Data-driven soft sensor approach for online quality prediction using state dependent parameter models

The goal of this paper is to design and implementation of a new data-driven soft sensor that uses state dependent parameter (SDP) models to improve product quality monitoring. The SDP model parameters assumed to be function of the system states, which are estimated by data-based modeling philosophy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemometrics and intelligent laboratory systems Jg. 162; S. 130 - 141
Hauptverfasser: Bidar, Bahareh, Sadeghi, Jafar, Shahraki, Farhad, Khalilipour, Mir Mohammad
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 15.03.2017
Schlagworte:
ISSN:0169-7439, 1873-3239
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The goal of this paper is to design and implementation of a new data-driven soft sensor that uses state dependent parameter (SDP) models to improve product quality monitoring. The SDP model parameters assumed to be function of the system states, which are estimated by data-based modeling philosophy and SDP method. Soft sensing performance of the proposed method is validated on a simulated continuous stirred tank reactor and an industrial debutanizer column. A comparative study of different soft sensing methods for online monitoring of debutanizer column is also carried out. The results show that the process non-linearity can also be addressed under this modeling method and the change of the process is also well tracked when missing data exist in the observed data. The results indicate that the new model is much more robust and reliable with less model parameters, which make it useful for industrial applications. In addition, the performance indexes show the superiority of the proposed model over other conventional soft sensing methods.
AbstractList The goal of this paper is to design and implementation of a new data-driven soft sensor that uses state dependent parameter (SDP) models to improve product quality monitoring. The SDP model parameters assumed to be function of the system states, which are estimated by data-based modeling philosophy and SDP method. Soft sensing performance of the proposed method is validated on a simulated continuous stirred tank reactor and an industrial debutanizer column. A comparative study of different soft sensing methods for online monitoring of debutanizer column is also carried out. The results show that the process non-linearity can also be addressed under this modeling method and the change of the process is also well tracked when missing data exist in the observed data. The results indicate that the new model is much more robust and reliable with less model parameters, which make it useful for industrial applications. In addition, the performance indexes show the superiority of the proposed model over other conventional soft sensing methods.
Author Shahraki, Farhad
Sadeghi, Jafar
Khalilipour, Mir Mohammad
Bidar, Bahareh
Author_xml – sequence: 1
  givenname: Bahareh
  surname: Bidar
  fullname: Bidar, Bahareh
– sequence: 2
  givenname: Jafar
  surname: Sadeghi
  fullname: Sadeghi, Jafar
  email: sadeghi@eng.usb.ac.ir
– sequence: 3
  givenname: Farhad
  surname: Shahraki
  fullname: Shahraki, Farhad
– sequence: 4
  givenname: Mir Mohammad
  surname: Khalilipour
  fullname: Khalilipour, Mir Mohammad
BookMark eNqFkM1KAzEUhYMoWH9eQfICMyaTZNKAC6X-guDGfUiTOzZlmoxJWvDtTalu3Li6HLjfgfOdoeMQAyB0RUlLCe2v161dwSaOZtl2hMqW0JYQfoRmdC5ZwzqmjtGsPqpGcqZO0VnOa7LPnM4Q3JtiGpf8DgLOcSg4Q8gxYTNNKRq7wkMNMYw-AP7cmtGXLzwlcN4WHwPeZh8-cC6mAHYwQXAQCp5MMhsokPAmOhjzBToZzJjh8ueeo_fHh_fFc_P69vSyuHttLKNdaQwXzlhuqFBWSO56pzqgxAxSiJ5xLhSFORdy3g1KOMXkUqqlYKqXlvAlY-eoP9TaFHNOMOgp-Y1JX5oSvXel1_rXld670oTq6qqCN39A6-ukOrAk48f_8dsDXqfCzkPS2XoItlpKYIt20f9X8Q0aEI3Z
CitedBy_id crossref_primary_10_1016_j_chemolab_2018_10_004
crossref_primary_10_1109_JSEN_2023_3279203
crossref_primary_10_1109_JSEN_2022_3147306
crossref_primary_10_1007_s00521_022_07254_w
crossref_primary_10_1007_s40092_018_0276_4
crossref_primary_10_1109_TIM_2020_2998558
crossref_primary_10_1016_j_eswa_2022_117176
crossref_primary_10_1007_s00521_022_07771_8
crossref_primary_10_3390_s23187858
crossref_primary_10_1109_JSEN_2023_3312088
crossref_primary_10_1155_2018_9616841
crossref_primary_10_1155_2019_9852134
crossref_primary_10_3390_ijerph18105248
crossref_primary_10_1016_j_chemolab_2020_104062
crossref_primary_10_1177_0954410018812619
crossref_primary_10_1016_j_cej_2021_132819
crossref_primary_10_1109_JSEN_2023_3317936
crossref_primary_10_1016_j_chemolab_2023_104942
crossref_primary_10_1016_j_energy_2024_131895
crossref_primary_10_1016_j_cherd_2018_01_008
crossref_primary_10_1016_j_jtice_2018_01_009
crossref_primary_10_1016_j_jfranklin_2020_10_039
crossref_primary_10_1109_TAI_2022_3217028
crossref_primary_10_1109_JSEN_2018_2818886
crossref_primary_10_1109_JSEN_2024_3388455
crossref_primary_10_1088_1742_6596_1624_5_052023
crossref_primary_10_1002_oca_2548
crossref_primary_10_1016_j_aei_2023_102344
crossref_primary_10_1515_cppm_2018_0066
crossref_primary_10_1002_mren_201700008
crossref_primary_10_1631_FITEE_2000426
crossref_primary_10_1109_JSEN_2023_3344418
crossref_primary_10_1080_00986445_2017_1399124
crossref_primary_10_1088_1742_6596_1532_1_012019
crossref_primary_10_1016_j_asoc_2020_106530
crossref_primary_10_1016_j_dche_2023_100112
crossref_primary_10_1109_JSEN_2024_3367909
crossref_primary_10_1007_s11814_025_00493_2
crossref_primary_10_1109_JSEN_2020_3033153
crossref_primary_10_1109_ACCESS_2019_2950661
crossref_primary_10_1177_1045389X19835938
crossref_primary_10_1088_1361_6501_ad7be0
crossref_primary_10_1155_2022_8221706
crossref_primary_10_1002_cem_3052
crossref_primary_10_1016_j_jprocont_2023_03_001
crossref_primary_10_1002_ceat_202100039
crossref_primary_10_1016_j_asoc_2022_108546
crossref_primary_10_1016_j_psep_2023_02_080
crossref_primary_10_1016_j_cjche_2020_07_047
crossref_primary_10_1109_TII_2024_3431039
crossref_primary_10_3390_app112411790
crossref_primary_10_1016_j_jclepro_2018_06_170
crossref_primary_10_1016_j_isatra_2022_10_006
crossref_primary_10_1016_j_seppur_2019_03_091
crossref_primary_10_1016_j_jprocont_2019_10_007
crossref_primary_10_1016_j_ces_2018_05_037
crossref_primary_10_1109_ACCESS_2021_3134931
crossref_primary_10_1177_01423312221093166
crossref_primary_10_1016_j_conengprac_2019_104198
crossref_primary_10_1109_JSEN_2025_3549596
Cites_doi 10.1016/j.cherd.2011.01.032
10.1016/j.chemolab.2013.03.008
10.1002/cjce.5450690105
10.1016/j.cjche.2014.05.003
10.1016/j.chemolab.2010.09.008
10.1016/j.arcontrol.2006.05.002
10.1016/j.jngse.2014.11.017
10.3182/20090921-3-TR-3005.00096
10.1016/j.cherd.2015.01.006
10.1016/j.ces.2009.01.050
10.1016/j.chemolab.2015.04.003
10.1016/j.compchemeng.2003.11.004
10.1016/j.ces.2003.09.012
10.1016/j.chemolab.2004.08.003
10.1080/00207170110089824
10.1016/j.cherd.2013.09.010
10.1021/ie049908e
10.1016/j.jprocont.2014.06.015
10.1016/j.procbio.2006.05.006
10.1016/S1367-5788(02)80014-1
10.1016/j.aej.2016.02.016
10.1016/S0967-0661(03)00079-0
10.1016/j.conengprac.2004.04.013
10.1016/j.neucom.2013.10.039
10.1016/j.compchemeng.2010.07.034
10.1252/jcej.12we167
10.1002/aic.12422
10.1016/S0098-1354(97)00262-7
10.1080/00051144.2011.11828430
10.1002/aic.11791
10.1002/cem.2638
10.1016/j.engappai.2009.01.005
10.1016/j.jprocont.2011.02.001
10.1021/ie4041252
10.1016/j.compchemeng.2008.12.012
10.1016/j.neucom.2015.07.035
10.1016/j.ces.2004.07.019
10.1016/j.chemolab.2015.07.012
10.1016/j.chemolab.2016.01.003
10.1016/j.chemolab.2015.08.014
10.1002/aic.13735
10.1021/ie201650u
10.1021/ie5029864
10.1080/00207170310001637002
10.1021/ie504185j
10.1016/j.chemolab.2013.06.013
10.1016/j.neucom.2011.10.026
10.1016/j.chemolab.2016.02.011
10.1016/S0169-7439(01)00155-1
10.1016/j.memsci.2016.05.057
10.1016/j.jprocont.2013.05.007
10.1205/cherd05026
10.1016/j.compchemeng.2008.05.019
10.1002/cem.783
10.1016/j.compchemeng.2014.07.014
10.1002/aic.14270
10.1016/j.chemolab.2016.04.009
10.1016/j.ces.2014.10.029
10.1016/j.jprocont.2013.03.008
10.1021/ie303488m
10.1021/ie101356c
10.1016/j.jprocont.2010.06.013
10.1016/j.conengprac.2013.06.002
10.1016/j.jprocont.2004.04.006
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.chemolab.2017.01.004
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3239
EndPage 141
ExternalDocumentID 10_1016_j_chemolab_2017_01_004
S0169743916302891
GroupedDBID ---
--K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABAOU
ABFRF
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M36
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCH
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSW
SSZ
T5K
UNMZH
YK3
~02
~G-
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HMU
HVGLF
HZ~
R2-
SCB
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c312t-a45dac4a159c574d6d92e10af7556344591e845782f95d937b79b53967c04b33
ISICitedReferencesCount 77
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000395843700014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0169-7439
IngestDate Sat Nov 29 07:27:38 EST 2025
Tue Nov 18 21:39:55 EST 2025
Fri Feb 23 02:33:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Soft sensor
Missing value
State dependent parameter
Quality prediction
Data-based modeling
Debutanizer column
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-a45dac4a159c574d6d92e10af7556344591e845782f95d937b79b53967c04b33
PageCount 12
ParticipantIDs crossref_primary_10_1016_j_chemolab_2017_01_004
crossref_citationtrail_10_1016_j_chemolab_2017_01_004
elsevier_sciencedirect_doi_10_1016_j_chemolab_2017_01_004
PublicationCentury 2000
PublicationDate 2017-03-15
PublicationDateYYYYMMDD 2017-03-15
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-15
  day: 15
PublicationDecade 2010
PublicationTitle Chemometrics and intelligent laboratory systems
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Principe, Euliano, Lefebvre (bib18) 2000
Yan, Shao, Wang (bib22) 2004; 28
Behnasr, Jazayeri-Rad (bib29) 2015; 22
Ge, Song (bib57) 2010; 104
Zamprogna, Barolo, Seborg (bib5) 2005; 15
Lee, Lee, Woo, Kim, Park (bib28) 2006; 41
Hubert, Verboven (bib13) 2003; 17
Wold, Sjostrom, Eriksson (bib15) 2001; 58
Kadlec, Grbic, Gabrys (bib35) 2011; 35
Jin, Chen, Yang, Wu (bib55) 2014; 71
Young (bib64) 2011
Qin (bib48) 1998; 22
Fortuna, Graziani, Rizzo, Xibilia (bib71) 2007
Ge (bib74) 2014; 24
Shao, Tian, Wang, Deng, Chen (bib51) 2015; 144
Huber, Ronchetti (bib38) 2009
Kim, Okajima, Kano, Hasebe (bib58) 2013; 124
Ramli, Hussain, Jan, Abdullah (bib70) 2014; 131
Gonzaga, Meleiro, Kiang, Filho (bib16) 2009; 33
Galicia, He, Wang (bib14) 2011; 21
Liu, Chou, Chen, Lai (bib26) 2016; 515
Sliskovic, Grbic, Hocenski (bib2) 2011; 52
Choi, Lee (bib31) 2004; 59
Cheng, Chiu (bib52) 2005; 76
Liu, Chen (bib54) 2013; 23
Rasmussen, Williams (bib61) 2006
Jiang, Yan (bib34) 2013; 127
Yuan, Ye, Bao, Ge, Song (bib75) 2015; 147
Liu, Gao (bib27) 2014; 132
Young (bib68) 2000
Ge, Yang, Song (bib33) 2009; 64
Gregorčič, Lightbody (bib60) 2009; 22
.
Yang, Jin, Chen, Jiayu Daia, Zhang (bib62) 2016; 155
Ge, Song, Wang (bib7) 2014; 92
Fujiwara, Kano, Hasebe, Takinami (bib56) 2009; 55
Liu, Chen, Shen (bib45) 2010; 49
Yuan, Ge, Song (bib59) 2014; 53
Pedregal, Taylor, Young (bib67) 2007
Kano, Ogawa (bib4) 2010; 20
Jolliffe (bib11) 2002
Lee, Yoo, Choi, Vanrolleghem, Lee (bib32) 2004; 59
Liu, Gao, Li, Wang (bib53) 2012; 51
Pani, Amin, Mohanta (bib77) 2016; 55
Shao, Tian, Wang (bib49) 2014; 22
Liu, Chen, Chen (bib25) 2015; 54
Ge (bib78) 2016; 151
Toivonen (bib36) 2003; 76
Lee, Song, Song, Yoon (bib23) 2005; 44
Bishop (bib17) 1995
Fortuna, Graziani, Xibilia (bib69) 2005; 13
Kano, Fujiwara (bib44) 2013; 46
Ge, Huang, Song (bib72) 2014; 60
Fan, Ge, Song (bib73) 2014; 53
Lin, Lee (bib20) 1996
Tang, Yu, Chai, Zhao (bib12) 2012; 82
Kaneko, Funatsu (bib46) 2016; 153
Young (bib63) 2006; 30
Draper, Smith (bib9) 1998
Young (bib65) 2011
Avoy (bib1) 2002; 26
Ge, Huang, Song (bib40) 2014; 28
Shao, Tian (bib50) 2015; 95
Luo, Shao (bib21) 2006; 10
Aimin, Peng, Lingjian (bib76) 2015; 147
Ge, Song (bib10) 2011; 57
Zhang, Wang, He, Jia (bib30) 2013; 21
D. Sliskovic, R. Grbic, E.K. Nyarko, Data preprocessing in data based process modeling, in: Proceeding of the 2nd IFAC Conference on Intelligent Control Systems and Signal Processing, 2009, pp. 559–564.
Zhu, Ge, Song (bib41) 2015; 122
Young, McKenna, Bruun (bib66) 2001; 74
Kresta, Macgregor, Marlin (bib8) 1991; 69
Khatibisepehr, Huang, Khare (bib6) 2013; 23
Kim, Kano, Hasebe, Takinami, Seki (bib43) 2013; 52
Jang, Sun, Mizutani (bib19) 1997
Deng, Huang (bib39) 2012; 58
Kadlec, Gabrys, Strandt (bib3) 2009; 33
Jain, Rahman, Kulkarni (bib24) 2007; 85
Chen, Ji, Wang, Liu, Song (bib47) 2011; 89
Fortuna, Rizzo, Sinatra, Xibilia (bib42) 2003; 11
Soares, Araujo (bib79) 2016; 171
Cheng (10.1016/j.chemolab.2017.01.004_bib52) 2005; 76
Liu (10.1016/j.chemolab.2017.01.004_bib26) 2016; 515
Ramli (10.1016/j.chemolab.2017.01.004_bib70) 2014; 131
Behnasr (10.1016/j.chemolab.2017.01.004_bib29) 2015; 22
Fortuna (10.1016/j.chemolab.2017.01.004_bib71) 2007
Kano (10.1016/j.chemolab.2017.01.004_bib44) 2013; 46
Kadlec (10.1016/j.chemolab.2017.01.004_bib3) 2009; 33
Gregorčič (10.1016/j.chemolab.2017.01.004_bib60) 2009; 22
Young (10.1016/j.chemolab.2017.01.004_bib65) 2011
Jang (10.1016/j.chemolab.2017.01.004_bib19) 1997
Hubert (10.1016/j.chemolab.2017.01.004_bib13) 2003; 17
Kim (10.1016/j.chemolab.2017.01.004_bib58) 2013; 124
Kadlec (10.1016/j.chemolab.2017.01.004_bib35) 2011; 35
Liu (10.1016/j.chemolab.2017.01.004_bib53) 2012; 51
Lee (10.1016/j.chemolab.2017.01.004_bib23) 2005; 44
Lee (10.1016/j.chemolab.2017.01.004_bib32) 2004; 59
Ge (10.1016/j.chemolab.2017.01.004_bib40) 2014; 28
Young (10.1016/j.chemolab.2017.01.004_bib66) 2001; 74
Ge (10.1016/j.chemolab.2017.01.004_bib10) 2011; 57
Yuan (10.1016/j.chemolab.2017.01.004_bib59) 2014; 53
Shao (10.1016/j.chemolab.2017.01.004_bib49) 2014; 22
Kano (10.1016/j.chemolab.2017.01.004_bib4) 2010; 20
Kaneko (10.1016/j.chemolab.2017.01.004_bib46) 2016; 153
Fortuna (10.1016/j.chemolab.2017.01.004_bib42) 2003; 11
Jain (10.1016/j.chemolab.2017.01.004_bib24) 2007; 85
Gonzaga (10.1016/j.chemolab.2017.01.004_bib16) 2009; 33
Ge (10.1016/j.chemolab.2017.01.004_bib78) 2016; 151
Lin (10.1016/j.chemolab.2017.01.004_bib20) 1996
Avoy (10.1016/j.chemolab.2017.01.004_bib1) 2002; 26
Ge (10.1016/j.chemolab.2017.01.004_bib72) 2014; 60
Jiang (10.1016/j.chemolab.2017.01.004_bib34) 2013; 127
Fan (10.1016/j.chemolab.2017.01.004_bib73) 2014; 53
Yan (10.1016/j.chemolab.2017.01.004_bib22) 2004; 28
Deng (10.1016/j.chemolab.2017.01.004_bib39) 2012; 58
Liu (10.1016/j.chemolab.2017.01.004_bib54) 2013; 23
Toivonen (10.1016/j.chemolab.2017.01.004_bib36) 2003; 76
Young (10.1016/j.chemolab.2017.01.004_bib68) 2000
Kim (10.1016/j.chemolab.2017.01.004_bib43) 2013; 52
Sliskovic (10.1016/j.chemolab.2017.01.004_bib2) 2011; 52
Young (10.1016/j.chemolab.2017.01.004_bib64) 2011
Rasmussen (10.1016/j.chemolab.2017.01.004_bib61) 2006
Zhang (10.1016/j.chemolab.2017.01.004_bib30) 2013; 21
Zamprogna (10.1016/j.chemolab.2017.01.004_bib5) 2005; 15
Bishop (10.1016/j.chemolab.2017.01.004_bib17) 1995
Aimin (10.1016/j.chemolab.2017.01.004_bib76) 2015; 147
Galicia (10.1016/j.chemolab.2017.01.004_bib14) 2011; 21
Chen (10.1016/j.chemolab.2017.01.004_bib47) 2011; 89
Soares (10.1016/j.chemolab.2017.01.004_bib79) 2016; 171
10.1016/j.chemolab.2017.01.004_bib37
Tang (10.1016/j.chemolab.2017.01.004_bib12) 2012; 82
Liu (10.1016/j.chemolab.2017.01.004_bib25) 2015; 54
Liu (10.1016/j.chemolab.2017.01.004_bib45) 2010; 49
Jin (10.1016/j.chemolab.2017.01.004_bib55) 2014; 71
Ge (10.1016/j.chemolab.2017.01.004_bib57) 2010; 104
Yuan (10.1016/j.chemolab.2017.01.004_bib75) 2015; 147
Draper (10.1016/j.chemolab.2017.01.004_bib9) 1998
Principe (10.1016/j.chemolab.2017.01.004_bib18) 2000
Choi (10.1016/j.chemolab.2017.01.004_bib31) 2004; 59
Pani (10.1016/j.chemolab.2017.01.004_bib77) 2016; 55
Ge (10.1016/j.chemolab.2017.01.004_bib7) 2014; 92
Kresta (10.1016/j.chemolab.2017.01.004_bib8) 1991; 69
Huber (10.1016/j.chemolab.2017.01.004_bib38) 2009
Shao (10.1016/j.chemolab.2017.01.004_bib51) 2015; 144
Yang (10.1016/j.chemolab.2017.01.004_bib62) 2016; 155
Qin (10.1016/j.chemolab.2017.01.004_bib48) 1998; 22
Lee (10.1016/j.chemolab.2017.01.004_bib28) 2006; 41
Pedregal (10.1016/j.chemolab.2017.01.004_bib67) 2007
Liu (10.1016/j.chemolab.2017.01.004_bib27) 2014; 132
Ge (10.1016/j.chemolab.2017.01.004_bib33) 2009; 64
Shao (10.1016/j.chemolab.2017.01.004_bib50) 2015; 95
Jolliffe (10.1016/j.chemolab.2017.01.004_bib11) 2002
Fortuna (10.1016/j.chemolab.2017.01.004_bib69) 2005; 13
Luo (10.1016/j.chemolab.2017.01.004_bib21) 2006; 10
Wold (10.1016/j.chemolab.2017.01.004_bib15) 2001; 58
Zhu (10.1016/j.chemolab.2017.01.004_bib41) 2015; 122
Fujiwara (10.1016/j.chemolab.2017.01.004_bib56) 2009; 55
Ge (10.1016/j.chemolab.2017.01.004_bib74) 2014; 24
Khatibisepehr (10.1016/j.chemolab.2017.01.004_bib6) 2013; 23
Young (10.1016/j.chemolab.2017.01.004_bib63) 2006; 30
References_xml – volume: 76
  start-page: 1823
  year: 2003
  end-page: 1832
  ident: bib36
  article-title: State-dependent parameter models of non-linear sampled-data systems: A velocity-based linearization approach
  publication-title: Int. J. Control
– year: 2000
  ident: bib18
  article-title: Neural and Adaptive Systems
– volume: 15
  start-page: 39
  year: 2005
  end-page: 52
  ident: bib5
  article-title: Optimal selection of soft sensor inputs for batch distillation columns using principal component analysis
  publication-title: J. Process Control
– volume: 33
  start-page: 43
  year: 2009
  end-page: 49
  ident: bib16
  article-title: ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process
  publication-title: Comput. Chem. Eng.
– volume: 23
  start-page: 793
  year: 2013
  end-page: 804
  ident: bib54
  article-title: Integrated soft sensor using just-in-time support vector regression and probabilistic analysis for quality prediction of multi-grade processes
  publication-title: J. Process Control
– volume: 23
  start-page: 1575
  year: 2013
  end-page: 1596
  ident: bib6
  article-title: Design of inferential sensors in the process industry: A review of Bayesian methods
  publication-title: J. Process Control
– volume: 52
  start-page: 12346
  year: 2013
  end-page: 12356
  ident: bib43
  article-title: Long-term industrial applications of inferential control based on just-in-time soft-sensors: economical impact and challenges
  publication-title: Ind. Eng. Chemistry Res.
– volume: 11
  start-page: 1491
  year: 2003
  end-page: 1500
  ident: bib42
  article-title: Soft analyzers for a sulfur recovery unit
  publication-title: Control Eng. Pract.
– volume: 76
  start-page: 1
  year: 2005
  end-page: 13
  ident: bib52
  article-title: Nonlinear process monitoring using JITL-PCA
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 41
  start-page: 2050
  year: 2006
  end-page: 2057
  ident: bib28
  article-title: Nonlinear dynamic partial least squares modeling of a full-scale biological wastewater treatment plant
  publication-title: Process Biochem.
– volume: 17
  start-page: 438
  year: 2003
  end-page: 452
  ident: bib13
  article-title: A robust PCR method for high-dimensional regressors
  publication-title: J. Chemom.
– year: 2011
  ident: bib65
  article-title: Data-based mechanistic modelling: natural philosophy revisited?
  publication-title: System Identification, Environmetric Modelling and Control
– volume: 20
  start-page: 969
  year: 2010
  end-page: 982
  ident: bib4
  article-title: The state of the art in chemical process control in Japan: Good practice and questionnaire survey
  publication-title: J. Process Control
– year: 2007
  ident: bib71
  article-title: Soft Sensors for Monitoring and Control of Industrial Processes
– volume: 53
  start-page: 19979
  year: 2014
  end-page: 19986
  ident: bib73
  article-title: Adaptive Gaussian mixture model-based relevant sample selection for JITL soft sensor development
  publication-title: Ind. Eng. Chem. Res.
– volume: 85
  start-page: 283
  year: 2007
  end-page: 287
  ident: bib24
  article-title: Development of a soft sensor for a batch distillation column using support vector regression techniques
  publication-title: Chem. Eng. Res. Des.
– volume: 59
  start-page: 223
  year: 2004
  end-page: 234
  ident: bib32
  article-title: Nonlinear process monitoring using kernel principal component analysis
  publication-title: Chem. Eng. Sci.
– volume: 51
  start-page: 4313
  year: 2012
  end-page: 4327
  ident: bib53
  article-title: Just-in-time kernel learning with adaptive parameter selection for soft sensor modeling of batch processes
  publication-title: Ind. Eng. Chem. Res.
– volume: 92
  start-page: 509
  year: 2014
  end-page: 521
  ident: bib7
  article-title: Probabilistic combination of local independent component regression model for multimode quality prediction in chemical processes
  publication-title: Chem. Eng. Res. Des.
– volume: 55
  start-page: 1754
  year: 2009
  end-page: 1765
  ident: bib56
  article-title: Soft-sensor development using correlation-based just-in-time modeling
  publication-title: AIChE J.
– volume: 124
  year: 2013
  ident: bib58
  article-title: Development of soft-sensor using locally weighted PLS with adaptive similarity measure
  publication-title: Chemom. Intell. Lab. Syst.
– year: 1995
  ident: bib17
  article-title: Neural Networks for Pattern Recognition
– year: 2002
  ident: bib11
  article-title: Principal Component Analysis
– volume: 10
  start-page: 54
  year: 2006
  end-page: 60
  ident: bib21
  article-title: Developing soft sensors using hybrid soft computing methodology: a neurofuzzy system based on rough set theory and genetic algorithms
  publication-title: Soft Comput. Fusion Found. Methodol. Appl.
– volume: 155
  start-page: 170
  year: 2016
  end-page: 182
  ident: bib62
  article-title: Soft sensor development for online quality prediction of industrial batch rubber mixing process using ensemble just-in-time Gaussian process regression models
  publication-title: Chemom. Intell. Lab. Sys.
– volume: 22
  start-page: 522
  year: 2009
  end-page: 533
  ident: bib60
  article-title: Gaussian process approach for modelling of nonlinear systems
  publication-title: Eng. Appl. Artif. Intell.
– volume: 21
  start-page: 1267
  year: 2013
  end-page: 1276
  ident: bib30
  article-title: Online quality prediction for cobalt oxalate synthesis process using least squares support vector regression approach with dual updating
  publication-title: Control Eng. Pract.
– year: 2006
  ident: bib61
  article-title: Gaussian Processes for Machine Learning
– start-page: 74
  year: 2000
  end-page: 114
  ident: bib68
  article-title: Stochastic, dynamic modelling and signal processing: time variable and state dependent parameter estimation
  publication-title: Nonstationary and Nonlinear Signal Processing
– year: 1998
  ident: bib9
  article-title: Applied Regression Analysis
– volume: 60
  start-page: 533
  year: 2014
  end-page: 545
  ident: bib72
  article-title: Mixture semisupervised principal component regression model and soft sensor application
  publication-title: AIChE J.
– volume: 30
  start-page: 169
  year: 2006
  end-page: 182
  ident: bib63
  article-title: The data-based mechanistic approach to the modelling, forecasting and control of environmental systems
  publication-title: Annu. Rev. Control
– volume: 515
  start-page: 245
  year: 2016
  end-page: 257
  ident: bib26
  article-title: Active learning assisted strategy of constructing hybrid models in repetitive operations of membrane filtration processes: Using case of mixture of bentonite clay and sodium alginate
  publication-title: J. Membr. Sci.
– volume: 33
  start-page: 795
  year: 2009
  end-page: 814
  ident: bib3
  article-title: Data-driven soft sensors in the process industry
  publication-title: Comput. Chem. Eng.
– volume: 28
  start-page: 1489
  year: 2004
  end-page: 1498
  ident: bib22
  article-title: Soft sensing modeling based on support vector machine and Bayesian model selection
  publication-title: Comput. Chem. Eng.
– volume: 127
  start-page: 121
  year: 2013
  end-page: 131
  ident: bib34
  article-title: Weighted kernel principal component analysis based on probability density estimation and moving window and its application in nonlinear chemical process monitoring
  publication-title: Chemom. Intell. Lab. Sys.
– volume: 64
  start-page: 2245
  year: 2009
  end-page: 2255
  ident: bib33
  article-title: Improved kernel PCA-based monitoring approach for nonlinear processes
  publication-title: Chem. Eng. Sci.
– volume: 82
  start-page: 167
  year: 2012
  end-page: 178
  ident: bib12
  article-title: On-line principal component analysis with application to process modeling
  publication-title: Neurocomputing
– volume: 44
  start-page: 2101
  year: 2005
  end-page: 2105
  ident: bib23
  article-title: Weighted support vector machine for quality estimation in the polymerization process
  publication-title: Ind. Eng. Chem. Res.
– volume: 22
  start-page: 35
  year: 2015
  end-page: 41
  ident: bib29
  article-title: Robust data-driven soft sensor based on iteratively weighted least squares support vector regression optimized by the cuckoo optimization algorithm
  publication-title: J. Nat. Gas Sci. Eng.
– volume: 104
  start-page: 306
  year: 2010
  end-page: 317
  ident: bib57
  article-title: A comparative study of just-in-time-learning based methods for online soft sensor modeling
  publication-title: Chemom. Intell. Lab. Syst.
– reference: D. Sliskovic, R. Grbic, E.K. Nyarko, Data preprocessing in data based process modeling, in: Proceeding of the 2nd IFAC Conference on Intelligent Control Systems and Signal Processing, 2009, pp. 559–564.
– volume: 58
  start-page: 109
  year: 2001
  end-page: 130
  ident: bib15
  article-title: PLS-regression: a basic tool of chemometrics
  publication-title: Chemom. and Intell. Lab. Syst.
– volume: 89
  start-page: 2117
  year: 2011
  end-page: 2124
  ident: bib47
  article-title: Adaptive local kernel-based learning for soft sensor modeling of nonlinear processes
  publication-title: Chem. Eng. Res. Des.
– year: 2011
  ident: bib64
  article-title: Recursive Estimation and Time-series Analysis
– volume: 57
  start-page: 2109
  year: 2011
  end-page: 2119
  ident: bib10
  article-title: Semi supervised Bayesian method for soft sensor modeling with unlabeled data samples
  publication-title: AIChE J.
– year: 1996
  ident: bib20
  article-title: Neural Fuzzy Systems: A Neuro-fuzzy Synergism to Intelligent Systems
– volume: 22
  start-page: 503
  year: 1998
  end-page: 514
  ident: bib48
  article-title: Recursive PLS algorithms for adaptive data modeling
  publication-title: Comput. Chem. Eng.
– volume: 13
  start-page: 499
  year: 2005
  end-page: 508
  ident: bib69
  article-title: Soft sensors for product quality monitoring in debutanizer distillation columns
  publication-title: Control Eng. Pract.
– volume: 132
  start-page: 1905
  year: 2014
  end-page: 1913
  ident: bib27
  article-title: Real-time property prediction for an industrial rubber-mixing process with probabilistic ensemble Gaussian process regression models
  publication-title: J. Appl. Polym. Sci.
– year: 1997
  ident: bib19
  article-title: Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence
– volume: 26
  start-page: 75
  year: 2002
  end-page: 86
  ident: bib1
  article-title: Intelligent control applications in the process industries
  publication-title: Ann. Rev. Control
– volume: 58
  start-page: 3454
  year: 2012
  end-page: 3467
  ident: bib39
  article-title: Identification of nonlinear parameter varying systems with missing output data
  publication-title: AIChE Journal
– volume: 55
  start-page: 1667
  year: 2016
  end-page: 1674
  ident: bib77
  article-title: Soft sensing of product quality in the debutanizer column with principal component analysis and feed-forward artificial neural network
  publication-title: Alex. Eng. J.
– volume: 22
  start-page: 828
  year: 2014
  end-page: 836
  ident: bib49
  article-title: Local partial least squares based online soft sensing method for multi-output processes with adaptive process states division
  publication-title: Chin. J. Chem. Eng.
– volume: 53
  start-page: 13736
  year: 2014
  end-page: 13749
  ident: bib59
  article-title: Locally weighted kernel principal component regression model for soft sensing of nonlinear time-variant processes
  publication-title: Ind. Eng. Chem. Res.
– volume: 28
  year: 2014
  ident: bib40
  article-title: Nonlinear semi supervised principal component regression for soft sensor modeling and its mixture form
  publication-title: J. Chemom.
– volume: 71
  start-page: 77
  year: 2014
  end-page: 93
  ident: bib55
  article-title: Adaptive soft sensor modeling framework based on just-in-time learning and kernel partial least squares regression for nonlinear multiphase batch processes
  publication-title: Comput. Chem. Eng.
– volume: 151
  start-page: 181
  year: 2016
  end-page: 189
  ident: bib78
  article-title: Active probabilistic sample selection for intelligent soft sensing of industrial processes
  publication-title: Chemom. Intell. Lab. Sys.
– volume: 171
  start-page: 693
  year: 2016
  end-page: 707
  ident: bib79
  article-title: An adaptive ensemble of on-line extreme learning machines with variable forgetting factor for dynamic system prediction
  publication-title: Neurocomputing
– volume: 21
  start-page: 489
  year: 2011
  end-page: 500
  ident: bib14
  article-title: A reduced order soft sensor approach and its application to a continuous digester
  publication-title: J. Process Control
– volume: 69
  start-page: 35
  year: 1991
  end-page: 47
  ident: bib8
  article-title: Multivariate statistical monitoring of process operating performance
  publication-title: Can. J. Chemi. Eng.
– volume: 46
  start-page: 1
  year: 2013
  end-page: 17
  ident: bib44
  article-title: Virtual sensing technology in process industries: Trends and challenges revealed by recent industrial applications
  publication-title: J. Chem. Eng. Jpn.
– volume: 153
  start-page: 75
  year: 2016
  end-page: 81
  ident: bib46
  article-title: Preparation of comprehensive data from huge data sets for predictive soft sensors
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 24
  start-page: 1454
  year: 2014
  end-page: 1461
  ident: bib74
  article-title: Active learning strategy for smart soft sensor development under a small number of labeled data samples
  publication-title: J. Process Control
– volume: 122
  start-page: 573
  year: 2015
  end-page: 584
  ident: bib41
  article-title: Robust supervised probabilistic principal component analysis model for soft sensing of key process variables
  publication-title: Chem. Eng. Sci.
– volume: 35
  start-page: 1
  year: 2011
  end-page: 24
  ident: bib35
  article-title: Review of adaptation mechanisms for data-driven soft sensors
  publication-title: Comput. Chem. Eng.
– reference: .
– volume: 49
  start-page: 11530
  year: 2010
  end-page: 11546
  ident: bib45
  article-title: Development of self-validating soft sensors using fast moving window partial least squares
  publication-title: Ind. Eng. Chem. Res.
– volume: 131
  start-page: 59
  year: 2014
  end-page: 76
  ident: bib70
  article-title: Composition prediction of a debutanizer column using equation based artificial neural network model
  publication-title: Neurocomputing
– volume: 54
  start-page: 5037
  year: 2015
  end-page: 5047
  ident: bib25
  article-title: Auto-switch Gaussian process regression-based probabilistic soft sensors for industrial multigrade processes with transitions
  publication-title: Ind. Eng. Chem. Res.
– volume: 74
  start-page: 1837
  year: 2001
  end-page: 1857
  ident: bib66
  article-title: Identification of nonlinear stochastic systems by state dependent parameter estimation
  publication-title: Int. J. Control
– year: 2007
  ident: bib67
  article-title: System Identification, Time Series Analysis and Forecasting: The Captain Toolbox Handbook
– volume: 144
  start-page: 108
  year: 2015
  end-page: 121
  ident: bib51
  article-title: Online soft sensor design using local partial least squares models with adaptive process state partition
  publication-title: Chemom. Intell. Lab. Syst.
– year: 2009
  ident: bib38
  article-title: Robust Statistics
– volume: 59
  start-page: 5897
  year: 2004
  end-page: 5908
  ident: bib31
  article-title: Nonlinear dynamic process monitoring based on dynamic kernel PCA
  publication-title: Chem. Eng. Sci.
– volume: 147
  start-page: 167
  year: 2015
  end-page: 175
  ident: bib75
  article-title: Nonlinear feature extraction for soft sensor modeling based on weighted probabilistic PCA
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 52
  start-page: 306
  year: 2011
  end-page: 318
  ident: bib2
  article-title: Methods for plant data-based process modeling in soft sensor development
  publication-title: Automatika
– volume: 147
  start-page: 86
  year: 2015
  end-page: 94
  ident: bib76
  article-title: Neighborhood preserving regression embedding based data regression and its applications on soft sensor modeling
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 95
  start-page: 113
  year: 2015
  end-page: 132
  ident: bib50
  article-title: Adaptive soft sensor for quality prediction of chemical processes based on selective ensemble of local partial least squares models
  publication-title: Chem. Eng. Res. Des.
– volume: 89
  start-page: 2117
  year: 2011
  ident: 10.1016/j.chemolab.2017.01.004_bib47
  article-title: Adaptive local kernel-based learning for soft sensor modeling of nonlinear processes
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2011.01.032
– year: 2011
  ident: 10.1016/j.chemolab.2017.01.004_bib64
– volume: 124
  year: 2013
  ident: 10.1016/j.chemolab.2017.01.004_bib58
  article-title: Development of soft-sensor using locally weighted PLS with adaptive similarity measure
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2013.03.008
– volume: 69
  start-page: 35
  year: 1991
  ident: 10.1016/j.chemolab.2017.01.004_bib8
  article-title: Multivariate statistical monitoring of process operating performance
  publication-title: Can. J. Chemi. Eng.
  doi: 10.1002/cjce.5450690105
– volume: 22
  start-page: 828
  year: 2014
  ident: 10.1016/j.chemolab.2017.01.004_bib49
  article-title: Local partial least squares based online soft sensing method for multi-output processes with adaptive process states division
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/j.cjche.2014.05.003
– volume: 104
  start-page: 306
  year: 2010
  ident: 10.1016/j.chemolab.2017.01.004_bib57
  article-title: A comparative study of just-in-time-learning based methods for online soft sensor modeling
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2010.09.008
– volume: 30
  start-page: 169
  year: 2006
  ident: 10.1016/j.chemolab.2017.01.004_bib63
  article-title: The data-based mechanistic approach to the modelling, forecasting and control of environmental systems
  publication-title: Annu. Rev. Control
  doi: 10.1016/j.arcontrol.2006.05.002
– volume: 22
  start-page: 35
  year: 2015
  ident: 10.1016/j.chemolab.2017.01.004_bib29
  article-title: Robust data-driven soft sensor based on iteratively weighted least squares support vector regression optimized by the cuckoo optimization algorithm
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2014.11.017
– ident: 10.1016/j.chemolab.2017.01.004_bib37
  doi: 10.3182/20090921-3-TR-3005.00096
– volume: 95
  start-page: 113
  year: 2015
  ident: 10.1016/j.chemolab.2017.01.004_bib50
  article-title: Adaptive soft sensor for quality prediction of chemical processes based on selective ensemble of local partial least squares models
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2015.01.006
– year: 2007
  ident: 10.1016/j.chemolab.2017.01.004_bib67
– volume: 10
  start-page: 54
  year: 2006
  ident: 10.1016/j.chemolab.2017.01.004_bib21
  article-title: Developing soft sensors using hybrid soft computing methodology: a neurofuzzy system based on rough set theory and genetic algorithms
  publication-title: Soft Comput. Fusion Found. Methodol. Appl.
– volume: 64
  start-page: 2245
  year: 2009
  ident: 10.1016/j.chemolab.2017.01.004_bib33
  article-title: Improved kernel PCA-based monitoring approach for nonlinear processes
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2009.01.050
– volume: 144
  start-page: 108
  year: 2015
  ident: 10.1016/j.chemolab.2017.01.004_bib51
  article-title: Online soft sensor design using local partial least squares models with adaptive process state partition
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2015.04.003
– volume: 28
  start-page: 1489
  year: 2004
  ident: 10.1016/j.chemolab.2017.01.004_bib22
  article-title: Soft sensing modeling based on support vector machine and Bayesian model selection
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2003.11.004
– volume: 59
  start-page: 223
  year: 2004
  ident: 10.1016/j.chemolab.2017.01.004_bib32
  article-title: Nonlinear process monitoring using kernel principal component analysis
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2003.09.012
– volume: 76
  start-page: 1
  year: 2005
  ident: 10.1016/j.chemolab.2017.01.004_bib52
  article-title: Nonlinear process monitoring using JITL-PCA
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2004.08.003
– year: 1998
  ident: 10.1016/j.chemolab.2017.01.004_bib9
– volume: 74
  start-page: 1837
  year: 2001
  ident: 10.1016/j.chemolab.2017.01.004_bib66
  article-title: Identification of nonlinear stochastic systems by state dependent parameter estimation
  publication-title: Int. J. Control
  doi: 10.1080/00207170110089824
– volume: 92
  start-page: 509
  year: 2014
  ident: 10.1016/j.chemolab.2017.01.004_bib7
  article-title: Probabilistic combination of local independent component regression model for multimode quality prediction in chemical processes
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2013.09.010
– volume: 44
  start-page: 2101
  year: 2005
  ident: 10.1016/j.chemolab.2017.01.004_bib23
  article-title: Weighted support vector machine for quality estimation in the polymerization process
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie049908e
– volume: 24
  start-page: 1454
  year: 2014
  ident: 10.1016/j.chemolab.2017.01.004_bib74
  article-title: Active learning strategy for smart soft sensor development under a small number of labeled data samples
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2014.06.015
– volume: 41
  start-page: 2050
  year: 2006
  ident: 10.1016/j.chemolab.2017.01.004_bib28
  article-title: Nonlinear dynamic partial least squares modeling of a full-scale biological wastewater treatment plant
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2006.05.006
– volume: 26
  start-page: 75
  year: 2002
  ident: 10.1016/j.chemolab.2017.01.004_bib1
  article-title: Intelligent control applications in the process industries
  publication-title: Ann. Rev. Control
  doi: 10.1016/S1367-5788(02)80014-1
– volume: 55
  start-page: 1667
  year: 2016
  ident: 10.1016/j.chemolab.2017.01.004_bib77
  article-title: Soft sensing of product quality in the debutanizer column with principal component analysis and feed-forward artificial neural network
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2016.02.016
– volume: 11
  start-page: 1491
  year: 2003
  ident: 10.1016/j.chemolab.2017.01.004_bib42
  article-title: Soft analyzers for a sulfur recovery unit
  publication-title: Control Eng. Pract.
  doi: 10.1016/S0967-0661(03)00079-0
– volume: 13
  start-page: 499
  year: 2005
  ident: 10.1016/j.chemolab.2017.01.004_bib69
  article-title: Soft sensors for product quality monitoring in debutanizer distillation columns
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2004.04.013
– volume: 131
  start-page: 59
  year: 2014
  ident: 10.1016/j.chemolab.2017.01.004_bib70
  article-title: Composition prediction of a debutanizer column using equation based artificial neural network model
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.10.039
– volume: 35
  start-page: 1
  year: 2011
  ident: 10.1016/j.chemolab.2017.01.004_bib35
  article-title: Review of adaptation mechanisms for data-driven soft sensors
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2010.07.034
– volume: 46
  start-page: 1
  year: 2013
  ident: 10.1016/j.chemolab.2017.01.004_bib44
  article-title: Virtual sensing technology in process industries: Trends and challenges revealed by recent industrial applications
  publication-title: J. Chem. Eng. Jpn.
  doi: 10.1252/jcej.12we167
– year: 2000
  ident: 10.1016/j.chemolab.2017.01.004_bib18
– year: 1997
  ident: 10.1016/j.chemolab.2017.01.004_bib19
– volume: 57
  start-page: 2109
  year: 2011
  ident: 10.1016/j.chemolab.2017.01.004_bib10
  article-title: Semi supervised Bayesian method for soft sensor modeling with unlabeled data samples
  publication-title: AIChE J.
  doi: 10.1002/aic.12422
– volume: 22
  start-page: 503
  year: 1998
  ident: 10.1016/j.chemolab.2017.01.004_bib48
  article-title: Recursive PLS algorithms for adaptive data modeling
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/S0098-1354(97)00262-7
– volume: 52
  start-page: 306
  year: 2011
  ident: 10.1016/j.chemolab.2017.01.004_bib2
  article-title: Methods for plant data-based process modeling in soft sensor development
  publication-title: Automatika
  doi: 10.1080/00051144.2011.11828430
– volume: 55
  start-page: 1754
  year: 2009
  ident: 10.1016/j.chemolab.2017.01.004_bib56
  article-title: Soft-sensor development using correlation-based just-in-time modeling
  publication-title: AIChE J.
  doi: 10.1002/aic.11791
– volume: 28
  year: 2014
  ident: 10.1016/j.chemolab.2017.01.004_bib40
  article-title: Nonlinear semi supervised principal component regression for soft sensor modeling and its mixture form
  publication-title: J. Chemom.
  doi: 10.1002/cem.2638
– volume: 22
  start-page: 522
  year: 2009
  ident: 10.1016/j.chemolab.2017.01.004_bib60
  article-title: Gaussian process approach for modelling of nonlinear systems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2009.01.005
– volume: 21
  start-page: 489
  year: 2011
  ident: 10.1016/j.chemolab.2017.01.004_bib14
  article-title: A reduced order soft sensor approach and its application to a continuous digester
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2011.02.001
– volume: 53
  start-page: 13736
  year: 2014
  ident: 10.1016/j.chemolab.2017.01.004_bib59
  article-title: Locally weighted kernel principal component regression model for soft sensing of nonlinear time-variant processes
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie4041252
– volume: 33
  start-page: 795
  year: 2009
  ident: 10.1016/j.chemolab.2017.01.004_bib3
  article-title: Data-driven soft sensors in the process industry
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2008.12.012
– volume: 171
  start-page: 693
  year: 2016
  ident: 10.1016/j.chemolab.2017.01.004_bib79
  article-title: An adaptive ensemble of on-line extreme learning machines with variable forgetting factor for dynamic system prediction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.07.035
– volume: 59
  start-page: 5897
  year: 2004
  ident: 10.1016/j.chemolab.2017.01.004_bib31
  article-title: Nonlinear dynamic process monitoring based on dynamic kernel PCA
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2004.07.019
– volume: 147
  start-page: 86
  year: 2015
  ident: 10.1016/j.chemolab.2017.01.004_bib76
  article-title: Neighborhood preserving regression embedding based data regression and its applications on soft sensor modeling
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2015.07.012
– volume: 151
  start-page: 181
  year: 2016
  ident: 10.1016/j.chemolab.2017.01.004_bib78
  article-title: Active probabilistic sample selection for intelligent soft sensing of industrial processes
  publication-title: Chemom. Intell. Lab. Sys.
  doi: 10.1016/j.chemolab.2016.01.003
– year: 2009
  ident: 10.1016/j.chemolab.2017.01.004_bib38
– volume: 147
  start-page: 167
  year: 2015
  ident: 10.1016/j.chemolab.2017.01.004_bib75
  article-title: Nonlinear feature extraction for soft sensor modeling based on weighted probabilistic PCA
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2015.08.014
– volume: 58
  start-page: 3454
  year: 2012
  ident: 10.1016/j.chemolab.2017.01.004_bib39
  article-title: Identification of nonlinear parameter varying systems with missing output data
  publication-title: AIChE Journal
  doi: 10.1002/aic.13735
– volume: 51
  start-page: 4313
  year: 2012
  ident: 10.1016/j.chemolab.2017.01.004_bib53
  article-title: Just-in-time kernel learning with adaptive parameter selection for soft sensor modeling of batch processes
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie201650u
– volume: 53
  start-page: 19979
  year: 2014
  ident: 10.1016/j.chemolab.2017.01.004_bib73
  article-title: Adaptive Gaussian mixture model-based relevant sample selection for JITL soft sensor development
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie5029864
– volume: 76
  start-page: 1823
  year: 2003
  ident: 10.1016/j.chemolab.2017.01.004_bib36
  article-title: State-dependent parameter models of non-linear sampled-data systems: A velocity-based linearization approach
  publication-title: Int. J. Control
  doi: 10.1080/00207170310001637002
– volume: 54
  start-page: 5037
  year: 2015
  ident: 10.1016/j.chemolab.2017.01.004_bib25
  article-title: Auto-switch Gaussian process regression-based probabilistic soft sensors for industrial multigrade processes with transitions
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie504185j
– volume: 127
  start-page: 121
  year: 2013
  ident: 10.1016/j.chemolab.2017.01.004_bib34
  article-title: Weighted kernel principal component analysis based on probability density estimation and moving window and its application in nonlinear chemical process monitoring
  publication-title: Chemom. Intell. Lab. Sys.
  doi: 10.1016/j.chemolab.2013.06.013
– volume: 82
  start-page: 167
  year: 2012
  ident: 10.1016/j.chemolab.2017.01.004_bib12
  article-title: On-line principal component analysis with application to process modeling
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.10.026
– volume: 153
  start-page: 75
  year: 2016
  ident: 10.1016/j.chemolab.2017.01.004_bib46
  article-title: Preparation of comprehensive data from huge data sets for predictive soft sensors
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2016.02.011
– volume: 58
  start-page: 109
  year: 2001
  ident: 10.1016/j.chemolab.2017.01.004_bib15
  article-title: PLS-regression: a basic tool of chemometrics
  publication-title: Chemom. and Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(01)00155-1
– volume: 515
  start-page: 245
  year: 2016
  ident: 10.1016/j.chemolab.2017.01.004_bib26
  article-title: Active learning assisted strategy of constructing hybrid models in repetitive operations of membrane filtration processes: Using case of mixture of bentonite clay and sodium alginate
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2016.05.057
– volume: 23
  start-page: 1575
  year: 2013
  ident: 10.1016/j.chemolab.2017.01.004_bib6
  article-title: Design of inferential sensors in the process industry: A review of Bayesian methods
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2013.05.007
– year: 2007
  ident: 10.1016/j.chemolab.2017.01.004_bib71
– volume: 85
  start-page: 283
  year: 2007
  ident: 10.1016/j.chemolab.2017.01.004_bib24
  article-title: Development of a soft sensor for a batch distillation column using support vector regression techniques
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1205/cherd05026
– volume: 33
  start-page: 43
  year: 2009
  ident: 10.1016/j.chemolab.2017.01.004_bib16
  article-title: ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2008.05.019
– volume: 17
  start-page: 438
  year: 2003
  ident: 10.1016/j.chemolab.2017.01.004_bib13
  article-title: A robust PCR method for high-dimensional regressors
  publication-title: J. Chemom.
  doi: 10.1002/cem.783
– volume: 71
  start-page: 77
  year: 2014
  ident: 10.1016/j.chemolab.2017.01.004_bib55
  article-title: Adaptive soft sensor modeling framework based on just-in-time learning and kernel partial least squares regression for nonlinear multiphase batch processes
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2014.07.014
– volume: 60
  start-page: 533
  year: 2014
  ident: 10.1016/j.chemolab.2017.01.004_bib72
  article-title: Mixture semisupervised principal component regression model and soft sensor application
  publication-title: AIChE J.
  doi: 10.1002/aic.14270
– volume: 155
  start-page: 170
  year: 2016
  ident: 10.1016/j.chemolab.2017.01.004_bib62
  article-title: Soft sensor development for online quality prediction of industrial batch rubber mixing process using ensemble just-in-time Gaussian process regression models
  publication-title: Chemom. Intell. Lab. Sys.
  doi: 10.1016/j.chemolab.2016.04.009
– year: 2002
  ident: 10.1016/j.chemolab.2017.01.004_bib11
– volume: 122
  start-page: 573
  year: 2015
  ident: 10.1016/j.chemolab.2017.01.004_bib41
  article-title: Robust supervised probabilistic principal component analysis model for soft sensing of key process variables
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2014.10.029
– year: 2011
  ident: 10.1016/j.chemolab.2017.01.004_bib65
  article-title: Data-based mechanistic modelling: natural philosophy revisited?
– start-page: 74
  year: 2000
  ident: 10.1016/j.chemolab.2017.01.004_bib68
  article-title: Stochastic, dynamic modelling and signal processing: time variable and state dependent parameter estimation
– volume: 23
  start-page: 793
  year: 2013
  ident: 10.1016/j.chemolab.2017.01.004_bib54
  article-title: Integrated soft sensor using just-in-time support vector regression and probabilistic analysis for quality prediction of multi-grade processes
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2013.03.008
– volume: 52
  start-page: 12346
  year: 2013
  ident: 10.1016/j.chemolab.2017.01.004_bib43
  article-title: Long-term industrial applications of inferential control based on just-in-time soft-sensors: economical impact and challenges
  publication-title: Ind. Eng. Chemistry Res.
  doi: 10.1021/ie303488m
– volume: 49
  start-page: 11530
  year: 2010
  ident: 10.1016/j.chemolab.2017.01.004_bib45
  article-title: Development of self-validating soft sensors using fast moving window partial least squares
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie101356c
– year: 1995
  ident: 10.1016/j.chemolab.2017.01.004_bib17
– year: 1996
  ident: 10.1016/j.chemolab.2017.01.004_bib20
– volume: 20
  start-page: 969
  year: 2010
  ident: 10.1016/j.chemolab.2017.01.004_bib4
  article-title: The state of the art in chemical process control in Japan: Good practice and questionnaire survey
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2010.06.013
– volume: 132
  start-page: 1905
  year: 2014
  ident: 10.1016/j.chemolab.2017.01.004_bib27
  article-title: Real-time property prediction for an industrial rubber-mixing process with probabilistic ensemble Gaussian process regression models
  publication-title: J. Appl. Polym. Sci.
– volume: 21
  start-page: 1267
  year: 2013
  ident: 10.1016/j.chemolab.2017.01.004_bib30
  article-title: Online quality prediction for cobalt oxalate synthesis process using least squares support vector regression approach with dual updating
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2013.06.002
– year: 2006
  ident: 10.1016/j.chemolab.2017.01.004_bib61
– volume: 15
  start-page: 39
  year: 2005
  ident: 10.1016/j.chemolab.2017.01.004_bib5
  article-title: Optimal selection of soft sensor inputs for batch distillation columns using principal component analysis
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2004.04.006
SSID ssj0016941
Score 2.4621403
Snippet The goal of this paper is to design and implementation of a new data-driven soft sensor that uses state dependent parameter (SDP) models to improve product...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 130
SubjectTerms Data-based modeling
Debutanizer column
Missing value
Quality prediction
Soft sensor
State dependent parameter
Title Data-driven soft sensor approach for online quality prediction using state dependent parameter models
URI https://dx.doi.org/10.1016/j.chemolab.2017.01.004
Volume 162
WOSCitedRecordID wos000395843700014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1873-3239
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016941
  issn: 0169-7439
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBehHWwvY5-s-0IPezPeYke2oseua9nKKIOGkTejSDJOSdxgu6X73_rH9c4nu-5W1vVhLyaISLF0v5xOp7vfMfYB2p2IZB4mxplQKJeGC2mjENChjIMTRdT6dH9-l0dH0_lc_RiNLrtcmPOVLMvpxYXa_FdRQxsIG1Nn7yHuflBogM8gdHiC2OH5T4L_ohsd2gq1WFCDkg1qOKliqKRnD28DC4kgw6dU_kKmALukouFntfcwNJhRRRVymwAZwtcYOUOlc-qhTYucA6drrMzlCZ-XPc1nE3iQ4U1-PSBHb93yloK7P-tCV653Sx9r66jUcHCoc90HDx8Xuqg0Vdk-0FWhbb9ZFDCL1XIDq0OZABWoqkKv1_4r3qkBGyVGyCVDP2eqQjwr3VDUXm-Tqo38fQ7t2hHRZ_2xIZBv4uSjwaWAKWMwn2yJWqnq8U0G7t92xj5esQuFO8m6cTIcJxtHWUtGux3LRMG2sL37bX9-2N9iYZIwccvTZAYZ6re_0e3G0cDgmT1hj_1Jhe8Swp6ykSufsYd7XYHA58wNkMYRaZyQxjukcUAaJ6RxjzR-jTTeIo23SOM90niPNE5Ie8FmB_uzva-hr9oRmkkUN6EWidVGaLCTTSKFTa2KXTTWuUQuOiFgoUAHYBWFXCUWrOOFVItkolJpxmIxmbxkW-Vp6V4xniibJy41caojoYVAKjnrpNBjG09TqXdY0q1WZjyjPRZWWWV_l9cO-9T32xCny509VCeMzFumZHFmgLM7-r6-96-9YY-u_xNv2VZTnbl37IE5b5Z19d6D7Ao9bbm7
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+soft+sensor+approach+for+online+quality+prediction+using+state+dependent+parameter+models&rft.jtitle=Chemometrics+and+intelligent+laboratory+systems&rft.au=Bidar%2C+Bahareh&rft.au=Sadeghi%2C+Jafar&rft.au=Shahraki%2C+Farhad&rft.au=Khalilipour%2C+Mir+Mohammad&rft.date=2017-03-15&rft.issn=0169-7439&rft.volume=162&rft.spage=130&rft.epage=141&rft_id=info:doi/10.1016%2Fj.chemolab.2017.01.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chemolab_2017_01_004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-7439&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-7439&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-7439&client=summon