Mixed local channel attention for object detection
Attention mechanism, one of the most extensively utilized components in computer vision, can assist neural networks in emphasizing significant elements and suppressing irrelevant ones. However, the vast majority of channel attention mechanisms only contain channel feature information and ignore spat...
Uloženo v:
| Vydáno v: | Engineering applications of artificial intelligence Ročník 123; s. 106442 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.08.2023
|
| Témata: | |
| ISSN: | 0952-1976 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Attention mechanism, one of the most extensively utilized components in computer vision, can assist neural networks in emphasizing significant elements and suppressing irrelevant ones. However, the vast majority of channel attention mechanisms only contain channel feature information and ignore spatial feature information, resulting in poor model representation effect or object detection performance, and the spatial attention modules were often complex and expensive. In order to strike a balance between performance and complexity, this paper proposes a lightweight Mixed Local Channel Attention (MLCA) module to improve the performance of the object detection network, and it can simultaneously incorporate both channel information and spatial information, as well as local information and global information to improve the expression effect of the network. On this basis, the MobileNet-Attention-YOLO(MAY) algorithm for comparing the performance of various attention modules is presented. On the Pascal VOC and SMID datasets, MLCA achieves a better balance between model representation efficacy, performance, and complexity than alternative attention techniques. Against the Squeeze-and-Excitation(SE) attention mechanism on the PASCAL VOC dataset and the Coordinate Attention(CA) method on the SIMD dataset, the mAP is enhanced by 1.0 % and 1.5 %, respectively.
[Display omitted]
•Proposed a lightweight Mixed Local Channel Attention (MLCA) method.•Proposed a new object detection network called MobileNet-Attention-YOLO (MAY).•Verified the feasibility and effectiveness of MLCA and MAY. |
|---|---|
| AbstractList | Attention mechanism, one of the most extensively utilized components in computer vision, can assist neural networks in emphasizing significant elements and suppressing irrelevant ones. However, the vast majority of channel attention mechanisms only contain channel feature information and ignore spatial feature information, resulting in poor model representation effect or object detection performance, and the spatial attention modules were often complex and expensive. In order to strike a balance between performance and complexity, this paper proposes a lightweight Mixed Local Channel Attention (MLCA) module to improve the performance of the object detection network, and it can simultaneously incorporate both channel information and spatial information, as well as local information and global information to improve the expression effect of the network. On this basis, the MobileNet-Attention-YOLO(MAY) algorithm for comparing the performance of various attention modules is presented. On the Pascal VOC and SMID datasets, MLCA achieves a better balance between model representation efficacy, performance, and complexity than alternative attention techniques. Against the Squeeze-and-Excitation(SE) attention mechanism on the PASCAL VOC dataset and the Coordinate Attention(CA) method on the SIMD dataset, the mAP is enhanced by 1.0 % and 1.5 %, respectively.
[Display omitted]
•Proposed a lightweight Mixed Local Channel Attention (MLCA) method.•Proposed a new object detection network called MobileNet-Attention-YOLO (MAY).•Verified the feasibility and effectiveness of MLCA and MAY. |
| ArticleNumber | 106442 |
| Author | Lu, Rongsheng Shen, Siyuan Lang, Xianli Ren, Zhijie Wan, Dahang Xu, Ting |
| Author_xml | – sequence: 1 givenname: Dahang orcidid: 0000-0002-7442-5752 surname: Wan fullname: Wan, Dahang email: wandahang@mail.hfut.edu.cn – sequence: 2 givenname: Rongsheng orcidid: 0000-0002-9794-9428 surname: Lu fullname: Lu, Rongsheng email: rslu@hfut.edu.cn – sequence: 3 givenname: Siyuan surname: Shen fullname: Shen, Siyuan email: shensiyuan@mail.hfut.edu.cn – sequence: 4 givenname: Ting surname: Xu fullname: Xu, Ting email: xuting@mail.hfut.edu.cn – sequence: 5 givenname: Xianli surname: Lang fullname: Lang, Xianli email: langxl@hfut.edu.cn – sequence: 6 givenname: Zhijie surname: Ren fullname: Ren, Zhijie email: renzhijie@ustc.hfut.edu.cn |
| BookMark | eNqFkE1LAzEQhnOoYFv9C7J_YGs-ttkGPCjFL6h40XOYZCeaZU1KNoj-e1NWL156GniH52WeWZBZiAEJuWB0xSiTl_0Kwxvs9-BXnHJRQtk0fEbmVK15zVQrT8liHHtKqdg0ck74k__CrhqihaGy7xACDhXkjCH7GCoXUxVNjzZXHeYySnhGThwMI57_ziV5vbt92T7Uu-f7x-3NrraC8VzDGhvWomuNVdI0VJq2LDaGKWPRgTWiZVzRzrXCgOmc4UpQhUYgOrQgxJJcTb02xXFM6LT1GQ4X5AR-0Izqg7Pu9Z-zPjjrybng8h--T_4D0vdx8HoCsch9ekx6tB6Dxc6n8gHdRX-s4gcNAnq5 |
| CitedBy_id | crossref_primary_10_1016_j_neunet_2025_107182 crossref_primary_10_3390_agronomy15092195 crossref_primary_10_3390_agriculture15010037 crossref_primary_10_1080_10589759_2025_2515572 crossref_primary_10_3788_LOP241509 crossref_primary_10_1109_ACCESS_2024_3436709 crossref_primary_10_3390_met15020109 crossref_primary_10_3389_fpls_2025_1663813 crossref_primary_10_3390_s25103052 crossref_primary_10_1016_j_measurement_2025_118429 crossref_primary_10_3390_agriculture15151707 crossref_primary_10_54097_cx9bbk52 crossref_primary_10_1007_s11554_025_01633_x crossref_primary_10_1007_s11760_025_03958_3 crossref_primary_10_1002_ima_70178 crossref_primary_10_1016_j_bspc_2024_106607 crossref_primary_10_3390_su16177539 crossref_primary_10_1007_s10044_025_01466_1 crossref_primary_10_3390_rs16173251 crossref_primary_10_3390_app142110004 crossref_primary_10_1007_s11760_024_03387_8 crossref_primary_10_1109_TAI_2024_3385387 crossref_primary_10_1016_j_eswa_2024_124893 crossref_primary_10_1016_j_dsp_2025_105029 crossref_primary_10_1016_j_dsp_2025_105425 crossref_primary_10_1016_j_jpse_2025_100322 crossref_primary_10_1088_1361_6501_adf2d0 crossref_primary_10_1016_j_engappai_2025_110918 crossref_primary_10_3390_f15071188 crossref_primary_10_3390_s24134371 crossref_primary_10_1016_j_measurement_2025_118833 crossref_primary_10_3390_rs17020249 crossref_primary_10_1088_1361_6501_ad86db crossref_primary_10_1371_journal_pone_0320653 crossref_primary_10_3390_electronics14152952 crossref_primary_10_1016_j_autcon_2025_106100 crossref_primary_10_1016_j_compag_2025_110413 crossref_primary_10_1080_15440478_2025_2476634 crossref_primary_10_3390_s24237640 crossref_primary_10_1016_j_measurement_2025_118680 crossref_primary_10_1016_j_engappai_2024_108261 crossref_primary_10_1007_s11227_024_06611_x crossref_primary_10_3390_biomimetics10090564 crossref_primary_10_1007_s44443_025_00117_z crossref_primary_10_1016_j_engappai_2025_111968 crossref_primary_10_1007_s11554_024_01607_5 crossref_primary_10_1016_j_neucom_2024_128670 crossref_primary_10_1088_2631_8695_ae0246 crossref_primary_10_37661_1816_0301_2025_22_2_33_47 crossref_primary_10_1016_j_imavis_2025_105442 crossref_primary_10_3390_agriculture15080798 crossref_primary_10_3390_wevj16010036 crossref_primary_10_3390_fire8040138 crossref_primary_10_1080_17445760_2025_2519741 crossref_primary_10_3390_drones8120713 crossref_primary_10_3390_sym16060730 crossref_primary_10_1016_j_autcon_2025_106330 crossref_primary_10_1016_j_engappai_2024_109139 crossref_primary_10_1049_ipr2_70034 crossref_primary_10_1038_s41598_025_09825_y crossref_primary_10_1007_s13042_023_02034_x crossref_primary_10_3390_jmse12101885 crossref_primary_10_1016_j_engappai_2024_108697 crossref_primary_10_1016_j_imavis_2024_105339 crossref_primary_10_1088_2631_8695_ad6af6 crossref_primary_10_1016_j_eswa_2024_124282 crossref_primary_10_1038_s41598_025_92696_0 crossref_primary_10_1007_s11554_024_01562_1 crossref_primary_10_1016_j_imavis_2025_105693 crossref_primary_10_3390_e25091333 crossref_primary_10_1016_j_engappai_2025_110646 crossref_primary_10_7717_peerj_cs_3151 crossref_primary_10_3390_agronomy15081948 crossref_primary_10_1038_s41598_025_07610_5 crossref_primary_10_3390_s24227347 crossref_primary_10_1016_j_jvcir_2025_104560 crossref_primary_10_1155_2024_8628149 crossref_primary_10_3390_ijgi13110395 crossref_primary_10_1016_j_apor_2025_104551 crossref_primary_10_1016_j_measurement_2025_116994 crossref_primary_10_3390_plants13192808 crossref_primary_10_1016_j_aei_2025_103200 crossref_primary_10_3390_agronomy15040981 crossref_primary_10_1080_10589759_2025_2478259 crossref_primary_10_3390_agriculture14122169 crossref_primary_10_1016_j_psep_2025_107783 crossref_primary_10_1038_s41598_025_02865_4 crossref_primary_10_1038_s41598_024_76662_w crossref_primary_10_3390_automation5020011 crossref_primary_10_1016_j_atech_2025_101047 crossref_primary_10_1109_ACCESS_2024_3494241 crossref_primary_10_1016_j_engappai_2024_109134 crossref_primary_10_3390_fire8050170 crossref_primary_10_1038_s41598_024_78578_x crossref_primary_10_1016_j_measurement_2024_116220 crossref_primary_10_1109_ACCESS_2024_3452129 crossref_primary_10_3390_s24227197 crossref_primary_10_1007_s10694_025_01733_x crossref_primary_10_1038_s41598_025_87848_1 crossref_primary_10_1109_ACCESS_2024_3481031 crossref_primary_10_1080_17538947_2025_2498604 crossref_primary_10_1038_s41598_024_77878_6 crossref_primary_10_3390_electronics14112113 crossref_primary_10_3390_su16135783 crossref_primary_10_1016_j_dsp_2025_105456 crossref_primary_10_1109_ACCESS_2024_3393934 crossref_primary_10_1109_OJCS_2025_3586682 crossref_primary_10_1007_s11554_025_01724_9 crossref_primary_10_1016_j_engappai_2024_108110 crossref_primary_10_1371_journal_pone_0311173 crossref_primary_10_3233_JIFS_233440 crossref_primary_10_3390_a18090537 crossref_primary_10_3390_agriculture15181968 crossref_primary_10_3390_agronomy15040839 crossref_primary_10_1109_ACCESS_2025_3570455 crossref_primary_10_1007_s00371_025_03826_8 crossref_primary_10_3390_electronics14010208 crossref_primary_10_1016_j_compag_2025_109975 crossref_primary_10_1109_ACCESS_2024_3521652 crossref_primary_10_3390_s24134331 crossref_primary_10_1080_10589759_2025_2536072 crossref_primary_10_3390_rs17010109 crossref_primary_10_3390_drones9080554 crossref_primary_10_1088_2631_8695_adea31 crossref_primary_10_3389_fpls_2025_1571228 crossref_primary_10_1016_j_bspc_2025_108262 crossref_primary_10_1016_j_ecoinf_2025_103256 crossref_primary_10_3390_s25165106 crossref_primary_10_1016_j_jvcir_2024_104289 crossref_primary_10_1007_s00371_025_03927_4 crossref_primary_10_1038_s41598_024_80265_w crossref_primary_10_3390_electronics13183726 crossref_primary_10_1016_j_compag_2025_110736 crossref_primary_10_3389_fpls_2025_1588626 crossref_primary_10_3390_microorganisms13071617 crossref_primary_10_1016_j_engappai_2025_111247 crossref_primary_10_1371_journal_pone_0318817 crossref_primary_10_1007_s00607_024_01398_4 crossref_primary_10_1016_j_engappai_2025_111648 crossref_primary_10_1109_ACCESS_2025_3581234 crossref_primary_10_1007_s44443_025_00069_4 crossref_primary_10_1007_s11554_025_01685_z crossref_primary_10_1080_15435075_2025_2471988 crossref_primary_10_1371_journal_pone_0315267 crossref_primary_10_1016_j_imavis_2025_105485 crossref_primary_10_1109_ACCESS_2024_3382817 crossref_primary_10_3390_s25082446 crossref_primary_10_3390_s25113433 crossref_primary_10_1109_TSMC_2025_3552621 crossref_primary_10_1088_1361_6501_addbfd crossref_primary_10_1109_TIM_2025_3584147 crossref_primary_10_1117_1_JEI_33_6_063047 crossref_primary_10_1364_AO_566416 crossref_primary_10_3390_s25010196 crossref_primary_10_1016_j_engappai_2024_109859 crossref_primary_10_1088_2631_8695_addd5d crossref_primary_10_1109_TIM_2025_3551459 crossref_primary_10_3390_sym16040450 crossref_primary_10_1109_ACCESS_2025_3593021 crossref_primary_10_1371_journal_pone_0329555 crossref_primary_10_3390_jmse12101726 crossref_primary_10_1109_LSP_2025_3591730 crossref_primary_10_1007_s11554_024_01610_w crossref_primary_10_3390_s24155059 crossref_primary_10_3788_IRLA20250223 crossref_primary_10_1016_j_displa_2025_103203 crossref_primary_10_1016_j_patcog_2025_112375 crossref_primary_10_1016_j_measurement_2024_115221 crossref_primary_10_3390_agriculture15131354 crossref_primary_10_1088_2631_8695_adeefe crossref_primary_10_1371_journal_pone_0329447 crossref_primary_10_3390_s24206506 crossref_primary_10_1016_j_aei_2024_102709 crossref_primary_10_1016_j_eswa_2024_125727 crossref_primary_10_1038_s41598_025_11689_1 crossref_primary_10_1007_s11760_025_04310_5 crossref_primary_10_1088_1361_6501_adbe96 crossref_primary_10_1007_s13042_025_02566_4 crossref_primary_10_1002_fsn3_70576 crossref_primary_10_1016_j_compag_2025_110753 crossref_primary_10_1016_j_infrared_2024_105487 crossref_primary_10_1016_j_measurement_2025_117490 crossref_primary_10_1109_JSTARS_2025_3585103 crossref_primary_10_3390_app15094902 crossref_primary_10_1016_j_patrec_2024_11_027 crossref_primary_10_1109_ACCESS_2025_3545670 crossref_primary_10_1007_s40031_024_01152_6 crossref_primary_10_3389_fphy_2025_1603047 crossref_primary_10_1177_00405175251356191 crossref_primary_10_3390_s24154813 crossref_primary_10_1007_s11554_025_01669_z crossref_primary_10_1016_j_eswa_2024_125682 |
| Cites_doi | 10.1016/j.procs.2020.06.115 10.1007/s11263-019-01228-7 10.1109/JSTARS.2020.3000317 10.1002/ima.22608 10.1155/2022/3424819 10.1016/j.engappai.2022.105157 10.1016/j.engappai.2022.105084 10.1016/j.engappai.2022.104914 10.1016/j.engappai.2022.105225 10.1016/j.eswa.2022.117847 10.1016/j.saa.2021.120155 10.1016/j.chaos.2021.111304 10.1155/2021/5592878 10.3390/rs13214384 10.1007/s11263-014-0733-5 10.1109/TPAMI.2016.2577031 10.1016/j.displa.2021.102043 10.3390/rs14184676 10.3390/rs11070765 10.1016/j.engappai.2022.105628 10.3390/rs15030614 10.3390/rs14071743 10.1016/j.ecoinf.2022.101844 10.1016/j.jag.2022.102676 10.3390/s21165460 10.1016/j.engappai.2022.104739 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.engappai.2023.106442 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| ExternalDocumentID | 10_1016_j_engappai_2023_106442 S0952197623006267 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO AAYFN ABBOA ABMAC ABXDB ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS WUQ ZMT ~G- 9DU AATTM AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c312t-a5e417ef7bc96b406b7c318b19bcefacb371290df73babdfb29309eb3eefeca33 |
| ISICitedReferencesCount | 239 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001007120300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0952-1976 |
| IngestDate | Sat Nov 29 02:18:07 EST 2025 Tue Nov 18 21:48:13 EST 2025 Sat Oct 05 15:37:15 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Attention mechanism Convolutional neural network Local channel attention Object detection Deep learning algorithm |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c312t-a5e417ef7bc96b406b7c318b19bcefacb371290df73babdfb29309eb3eefeca33 |
| ORCID | 0000-0002-7442-5752 0000-0002-9794-9428 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_engappai_2023_106442 crossref_primary_10_1016_j_engappai_2023_106442 elsevier_sciencedirect_doi_10_1016_j_engappai_2023_106442 |
| PublicationCentury | 2000 |
| PublicationDate | August 2023 2023-08-00 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: August 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering applications of artificial intelligence |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Zhang, Winn, Tomioka (b81) 2016 Misra, Nalamada, Arasanipalai, Hou (b44) 2020 Redmon, Farhadi (b52) 2018 Zou, Chen, Shi, Guo, Ye (b87) 2023 Liu, Jiang, Jin, Feng, Wang, Liao, Lee, Yao (b39) 2022; 114 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b65) 2017 Redmon, Divvala, Girshick, Farhadi (b50) 2016 Ultralytics (b64) 2023 Xu, Li, Wang, Xu, Meng, Zhang (b74) 2022; 110 Schwartz, Schwing, Hazan (b57) 2017 Zhang, Lan, Zeng, Jin, Chen (b77) 2020 Qin, Zhang, Wu, Li (b49) 2021 Wang, Bochkovskiy, Liao (b68) 2022 Steiniger, Kraus, Meisen (b61) 2022; 114 Ma, Zhan, Yang (b42) 2022; 77 Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Andreetto, Adam (b25) 2017 Liu, Qi, Qin, Shi, Jia (b41) 2018 Cao, Feng, Zhang, Huang (b4) 2020; 174 Wan, Lu, Wang, Shen, Xu, Lang (b67) 2023; 15 Guo, Xu, Si, Razmjooy (b18) 2021; 31 Hou, Zhang, Cheng, Feng (b22) 2020 Hassanin, Anwar, Radwan, Khan, Mian (b20) 2022 Liang, Lin, Lu (b35) 2022; 206 Hu, Shen, Albanie, Sun, Wu (b27) 2019 Ioffe, Szegedy (b29) 2015 Wang, Girshick, Gupta, He (b69) 2018 Hu, Yao, Wan, Bao, Zeng (b28) 2022; 72 Zhao, Zhu, Qi, Qi, Su, Shi (b84) 2021; 13 Klambauer, Unterthiner, Mayr, Hochreiter (b30) 2017 Diba, Fayyaz, Sharma, Arzani, Yousefzadeh, Gall, Van Gool (b11) 2018 Hu, Gu, Zhang, Dai, Wei (b26) 2018 Lin, Cheng, Wu, Yang, Shen, Wang, Song, Yuan (b36) 2021 Lang, Xu, Zhang, Wang (b31) 2021; 21 Pan, Cui, An, Huang, Zhang, Zhang, Zhang, Li, Cheng, Hu (b47) 2022; 108 Rennie, Marcheret, Mroueh, Ross, Goel (b54) 2017 Zhang, Wu, Zhang, Zhu, Lin, Zhang, Sun, He, Mueller, Manmatha, Li, Smola (b82) 2020 Chen, Deng, Hu (b6) 2019 Li, Zhong, Wu, Yang, Lin, Liu (b34) 2019 Roy, Navab, Wachinger (b55) 2018 Woo, Park, Lee, Kweon (b72) 2018 Pan, Yao, Li, Mei (b48) 2020 , Lin, Feng, dos Santos, Yu, Xiang, Zhou, Bengio (b37) 2017 . Zheng, Fu, Zha, Luo (b85) 2019 Chen, Wang, Pang, Cao, Xiong, Li, Sun, Feng, Liu, Xu, Zhang, Cheng, Zhu, Cheng, Zhao, Li, Lu, Zhu, Wu, Dai, Wang, Shi, Ouyang, Loy, Lin (b8) 2019 Cheng, Wang, Peng, Ren, Shuai, Zang, Liu, Cheng, Wu (b9) 2021; 152 DeVries, Taylor (b10) 2017 Wang, Wang, Zhang, Dong, Wei (b70) 2019; 11 Yoo, Shin, Lee (b76) 2017 Ren, He, Girshick, Sun (b53) 2017; 39 Ho, Kalchbrenner, Weissenborn, Salimans (b21) 2019 Hou, Zhou, Feng (b23) 2021 Song, Zhang, Li, Xie, Yang, Zhou, Zhang (b60) 2022 Zoph, B., Le, Q., 2016. Neural architecture search with reinforcement learning Liu, Lin, Cao, Hu, Wei, Zhang, Lin, Guo (b40) 2021 Ultralytics (b63) 2020 Veličković, Cucurull, Casanova, Romero, Liò, Bengio (b66) 2018 Everingham, Eslami, Van Gool, Williams, Winn, Zisserman (b13) 2015; 111 Tan, Wang, Xie, Chen, Shi (b62) 2017 Ge, Liu, Wang, Li, Sun (b17) 2021 Fan, Zhang, Chen, Zhou (b14) 2020 Men, Yuan, Shi, Liu, Wang, Liu (b43) 2021; 263 Haroon, Shahzad, Fraz (b19) 2020; 13 Dong, Yan, Duan (b12) 2022; 113 Howard, Sandler, Chu, Chen, Chen, Tan, Wang, Zhu, Pang, Vasudevan, Le, Adam (b24) 2019 Zhang, Wang, Li, Shu, Lang, Zhang, Dong (b80) 2023; 117 Xu, Gao, Huang, Xu (b73) 2022; 14 Zhao, Chen, Huang, Li, Cheng (b83) 2021; 2021 Bochkovskiy, Wang, Liao (b2) 2020 Li, Wang, Hu, Yang (b33) 2019 Gao, Xie, Wang, Li (b16) 2018 Li, C., Li, L., Jiang, H., Weng, K., Geng, Y., Li, L., Ke, Z., Li, Q., Cheng, M., Nie, W., Li, Y., Zhang, B., Liang, Y., Zhou, L., Xu, X., Chu, X., Wei, X., Wei, X., 2022. YOLOv6: A single-stage object detection framework for industrial applications Niu, Nan, Wang (b46) 2021; 69 Fu, Liu, Tian, Li, Bao, Fang, Lu (b15) 2019 Selvaraju, Cogswell, Das, Vedantam, Parikh, Batra (b58) 2020; 128 Chen, Miao (b7) 2021 Alferaidi, Yadav, Alharbi, Razmjooy, Viriyasitavat, Gulati, Kautish, Dhiman (b1) 2022; 2022 SIfre, Mallat (b59) 2014 Sandler, Howard, Zhu, Zhmoginov, Chen (b56) 2019 Liu, Huang, Li (b38) 2022; 14 Redmon, Farhadi (b51) 2016 Mnih, Heess, Graves, Kavukcuoglu (b45) 2014 Wang, Wu, Zhu, Li, Zuo, Hu (b71) 2020 Canayaz (b3) 2020; 151 Zhang, Qian, Tan (b78) 2022; 115 Zhang, Ren, Zhang, Jia, Wang, Tan (b79) 2022 Yang, Bender, Le, Ngiam (b75) 2020 Chen, Dai, Liu, Chen, Yuan, Liu (b5) 2020 Ultralytics (10.1016/j.engappai.2023.106442_b64) 2023 Zhang (10.1016/j.engappai.2023.106442_b77) 2020 Rennie (10.1016/j.engappai.2023.106442_b54) 2017 Wan (10.1016/j.engappai.2023.106442_b67) 2023; 15 Tan (10.1016/j.engappai.2023.106442_b62) 2017 Sandler (10.1016/j.engappai.2023.106442_b56) 2019 Veličković (10.1016/j.engappai.2023.106442_b66) 2018 Zhang (10.1016/j.engappai.2023.106442_b78) 2022; 115 Liang (10.1016/j.engappai.2023.106442_b35) 2022; 206 Hassanin (10.1016/j.engappai.2023.106442_b20) 2022 Xu (10.1016/j.engappai.2023.106442_b73) 2022; 14 Chen (10.1016/j.engappai.2023.106442_b8) 2019 Fan (10.1016/j.engappai.2023.106442_b14) 2020 Alferaidi (10.1016/j.engappai.2023.106442_b1) 2022; 2022 Fu (10.1016/j.engappai.2023.106442_b15) 2019 Diba (10.1016/j.engappai.2023.106442_b11) 2018 Schwartz (10.1016/j.engappai.2023.106442_b57) 2017 Steiniger (10.1016/j.engappai.2023.106442_b61) 2022; 114 Howard (10.1016/j.engappai.2023.106442_b24) 2019 Ren (10.1016/j.engappai.2023.106442_b53) 2017; 39 Woo (10.1016/j.engappai.2023.106442_b72) 2018 Lang (10.1016/j.engappai.2023.106442_b31) 2021; 21 Ma (10.1016/j.engappai.2023.106442_b42) 2022; 77 Everingham (10.1016/j.engappai.2023.106442_b13) 2015; 111 Howard (10.1016/j.engappai.2023.106442_b25) 2017 Chen (10.1016/j.engappai.2023.106442_b6) 2019 Dong (10.1016/j.engappai.2023.106442_b12) 2022; 113 Lin (10.1016/j.engappai.2023.106442_b37) 2017 Men (10.1016/j.engappai.2023.106442_b43) 2021; 263 Wang (10.1016/j.engappai.2023.106442_b71) 2020 Ioffe (10.1016/j.engappai.2023.106442_b29) 2015 Zou (10.1016/j.engappai.2023.106442_b87) 2023 Niu (10.1016/j.engappai.2023.106442_b46) 2021; 69 Redmon (10.1016/j.engappai.2023.106442_b50) 2016 Canayaz (10.1016/j.engappai.2023.106442_b3) 2020; 151 Zheng (10.1016/j.engappai.2023.106442_b85) 2019 Ho (10.1016/j.engappai.2023.106442_b21) 2019 Song (10.1016/j.engappai.2023.106442_b60) 2022 Chen (10.1016/j.engappai.2023.106442_b5) 2020 Hu (10.1016/j.engappai.2023.106442_b27) 2019 Klambauer (10.1016/j.engappai.2023.106442_b30) 2017 Zhang (10.1016/j.engappai.2023.106442_b80) 2023; 117 Liu (10.1016/j.engappai.2023.106442_b38) 2022; 14 Misra (10.1016/j.engappai.2023.106442_b44) 2020 Li (10.1016/j.engappai.2023.106442_b34) 2019 Liu (10.1016/j.engappai.2023.106442_b41) 2018 Zhang (10.1016/j.engappai.2023.106442_b79) 2022 Guo (10.1016/j.engappai.2023.106442_b18) 2021; 31 Hou (10.1016/j.engappai.2023.106442_b23) 2021 Haroon (10.1016/j.engappai.2023.106442_b19) 2020; 13 Mnih (10.1016/j.engappai.2023.106442_b45) 2014 Pan (10.1016/j.engappai.2023.106442_b48) 2020 Zhao (10.1016/j.engappai.2023.106442_b83) 2021; 2021 Liu (10.1016/j.engappai.2023.106442_b39) 2022; 114 Vaswani (10.1016/j.engappai.2023.106442_b65) 2017 Redmon (10.1016/j.engappai.2023.106442_b51) 2016 Hu (10.1016/j.engappai.2023.106442_b28) 2022; 72 Zhang (10.1016/j.engappai.2023.106442_b82) 2020 Ge (10.1016/j.engappai.2023.106442_b17) 2021 10.1016/j.engappai.2023.106442_b32 Bochkovskiy (10.1016/j.engappai.2023.106442_b2) 2020 Zhang (10.1016/j.engappai.2023.106442_b81) 2016 Ultralytics (10.1016/j.engappai.2023.106442_b63) 2020 DeVries (10.1016/j.engappai.2023.106442_b10) 2017 Hou (10.1016/j.engappai.2023.106442_b22) 2020 Lin (10.1016/j.engappai.2023.106442_b36) 2021 Hu (10.1016/j.engappai.2023.106442_b26) 2018 Zhao (10.1016/j.engappai.2023.106442_b84) 2021; 13 Cao (10.1016/j.engappai.2023.106442_b4) 2020; 174 SIfre (10.1016/j.engappai.2023.106442_b59) 2014 Cheng (10.1016/j.engappai.2023.106442_b9) 2021; 152 Wang (10.1016/j.engappai.2023.106442_b69) 2018 Wang (10.1016/j.engappai.2023.106442_b70) 2019; 11 Li (10.1016/j.engappai.2023.106442_b33) 2019 Roy (10.1016/j.engappai.2023.106442_b55) 2018 Xu (10.1016/j.engappai.2023.106442_b74) 2022; 110 Yang (10.1016/j.engappai.2023.106442_b75) 2020 Chen (10.1016/j.engappai.2023.106442_b7) 2021 Qin (10.1016/j.engappai.2023.106442_b49) 2021 Wang (10.1016/j.engappai.2023.106442_b68) 2022 Pan (10.1016/j.engappai.2023.106442_b47) 2022; 108 Yoo (10.1016/j.engappai.2023.106442_b76) 2017 10.1016/j.engappai.2023.106442_b86 Redmon (10.1016/j.engappai.2023.106442_b52) 2018 Selvaraju (10.1016/j.engappai.2023.106442_b58) 2020; 128 Gao (10.1016/j.engappai.2023.106442_b16) 2018 Liu (10.1016/j.engappai.2023.106442_b40) 2021 |
| References_xml | – year: 2017 ident: b57 article-title: High-order attention models for visual question answering – year: 2019 ident: b85 article-title: Looking for the devil in the details: learning trilinear attention sampling network for fine-grained image recognition – volume: 174 start-page: 463 year: 2020 end-page: 477 ident: b4 article-title: Facial expression recognition via a CBAM embedded network publication-title: Proc. Comput. Sci. – year: 2022 ident: b20 article-title: Visual attention methods in deep learning: An in-depth survey – year: 2016 ident: b51 article-title: YOLO9000: Better, faster, stronger – volume: 13 start-page: 3032 year: 2020 end-page: 3046 ident: b19 article-title: Multisized object detection using spaceborne optical imagery publication-title: IEEE J. Selected Top. Appl. Earth Observ. Remote Sens. – year: 2018 ident: b66 article-title: Graph attention networks – year: 2019 ident: b21 article-title: Axial attention in multidimensional transformers – volume: 2022 year: 2022 ident: b1 article-title: Distributed deep CNN-LSTM model for intrusion detection method in IoT-based vehicles publication-title: Math. Problems Eng. – volume: 114 year: 2022 ident: b61 article-title: Survey on deep learning based computer vision for sonar imagery publication-title: Eng. Appl. Artif. Intell. – volume: 15 start-page: 614 year: 2023 ident: b67 article-title: YOLO-HR: improved YOLOv5 for object detection in high-resolution optical remote sensing images publication-title: Remote Sens. – year: 2022 ident: b68 article-title: YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors – year: 2021 ident: b7 article-title: Control distance IoU and control distance IoU loss function for better bounding box regression – volume: 14 start-page: 4676 year: 2022 ident: b73 article-title: Triangle distance IoU loss, attention-weighted feature pyramid network, and rotated-sarship dataset for arbitrary-oriented SAR ship detection publication-title: Remote Sens. – reference: Zoph, B., Le, Q., 2016. Neural architecture search with reinforcement learning, – volume: 152 year: 2021 ident: b9 article-title: High-efficiency chaotic time series prediction based on time convolution neural network publication-title: Chaos Solitons Fractals – year: 2017 ident: b54 article-title: Self-critical sequence training for image captioning – volume: 110 year: 2022 ident: b74 article-title: Instance segmentation of biological images using graph convolutional network publication-title: Eng. Appl. Artif. Intell. – year: 2023 ident: b64 article-title: YOLOv8 – year: 2019 ident: b6 article-title: Mixed high-order attention network for person re-identification – volume: 72 year: 2022 ident: b28 article-title: Detection and classification of diseased pine trees with different levels of severity from UAV remote sensing images publication-title: Ecol. Inform. – volume: 77 year: 2022 ident: b42 article-title: Multi-classification of arrhythmias using ResNet with CBAM on CWGAN-GP augmented ECG gramian angular summation field publication-title: Biomed. Signal Process. Control – year: 2020 ident: b75 article-title: CondConv: Conditionally parameterized convolutions for efficient inference – year: 2020 ident: b71 article-title: ECA-Net: Efficient channel attention for deep convolutional neural networks – volume: 31 year: 2021 ident: b18 article-title: Novel computer-aided lung cancer detection based on convolutional neural network-based and feature-based classifiers using metaheuristics publication-title: Int. J. Imaging Syst. Technol. – year: 2019 ident: b15 article-title: Dual attention network for scene segmentation – volume: 39 start-page: 1137 year: 2017 end-page: 1149 ident: b53 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2020 ident: b82 article-title: ResNeSt: split-attention networks – volume: 108 year: 2022 ident: b47 article-title: MapsNet: Multi-level feature constraint and fusion network for change detection publication-title: Int. J. Appl. Earth Observ. Geoinform. – year: 2017 ident: b76 article-title: Improving visually grounded sentence representations with self-attention – year: 2021 ident: b40 article-title: Swin transformer: hierarchical vision transformer using shifted windows – year: 2020 ident: b5 article-title: Dynamic convolution: attention over convolution kernels – year: 2017 ident: b10 article-title: Improved regularization of convolutional neural networks with cutout – volume: 69 year: 2021 ident: b46 article-title: A super resolution frontal face generation model based on 3DDFA and CBAM publication-title: Displays – year: 2017 ident: b62 article-title: Deep semantic role labeling with self-attention – year: 2016 ident: b81 article-title: Gaussian attention model and its application to knowledge base embedding and question answering – year: 2019 ident: b33 article-title: Selective kernel networks – volume: 14 start-page: 1743 year: 2022 ident: b38 article-title: Eagle-eye-inspired attention for object detection in remote sensing publication-title: Remote Sens. – volume: 113 year: 2022 ident: b12 article-title: A lightweight vehicles detection network model based on YOLOv5 publication-title: Eng. Appl. Artif. Intell. – year: 2017 ident: b37 article-title: A structured self-attentive sentence embedding – year: 2016 ident: b50 article-title: You only look once: unified, real-time object detection – year: 2018 ident: b55 article-title: Recalibrating fully convolutional networks with spatial and channel ’squeeze & excitation’ blocks – year: 2018 ident: b11 article-title: Spatio-temporal channel correlation networks for action classification – reference: , – volume: 263 year: 2021 ident: b43 article-title: A residual network with attention module for hyperspectral information of recognition to trace the origin of rice publication-title: Spectrochim. Acta – volume: 111 start-page: 98 year: 2015 end-page: 136 ident: b13 article-title: The pascal visual object classes challenge: A retrospective publication-title: Int. J. Comput. Vis. – year: 2015 ident: b29 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift – year: 2018 ident: b69 article-title: Non-local neural networks – year: 2020 ident: b63 article-title: YOLOv5 – volume: 115 year: 2022 ident: b78 article-title: Automated bridge surface crack detection and segmentation using computer vision-based deep learning model publication-title: Eng. Appl. Artif. Intell. – year: 2017 ident: b30 article-title: Self-normalizing neural networks – year: 2018 ident: b52 article-title: YOLOv3: an incremental improvement – year: 2018 ident: b26 article-title: Relation networks for object detection – year: 2021 ident: b17 article-title: YOLOX: Exceeding YOLO series in 2021 – year: 2019 ident: b56 article-title: MobileNetV2: Inverted residuals and linear bottlenecks – year: 2022 ident: b79 article-title: Focal and efficient IOU loss for accurate bounding box regression – year: 2018 ident: b41 article-title: Path aggregation network for instance segmentation – year: 2017 ident: b25 article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications – year: 2014 ident: b45 article-title: Recurrent models of visual attention – year: 2021 ident: b49 article-title: FcaNet: frequency channel attention networks – volume: 21 start-page: 5460 year: 2021 ident: b31 article-title: Fast and accurate object detection in remote sensing images based on lightweight deep neural network publication-title: Sensors – year: 2014 ident: b59 article-title: Rigid-motion scattering for texture classification – volume: 2021 start-page: 1 year: 2021 end-page: 13 ident: b83 article-title: A new steel defect detection algorithm based on deep learning publication-title: Comput. Intell. Neurosci. – start-page: 9166 year: 2019 end-page: 9175 ident: b34 article-title: Expectation-maximization attention networks for semantic segmentation publication-title: 2019 IEEE/CVF International Conference on Computer Vision (ICCV) – volume: 206 year: 2022 ident: b35 article-title: Forecasting gold price using a novel hybrid model with ICEEMDAN and LSTM-CNN-CBAM publication-title: Exp. Syst. Appl. – year: 2020 ident: b2 article-title: YOLOv4: Optimal speed and accuracy of object detection – year: 2021 ident: b36 article-title: CAT: Cross attention in vision transformer – volume: 13 start-page: 4384 year: 2021 ident: b84 article-title: Synergistic attention for ship instance segmentation in SAR images publication-title: Remote Sens. – reference: Li, C., Li, L., Jiang, H., Weng, K., Geng, Y., Li, L., Ke, Z., Li, Q., Cheng, M., Nie, W., Li, Y., Zhang, B., Liang, Y., Zhou, L., Xu, X., Chu, X., Wei, X., Wei, X., 2022. YOLOv6: A single-stage object detection framework for industrial applications, – year: 2020 ident: b77 article-title: Relation-aware global attention for person re-identification – volume: 11 start-page: 765 year: 2019 ident: b70 article-title: A SAR dataset of ship detection for deep learning under complex backgrounds publication-title: Remote Sens. – start-page: 1 year: 2023 end-page: 20 ident: b87 article-title: Object detection in 20 years: a survey publication-title: Proc. IEEE – year: 2020 ident: b14 article-title: Bayesian attention modules – year: 2018 ident: b16 article-title: Global second-order pooling convolutional networks – year: 2020 ident: b44 article-title: Rotate to attend: convolutional triplet attention module – volume: 151 year: 2020 ident: b3 article-title: C+EffxNet: A novel hybrid approach for COVID-19 diagnosis on CT images based on CBAM and EfficientNet publication-title: Chaos Solitons Fractals – year: 2020 ident: b48 article-title: X-linear attention networks for image captioning – reference: . – year: 2019 ident: b24 article-title: Searching for MobileNetV3 – year: 2022 ident: b60 article-title: Detection of maize tassels for UAV remote sensing image with an improved YOLOX model publication-title: J. Integr. Agric. – year: 2017 ident: b65 article-title: Attention is all you need – volume: 128 start-page: 336 year: 2020 end-page: 359 ident: b58 article-title: Grad-CAM: Visual explanations from deep networks via gradient-based localization publication-title: Int. J. Comput. Vis. – year: 2018 ident: b72 article-title: CBAM: convolutional block attention module – year: 2019 ident: b27 article-title: Squeeze-and-excitation networks – start-page: 4002 year: 2020 end-page: 4011 ident: b22 article-title: Strip pooling: rethinking spatial pooling for scene parsing publication-title: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) – year: 2021 ident: b23 article-title: Coordinate attention for efficient mobile network design – volume: 114 year: 2022 ident: b39 article-title: CASR-net: A color-aware super-resolution network for panchromatic image publication-title: Eng. Appl. Artif. Intell. – volume: 117 year: 2023 ident: b80 article-title: Development of a cross-scale weighted feature fusion network for hot-rolled steel surface defect detection publication-title: Eng. Appl. Artif. Intell. – year: 2019 ident: b8 article-title: MMDetection: Open MMLab detection toolbox and benchmark – year: 2020 ident: 10.1016/j.engappai.2023.106442_b77 – volume: 174 start-page: 463 year: 2020 ident: 10.1016/j.engappai.2023.106442_b4 article-title: Facial expression recognition via a CBAM embedded network publication-title: Proc. Comput. Sci. doi: 10.1016/j.procs.2020.06.115 – year: 2017 ident: 10.1016/j.engappai.2023.106442_b76 – volume: 128 start-page: 336 issue: 2 year: 2020 ident: 10.1016/j.engappai.2023.106442_b58 article-title: Grad-CAM: Visual explanations from deep networks via gradient-based localization publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-019-01228-7 – year: 2018 ident: 10.1016/j.engappai.2023.106442_b55 – year: 2019 ident: 10.1016/j.engappai.2023.106442_b56 – year: 2017 ident: 10.1016/j.engappai.2023.106442_b62 – year: 2022 ident: 10.1016/j.engappai.2023.106442_b60 article-title: Detection of maize tassels for UAV remote sensing image with an improved YOLOX model publication-title: J. Integr. Agric. – volume: 13 start-page: 3032 year: 2020 ident: 10.1016/j.engappai.2023.106442_b19 article-title: Multisized object detection using spaceborne optical imagery publication-title: IEEE J. Selected Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2020.3000317 – year: 2016 ident: 10.1016/j.engappai.2023.106442_b50 – year: 2019 ident: 10.1016/j.engappai.2023.106442_b15 – volume: 31 year: 2021 ident: 10.1016/j.engappai.2023.106442_b18 article-title: Novel computer-aided lung cancer detection based on convolutional neural network-based and feature-based classifiers using metaheuristics publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22608 – year: 2016 ident: 10.1016/j.engappai.2023.106442_b51 – year: 2022 ident: 10.1016/j.engappai.2023.106442_b20 – year: 2019 ident: 10.1016/j.engappai.2023.106442_b33 – year: 2018 ident: 10.1016/j.engappai.2023.106442_b52 – volume: 2022 year: 2022 ident: 10.1016/j.engappai.2023.106442_b1 article-title: Distributed deep CNN-LSTM model for intrusion detection method in IoT-based vehicles publication-title: Math. Problems Eng. doi: 10.1155/2022/3424819 – year: 2017 ident: 10.1016/j.engappai.2023.106442_b30 – ident: 10.1016/j.engappai.2023.106442_b32 – volume: 114 year: 2022 ident: 10.1016/j.engappai.2023.106442_b61 article-title: Survey on deep learning based computer vision for sonar imagery publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.105157 – year: 2021 ident: 10.1016/j.engappai.2023.106442_b17 – volume: 114 year: 2022 ident: 10.1016/j.engappai.2023.106442_b39 article-title: CASR-net: A color-aware super-resolution network for panchromatic image publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.105084 – year: 2017 ident: 10.1016/j.engappai.2023.106442_b25 – year: 2014 ident: 10.1016/j.engappai.2023.106442_b59 – year: 2017 ident: 10.1016/j.engappai.2023.106442_b10 – year: 2018 ident: 10.1016/j.engappai.2023.106442_b66 – year: 2020 ident: 10.1016/j.engappai.2023.106442_b14 – year: 2021 ident: 10.1016/j.engappai.2023.106442_b40 – year: 2019 ident: 10.1016/j.engappai.2023.106442_b6 – year: 2018 ident: 10.1016/j.engappai.2023.106442_b16 – year: 2017 ident: 10.1016/j.engappai.2023.106442_b54 – volume: 113 year: 2022 ident: 10.1016/j.engappai.2023.106442_b12 article-title: A lightweight vehicles detection network model based on YOLOv5 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.104914 – year: 2018 ident: 10.1016/j.engappai.2023.106442_b26 – volume: 115 year: 2022 ident: 10.1016/j.engappai.2023.106442_b78 article-title: Automated bridge surface crack detection and segmentation using computer vision-based deep learning model publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.105225 – year: 2019 ident: 10.1016/j.engappai.2023.106442_b85 – volume: 206 year: 2022 ident: 10.1016/j.engappai.2023.106442_b35 article-title: Forecasting gold price using a novel hybrid model with ICEEMDAN and LSTM-CNN-CBAM publication-title: Exp. Syst. Appl. doi: 10.1016/j.eswa.2022.117847 – volume: 263 year: 2021 ident: 10.1016/j.engappai.2023.106442_b43 article-title: A residual network with attention module for hyperspectral information of recognition to trace the origin of rice publication-title: Spectrochim. Acta doi: 10.1016/j.saa.2021.120155 – year: 2015 ident: 10.1016/j.engappai.2023.106442_b29 – year: 2017 ident: 10.1016/j.engappai.2023.106442_b57 – year: 2019 ident: 10.1016/j.engappai.2023.106442_b27 – year: 2022 ident: 10.1016/j.engappai.2023.106442_b79 – volume: 152 year: 2021 ident: 10.1016/j.engappai.2023.106442_b9 article-title: High-efficiency chaotic time series prediction based on time convolution neural network publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2021.111304 – year: 2018 ident: 10.1016/j.engappai.2023.106442_b41 – year: 2017 ident: 10.1016/j.engappai.2023.106442_b65 – year: 2020 ident: 10.1016/j.engappai.2023.106442_b82 – year: 2017 ident: 10.1016/j.engappai.2023.106442_b37 – volume: 2021 start-page: 1 year: 2021 ident: 10.1016/j.engappai.2023.106442_b83 article-title: A new steel defect detection algorithm based on deep learning publication-title: Comput. Intell. Neurosci. doi: 10.1155/2021/5592878 – volume: 151 year: 2020 ident: 10.1016/j.engappai.2023.106442_b3 article-title: C+EffxNet: A novel hybrid approach for COVID-19 diagnosis on CT images based on CBAM and EfficientNet publication-title: Chaos Solitons Fractals – year: 2022 ident: 10.1016/j.engappai.2023.106442_b68 – year: 2014 ident: 10.1016/j.engappai.2023.106442_b45 – volume: 13 start-page: 4384 issue: 21 year: 2021 ident: 10.1016/j.engappai.2023.106442_b84 article-title: Synergistic attention for ship instance segmentation in SAR images publication-title: Remote Sens. doi: 10.3390/rs13214384 – volume: 111 start-page: 98 issue: 1 year: 2015 ident: 10.1016/j.engappai.2023.106442_b13 article-title: The pascal visual object classes challenge: A retrospective publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-014-0733-5 – volume: 39 start-page: 1137 issue: 6 year: 2017 ident: 10.1016/j.engappai.2023.106442_b53 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 – year: 2023 ident: 10.1016/j.engappai.2023.106442_b64 – year: 2021 ident: 10.1016/j.engappai.2023.106442_b23 – year: 2020 ident: 10.1016/j.engappai.2023.106442_b48 – year: 2021 ident: 10.1016/j.engappai.2023.106442_b49 – volume: 69 year: 2021 ident: 10.1016/j.engappai.2023.106442_b46 article-title: A super resolution frontal face generation model based on 3DDFA and CBAM publication-title: Displays doi: 10.1016/j.displa.2021.102043 – volume: 14 start-page: 4676 issue: 18 year: 2022 ident: 10.1016/j.engappai.2023.106442_b73 article-title: Triangle distance IoU loss, attention-weighted feature pyramid network, and rotated-sarship dataset for arbitrary-oriented SAR ship detection publication-title: Remote Sens. doi: 10.3390/rs14184676 – year: 2021 ident: 10.1016/j.engappai.2023.106442_b7 – volume: 11 start-page: 765 issue: 7 year: 2019 ident: 10.1016/j.engappai.2023.106442_b70 article-title: A SAR dataset of ship detection for deep learning under complex backgrounds publication-title: Remote Sens. doi: 10.3390/rs11070765 – year: 2020 ident: 10.1016/j.engappai.2023.106442_b44 – start-page: 1 year: 2023 ident: 10.1016/j.engappai.2023.106442_b87 article-title: Object detection in 20 years: a survey publication-title: Proc. IEEE – volume: 117 year: 2023 ident: 10.1016/j.engappai.2023.106442_b80 article-title: Development of a cross-scale weighted feature fusion network for hot-rolled steel surface defect detection publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.105628 – year: 2020 ident: 10.1016/j.engappai.2023.106442_b63 – start-page: 9166 year: 2019 ident: 10.1016/j.engappai.2023.106442_b34 article-title: Expectation-maximization attention networks for semantic segmentation – year: 2020 ident: 10.1016/j.engappai.2023.106442_b75 – year: 2018 ident: 10.1016/j.engappai.2023.106442_b72 – year: 2021 ident: 10.1016/j.engappai.2023.106442_b36 – ident: 10.1016/j.engappai.2023.106442_b86 – year: 2020 ident: 10.1016/j.engappai.2023.106442_b5 – start-page: 4002 year: 2020 ident: 10.1016/j.engappai.2023.106442_b22 article-title: Strip pooling: rethinking spatial pooling for scene parsing – year: 2019 ident: 10.1016/j.engappai.2023.106442_b21 – year: 2020 ident: 10.1016/j.engappai.2023.106442_b71 – volume: 15 start-page: 614 issue: 3 year: 2023 ident: 10.1016/j.engappai.2023.106442_b67 article-title: YOLO-HR: improved YOLOv5 for object detection in high-resolution optical remote sensing images publication-title: Remote Sens. doi: 10.3390/rs15030614 – year: 2019 ident: 10.1016/j.engappai.2023.106442_b8 – year: 2019 ident: 10.1016/j.engappai.2023.106442_b24 – volume: 14 start-page: 1743 issue: 7 year: 2022 ident: 10.1016/j.engappai.2023.106442_b38 article-title: Eagle-eye-inspired attention for object detection in remote sensing publication-title: Remote Sens. doi: 10.3390/rs14071743 – year: 2020 ident: 10.1016/j.engappai.2023.106442_b2 – volume: 72 year: 2022 ident: 10.1016/j.engappai.2023.106442_b28 article-title: Detection and classification of diseased pine trees with different levels of severity from UAV remote sensing images publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2022.101844 – year: 2018 ident: 10.1016/j.engappai.2023.106442_b11 – volume: 108 year: 2022 ident: 10.1016/j.engappai.2023.106442_b47 article-title: MapsNet: Multi-level feature constraint and fusion network for change detection publication-title: Int. J. Appl. Earth Observ. Geoinform. doi: 10.1016/j.jag.2022.102676 – year: 2016 ident: 10.1016/j.engappai.2023.106442_b81 – volume: 21 start-page: 5460 issue: 16 year: 2021 ident: 10.1016/j.engappai.2023.106442_b31 article-title: Fast and accurate object detection in remote sensing images based on lightweight deep neural network publication-title: Sensors doi: 10.3390/s21165460 – volume: 77 year: 2022 ident: 10.1016/j.engappai.2023.106442_b42 article-title: Multi-classification of arrhythmias using ResNet with CBAM on CWGAN-GP augmented ECG gramian angular summation field publication-title: Biomed. Signal Process. Control – year: 2018 ident: 10.1016/j.engappai.2023.106442_b69 – volume: 110 year: 2022 ident: 10.1016/j.engappai.2023.106442_b74 article-title: Instance segmentation of biological images using graph convolutional network publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.104739 |
| SSID | ssj0003846 |
| Score | 2.6998317 |
| Snippet | Attention mechanism, one of the most extensively utilized components in computer vision, can assist neural networks in emphasizing significant elements and... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 106442 |
| SubjectTerms | Attention mechanism Convolutional neural network Deep learning algorithm Local channel attention Object detection |
| Title | Mixed local channel attention for object detection |
| URI | https://dx.doi.org/10.1016/j.engappai.2023.106442 |
| Volume | 123 |
| WOSCitedRecordID | wos001007120300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database issn: 0952-1976 databaseCode: AIEXJ dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0003846 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELZa4NBLaUsRj7byobdVtiTOxvERIaq2arlA0d4i2xnDImTQPqrl3zOxHSe0iMehl2g1WTuP-TQeT76ZIeSzFJDzOtdJkWvcoGiuEgmoEMMQHyDLvcLFdE9_8qOjcjwW7RfdmWsnwK0tl0tx_V9VjTJUdpM6-wx1x0lRgL9R6XhEtePxSYr_NVmiE-nWKJfWa-Fy0BTRtJFVeKWa4MughrnjYdk70fmuPuGg_3Hb8QWmjljk2nz0Knl2MXlvwWQTg45En4Xnb9uz2Tl04uOQFHI8uVl0-BwvPHzC_0IwImORCtdFFbMkFb6lSzSwGeuZSNyD5r6g1j_W2wcSLoZ4O_iEcjJsLjHsBtwtl_3XMhbJhS1v7aJq56maeSo_z0uymvGRQAO4uv_9cPwjLtus9Fld7RP00snvv6P7PZmed3LyhrwO2wq67-HwlrwA-46shy0GDQZ8hqK2i0cr2yCZAwx1gKEBMDQChiJgqAcMjYB5T35_PTw5-JaEThqJZmk2T-QI8pSD4UqLQqEPpzieKFUqlAYjtWK8iUfWhjMlVW0UOoF7AhQDMKAlY5tkxV5Z2CK0ZrKQ6FNqVZc5Y4UydV4WhUxHwBkzZpuM2rdS6VBmvul2clk9rJdt8iWOu_aFVh4dIdqXXgV30buBFeLpkbE7z77aLnnVAf4DWZlPF_CRrOk_88ls-imA6Ra-WJD7 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mixed+local+channel+attention+for+object+detection&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Wan%2C+Dahang&rft.au=Lu%2C+Rongsheng&rft.au=Shen%2C+Siyuan&rft.au=Xu%2C+Ting&rft.date=2023-08-01&rft.issn=0952-1976&rft.volume=123&rft.spage=106442&rft_id=info:doi/10.1016%2Fj.engappai.2023.106442&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2023_106442 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |