A structured self-attentive sentence embedding
– year: 2016
  ident: b50
  article-title: You only look once: unified, real-time object detection
– year: 2018
  ident: b55
  article-title: Recalibrating fully convolutional networks with spatial and channel ’squeeze & excitation’ blocks
– year: 2018
  ident: b11
  article-title: Spatio-temporal channel correlation networks for action classification
– reference: ,
– volume: 263
  year: 2021
  ident: b43
  article-title: A residual network with attention module for hyperspectral information of recognition to trace the origin of rice
  publication-title: Spectrochim. Acta
– volume: 111
  start-page: 98
  year: 2015
  end-page: 136
  ident: b13
  article-title: The pascal visual object classes challenge: A retrospective
  publication-title: Int. J. Comput. Vis.
– year: 2015
  ident: b29
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
– year: 2018
  ident: b69
  article-title: Non-local neural networks
– year: 2020
  ident: b63
  article-title: YOLOv5
– volume: 115
  year: 2022
  ident: b78
  article-title: Automated bridge surface crack detection and segmentation using computer vision-based deep learning model
  publication-title: Eng. Appl. Artif. Intell.
– year: 2017
  ident: b30
  article-title: Self-normalizing neural networks
– year: 2018
  ident: b52
  article-title: YOLOv3: an incremental improvement
– year: 2018
  ident: b26
  article-title: Relation networks for object detection
– year: 2021
  ident: b17
  article-title: YOLOX: Exceeding YOLO series in 2021
– year: 2019
  ident: b56
  article-title: MobileNetV2: Inverted residuals and linear bottlenecks
– year: 2022
  ident: b79
  article-title: Focal and efficient IOU loss for accurate bounding box regression
– year: 2018
  ident: b41
  article-title: Path aggregation network for instance segmentation
– year: 2017
  ident: b25
  article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications
– year: 2014
  ident: b45
  article-title: Recurrent models of visual attention
– year: 2021
  ident: b49
  article-title: FcaNet: frequency channel attention networks
– volume: 21
  start-page: 5460
  year: 2021
  ident: b31
  article-title: Fast and accurate object detection in remote sensing images based on lightweight deep neural network
  publication-title: Sensors
– year: 2014
  ident: b59
  article-title: Rigid-motion scattering for texture classification
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 13
  ident: b83
  article-title: A new steel defect detection algorithm based on deep learning
  publication-title: Comput. Intell. Neurosci.
– start-page: 9166
  year: 2019
  end-page: 9175
  ident: b34
  article-title: Expectation-maximization attention networks for semantic segmentation
  publication-title: 2019 IEEE/CVF International Conference on Computer Vision (ICCV)
– volume: 206
  year: 2022
  ident: b35
  article-title: Forecasting gold price using a novel hybrid model with ICEEMDAN and LSTM-CNN-CBAM
  publication-title: Exp. Syst. Appl.
– year: 2020
  ident: b2
  article-title: YOLOv4: Optimal speed and accuracy of object detection
– year: 2021
  ident: b36
  article-title: CAT: Cross attention in vision transformer
– volume: 13
  start-page: 4384
  year: 2021
  ident: b84
  article-title: Synergistic attention for ship instance segmentation in SAR images
  publication-title: Remote Sens.
– reference: Li, C., Li, L., Jiang, H., Weng, K., Geng, Y., Li, L., Ke, Z., Li, Q., Cheng, M., Nie, W., Li, Y., Zhang, B., Liang, Y., Zhou, L., Xu, X., Chu, X., Wei, X., Wei, X., 2022. YOLOv6: A single-stage object detection framework for industrial applications,
– year: 2020
  ident: b77
  article-title: Relation-aware global attention for person re-identification
– volume: 11
  start-page: 765
  year: 2019
  ident: b70
  article-title: A SAR dataset of ship detection for deep learning under complex backgrounds
  publication-title: Remote Sens.
