Data-driven soft sensor approach for online quality prediction using state dependent parameter models
The goal of this paper is to design and implementation of a new data-driven soft sensor that uses state dependent parameter (SDP) models to improve product quality monitoring. The SDP model parameters assumed to be function of the system states, which are estimated by data-based modeling philosophy...
Gespeichert in:
| Veröffentlicht in: | Chemometrics and intelligent laboratory systems Jg. 162; S. 130 - 141 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
15.03.2017
|
| Schlagworte: | |
| ISSN: | 0169-7439, 1873-3239 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The goal of this paper is to design and implementation of a new data-driven soft sensor that uses state dependent parameter (SDP) models to improve product quality monitoring. The SDP model parameters assumed to be function of the system states, which are estimated by data-based modeling philosophy and SDP method. Soft sensing performance of the proposed method is validated on a simulated continuous stirred tank reactor and an industrial debutanizer column. A comparative study of different soft sensing methods for online monitoring of debutanizer column is also carried out. The results show that the process non-linearity can also be addressed under this modeling method and the change of the process is also well tracked when missing data exist in the observed data. The results indicate that the new model is much more robust and reliable with less model parameters, which make it useful for industrial applications. In addition, the performance indexes show the superiority of the proposed model over other conventional soft sensing methods. |
|---|---|
| AbstractList | The goal of this paper is to design and implementation of a new data-driven soft sensor that uses state dependent parameter (SDP) models to improve product quality monitoring. The SDP model parameters assumed to be function of the system states, which are estimated by data-based modeling philosophy and SDP method. Soft sensing performance of the proposed method is validated on a simulated continuous stirred tank reactor and an industrial debutanizer column. A comparative study of different soft sensing methods for online monitoring of debutanizer column is also carried out. The results show that the process non-linearity can also be addressed under this modeling method and the change of the process is also well tracked when missing data exist in the observed data. The results indicate that the new model is much more robust and reliable with less model parameters, which make it useful for industrial applications. In addition, the performance indexes show the superiority of the proposed model over other conventional soft sensing methods. |
| Author | Shahraki, Farhad Sadeghi, Jafar Khalilipour, Mir Mohammad Bidar, Bahareh |
| Author_xml | – sequence: 1 givenname: Bahareh surname: Bidar fullname: Bidar, Bahareh – sequence: 2 givenname: Jafar surname: Sadeghi fullname: Sadeghi, Jafar email: sadeghi@eng.usb.ac.ir – sequence: 3 givenname: Farhad surname: Shahraki fullname: Shahraki, Farhad – sequence: 4 givenname: Mir Mohammad surname: Khalilipour fullname: Khalilipour, Mir Mohammad |
| BookMark | eNqFkM1KAzEUhYMoWH9eQfICMyaTZNKAC6X-guDGfUiTOzZlmoxJWvDtTalu3Li6HLjfgfOdoeMQAyB0RUlLCe2v161dwSaOZtl2hMqW0JYQfoRmdC5ZwzqmjtGsPqpGcqZO0VnOa7LPnM4Q3JtiGpf8DgLOcSg4Q8gxYTNNKRq7wkMNMYw-AP7cmtGXLzwlcN4WHwPeZh8-cC6mAHYwQXAQCp5MMhsokPAmOhjzBToZzJjh8ueeo_fHh_fFc_P69vSyuHttLKNdaQwXzlhuqFBWSO56pzqgxAxSiJ5xLhSFORdy3g1KOMXkUqqlYKqXlvAlY-eoP9TaFHNOMOgp-Y1JX5oSvXel1_rXld670oTq6qqCN39A6-ukOrAk48f_8dsDXqfCzkPS2XoItlpKYIt20f9X8Q0aEI3Z |
| CitedBy_id | crossref_primary_10_1016_j_chemolab_2018_10_004 crossref_primary_10_1109_JSEN_2023_3279203 crossref_primary_10_1109_JSEN_2022_3147306 crossref_primary_10_1007_s00521_022_07254_w crossref_primary_10_1007_s40092_018_0276_4 crossref_primary_10_1109_TIM_2020_2998558 crossref_primary_10_1016_j_eswa_2022_117176 crossref_primary_10_1007_s00521_022_07771_8 crossref_primary_10_3390_s23187858 crossref_primary_10_1109_JSEN_2023_3312088 crossref_primary_10_1155_2018_9616841 crossref_primary_10_1155_2019_9852134 crossref_primary_10_3390_ijerph18105248 crossref_primary_10_1016_j_chemolab_2020_104062 crossref_primary_10_1177_0954410018812619 crossref_primary_10_1016_j_cej_2021_132819 crossref_primary_10_1109_JSEN_2023_3317936 crossref_primary_10_1016_j_chemolab_2023_104942 crossref_primary_10_1016_j_energy_2024_131895 crossref_primary_10_1016_j_cherd_2018_01_008 crossref_primary_10_1016_j_jtice_2018_01_009 crossref_primary_10_1016_j_jfranklin_2020_10_039 crossref_primary_10_1109_TAI_2022_3217028 crossref_primary_10_1109_JSEN_2018_2818886 crossref_primary_10_1109_JSEN_2024_3388455 crossref_primary_10_1088_1742_6596_1624_5_052023 crossref_primary_10_1002_oca_2548 crossref_primary_10_1016_j_aei_2023_102344 crossref_primary_10_1515_cppm_2018_0066 crossref_primary_10_1002_mren_201700008 crossref_primary_10_1631_FITEE_2000426 crossref_primary_10_1109_JSEN_2023_3344418 crossref_primary_10_1080_00986445_2017_1399124 crossref_primary_10_1088_1742_6596_1532_1_012019 crossref_primary_10_1016_j_asoc_2020_106530 crossref_primary_10_1016_j_dche_2023_100112 crossref_primary_10_1109_JSEN_2024_3367909 crossref_primary_10_1007_s11814_025_00493_2 crossref_primary_10_1109_JSEN_2020_3033153 crossref_primary_10_1109_ACCESS_2019_2950661 crossref_primary_10_1177_1045389X19835938 crossref_primary_10_1088_1361_6501_ad7be0 crossref_primary_10_1155_2022_8221706 crossref_primary_10_1002_cem_3052 crossref_primary_10_1016_j_jprocont_2023_03_001 crossref_primary_10_1002_ceat_202100039 crossref_primary_10_1016_j_asoc_2022_108546 crossref_primary_10_1016_j_psep_2023_02_080 crossref_primary_10_1016_j_cjche_2020_07_047 crossref_primary_10_1109_TII_2024_3431039 crossref_primary_10_3390_app112411790 crossref_primary_10_1016_j_jclepro_2018_06_170 crossref_primary_10_1016_j_isatra_2022_10_006 crossref_primary_10_1016_j_seppur_2019_03_091 crossref_primary_10_1016_j_jprocont_2019_10_007 crossref_primary_10_1016_j_ces_2018_05_037 crossref_primary_10_1109_ACCESS_2021_3134931 crossref_primary_10_1177_01423312221093166 crossref_primary_10_1016_j_conengprac_2019_104198 crossref_primary_10_1109_JSEN_2025_3549596 |
| Cites_doi | 10.1016/j.cherd.2011.01.032 10.1016/j.chemolab.2013.03.008 10.1002/cjce.5450690105 10.1016/j.cjche.2014.05.003 10.1016/j.chemolab.2010.09.008 10.1016/j.arcontrol.2006.05.002 10.1016/j.jngse.2014.11.017 10.3182/20090921-3-TR-3005.00096 10.1016/j.cherd.2015.01.006 10.1016/j.ces.2009.01.050 10.1016/j.chemolab.2015.04.003 10.1016/j.compchemeng.2003.11.004 10.1016/j.ces.2003.09.012 10.1016/j.chemolab.2004.08.003 10.1080/00207170110089824 10.1016/j.cherd.2013.09.010 10.1021/ie049908e 10.1016/j.jprocont.2014.06.015 10.1016/j.procbio.2006.05.006 10.1016/S1367-5788(02)80014-1 10.1016/j.aej.2016.02.016 10.1016/S0967-0661(03)00079-0 10.1016/j.conengprac.2004.04.013 10.1016/j.neucom.2013.10.039 10.1016/j.compchemeng.2010.07.034 10.1252/jcej.12we167 10.1002/aic.12422 10.1016/S0098-1354(97)00262-7 10.1080/00051144.2011.11828430 10.1002/aic.11791 10.1002/cem.2638 10.1016/j.engappai.2009.01.005 10.1016/j.jprocont.2011.02.001 10.1021/ie4041252 10.1016/j.compchemeng.2008.12.012 10.1016/j.neucom.2015.07.035 10.1016/j.ces.2004.07.019 10.1016/j.chemolab.2015.07.012 10.1016/j.chemolab.2016.01.003 10.1016/j.chemolab.2015.08.014 10.1002/aic.13735 10.1021/ie201650u 10.1021/ie5029864 10.1080/00207170310001637002 10.1021/ie504185j 10.1016/j.chemolab.2013.06.013 10.1016/j.neucom.2011.10.026 10.1016/j.chemolab.2016.02.011 10.1016/S0169-7439(01)00155-1 10.1016/j.memsci.2016.05.057 10.1016/j.jprocont.2013.05.007 10.1205/cherd05026 10.1016/j.compchemeng.2008.05.019 10.1002/cem.783 10.1016/j.compchemeng.2014.07.014 10.1002/aic.14270 10.1016/j.chemolab.2016.04.009 10.1016/j.ces.2014.10.029 10.1016/j.jprocont.2013.03.008 10.1021/ie303488m 10.1021/ie101356c 10.1016/j.jprocont.2010.06.013 10.1016/j.conengprac.2013.06.002 10.1016/j.jprocont.2004.04.006 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier B.V. |
| Copyright_xml | – notice: 2017 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.chemolab.2017.01.004 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1873-3239 |
| EndPage | 141 |
| ExternalDocumentID | 10_1016_j_chemolab_2017_01_004 S0169743916302891 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABAOU ABFRF ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFO ACGFS ACRLP ADBBV ADECG ADEZE ADGUI AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M36 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCH SDF SDG SDP SES SPC SPCBC SSK SSW SSZ T5K UNMZH YK3 ~02 ~G- 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HMU HVGLF HZ~ R2- SCB SEW WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c312t-a45dac4a159c574d6d92e10af7556344591e845782f95d937b79b53967c04b33 |
| ISICitedReferencesCount | 77 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000395843700014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0169-7439 |
| IngestDate | Sat Nov 29 07:27:38 EST 2025 Tue Nov 18 21:39:55 EST 2025 Fri Feb 23 02:33:09 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Soft sensor Missing value State dependent parameter Quality prediction Data-based modeling Debutanizer column |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c312t-a45dac4a159c574d6d92e10af7556344591e845782f95d937b79b53967c04b33 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1016_j_chemolab_2017_01_004 crossref_citationtrail_10_1016_j_chemolab_2017_01_004 elsevier_sciencedirect_doi_10_1016_j_chemolab_2017_01_004 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-03-15 |
| PublicationDateYYYYMMDD | 2017-03-15 |
| PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationTitle | Chemometrics and intelligent laboratory systems |
| PublicationYear | 2017 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Principe, Euliano, Lefebvre (bib18) 2000 Yan, Shao, Wang (bib22) 2004; 28 Behnasr, Jazayeri-Rad (bib29) 2015; 22 Ge, Song (bib57) 2010; 104 Zamprogna, Barolo, Seborg (bib5) 2005; 15 Lee, Lee, Woo, Kim, Park (bib28) 2006; 41 Hubert, Verboven (bib13) 2003; 17 Wold, Sjostrom, Eriksson (bib15) 2001; 58 Kadlec, Grbic, Gabrys (bib35) 2011; 35 Jin, Chen, Yang, Wu (bib55) 2014; 71 Young (bib64) 2011 Qin (bib48) 1998; 22 Fortuna, Graziani, Rizzo, Xibilia (bib71) 2007 Ge (bib74) 2014; 24 Shao, Tian, Wang, Deng, Chen (bib51) 2015; 144 Huber, Ronchetti (bib38) 2009 Kim, Okajima, Kano, Hasebe (bib58) 2013; 124 Ramli, Hussain, Jan, Abdullah (bib70) 2014; 131 Gonzaga, Meleiro, Kiang, Filho (bib16) 2009; 33 Galicia, He, Wang (bib14) 2011; 21 Liu, Chou, Chen, Lai (bib26) 2016; 515 Sliskovic, Grbic, Hocenski (bib2) 2011; 52 Choi, Lee (bib31) 2004; 59 Cheng, Chiu (bib52) 2005; 76 Liu, Chen (bib54) 2013; 23 Rasmussen, Williams (bib61) 2006 Jiang, Yan (bib34) 2013; 127 Yuan, Ye, Bao, Ge, Song (bib75) 2015; 147 Liu, Gao (bib27) 2014; 132 Young (bib68) 2000 Ge, Yang, Song (bib33) 2009; 64 Gregorčič, Lightbody (bib60) 2009; 22 . Yang, Jin, Chen, Jiayu Daia, Zhang (bib62) 2016; 155 Ge, Song, Wang (bib7) 2014; 92 Fujiwara, Kano, Hasebe, Takinami (bib56) 2009; 55 Liu, Chen, Shen (bib45) 2010; 49 Yuan, Ge, Song (bib59) 2014; 53 Pedregal, Taylor, Young (bib67) 2007 Kano, Ogawa (bib4) 2010; 20 Jolliffe (bib11) 2002 Lee, Yoo, Choi, Vanrolleghem, Lee (bib32) 2004; 59 Liu, Gao, Li, Wang (bib53) 2012; 51 Pani, Amin, Mohanta (bib77) 2016; 55 Shao, Tian, Wang (bib49) 2014; 22 Liu, Chen, Chen (bib25) 2015; 54 Ge (bib78) 2016; 151 Toivonen (bib36) 2003; 76 Lee, Song, Song, Yoon (bib23) 2005; 44 Bishop (bib17) 1995 Fortuna, Graziani, Xibilia (bib69) 2005; 13 Kano, Fujiwara (bib44) 2013; 46 Ge, Huang, Song (bib72) 2014; 60 Fan, Ge, Song (bib73) 2014; 53 Lin, Lee (bib20) 1996 Tang, Yu, Chai, Zhao (bib12) 2012; 82 Kaneko, Funatsu (bib46) 2016; 153 Young (bib63) 2006; 30 Draper, Smith (bib9) 1998 Young (bib65) 2011 Avoy (bib1) 2002; 26 Ge, Huang, Song (bib40) 2014; 28 Shao, Tian (bib50) 2015; 95 Luo, Shao (bib21) 2006; 10 Aimin, Peng, Lingjian (bib76) 2015; 147 Ge, Song (bib10) 2011; 57 Zhang, Wang, He, Jia (bib30) 2013; 21 D. Sliskovic, R. Grbic, E.K. Nyarko, Data preprocessing in data based process modeling, in: Proceeding of the 2nd IFAC Conference on Intelligent Control Systems and Signal Processing, 2009, pp. 559–564. Zhu, Ge, Song (bib41) 2015; 122 Young, McKenna, Bruun (bib66) 2001; 74 Kresta, Macgregor, Marlin (bib8) 1991; 69 Khatibisepehr, Huang, Khare (bib6) 2013; 23 Kim, Kano, Hasebe, Takinami, Seki (bib43) 2013; 52 Jang, Sun, Mizutani (bib19) 1997 Deng, Huang (bib39) 2012; 58 Kadlec, Gabrys, Strandt (bib3) 2009; 33 Jain, Rahman, Kulkarni (bib24) 2007; 85 Chen, Ji, Wang, Liu, Song (bib47) 2011; 89 Fortuna, Rizzo, Sinatra, Xibilia (bib42) 2003; 11 Soares, Araujo (bib79) 2016; 171 Cheng (10.1016/j.chemolab.2017.01.004_bib52) 2005; 76 Liu (10.1016/j.chemolab.2017.01.004_bib26) 2016; 515 Ramli (10.1016/j.chemolab.2017.01.004_bib70) 2014; 131 Behnasr (10.1016/j.chemolab.2017.01.004_bib29) 2015; 22 Fortuna (10.1016/j.chemolab.2017.01.004_bib71) 2007 Kano (10.1016/j.chemolab.2017.01.004_bib44) 2013; 46 Kadlec (10.1016/j.chemolab.2017.01.004_bib3) 2009; 33 Gregorčič (10.1016/j.chemolab.2017.01.004_bib60) 2009; 22 Young (10.1016/j.chemolab.2017.01.004_bib65) 2011 Jang (10.1016/j.chemolab.2017.01.004_bib19) 1997 Hubert (10.1016/j.chemolab.2017.01.004_bib13) 2003; 17 Kim (10.1016/j.chemolab.2017.01.004_bib58) 2013; 124 Kadlec (10.1016/j.chemolab.2017.01.004_bib35) 2011; 35 Liu (10.1016/j.chemolab.2017.01.004_bib53) 2012; 51 Lee (10.1016/j.chemolab.2017.01.004_bib23) 2005; 44 Lee (10.1016/j.chemolab.2017.01.004_bib32) 2004; 59 Ge (10.1016/j.chemolab.2017.01.004_bib40) 2014; 28 Young (10.1016/j.chemolab.2017.01.004_bib66) 2001; 74 Ge (10.1016/j.chemolab.2017.01.004_bib10) 2011; 57 Yuan (10.1016/j.chemolab.2017.01.004_bib59) 2014; 53 Shao (10.1016/j.chemolab.2017.01.004_bib49) 2014; 22 Kano (10.1016/j.chemolab.2017.01.004_bib4) 2010; 20 Kaneko (10.1016/j.chemolab.2017.01.004_bib46) 2016; 153 Fortuna (10.1016/j.chemolab.2017.01.004_bib42) 2003; 11 Jain (10.1016/j.chemolab.2017.01.004_bib24) 2007; 85 Gonzaga (10.1016/j.chemolab.2017.01.004_bib16) 2009; 33 Ge (10.1016/j.chemolab.2017.01.004_bib78) 2016; 151 Lin (10.1016/j.chemolab.2017.01.004_bib20) 1996 Avoy (10.1016/j.chemolab.2017.01.004_bib1) 2002; 26 Ge (10.1016/j.chemolab.2017.01.004_bib72) 2014; 60 Jiang (10.1016/j.chemolab.2017.01.004_bib34) 2013; 127 Fan (10.1016/j.chemolab.2017.01.004_bib73) 2014; 53 Yan (10.1016/j.chemolab.2017.01.004_bib22) 2004; 28 Deng (10.1016/j.chemolab.2017.01.004_bib39) 2012; 58 Liu (10.1016/j.chemolab.2017.01.004_bib54) 2013; 23 Toivonen (10.1016/j.chemolab.2017.01.004_bib36) 2003; 76 Young (10.1016/j.chemolab.2017.01.004_bib68) 2000 Kim (10.1016/j.chemolab.2017.01.004_bib43) 2013; 52 Sliskovic (10.1016/j.chemolab.2017.01.004_bib2) 2011; 52 Young (10.1016/j.chemolab.2017.01.004_bib64) 2011 Rasmussen (10.1016/j.chemolab.2017.01.004_bib61) 2006 Zhang (10.1016/j.chemolab.2017.01.004_bib30) 2013; 21 Zamprogna (10.1016/j.chemolab.2017.01.004_bib5) 2005; 15 Bishop (10.1016/j.chemolab.2017.01.004_bib17) 1995 Aimin (10.1016/j.chemolab.2017.01.004_bib76) 2015; 147 Galicia (10.1016/j.chemolab.2017.01.004_bib14) 2011; 21 Chen (10.1016/j.chemolab.2017.01.004_bib47) 2011; 89 Soares (10.1016/j.chemolab.2017.01.004_bib79) 2016; 171 10.1016/j.chemolab.2017.01.004_bib37 Tang (10.1016/j.chemolab.2017.01.004_bib12) 2012; 82 Liu (10.1016/j.chemolab.2017.01.004_bib25) 2015; 54 Liu (10.1016/j.chemolab.2017.01.004_bib45) 2010; 49 Jin (10.1016/j.chemolab.2017.01.004_bib55) 2014; 71 Ge (10.1016/j.chemolab.2017.01.004_bib57) 2010; 104 Yuan (10.1016/j.chemolab.2017.01.004_bib75) 2015; 147 Draper (10.1016/j.chemolab.2017.01.004_bib9) 1998 Principe (10.1016/j.chemolab.2017.01.004_bib18) 2000 Choi (10.1016/j.chemolab.2017.01.004_bib31) 2004; 59 Pani (10.1016/j.chemolab.2017.01.004_bib77) 2016; 55 Ge (10.1016/j.chemolab.2017.01.004_bib7) 2014; 92 Kresta (10.1016/j.chemolab.2017.01.004_bib8) 1991; 69 Huber (10.1016/j.chemolab.2017.01.004_bib38) 2009 Shao (10.1016/j.chemolab.2017.01.004_bib51) 2015; 144 Yang (10.1016/j.chemolab.2017.01.004_bib62) 2016; 155 Qin (10.1016/j.chemolab.2017.01.004_bib48) 1998; 22 Lee (10.1016/j.chemolab.2017.01.004_bib28) 2006; 41 Pedregal (10.1016/j.chemolab.2017.01.004_bib67) 2007 Liu (10.1016/j.chemolab.2017.01.004_bib27) 2014; 132 Ge (10.1016/j.chemolab.2017.01.004_bib33) 2009; 64 Shao (10.1016/j.chemolab.2017.01.004_bib50) 2015; 95 Jolliffe (10.1016/j.chemolab.2017.01.004_bib11) 2002 Fortuna (10.1016/j.chemolab.2017.01.004_bib69) 2005; 13 Luo (10.1016/j.chemolab.2017.01.004_bib21) 2006; 10 Wold (10.1016/j.chemolab.2017.01.004_bib15) 2001; 58 Zhu (10.1016/j.chemolab.2017.01.004_bib41) 2015; 122 Fujiwara (10.1016/j.chemolab.2017.01.004_bib56) 2009; 55 Ge (10.1016/j.chemolab.2017.01.004_bib74) 2014; 24 Khatibisepehr (10.1016/j.chemolab.2017.01.004_bib6) 2013; 23 Young (10.1016/j.chemolab.2017.01.004_bib63) 2006; 30 |
| References_xml | – volume: 76 start-page: 1823 year: 2003 end-page: 1832 ident: bib36 article-title: State-dependent parameter models of non-linear sampled-data systems: A velocity-based linearization approach publication-title: Int. J. Control – year: 2000 ident: bib18 article-title: Neural and Adaptive Systems – volume: 15 start-page: 39 year: 2005 end-page: 52 ident: bib5 article-title: Optimal selection of soft sensor inputs for batch distillation columns using principal component analysis publication-title: J. Process Control – volume: 33 start-page: 43 year: 2009 end-page: 49 ident: bib16 article-title: ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process publication-title: Comput. Chem. Eng. – volume: 23 start-page: 793 year: 2013 end-page: 804 ident: bib54 article-title: Integrated soft sensor using just-in-time support vector regression and probabilistic analysis for quality prediction of multi-grade processes publication-title: J. Process Control – volume: 23 start-page: 1575 year: 2013 end-page: 1596 ident: bib6 article-title: Design of inferential sensors in the process industry: A review of Bayesian methods publication-title: J. Process Control – volume: 52 start-page: 12346 year: 2013 end-page: 12356 ident: bib43 article-title: Long-term industrial applications of inferential control based on just-in-time soft-sensors: economical impact and challenges publication-title: Ind. Eng. Chemistry Res. – volume: 11 start-page: 1491 year: 2003 end-page: 1500 ident: bib42 article-title: Soft analyzers for a sulfur recovery unit publication-title: Control Eng. Pract. – volume: 76 start-page: 1 year: 2005 end-page: 13 ident: bib52 article-title: Nonlinear process monitoring using JITL-PCA publication-title: Chemom. Intell. Lab. Syst. – volume: 41 start-page: 2050 year: 2006 end-page: 2057 ident: bib28 article-title: Nonlinear dynamic partial least squares modeling of a full-scale biological wastewater treatment plant publication-title: Process Biochem. – volume: 17 start-page: 438 year: 2003 end-page: 452 ident: bib13 article-title: A robust PCR method for high-dimensional regressors publication-title: J. Chemom. – year: 2011 ident: bib65 article-title: Data-based mechanistic modelling: natural philosophy revisited? publication-title: System Identification, Environmetric Modelling and Control – volume: 20 start-page: 969 year: 2010 end-page: 982 ident: bib4 article-title: The state of the art in chemical process control in Japan: Good practice and questionnaire survey publication-title: J. Process Control – year: 2007 ident: bib71 article-title: Soft Sensors for Monitoring and Control of Industrial Processes – volume: 53 start-page: 19979 year: 2014 end-page: 19986 ident: bib73 article-title: Adaptive Gaussian mixture model-based relevant sample selection for JITL soft sensor development publication-title: Ind. Eng. Chem. Res. – volume: 85 start-page: 283 year: 2007 end-page: 287 ident: bib24 article-title: Development of a soft sensor for a batch distillation column using support vector regression techniques publication-title: Chem. Eng. Res. Des. – volume: 59 start-page: 223 year: 2004 end-page: 234 ident: bib32 article-title: Nonlinear process monitoring using kernel principal component analysis publication-title: Chem. Eng. Sci. – volume: 51 start-page: 4313 year: 2012 end-page: 4327 ident: bib53 article-title: Just-in-time kernel learning with adaptive parameter selection for soft sensor modeling of batch processes publication-title: Ind. Eng. Chem. Res. – volume: 92 start-page: 509 year: 2014 end-page: 521 ident: bib7 article-title: Probabilistic combination of local independent component regression model for multimode quality prediction in chemical processes publication-title: Chem. Eng. Res. Des. – volume: 55 start-page: 1754 year: 2009 end-page: 1765 ident: bib56 article-title: Soft-sensor development using correlation-based just-in-time modeling publication-title: AIChE J. – volume: 124 year: 2013 ident: bib58 article-title: Development of soft-sensor using locally weighted PLS with adaptive similarity measure publication-title: Chemom. Intell. Lab. Syst. – year: 1995 ident: bib17 article-title: Neural Networks for Pattern Recognition – year: 2002 ident: bib11 article-title: Principal Component Analysis – volume: 10 start-page: 54 year: 2006 end-page: 60 ident: bib21 article-title: Developing soft sensors using hybrid soft computing methodology: a neurofuzzy system based on rough set theory and genetic algorithms publication-title: Soft Comput. Fusion Found. Methodol. Appl. – volume: 155 start-page: 170 year: 2016 end-page: 182 ident: bib62 article-title: Soft sensor development for online quality prediction of industrial batch rubber mixing process using ensemble just-in-time Gaussian process regression models publication-title: Chemom. Intell. Lab. Sys. – volume: 22 start-page: 522 year: 2009 end-page: 533 ident: bib60 article-title: Gaussian process approach for modelling of nonlinear systems publication-title: Eng. Appl. Artif. Intell. – volume: 21 start-page: 1267 year: 2013 end-page: 1276 ident: bib30 article-title: Online quality prediction for cobalt oxalate synthesis process using least squares support vector regression approach with dual updating publication-title: Control Eng. Pract. – year: 2006 ident: bib61 article-title: Gaussian Processes for Machine Learning – start-page: 74 year: 2000 end-page: 114 ident: bib68 article-title: Stochastic, dynamic modelling and signal processing: time variable and state dependent parameter estimation publication-title: Nonstationary and Nonlinear Signal Processing – year: 1998 ident: bib9 article-title: Applied Regression Analysis – volume: 60 start-page: 533 year: 2014 end-page: 545 ident: bib72 article-title: Mixture semisupervised principal component regression model and soft sensor application publication-title: AIChE J. – volume: 30 start-page: 169 year: 2006 end-page: 182 ident: bib63 article-title: The data-based mechanistic approach to the modelling, forecasting and control of environmental systems publication-title: Annu. Rev. Control – volume: 515 start-page: 245 year: 2016 end-page: 257 ident: bib26 article-title: Active learning assisted strategy of constructing hybrid models in repetitive operations of membrane filtration processes: Using case of mixture of bentonite clay and sodium alginate publication-title: J. Membr. Sci. – volume: 33 start-page: 795 year: 2009 end-page: 814 ident: bib3 article-title: Data-driven soft sensors in the process industry publication-title: Comput. Chem. Eng. – volume: 28 start-page: 1489 year: 2004 end-page: 1498 ident: bib22 article-title: Soft sensing modeling based on support vector machine and Bayesian model selection publication-title: Comput. Chem. Eng. – volume: 127 start-page: 121 year: 2013 end-page: 131 ident: bib34 article-title: Weighted kernel principal component analysis based on probability density estimation and moving window and its application in nonlinear chemical process monitoring publication-title: Chemom. Intell. Lab. Sys. – volume: 64 start-page: 2245 year: 2009 end-page: 2255 ident: bib33 article-title: Improved kernel PCA-based monitoring approach for nonlinear processes publication-title: Chem. Eng. Sci. – volume: 82 start-page: 167 year: 2012 end-page: 178 ident: bib12 article-title: On-line principal component analysis with application to process modeling publication-title: Neurocomputing – volume: 44 start-page: 2101 year: 2005 end-page: 2105 ident: bib23 article-title: Weighted support vector machine for quality estimation in the polymerization process publication-title: Ind. Eng. Chem. Res. – volume: 22 start-page: 35 year: 2015 end-page: 41 ident: bib29 article-title: Robust data-driven soft sensor based on iteratively weighted least squares support vector regression optimized by the cuckoo optimization algorithm publication-title: J. Nat. Gas Sci. Eng. – volume: 104 start-page: 306 year: 2010 end-page: 317 ident: bib57 article-title: A comparative study of just-in-time-learning based methods for online soft sensor modeling publication-title: Chemom. Intell. Lab. Syst. – reference: D. Sliskovic, R. Grbic, E.K. Nyarko, Data preprocessing in data based process modeling, in: Proceeding of the 2nd IFAC Conference on Intelligent Control Systems and Signal Processing, 2009, pp. 559–564. – volume: 58 start-page: 109 year: 2001 end-page: 130 ident: bib15 article-title: PLS-regression: a basic tool of chemometrics publication-title: Chemom. and Intell. Lab. Syst. – volume: 89 start-page: 2117 year: 2011 end-page: 2124 ident: bib47 article-title: Adaptive local kernel-based learning for soft sensor modeling of nonlinear processes publication-title: Chem. Eng. Res. Des. – year: 2011 ident: bib64 article-title: Recursive Estimation and Time-series Analysis – volume: 57 start-page: 2109 year: 2011 end-page: 2119 ident: bib10 article-title: Semi supervised Bayesian method for soft sensor modeling with unlabeled data samples publication-title: AIChE J. – year: 1996 ident: bib20 article-title: Neural Fuzzy Systems: A Neuro-fuzzy Synergism to Intelligent Systems – volume: 22 start-page: 503 year: 1998 end-page: 514 ident: bib48 article-title: Recursive PLS algorithms for adaptive data modeling publication-title: Comput. Chem. Eng. – volume: 13 start-page: 499 year: 2005 end-page: 508 ident: bib69 article-title: Soft sensors for product quality monitoring in debutanizer distillation columns publication-title: Control Eng. Pract. – volume: 132 start-page: 1905 year: 2014 end-page: 1913 ident: bib27 article-title: Real-time property prediction for an industrial rubber-mixing process with probabilistic ensemble Gaussian process regression models publication-title: J. Appl. Polym. Sci. – year: 1997 ident: bib19 article-title: Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence – volume: 26 start-page: 75 year: 2002 end-page: 86 ident: bib1 article-title: Intelligent control applications in the process industries publication-title: Ann. Rev. Control – volume: 58 start-page: 3454 year: 2012 end-page: 3467 ident: bib39 article-title: Identification of nonlinear parameter varying systems with missing output data publication-title: AIChE Journal – volume: 55 start-page: 1667 year: 2016 end-page: 1674 ident: bib77 article-title: Soft sensing of product quality in the debutanizer column with principal component analysis and feed-forward artificial neural network publication-title: Alex. Eng. J. – volume: 22 start-page: 828 year: 2014 end-page: 836 ident: bib49 article-title: Local partial least squares based online soft sensing method for multi-output processes with adaptive process states division publication-title: Chin. J. Chem. Eng. – volume: 53 start-page: 13736 year: 2014 end-page: 13749 ident: bib59 article-title: Locally weighted kernel principal component regression model for soft sensing of nonlinear time-variant processes publication-title: Ind. Eng. Chem. Res. – volume: 28 year: 2014 ident: bib40 article-title: Nonlinear semi supervised principal component regression for soft sensor modeling and its mixture form publication-title: J. Chemom. – volume: 71 start-page: 77 year: 2014 end-page: 93 ident: bib55 article-title: Adaptive soft sensor modeling framework based on just-in-time learning and kernel partial least squares regression for nonlinear multiphase batch processes publication-title: Comput. Chem. Eng. – volume: 151 start-page: 181 year: 2016 end-page: 189 ident: bib78 article-title: Active probabilistic sample selection for intelligent soft sensing of industrial processes publication-title: Chemom. Intell. Lab. Sys. – volume: 171 start-page: 693 year: 2016 end-page: 707 ident: bib79 article-title: An adaptive ensemble of on-line extreme learning machines with variable forgetting factor for dynamic system prediction publication-title: Neurocomputing – volume: 21 start-page: 489 year: 2011 end-page: 500 ident: bib14 article-title: A reduced order soft sensor approach and its application to a continuous digester publication-title: J. Process Control – volume: 69 start-page: 35 year: 1991 end-page: 47 ident: bib8 article-title: Multivariate statistical monitoring of process operating performance publication-title: Can. J. Chemi. Eng. – volume: 46 start-page: 1 year: 2013 end-page: 17 ident: bib44 article-title: Virtual sensing technology in process industries: Trends and challenges revealed by recent industrial applications publication-title: J. Chem. Eng. Jpn. – volume: 153 start-page: 75 year: 2016 end-page: 81 ident: bib46 article-title: Preparation of comprehensive data from huge data sets for predictive soft sensors publication-title: Chemom. Intell. Lab. Syst. – volume: 24 start-page: 1454 year: 2014 end-page: 1461 ident: bib74 article-title: Active learning strategy for smart soft sensor development under a small number of labeled data samples publication-title: J. Process Control – volume: 122 start-page: 573 year: 2015 end-page: 584 ident: bib41 article-title: Robust supervised probabilistic principal component analysis model for soft sensing of key process variables publication-title: Chem. Eng. Sci. – volume: 35 start-page: 1 year: 2011 end-page: 24 ident: bib35 article-title: Review of adaptation mechanisms for data-driven soft sensors publication-title: Comput. Chem. Eng. – reference: . – volume: 49 start-page: 11530 year: 2010 end-page: 11546 ident: bib45 article-title: Development of self-validating soft sensors using fast moving window partial least squares publication-title: Ind. Eng. Chem. Res. – volume: 131 start-page: 59 year: 2014 end-page: 76 ident: bib70 article-title: Composition prediction of a debutanizer column using equation based artificial neural network model publication-title: Neurocomputing – volume: 54 start-page: 5037 year: 2015 end-page: 5047 ident: bib25 article-title: Auto-switch Gaussian process regression-based probabilistic soft sensors for industrial multigrade processes with transitions publication-title: Ind. Eng. Chem. Res. – volume: 74 start-page: 1837 year: 2001 end-page: 1857 ident: bib66 article-title: Identification of nonlinear stochastic systems by state dependent parameter estimation publication-title: Int. J. Control – year: 2007 ident: bib67 article-title: System Identification, Time Series Analysis and Forecasting: The Captain Toolbox Handbook – volume: 144 start-page: 108 year: 2015 end-page: 121 ident: bib51 article-title: Online soft sensor design using local partial least squares models with adaptive process state partition publication-title: Chemom. Intell. Lab. Syst. – year: 2009 ident: bib38 article-title: Robust Statistics – volume: 59 start-page: 5897 year: 2004 end-page: 5908 ident: bib31 article-title: Nonlinear dynamic process monitoring based on dynamic kernel PCA publication-title: Chem. Eng. Sci. – volume: 147 start-page: 167 year: 2015 end-page: 175 ident: bib75 article-title: Nonlinear feature extraction for soft sensor modeling based on weighted probabilistic PCA publication-title: Chemom. Intell. Lab. Syst. – volume: 52 start-page: 306 year: 2011 end-page: 318 ident: bib2 article-title: Methods for plant data-based process modeling in soft sensor development publication-title: Automatika – volume: 147 start-page: 86 year: 2015 end-page: 94 ident: bib76 article-title: Neighborhood preserving regression embedding based data regression and its applications on soft sensor modeling publication-title: Chemom. Intell. Lab. Syst. – volume: 95 start-page: 113 year: 2015 end-page: 132 ident: bib50 article-title: Adaptive soft sensor for quality prediction of chemical processes based on selective ensemble of local partial least squares models publication-title: Chem. Eng. Res. Des. – volume: 89 start-page: 2117 year: 2011 ident: 10.1016/j.chemolab.2017.01.004_bib47 article-title: Adaptive local kernel-based learning for soft sensor modeling of nonlinear processes publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2011.01.032 – year: 2011 ident: 10.1016/j.chemolab.2017.01.004_bib64 – volume: 124 year: 2013 ident: 10.1016/j.chemolab.2017.01.004_bib58 article-title: Development of soft-sensor using locally weighted PLS with adaptive similarity measure publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2013.03.008 – volume: 69 start-page: 35 year: 1991 ident: 10.1016/j.chemolab.2017.01.004_bib8 article-title: Multivariate statistical monitoring of process operating performance publication-title: Can. J. Chemi. Eng. doi: 10.1002/cjce.5450690105 – volume: 22 start-page: 828 year: 2014 ident: 10.1016/j.chemolab.2017.01.004_bib49 article-title: Local partial least squares based online soft sensing method for multi-output processes with adaptive process states division publication-title: Chin. J. Chem. Eng. doi: 10.1016/j.cjche.2014.05.003 – volume: 104 start-page: 306 year: 2010 ident: 10.1016/j.chemolab.2017.01.004_bib57 article-title: A comparative study of just-in-time-learning based methods for online soft sensor modeling publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2010.09.008 – volume: 30 start-page: 169 year: 2006 ident: 10.1016/j.chemolab.2017.01.004_bib63 article-title: The data-based mechanistic approach to the modelling, forecasting and control of environmental systems publication-title: Annu. Rev. Control doi: 10.1016/j.arcontrol.2006.05.002 – volume: 22 start-page: 35 year: 2015 ident: 10.1016/j.chemolab.2017.01.004_bib29 article-title: Robust data-driven soft sensor based on iteratively weighted least squares support vector regression optimized by the cuckoo optimization algorithm publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2014.11.017 – ident: 10.1016/j.chemolab.2017.01.004_bib37 doi: 10.3182/20090921-3-TR-3005.00096 – volume: 95 start-page: 113 year: 2015 ident: 10.1016/j.chemolab.2017.01.004_bib50 article-title: Adaptive soft sensor for quality prediction of chemical processes based on selective ensemble of local partial least squares models publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2015.01.006 – year: 2007 ident: 10.1016/j.chemolab.2017.01.004_bib67 – volume: 10 start-page: 54 year: 2006 ident: 10.1016/j.chemolab.2017.01.004_bib21 article-title: Developing soft sensors using hybrid soft computing methodology: a neurofuzzy system based on rough set theory and genetic algorithms publication-title: Soft Comput. Fusion Found. Methodol. Appl. – volume: 64 start-page: 2245 year: 2009 ident: 10.1016/j.chemolab.2017.01.004_bib33 article-title: Improved kernel PCA-based monitoring approach for nonlinear processes publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2009.01.050 – volume: 144 start-page: 108 year: 2015 ident: 10.1016/j.chemolab.2017.01.004_bib51 article-title: Online soft sensor design using local partial least squares models with adaptive process state partition publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2015.04.003 – volume: 28 start-page: 1489 year: 2004 ident: 10.1016/j.chemolab.2017.01.004_bib22 article-title: Soft sensing modeling based on support vector machine and Bayesian model selection publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2003.11.004 – volume: 59 start-page: 223 year: 2004 ident: 10.1016/j.chemolab.2017.01.004_bib32 article-title: Nonlinear process monitoring using kernel principal component analysis publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2003.09.012 – volume: 76 start-page: 1 year: 2005 ident: 10.1016/j.chemolab.2017.01.004_bib52 article-title: Nonlinear process monitoring using JITL-PCA publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2004.08.003 – year: 1998 ident: 10.1016/j.chemolab.2017.01.004_bib9 – volume: 74 start-page: 1837 year: 2001 ident: 10.1016/j.chemolab.2017.01.004_bib66 article-title: Identification of nonlinear stochastic systems by state dependent parameter estimation publication-title: Int. J. Control doi: 10.1080/00207170110089824 – volume: 92 start-page: 509 year: 2014 ident: 10.1016/j.chemolab.2017.01.004_bib7 article-title: Probabilistic combination of local independent component regression model for multimode quality prediction in chemical processes publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2013.09.010 – volume: 44 start-page: 2101 year: 2005 ident: 10.1016/j.chemolab.2017.01.004_bib23 article-title: Weighted support vector machine for quality estimation in the polymerization process publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie049908e – volume: 24 start-page: 1454 year: 2014 ident: 10.1016/j.chemolab.2017.01.004_bib74 article-title: Active learning strategy for smart soft sensor development under a small number of labeled data samples publication-title: J. Process Control doi: 10.1016/j.jprocont.2014.06.015 – volume: 41 start-page: 2050 year: 2006 ident: 10.1016/j.chemolab.2017.01.004_bib28 article-title: Nonlinear dynamic partial least squares modeling of a full-scale biological wastewater treatment plant publication-title: Process Biochem. doi: 10.1016/j.procbio.2006.05.006 – volume: 26 start-page: 75 year: 2002 ident: 10.1016/j.chemolab.2017.01.004_bib1 article-title: Intelligent control applications in the process industries publication-title: Ann. Rev. Control doi: 10.1016/S1367-5788(02)80014-1 – volume: 55 start-page: 1667 year: 2016 ident: 10.1016/j.chemolab.2017.01.004_bib77 article-title: Soft sensing of product quality in the debutanizer column with principal component analysis and feed-forward artificial neural network publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2016.02.016 – volume: 11 start-page: 1491 year: 2003 ident: 10.1016/j.chemolab.2017.01.004_bib42 article-title: Soft analyzers for a sulfur recovery unit publication-title: Control Eng. Pract. doi: 10.1016/S0967-0661(03)00079-0 – volume: 13 start-page: 499 year: 2005 ident: 10.1016/j.chemolab.2017.01.004_bib69 article-title: Soft sensors for product quality monitoring in debutanizer distillation columns publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2004.04.013 – volume: 131 start-page: 59 year: 2014 ident: 10.1016/j.chemolab.2017.01.004_bib70 article-title: Composition prediction of a debutanizer column using equation based artificial neural network model publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.10.039 – volume: 35 start-page: 1 year: 2011 ident: 10.1016/j.chemolab.2017.01.004_bib35 article-title: Review of adaptation mechanisms for data-driven soft sensors publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2010.07.034 – volume: 46 start-page: 1 year: 2013 ident: 10.1016/j.chemolab.2017.01.004_bib44 article-title: Virtual sensing technology in process industries: Trends and challenges revealed by recent industrial applications publication-title: J. Chem. Eng. Jpn. doi: 10.1252/jcej.12we167 – year: 2000 ident: 10.1016/j.chemolab.2017.01.004_bib18 – year: 1997 ident: 10.1016/j.chemolab.2017.01.004_bib19 – volume: 57 start-page: 2109 year: 2011 ident: 10.1016/j.chemolab.2017.01.004_bib10 article-title: Semi supervised Bayesian method for soft sensor modeling with unlabeled data samples publication-title: AIChE J. doi: 10.1002/aic.12422 – volume: 22 start-page: 503 year: 1998 ident: 10.1016/j.chemolab.2017.01.004_bib48 article-title: Recursive PLS algorithms for adaptive data modeling publication-title: Comput. Chem. Eng. doi: 10.1016/S0098-1354(97)00262-7 – volume: 52 start-page: 306 year: 2011 ident: 10.1016/j.chemolab.2017.01.004_bib2 article-title: Methods for plant data-based process modeling in soft sensor development publication-title: Automatika doi: 10.1080/00051144.2011.11828430 – volume: 55 start-page: 1754 year: 2009 ident: 10.1016/j.chemolab.2017.01.004_bib56 article-title: Soft-sensor development using correlation-based just-in-time modeling publication-title: AIChE J. doi: 10.1002/aic.11791 – volume: 28 year: 2014 ident: 10.1016/j.chemolab.2017.01.004_bib40 article-title: Nonlinear semi supervised principal component regression for soft sensor modeling and its mixture form publication-title: J. Chemom. doi: 10.1002/cem.2638 – volume: 22 start-page: 522 year: 2009 ident: 10.1016/j.chemolab.2017.01.004_bib60 article-title: Gaussian process approach for modelling of nonlinear systems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2009.01.005 – volume: 21 start-page: 489 year: 2011 ident: 10.1016/j.chemolab.2017.01.004_bib14 article-title: A reduced order soft sensor approach and its application to a continuous digester publication-title: J. Process Control doi: 10.1016/j.jprocont.2011.02.001 – volume: 53 start-page: 13736 year: 2014 ident: 10.1016/j.chemolab.2017.01.004_bib59 article-title: Locally weighted kernel principal component regression model for soft sensing of nonlinear time-variant processes publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie4041252 – volume: 33 start-page: 795 year: 2009 ident: 10.1016/j.chemolab.2017.01.004_bib3 article-title: Data-driven soft sensors in the process industry publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2008.12.012 – volume: 171 start-page: 693 year: 2016 ident: 10.1016/j.chemolab.2017.01.004_bib79 article-title: An adaptive ensemble of on-line extreme learning machines with variable forgetting factor for dynamic system prediction publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.07.035 – volume: 59 start-page: 5897 year: 2004 ident: 10.1016/j.chemolab.2017.01.004_bib31 article-title: Nonlinear dynamic process monitoring based on dynamic kernel PCA publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2004.07.019 – volume: 147 start-page: 86 year: 2015 ident: 10.1016/j.chemolab.2017.01.004_bib76 article-title: Neighborhood preserving regression embedding based data regression and its applications on soft sensor modeling publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2015.07.012 – volume: 151 start-page: 181 year: 2016 ident: 10.1016/j.chemolab.2017.01.004_bib78 article-title: Active probabilistic sample selection for intelligent soft sensing of industrial processes publication-title: Chemom. Intell. Lab. Sys. doi: 10.1016/j.chemolab.2016.01.003 – year: 2009 ident: 10.1016/j.chemolab.2017.01.004_bib38 – volume: 147 start-page: 167 year: 2015 ident: 10.1016/j.chemolab.2017.01.004_bib75 article-title: Nonlinear feature extraction for soft sensor modeling based on weighted probabilistic PCA publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2015.08.014 – volume: 58 start-page: 3454 year: 2012 ident: 10.1016/j.chemolab.2017.01.004_bib39 article-title: Identification of nonlinear parameter varying systems with missing output data publication-title: AIChE Journal doi: 10.1002/aic.13735 – volume: 51 start-page: 4313 year: 2012 ident: 10.1016/j.chemolab.2017.01.004_bib53 article-title: Just-in-time kernel learning with adaptive parameter selection for soft sensor modeling of batch processes publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie201650u – volume: 53 start-page: 19979 year: 2014 ident: 10.1016/j.chemolab.2017.01.004_bib73 article-title: Adaptive Gaussian mixture model-based relevant sample selection for JITL soft sensor development publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie5029864 – volume: 76 start-page: 1823 year: 2003 ident: 10.1016/j.chemolab.2017.01.004_bib36 article-title: State-dependent parameter models of non-linear sampled-data systems: A velocity-based linearization approach publication-title: Int. J. Control doi: 10.1080/00207170310001637002 – volume: 54 start-page: 5037 year: 2015 ident: 10.1016/j.chemolab.2017.01.004_bib25 article-title: Auto-switch Gaussian process regression-based probabilistic soft sensors for industrial multigrade processes with transitions publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie504185j – volume: 127 start-page: 121 year: 2013 ident: 10.1016/j.chemolab.2017.01.004_bib34 article-title: Weighted kernel principal component analysis based on probability density estimation and moving window and its application in nonlinear chemical process monitoring publication-title: Chemom. Intell. Lab. Sys. doi: 10.1016/j.chemolab.2013.06.013 – volume: 82 start-page: 167 year: 2012 ident: 10.1016/j.chemolab.2017.01.004_bib12 article-title: On-line principal component analysis with application to process modeling publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.10.026 – volume: 153 start-page: 75 year: 2016 ident: 10.1016/j.chemolab.2017.01.004_bib46 article-title: Preparation of comprehensive data from huge data sets for predictive soft sensors publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2016.02.011 – volume: 58 start-page: 109 year: 2001 ident: 10.1016/j.chemolab.2017.01.004_bib15 article-title: PLS-regression: a basic tool of chemometrics publication-title: Chemom. and Intell. Lab. Syst. doi: 10.1016/S0169-7439(01)00155-1 – volume: 515 start-page: 245 year: 2016 ident: 10.1016/j.chemolab.2017.01.004_bib26 article-title: Active learning assisted strategy of constructing hybrid models in repetitive operations of membrane filtration processes: Using case of mixture of bentonite clay and sodium alginate publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2016.05.057 – volume: 23 start-page: 1575 year: 2013 ident: 10.1016/j.chemolab.2017.01.004_bib6 article-title: Design of inferential sensors in the process industry: A review of Bayesian methods publication-title: J. Process Control doi: 10.1016/j.jprocont.2013.05.007 – year: 2007 ident: 10.1016/j.chemolab.2017.01.004_bib71 – volume: 85 start-page: 283 year: 2007 ident: 10.1016/j.chemolab.2017.01.004_bib24 article-title: Development of a soft sensor for a batch distillation column using support vector regression techniques publication-title: Chem. Eng. Res. Des. doi: 10.1205/cherd05026 – volume: 33 start-page: 43 year: 2009 ident: 10.1016/j.chemolab.2017.01.004_bib16 article-title: ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2008.05.019 – volume: 17 start-page: 438 year: 2003 ident: 10.1016/j.chemolab.2017.01.004_bib13 article-title: A robust PCR method for high-dimensional regressors publication-title: J. Chemom. doi: 10.1002/cem.783 – volume: 71 start-page: 77 year: 2014 ident: 10.1016/j.chemolab.2017.01.004_bib55 article-title: Adaptive soft sensor modeling framework based on just-in-time learning and kernel partial least squares regression for nonlinear multiphase batch processes publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2014.07.014 – volume: 60 start-page: 533 year: 2014 ident: 10.1016/j.chemolab.2017.01.004_bib72 article-title: Mixture semisupervised principal component regression model and soft sensor application publication-title: AIChE J. doi: 10.1002/aic.14270 – volume: 155 start-page: 170 year: 2016 ident: 10.1016/j.chemolab.2017.01.004_bib62 article-title: Soft sensor development for online quality prediction of industrial batch rubber mixing process using ensemble just-in-time Gaussian process regression models publication-title: Chemom. Intell. Lab. Sys. doi: 10.1016/j.chemolab.2016.04.009 – year: 2002 ident: 10.1016/j.chemolab.2017.01.004_bib11 – volume: 122 start-page: 573 year: 2015 ident: 10.1016/j.chemolab.2017.01.004_bib41 article-title: Robust supervised probabilistic principal component analysis model for soft sensing of key process variables publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2014.10.029 – year: 2011 ident: 10.1016/j.chemolab.2017.01.004_bib65 article-title: Data-based mechanistic modelling: natural philosophy revisited? – start-page: 74 year: 2000 ident: 10.1016/j.chemolab.2017.01.004_bib68 article-title: Stochastic, dynamic modelling and signal processing: time variable and state dependent parameter estimation – volume: 23 start-page: 793 year: 2013 ident: 10.1016/j.chemolab.2017.01.004_bib54 article-title: Integrated soft sensor using just-in-time support vector regression and probabilistic analysis for quality prediction of multi-grade processes publication-title: J. Process Control doi: 10.1016/j.jprocont.2013.03.008 – volume: 52 start-page: 12346 year: 2013 ident: 10.1016/j.chemolab.2017.01.004_bib43 article-title: Long-term industrial applications of inferential control based on just-in-time soft-sensors: economical impact and challenges publication-title: Ind. Eng. Chemistry Res. doi: 10.1021/ie303488m – volume: 49 start-page: 11530 year: 2010 ident: 10.1016/j.chemolab.2017.01.004_bib45 article-title: Development of self-validating soft sensors using fast moving window partial least squares publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie101356c – year: 1995 ident: 10.1016/j.chemolab.2017.01.004_bib17 – year: 1996 ident: 10.1016/j.chemolab.2017.01.004_bib20 – volume: 20 start-page: 969 year: 2010 ident: 10.1016/j.chemolab.2017.01.004_bib4 article-title: The state of the art in chemical process control in Japan: Good practice and questionnaire survey publication-title: J. Process Control doi: 10.1016/j.jprocont.2010.06.013 – volume: 132 start-page: 1905 year: 2014 ident: 10.1016/j.chemolab.2017.01.004_bib27 article-title: Real-time property prediction for an industrial rubber-mixing process with probabilistic ensemble Gaussian process regression models publication-title: J. Appl. Polym. Sci. – volume: 21 start-page: 1267 year: 2013 ident: 10.1016/j.chemolab.2017.01.004_bib30 article-title: Online quality prediction for cobalt oxalate synthesis process using least squares support vector regression approach with dual updating publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2013.06.002 – year: 2006 ident: 10.1016/j.chemolab.2017.01.004_bib61 – volume: 15 start-page: 39 year: 2005 ident: 10.1016/j.chemolab.2017.01.004_bib5 article-title: Optimal selection of soft sensor inputs for batch distillation columns using principal component analysis publication-title: J. Process Control doi: 10.1016/j.jprocont.2004.04.006 |
| SSID | ssj0016941 |
| Score | 2.4621403 |
| Snippet | The goal of this paper is to design and implementation of a new data-driven soft sensor that uses state dependent parameter (SDP) models to improve product... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 130 |
| SubjectTerms | Data-based modeling Debutanizer column Missing value Quality prediction Soft sensor State dependent parameter |
| Title | Data-driven soft sensor approach for online quality prediction using state dependent parameter models |
| URI | https://dx.doi.org/10.1016/j.chemolab.2017.01.004 |
| Volume | 162 |
| WOSCitedRecordID | wos000395843700014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection - Elsevier customDbUrl: eissn: 1873-3239 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016941 issn: 0169-7439 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBehHWwvY5-s-0IPezPeYke2oseua9nKKIOGkTejSDJOSdxgu6X73_rH9c4nu-5W1vVhLyaISLF0v5xOp7vfMfYB2p2IZB4mxplQKJeGC2mjENChjIMTRdT6dH9-l0dH0_lc_RiNLrtcmPOVLMvpxYXa_FdRQxsIG1Nn7yHuflBogM8gdHiC2OH5T4L_ohsd2gq1WFCDkg1qOKliqKRnD28DC4kgw6dU_kKmALukouFntfcwNJhRRRVymwAZwtcYOUOlc-qhTYucA6drrMzlCZ-XPc1nE3iQ4U1-PSBHb93yloK7P-tCV653Sx9r66jUcHCoc90HDx8Xuqg0Vdk-0FWhbb9ZFDCL1XIDq0OZABWoqkKv1_4r3qkBGyVGyCVDP2eqQjwr3VDUXm-Tqo38fQ7t2hHRZ_2xIZBv4uSjwaWAKWMwn2yJWqnq8U0G7t92xj5esQuFO8m6cTIcJxtHWUtGux3LRMG2sL37bX9-2N9iYZIwccvTZAYZ6re_0e3G0cDgmT1hj_1Jhe8Swp6ykSufsYd7XYHA58wNkMYRaZyQxjukcUAaJ6RxjzR-jTTeIo23SOM90niPNE5Ie8FmB_uzva-hr9oRmkkUN6EWidVGaLCTTSKFTa2KXTTWuUQuOiFgoUAHYBWFXCUWrOOFVItkolJpxmIxmbxkW-Vp6V4xniibJy41caojoYVAKjnrpNBjG09TqXdY0q1WZjyjPRZWWWV_l9cO-9T32xCny509VCeMzFumZHFmgLM7-r6-96-9YY-u_xNv2VZTnbl37IE5b5Z19d6D7Ao9bbm7 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+soft+sensor+approach+for+online+quality+prediction+using+state+dependent+parameter+models&rft.jtitle=Chemometrics+and+intelligent+laboratory+systems&rft.au=Bidar%2C+Bahareh&rft.au=Sadeghi%2C+Jafar&rft.au=Shahraki%2C+Farhad&rft.au=Khalilipour%2C+Mir+Mohammad&rft.date=2017-03-15&rft.issn=0169-7439&rft.volume=162&rft.spage=130&rft.epage=141&rft_id=info:doi/10.1016%2Fj.chemolab.2017.01.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chemolab_2017_01_004 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-7439&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-7439&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-7439&client=summon |