– start-page: 1
  year: 2023
  end-page: 20
  ident: b87
  article-title: Object detection in 20 years: a survey
  publication-title: Proc. IEEE
– year: 2020
  ident: b14
  article-title: Bayesian attention modules
– year: 2018
  ident: b16
  article-title: Global second-order pooling convolutional networks
– year: 2020
  ident: b44
  article-title: Rotate to attend: convolutional triplet attention module
– volume: 151
  year: 2020
  ident: b3
  article-title: C+EffxNet: A novel hybrid approach for COVID-19 diagnosis on CT images based on CBAM and EfficientNet
  publication-title: Chaos Solitons Fractals
– year: 2020
  ident: b48
  article-title: X-linear attention networks for image captioning
– reference: .
– year: 2019
  ident: b24
  article-title: Searching for MobileNetV3
– year: 2022
  ident: b60
  article-title: Detection of maize tassels for UAV remote sensing image with an improved YOLOX model
  publication-title: J. Integr. Agric.
– year: 2017
  ident: b65
  article-title: Attention is all you need
– volume: 128
  start-page: 336
  year: 2020
  end-page: 359
  ident: b58
  article-title: Grad-CAM: Visual explanations from deep networks via gradient-based localization
  publication-title: Int. J. Comput. Vis.
– year: 2018
  ident: b72
  article-title: CBAM: convolutional block attention module
– year: 2019
  ident: b27
  article-title: Squeeze-and-excitation networks
– start-page: 4002
  year: 2020
  end-page: 4011
  ident: b22
  article-title: Strip pooling: rethinking spatial pooling for scene parsing
  publication-title: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– year: 2021
  ident: b23
  article-title: Coordinate attention for efficient mobile network design
– volume: 114
  year: 2022
  ident: b39
  article-title: CASR-net: A color-aware super-resolution network for panchromatic image
  publication-title: Eng. Appl. Artif. Intell.
– volume: 117
  year: 2023
  ident: b80
  article-title: Development of a cross-scale weighted feature fusion network for hot-rolled steel surface defect detection
  publication-title: Eng. Appl. Artif. Intell.
– year: 2019
  ident: b8
  article-title: MMDetection: Open MMLab detection toolbox and benchmark
– year: 2020
  ident: 10.1016/j.engappai.2023.106442_b77
– volume: 174
  start-page: 463
  year: 2020
  ident: 10.1016/j.engappai.2023.106442_b4
  article-title: Facial expression recognition via a CBAM embedded network
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2020.06.115
– year: 2017
  ident: 10.1016/j.engappai.2023.106442_b76
– volume: 128
  start-page: 336
  issue: 2
  year: 2020
  ident: 10.1016/j.engappai.2023.106442_b58
  article-title: Grad-CAM: Visual explanations from deep networks via gradient-based localization
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-019-01228-7
– year: 2018
  ident: 10.1016/j.engappai.2023.106442_b55
– year: 2019
  ident: 10.1016/j.engappai.2023.106442_b56
– year: 2017
  ident: 10.1016/j.engappai.2023.106442_b62
– year: 2022
  ident: 10.1016/j.engappai.2023.106442_b60
  article-title: Detection of maize tassels for UAV remote sensing image with an improved YOLOX model
  publication-title: J. Integr. Agric.
– volume: 13
  start-page: 3032
  year: 2020
  ident: 10.1016/j.engappai.2023.106442_b19
  article-title: Multisized object detection using spaceborne optical imagery
  publication-title: IEEE J. Selected Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2020.3000317
– year: 2016
  ident: 10.1016/j.engappai.2023.106442_b50
– year: 2019
  ident: 10.1016/j.engappai.2023.106442_b15
– volume: 31
  year: 2021
  ident: 10.1016/j.engappai.2023.106442_b18
  article-title: Novel computer-aided lung cancer detection based on convolutional neural network-based and feature-based classifiers using metaheuristics
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22608
– year: 2016
  ident: 10.1016/j.engappai.2023.106442_b51
– year: 2022
  ident: 10.1016/j.engappai.2023.106442_b20
– year: 2019
  ident: 10.1016/j.engappai.2023.106442_b33
– year: 2018
  ident: 10.1016/j.engappai.2023.106442_b52
– volume: 2022
  year: 2022
  ident: 10.1016/j.engappai.2023.106442_b1
  article-title: Distributed deep CNN-LSTM model for intrusion detection method in IoT-based vehicles
  publication-title: Math. Problems Eng.
  doi: 10.1155/2022/3424819
– year: 2017
  ident: 10.1016/j.engappai.2023.106442_b30
– ident: 10.1016/j.engappai.2023.106442_b32
– volume: 114
  year: 2022
  ident: 10.1016/j.engappai.2023.106442_b61
  article-title: Survey on deep learning based computer vision for sonar imagery
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.105157
– year: 2021
  ident: 10.1016/j.engappai.2023.106442_b17
– volume: 114
  year: 2022
  ident: 10.1016/j.engappai.2023.106442_b39
  article-title: CASR-net: A color-aware super-resolution network for panchromatic image
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.105084
– year: 2017
  ident: 10.1016/j.engappai.2023.106442_b25
– year: 2014
  ident: 10.1016/j.engappai.2023.106442_b59
– year: 2017
  ident: 10.1016/j.engappai.2023.106442_b10
– year: 2018
  ident: 10.1016/j.engappai.2023.106442_b66
– year: 2020
  ident: 10.1016/j.engappai.2023.106442_b14
– year: 2021
  ident: 10.1016/j.engappai.2023.106442_b40
– year: 2019
  ident: 10.1016/j.engappai.2023.106442_b6
– year: 2018
  ident: 10.1016/j.engappai.2023.106442_b16
– year: 2017
  ident: 10.1016/j.engappai.2023.106442_b54
– volume: 113
  year: 2022
  ident: 10.1016/j.engappai.2023.106442_b12
  article-title: A lightweight vehicles detection network model based on YOLOv5
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.104914
– year: 2018
  ident: 10.1016/j.engappai.2023.106442_b26
– volume: 115
  year: 2022
  ident: 10.1016/j.engappai.2023.106442_b78
  article-title: Automated bridge surface crack detection and segmentation using computer vision-based deep learning model
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.105225
– year: 2019
  ident: 10.1016/j.engappai.2023.106442_b85
– volume: 206
  year: 2022
  ident: 10.1016/j.engappai.2023.106442_b35
  article-title: Forecasting gold price using a novel hybrid model with ICEEMDAN and LSTM-CNN-CBAM
  publication-title: Exp. Syst. Appl.
  doi: 10.1016/j.eswa.2022.117847
– volume: 263
  year: 2021
  ident: 10.1016/j.engappai.2023.106442_b43
  article-title: A residual network with attention module for hyperspectral information of recognition to trace the origin of rice
  publication-title: Spectrochim. Acta
  doi: 10.1016/j.saa.2021.120155
– year: 2015
  ident: 10.1016/j.engappai.2023.106442_b29
– year: 2017
  ident: 10.1016/j.engappai.2023.106442_b57
– year: 2019
  ident: 10.1016/j.engappai.2023.106442_b27
– year: 2022
  ident: 10.1016/j.engappai.2023.106442_b79
– volume: 152
  year: 2021
  ident: 10.1016/j.engappai.2023.106442_b9
  article-title: High-efficiency chaotic time series prediction based on time convolution neural network
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2021.111304
– year: 2018
  ident: 10.1016/j.engappai.2023.106442_b41
– year: 2017
  ident: 10.1016/j.engappai.2023.106442_b65
– year: 2020
  ident: 10.1016/j.engappai.2023.106442_b82
– year: 2017
  ident: 10.1016/j.engappai.2023.106442_b37
– volume: 2021
  start-page: 1
  year: 2021
  ident: 10.1016/j.engappai.2023.106442_b83
  article-title: A new steel defect detection algorithm based on deep learning
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2021/5592878
– volume: 151
  year: 2020
  ident: 10.1016/j.engappai.2023.106442_b3
  article-title: C+EffxNet: A novel hybrid approach for COVID-19 diagnosis on CT images based on CBAM and EfficientNet
  publication-title: Chaos Solitons Fractals
– year: 2022
  ident: 10.1016/j.engappai.2023.106442_b68
– year: 2014
  ident: 10.1016/j.engappai.2023.106442_b45
– volume: 13
  start-page: 4384
  issue: 21
  year: 2021
  ident: 10.1016/j.engappai.2023.106442_b84
  article-title: Synergistic attention for ship instance segmentation in SAR images
  publication-title: Remote Sens.
  doi: 10.3390/rs13214384
– volume: 111
  start-page: 98
  issue: 1
  year: 2015
  ident: 10.1016/j.engappai.2023.106442_b13
  article-title: The pascal visual object classes challenge: A retrospective
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-014-0733-5
– volume: 39
  start-page: 1137
  issue: 6
  year: 2017
  ident: 10.1016/j.engappai.2023.106442_b53
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– year: 2023
  ident: 10.1016/j.engappai.2023.106442_b64
– year: 2021
  ident: 10.1016/j.engappai.2023.106442_b23
– year: 2020
  ident: 10.1016/j.engappai.2023.106442_b48
– year: 2021
  ident: 10.1016/j.engappai.2023.106442_b49
– volume: 69
  year: 2021
  ident: 10.1016/j.engappai.2023.106442_b46
  article-title: A super resolution frontal face generation model based on 3DDFA and CBAM
  publication-title: Displays
  doi: 10.1016/j.displa.2021.102043
– volume: 14
  start-page: 4676
  issue: 18
  year: 2022
  ident: 10.1016/j.engappai.2023.106442_b73
  article-title: Triangle distance IoU loss, attention-weighted feature pyramid network, and rotated-sarship dataset for arbitrary-oriented SAR ship detection
  publication-title: Remote Sens.
  doi: 10.3390/rs14184676
– year: 2021
  ident: 10.1016/j.engappai.2023.106442_b7
– volume: 11
  start-page: 765
  issue: 7
  year: 2019
  ident: 10.1016/j.engappai.2023.106442_b70
  article-title: A SAR dataset of ship detection for deep learning under complex backgrounds
  publication-title: Remote Sens.
  doi: 10.3390/rs11070765
– year: 2020
  ident: 10.1016/j.engappai.2023.106442_b44
– start-page: 1
  year: 2023
  ident: 10.1016/j.engappai.2023.106442_b87
  article-title: Object detection in 20 years: a survey
  publication-title: Proc. IEEE
– volume: 117
  year: 2023
  ident: 10.1016/j.engappai.2023.106442_b80
  article-title: Development of a cross-scale weighted feature fusion network for hot-rolled steel surface defect detection
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.105628
– year: 2020
  ident: 10.1016/j.engappai.2023.106442_b63
– start-page: 9166
  year: 2019
  ident: 10.1016/j.engappai.2023.106442_b34
  article-title: Expectation-maximization attention networks for semantic segmentation
– year: 2020
  ident: 10.1016/j.engappai.2023.106442_b75
– year: 2018
  ident: 10.1016/j.engappai.2023.106442_b72
– year: 2021
  ident: 10.1016/j.engappai.2023.106442_b36
– ident: 10.1016/j.engappai.2023.106442_b86
– year: 2020
  ident: 10.1016/j.engappai.2023.106442_b5
– start-page: 4002
  year: 2020
  ident: 10.1016/j.engappai.2023.106442_b22
  article-title: Strip pooling: rethinking spatial pooling for scene parsing
– year: 2019
  ident: 10.1016/j.engappai.2023.106442_b21
– year: 2020
  ident: 10.1016/j.engappai.2023.106442_b71
– volume: 15
  start-page: 614
  issue: 3
  year: 2023
  ident: 10.1016/j.engappai.2023.106442_b67
  article-title: YOLO-HR: improved YOLOv5 for object detection in high-resolution optical remote sensing images
  publication-title: Remote Sens.
  doi: 10.3390/rs15030614
– year: 2019
  ident: 10.1016/j.engappai.2023.106442_b8
– year: 2019
  ident: 10.1016/j.engappai.2023.106442_b24
– volume: 14
  start-page: 1743
  issue: 7
  year: 2022
  ident: 10.1016/j.engappai.2023.106442_b38
  article-title: Eagle-eye-inspired attention for object detection in remote sensing
  publication-title: Remote Sens.
  doi: 10.3390/rs14071743
– year: 2020
  ident: 10.1016/j.engappai.2023.106442_b2
– volume: 72
  year: 2022
  ident: 10.1016/j.engappai.2023.106442_b28
  article-title: Detection and classification of diseased pine trees with different levels of severity from UAV remote sensing images
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2022.101844
– year: 2018
  ident: 10.1016/j.engappai.2023.106442_b11
– volume: 108
  year: 2022
  ident: 10.1016/j.engappai.2023.106442_b47
  article-title: MapsNet: Multi-level feature constraint and fusion network for change detection
  publication-title: Int. J. Appl. Earth Observ. Geoinform.
  doi: 10.1016/j.jag.2022.102676
– year: 2016
  ident: 10.1016/j.engappai.2023.106442_b81
– volume: 21
  start-page: 5460
  issue: 16
  year: 2021
  ident: 10.1016/j.engappai.2023.106442_b31
  article-title: Fast and accurate object detection in remote sensing images based on lightweight deep neural network
  publication-title: Sensors
  doi: 10.3390/s21165460
– volume: 77
  year: 2022
  ident: 10.1016/j.engappai.2023.106442_b42
  article-title: Multi-classification of arrhythmias using ResNet with CBAM on CWGAN-GP augmented ECG gramian angular summation field
  publication-title: Biomed. Signal Process. Control
– year: 2018
  ident: 10.1016/j.engappai.2023.106442_b69
– volume: 110
  year: 2022
  ident: 10.1016/j.engappai.2023.106442_b74
  article-title: Instance segmentation of biological images using graph convolutional network
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.104739
SSID ssj0003846
Score 2.6998317
Snippet Attention mechanism, one of the most extensively utilized components in computer vision, can assist neural networks in emphasizing significant elements and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106442
SubjectTerms Attention mechanism
Convolutional neural network
Deep learning algorithm
Local channel attention
Object detection
Title Mixed local channel attention for object detection
URI https://dx.doi.org/10.1016/j.engappai.2023.106442
Volume 123
WOSCitedRecordID wos001007120300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  issn: 0952-1976
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0003846
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELZa4NBLaUsRj7byobdVtiTOxvERIaq2arlA0d4i2xnDImTQPqrl3zOxHSe0iMehl2g1WTuP-TQeT76ZIeSzFJDzOtdJkWvcoGiuEgmoEMMQHyDLvcLFdE9_8qOjcjwW7RfdmWsnwK0tl0tx_V9VjTJUdpM6-wx1x0lRgL9R6XhEtePxSYr_NVmiE-nWKJfWa-Fy0BTRtJFVeKWa4MughrnjYdk70fmuPuGg_3Hb8QWmjljk2nz0Knl2MXlvwWQTg45En4Xnb9uz2Tl04uOQFHI8uVl0-BwvPHzC_0IwImORCtdFFbMkFb6lSzSwGeuZSNyD5r6g1j_W2wcSLoZ4O_iEcjJsLjHsBtwtl_3XMhbJhS1v7aJq56maeSo_z0uymvGRQAO4uv_9cPwjLtus9Fld7RP00snvv6P7PZmed3LyhrwO2wq67-HwlrwA-46shy0GDQZ8hqK2i0cr2yCZAwx1gKEBMDQChiJgqAcMjYB5T35_PTw5-JaEThqJZmk2T-QI8pSD4UqLQqEPpzieKFUqlAYjtWK8iUfWhjMlVW0UOoF7AhQDMKAlY5tkxV5Z2CK0ZrKQ6FNqVZc5Y4UydV4WhUxHwBkzZpuM2rdS6VBmvul2clk9rJdt8iWOu_aFVh4dIdqXXgV30buBFeLpkbE7z77aLnnVAf4DWZlPF_CRrOk_88ls-imA6Ra-WJD7
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mixed+local+channel+attention+for+object+detection&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Wan%2C+Dahang&rft.au=Lu%2C+Rongsheng&rft.au=Shen%2C+Siyuan&rft.au=Xu%2C+Ting&rft.date=2023-08-01&rft.issn=0952-1976&rft.volume=123&rft.spage=106442&rft_id=info:doi/10.1016%2Fj.engappai.2023.106442&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2023_106442
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon