Load-adaptive real-time energy management strategy for battery/ultracapacitor hybrid energy storage system using dynamic programming optimization
Energy management is crucial in battery/ultracapacitor hybrid energy storage systems in electric vehicles. Rule based control is one typical strategy in real-time management, but its adaptability in dynamic load is quite poor. This paper aims to develop a practical energy management strategy with ne...
Saved in:
| Published in: | Journal of power sources Vol. 438; p. 227024 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
31.10.2019
|
| Subjects: | |
| ISSN: | 0378-7753, 1873-2755 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Energy management is crucial in battery/ultracapacitor hybrid energy storage systems in electric vehicles. Rule based control is one typical strategy in real-time management, but its adaptability in dynamic load is quite poor. This paper aims to develop a practical energy management strategy with near-optimal performance in both energy-saving and battery life extending. Firstly, dynamic programming (DP) analysis is used to find out the optimal control mode. Three-segment control rules are then extracted from the DP results. A functional relationship is established between the power splitting parameters and load statistics. Finally, a load-adaptive rule based control strategy is proposed based on that. Two composite load cycles are tested for verification. Results show that compared with the ordinary rule based control strategy, the proposed strategy has the stronger capability of battery protecting and energy-saving under unknown load patterns, where the battery Ah throughput and total energy loss are reduced by 3.4%–15.7% and 3.0%–15.1%, respectively. The results are quite close to DP results, showing that the proposed strategy can achieve near-optimal energy management in real time with low computational cost.
[Display omitted]
•A practical load-adaptive real-time energy management strategy is designed.•Control rules are extracted from the optimization results of 4 load cycles.•Real-time power splitting factors are decided by functions of load statistics.•Near optimal results are given under unknown cycles by the proposed strategy. |
|---|---|
| AbstractList | Energy management is crucial in battery/ultracapacitor hybrid energy storage systems in electric vehicles. Rule based control is one typical strategy in real-time management, but its adaptability in dynamic load is quite poor. This paper aims to develop a practical energy management strategy with near-optimal performance in both energy-saving and battery life extending. Firstly, dynamic programming (DP) analysis is used to find out the optimal control mode. Three-segment control rules are then extracted from the DP results. A functional relationship is established between the power splitting parameters and load statistics. Finally, a load-adaptive rule based control strategy is proposed based on that. Two composite load cycles are tested for verification. Results show that compared with the ordinary rule based control strategy, the proposed strategy has the stronger capability of battery protecting and energy-saving under unknown load patterns, where the battery Ah throughput and total energy loss are reduced by 3.4%–15.7% and 3.0%–15.1%, respectively. The results are quite close to DP results, showing that the proposed strategy can achieve near-optimal energy management in real time with low computational cost.
[Display omitted]
•A practical load-adaptive real-time energy management strategy is designed.•Control rules are extracted from the optimization results of 4 load cycles.•Real-time power splitting factors are decided by functions of load statistics.•Near optimal results are given under unknown cycles by the proposed strategy. |
| ArticleNumber | 227024 |
| Author | Chen, Zonghai Wang, Li Wang, Yujie Liu, Chang |
| Author_xml | – sequence: 1 givenname: Chang orcidid: 0000-0002-7292-6107 surname: Liu fullname: Liu, Chang – sequence: 2 givenname: Yujie orcidid: 0000-0001-5722-2673 surname: Wang fullname: Wang, Yujie – sequence: 3 givenname: Li surname: Wang fullname: Wang, Li – sequence: 4 givenname: Zonghai orcidid: 0000-0001-9312-9089 surname: Chen fullname: Chen, Zonghai email: chenzh@ustc.edu.cn |
| BookMark | eNqFkM9qGzEQh0VJoE6aVyh6gXX0x7taQw8Npk0Dhlzas5iVxq6MJS2S7LB9i75x5Tq-5JLTwAffzPx-N-QqxICEfOZszhnv7nfz3RhfcjykuWB8ORdCMbH4QGa8V7IRqm2vyIxJ1TdKtfIjucl5xxjjXLEZ-buOYBuwMBZ3RJoQ9k1xHikGTNuJegiwRY-h0FwSFKxsExMdoBRM0_1hX6mBEYwrFf-ehuTsRc4VVZvmKRf09JBd2FI7BfDO0DHFbQLvTyzW6979geJi-ESuN7DPePc6b8mv799-rn406-fHp9XDujGSi9IAs5IB64deKtPhgAN0kndWdt0S-bBU7WKAdtG2okclJdtYFFwKs2S46IVs5S35ct5rUsw54UbXCP8_qIncXnOmT_Xqnb7Uq0_16nO9Ve_e6GNyHtL0vvj1LGINd3SYdDYOg0HrEpqibXTvrfgHE1qg_w |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2020_3013596 crossref_primary_10_1016_j_est_2023_109828 crossref_primary_10_1016_j_energy_2023_129344 crossref_primary_10_1016_j_apenergy_2021_116932 crossref_primary_10_1016_j_enconman_2023_117288 crossref_primary_10_1016_j_est_2025_117213 crossref_primary_10_1016_j_est_2022_105181 crossref_primary_10_1016_j_est_2023_110139 crossref_primary_10_1109_TVT_2022_3168870 crossref_primary_10_3390_en16093687 crossref_primary_10_3390_en18051280 crossref_primary_10_1016_j_est_2025_115719 crossref_primary_10_3233_JIFS_212262 crossref_primary_10_1016_j_etran_2020_100064 crossref_primary_10_3390_app12062961 crossref_primary_10_1016_j_energy_2024_130564 crossref_primary_10_1109_TTE_2024_3506834 crossref_primary_10_3390_electronics13071258 crossref_primary_10_1109_TTE_2024_3353765 crossref_primary_10_1016_j_energy_2021_122260 crossref_primary_10_1016_j_est_2024_110787 crossref_primary_10_1016_j_est_2024_110545 crossref_primary_10_1016_j_rser_2022_112416 crossref_primary_10_1016_j_energy_2022_126112 crossref_primary_10_1016_j_apenergy_2024_124832 crossref_primary_10_1109_TVT_2024_3372137 crossref_primary_10_1016_j_ijepes_2022_108165 crossref_primary_10_3390_jmse13010094 crossref_primary_10_1007_s43236_023_00649_5 crossref_primary_10_1016_j_est_2021_103678 crossref_primary_10_1109_TITS_2020_3045264 crossref_primary_10_1016_j_est_2025_117073 crossref_primary_10_1016_j_est_2023_108517 crossref_primary_10_1177_01423312221149381 crossref_primary_10_3390_smartcities7060125 crossref_primary_10_1016_j_renene_2024_121628 crossref_primary_10_1002_cta_3822 crossref_primary_10_1016_j_energy_2022_123098 crossref_primary_10_1016_j_ijhydene_2024_01_361 crossref_primary_10_3390_s23167149 crossref_primary_10_1177_1687814021994381 crossref_primary_10_1080_01969722_2023_2176588 crossref_primary_10_1016_j_energy_2024_134083 crossref_primary_10_1016_j_est_2020_101721 crossref_primary_10_1109_TITS_2021_3126324 crossref_primary_10_1016_j_renene_2022_05_007 crossref_primary_10_1007_s00202_024_02243_9 crossref_primary_10_1002_er_7848 crossref_primary_10_3390_electronics12122642 crossref_primary_10_3390_wevj12040253 crossref_primary_10_1016_j_est_2024_111012 crossref_primary_10_1109_TPEL_2021_3070393 crossref_primary_10_1016_j_apenergy_2022_119270 crossref_primary_10_1016_j_energy_2022_124233 crossref_primary_10_1016_j_applthermaleng_2023_121113 crossref_primary_10_1016_j_energy_2025_135860 crossref_primary_10_1177_09544070251354819 crossref_primary_10_1016_j_enconman_2025_119791 crossref_primary_10_1007_s40430_024_04736_x crossref_primary_10_1016_j_jpowsour_2025_237852 crossref_primary_10_1109_TTE_2022_3218341 crossref_primary_10_1109_TTE_2024_3500881 crossref_primary_10_3390_wevj16060313 crossref_primary_10_1016_j_enconman_2021_114408 crossref_primary_10_3390_s21196427 crossref_primary_10_1016_j_enconman_2020_112474 crossref_primary_10_1016_j_energy_2022_123430 crossref_primary_10_3390_en16031051 crossref_primary_10_1016_j_enconman_2023_117474 crossref_primary_10_1016_j_energy_2023_127112 crossref_primary_10_1016_j_energy_2024_131854 crossref_primary_10_1016_j_epsr_2024_110372 crossref_primary_10_1038_s41598_024_68964_w crossref_primary_10_1002_ese3_1068 crossref_primary_10_1016_j_jpowsour_2024_234292 crossref_primary_10_1016_j_energy_2022_124653 crossref_primary_10_1016_j_energy_2023_129365 crossref_primary_10_1109_TIE_2025_3531458 crossref_primary_10_3390_en15124325 crossref_primary_10_1016_j_energy_2022_123182 crossref_primary_10_1080_15325008_2023_2261467 crossref_primary_10_1016_j_suscom_2024_100982 crossref_primary_10_1016_j_energy_2024_131567 crossref_primary_10_1016_j_apenergy_2025_126484 crossref_primary_10_1007_s00202_022_01510_x crossref_primary_10_1080_15567036_2020_1849456 crossref_primary_10_1016_j_est_2025_117319 crossref_primary_10_1016_j_ijepes_2023_109665 crossref_primary_10_1016_j_ijhydene_2024_03_012 crossref_primary_10_1109_TTE_2023_3303213 crossref_primary_10_1016_j_apenergy_2020_116152 crossref_primary_10_1016_j_apenergy_2022_118668 crossref_primary_10_3390_en17071586 crossref_primary_10_1177_09544070251341959 crossref_primary_10_3390_math12121849 crossref_primary_10_1016_j_jer_2024_01_016 crossref_primary_10_1002_ente_202300503 crossref_primary_10_1080_1448837X_2024_2309426 crossref_primary_10_1016_j_jclepro_2025_145251 crossref_primary_10_3390_jmse13010034 crossref_primary_10_1109_TITS_2022_3178151 crossref_primary_10_1016_j_enconman_2021_115030 crossref_primary_10_3390_wevj13090172 crossref_primary_10_1016_j_est_2021_102366 crossref_primary_10_1049_iet_rpg_2020_0102 |
| Cites_doi | 10.1109/TPEL.2011.2151206 10.1016/j.apenergy.2018.04.106 10.1016/j.apenergy.2015.11.020 10.1016/j.jpowsour.2018.04.012 10.1016/j.apenergy.2014.06.087 10.1016/j.jpowsour.2010.11.134 10.1016/j.energy.2017.06.096 10.1016/j.epsr.2016.03.005 10.1109/TTE.2015.2464690 10.1016/j.apenergy.2015.06.003 10.1016/j.energy.2019.03.155 10.1016/j.apenergy.2017.02.022 10.1016/j.apenergy.2017.11.072 10.1016/j.apenergy.2016.09.008 10.1016/j.energy.2017.01.044 10.1016/j.jpowsour.2014.01.118 10.1016/j.jclepro.2018.08.134 10.1016/j.jpowsour.2016.06.036 10.1016/j.jpowsour.2017.11.033 10.1109/TCST.2012.2190935 10.1016/j.energy.2018.10.131 10.1109/TVT.2016.2638912 10.1016/j.energy.2015.12.071 10.1016/j.apenergy.2014.11.020 10.1016/j.jpowsour.2018.10.069 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. |
| Copyright_xml | – notice: 2019 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.jpowsour.2019.227024 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-2755 |
| ExternalDocumentID | 10_1016_j_jpowsour_2019_227024 S0378775319310171 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABMAC ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LX7 LY6 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSK SSM SSR SSZ T5K XPP ZMT ~G- 29L 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CITATION EFKBS FEDTE FGOYB G-2 HLY HVGLF HZ~ NDZJH R2- SAC SCB SCE SEW T9H VH1 VOH WUQ ~HD |
| ID | FETCH-LOGICAL-c312t-a0d30a08b837c6ebeba6316d3669e1b9754ba545528e7330fde2132c90e482353 |
| ISICitedReferencesCount | 112 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000490030800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0378-7753 |
| IngestDate | Tue Nov 18 21:26:59 EST 2025 Sat Nov 29 07:13:43 EST 2025 Fri Feb 23 02:48:20 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Hybrid energy storage system Optimal analysis Energy management strategy Rule based control Load-adaptive |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c312t-a0d30a08b837c6ebeba6316d3669e1b9754ba545528e7330fde2132c90e482353 |
| ORCID | 0000-0002-7292-6107 0000-0001-5722-2673 0000-0001-9312-9089 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_jpowsour_2019_227024 crossref_primary_10_1016_j_jpowsour_2019_227024 elsevier_sciencedirect_doi_10_1016_j_jpowsour_2019_227024 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-10-31 |
| PublicationDateYYYYMMDD | 2019-10-31 |
| PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-31 day: 31 |
| PublicationDecade | 2010 |
| PublicationTitle | Journal of power sources |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Wang, Liu, Hicks-Garner (bib27) 2011; 196 Huang, Hiramatsu, Yoichi (bib12) 2013 Sisakat, Barakati (bib11) 2015 Xiong, Chen, Wang (bib4) 2018; 202 Wieczorek, Lewandowski (bib15) 2017; 192 Song, Hofmann, Li (bib18) 2015; 139 Wang, Liu, Pan (bib2) 2017; 121 Xiong, Cao, Yu (bib23) 2018; 211 Cao, Emadi (bib7) 2012; 27 Chen, Xiong, Cao (bib17) 2016; 96 Liu, Wang, Chen (bib3) 2018; 374 Li, Wang, Zhang (bib1) 2019; 410 Castaings, Lhomme, Trigui (bib10) 2016; 163 Elbert, Ebbesen, Guzzella (bib19) 2013; 21 Shen, Khaligh (bib22) 2015; 1 Baghdadi, Briat, Delétage (bib26) 2016; 325 Wang, Zhang, Liu (bib5) 2018; 389 Jing, Lai, Wong (bib6) 2018; 224 Liu, Wang, Chen (bib28) 2019; 166 Zhang, Xiong (bib20) 2015; 155 bib25 Ibrahim, Jemei, Wimmer (bib13) 2016; 136 bib24 Wang, Sun, Chen (bib9) 2019; 175 Santucci, Sorniotti, Lekakou (bib14) 2014; 258 Gomozov, Trovão, Kestelyn (bib16) 2017; 66 Song, Hou, Xu (bib21) 2017; 135 Song, Li, Han (bib8) 2014; 135 Feroldi, Carignano (bib29) 2016; 183 Castaings (10.1016/j.jpowsour.2019.227024_bib10) 2016; 163 Xiong (10.1016/j.jpowsour.2019.227024_bib23) 2018; 211 Wang (10.1016/j.jpowsour.2019.227024_bib5) 2018; 389 Wang (10.1016/j.jpowsour.2019.227024_bib9) 2019; 175 Wang (10.1016/j.jpowsour.2019.227024_bib27) 2011; 196 Elbert (10.1016/j.jpowsour.2019.227024_bib19) 2013; 21 Santucci (10.1016/j.jpowsour.2019.227024_bib14) 2014; 258 Li (10.1016/j.jpowsour.2019.227024_bib1) 2019; 410 Sisakat (10.1016/j.jpowsour.2019.227024_bib11) 2015 Jing (10.1016/j.jpowsour.2019.227024_bib6) 2018; 224 Huang (10.1016/j.jpowsour.2019.227024_bib12) 2013 Wieczorek (10.1016/j.jpowsour.2019.227024_bib15) 2017; 192 Liu (10.1016/j.jpowsour.2019.227024_bib28) 2019; 166 Zhang (10.1016/j.jpowsour.2019.227024_bib20) 2015; 155 Xiong (10.1016/j.jpowsour.2019.227024_bib4) 2018; 202 Liu (10.1016/j.jpowsour.2019.227024_bib3) 2018; 374 Shen (10.1016/j.jpowsour.2019.227024_bib22) 2015; 1 Cao (10.1016/j.jpowsour.2019.227024_bib7) 2012; 27 Feroldi (10.1016/j.jpowsour.2019.227024_bib29) 2016; 183 Song (10.1016/j.jpowsour.2019.227024_bib8) 2014; 135 Song (10.1016/j.jpowsour.2019.227024_bib18) 2015; 139 Chen (10.1016/j.jpowsour.2019.227024_bib17) 2016; 96 Ibrahim (10.1016/j.jpowsour.2019.227024_bib13) 2016; 136 Gomozov (10.1016/j.jpowsour.2019.227024_bib16) 2017; 66 Wang (10.1016/j.jpowsour.2019.227024_bib2) 2017; 121 Song (10.1016/j.jpowsour.2019.227024_bib21) 2017; 135 Baghdadi (10.1016/j.jpowsour.2019.227024_bib26) 2016; 325 |
| References_xml | – volume: 410 start-page: 106 year: 2019 end-page: 114 ident: bib1 article-title: State-of-health estimation for Li-ion batteries by combing the incremental capacity analysis method with grey relational analysis publication-title: J. Power Sources – volume: 196 start-page: 3942 year: 2011 end-page: 3948 ident: bib27 article-title: Cycle-life model for graphite-LiFePO4 cells publication-title: J. Power Sources – volume: 389 start-page: 93 year: 2018 end-page: 105 ident: bib5 article-title: Multi-timescale power and energy assessment of lithium-ion battery and supercapacitor hybrid system using extended Kalman filter publication-title: J. Power Sources – volume: 258 start-page: 395 year: 2014 end-page: 407 ident: bib14 article-title: Power split strategies for hybrid energy storage systems for vehicular applications publication-title: J. Power Sources – volume: 139 start-page: 151 year: 2015 end-page: 162 ident: bib18 article-title: Optimization for a hybrid energy storage system in electric vehicles using dynamic programing approach[J] publication-title: Appl. Energy – volume: 183 start-page: 645 year: 2016 end-page: 658 ident: bib29 article-title: Sizing for fuel cell/supercapacitor hybrid vehicles based on stochastic driving cycles publication-title: Appl. Energy – volume: 202 start-page: 1228 year: 2018 end-page: 1240 ident: bib4 article-title: Towards a smarter hybrid energy storage system based on battery and ultracapacitor-A critical review on topology and energy management publication-title: J. Clean. Prod. – volume: 27 start-page: 122 year: 2012 end-page: 132 ident: bib7 article-title: A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles publication-title: IEEE Trans. Power Electron. – start-page: 1 year: 2013 end-page: 6 ident: bib12 article-title: Energy management strategy based on frequency-varying filter for the battery supercapacitor hybrid system of electric vehicles publication-title: 2013 World Electric Vehicle Symposium and Exhibition (EVS27) – volume: 121 start-page: 739 year: 2017 end-page: 750 ident: bib2 article-title: Modeling and state-of-charge prediction of lithium-ion battery and ultracapacitor hybrids with a co-estimator publication-title: Energy – volume: 21 start-page: 924 year: 2013 end-page: 931 ident: bib19 article-title: Implementation of dynamic programming for n-dimensional optimal control problems with final state constraints publication-title: IEEE Trans. Control Syst. Technol. – ident: bib24 – volume: 192 start-page: 222 year: 2017 end-page: 233 ident: bib15 article-title: A mathematical representation of an energy management strategy for hybrid energy storage system in electric vehicle and real time optimization using a genetic algorithm publication-title: Appl. Energy – volume: 135 start-page: 91 year: 2017 end-page: 100 ident: bib21 article-title: The influence of driving cycle characteristics on the integrated optimization of hybrid energy storage system for electric city buses publication-title: Energy – start-page: 1 year: 2015 end-page: 6 ident: bib11 article-title: Fuzzy energy management in electrical vehicles with different hybrid energy storage topologies publication-title: 2015 4th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS) – volume: 224 start-page: 340 year: 2018 end-page: 356 ident: bib6 article-title: A comprehensive study of battery-supercapacitor hybrid energy storage system for standalone PV power system in rural electrification publication-title: Appl. Energy – volume: 136 start-page: 262 year: 2016 end-page: 269 ident: bib13 article-title: Nonlinear autoregressive neural network in an energy management strategy for battery/ultra-capacitor hybrid electrical vehicles publication-title: Electr. Power Syst. Res. – volume: 166 start-page: 796 year: 2019 end-page: 806 ident: bib28 article-title: Degradation model and cycle life prediction for lithium-ion battery used in hybrid energy storage system publication-title: Energy – volume: 175 start-page: 1055 year: 2019 end-page: 1066 ident: bib9 article-title: Development of energy management system based on a rule-based power distribution strategy for hybrid power sources publication-title: Energy – volume: 135 start-page: 212 year: 2014 end-page: 224 ident: bib8 article-title: Multi-objective optimization of a semi-active battery/supercapacitor energy storage system for electric vehicles publication-title: Appl. Energy – volume: 163 start-page: 190 year: 2016 end-page: 200 ident: bib10 article-title: Comparison of energy management strategies of a battery/supercapacitors system for electric vehicle under real-time constraints publication-title: Appl. Energy – volume: 96 start-page: 197 year: 2016 end-page: 208 ident: bib17 article-title: Particle swarm optimization-based optimal power management of plug-in hybrid electric vehicles considering uncertain driving conditions publication-title: Energy – volume: 155 start-page: 68 year: 2015 end-page: 78 ident: bib20 article-title: Adaptive energy management of a plug-in hybrid electric vehicle based on driving pattern recognition and dynamic programming publication-title: Appl. Energy – ident: bib25 – volume: 374 start-page: 121 year: 2018 end-page: 133 ident: bib3 article-title: A variable capacitance based modeling and power capability predicting method for ultracapacitor publication-title: J. Power Sources – volume: 1 start-page: 223 year: 2015 end-page: 231 ident: bib22 article-title: A supervisory energy management control strategy in a battery/ultracapacitor hybrid energy storage system publication-title: IEEE Trans. Transp. Electrification – volume: 211 start-page: 538 year: 2018 end-page: 548 ident: bib23 article-title: Reinforcement learning-based real-time power management for hybrid energy storage system in the plug-in hybrid electric vehicle[J] publication-title: Appl. Energy – volume: 66 start-page: 5520 year: 2017 end-page: 5530 ident: bib16 article-title: Adaptive energy management system based on a real-time model predictive control with nonuniform sampling time for multiple energy storage electric vehicle publication-title: IEEE Trans. Veh. Technol. – volume: 325 start-page: 273 year: 2016 end-page: 285 ident: bib26 article-title: Lithium battery aging model based on Dakin's degradation approach publication-title: J. Power Sources – volume: 27 start-page: 122 issue: 1 year: 2012 ident: 10.1016/j.jpowsour.2019.227024_bib7 article-title: A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2011.2151206 – volume: 224 start-page: 340 year: 2018 ident: 10.1016/j.jpowsour.2019.227024_bib6 article-title: A comprehensive study of battery-supercapacitor hybrid energy storage system for standalone PV power system in rural electrification publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.04.106 – volume: 163 start-page: 190 year: 2016 ident: 10.1016/j.jpowsour.2019.227024_bib10 article-title: Comparison of energy management strategies of a battery/supercapacitors system for electric vehicle under real-time constraints publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.11.020 – volume: 389 start-page: 93 year: 2018 ident: 10.1016/j.jpowsour.2019.227024_bib5 article-title: Multi-timescale power and energy assessment of lithium-ion battery and supercapacitor hybrid system using extended Kalman filter publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.04.012 – volume: 135 start-page: 212 year: 2014 ident: 10.1016/j.jpowsour.2019.227024_bib8 article-title: Multi-objective optimization of a semi-active battery/supercapacitor energy storage system for electric vehicles publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.06.087 – volume: 196 start-page: 3942 issue: 8 year: 2011 ident: 10.1016/j.jpowsour.2019.227024_bib27 article-title: Cycle-life model for graphite-LiFePO4 cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.11.134 – volume: 135 start-page: 91 year: 2017 ident: 10.1016/j.jpowsour.2019.227024_bib21 article-title: The influence of driving cycle characteristics on the integrated optimization of hybrid energy storage system for electric city buses publication-title: Energy doi: 10.1016/j.energy.2017.06.096 – volume: 136 start-page: 262 year: 2016 ident: 10.1016/j.jpowsour.2019.227024_bib13 article-title: Nonlinear autoregressive neural network in an energy management strategy for battery/ultra-capacitor hybrid electrical vehicles publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2016.03.005 – volume: 1 start-page: 223 issue: 3 year: 2015 ident: 10.1016/j.jpowsour.2019.227024_bib22 article-title: A supervisory energy management control strategy in a battery/ultracapacitor hybrid energy storage system publication-title: IEEE Trans. Transp. Electrification doi: 10.1109/TTE.2015.2464690 – volume: 155 start-page: 68 year: 2015 ident: 10.1016/j.jpowsour.2019.227024_bib20 article-title: Adaptive energy management of a plug-in hybrid electric vehicle based on driving pattern recognition and dynamic programming publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.06.003 – start-page: 1 year: 2015 ident: 10.1016/j.jpowsour.2019.227024_bib11 article-title: Fuzzy energy management in electrical vehicles with different hybrid energy storage topologies – volume: 175 start-page: 1055 year: 2019 ident: 10.1016/j.jpowsour.2019.227024_bib9 article-title: Development of energy management system based on a rule-based power distribution strategy for hybrid power sources publication-title: Energy doi: 10.1016/j.energy.2019.03.155 – volume: 192 start-page: 222 year: 2017 ident: 10.1016/j.jpowsour.2019.227024_bib15 article-title: A mathematical representation of an energy management strategy for hybrid energy storage system in electric vehicle and real time optimization using a genetic algorithm publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.02.022 – volume: 211 start-page: 538 year: 2018 ident: 10.1016/j.jpowsour.2019.227024_bib23 article-title: Reinforcement learning-based real-time power management for hybrid energy storage system in the plug-in hybrid electric vehicle[J] publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.11.072 – volume: 183 start-page: 645 year: 2016 ident: 10.1016/j.jpowsour.2019.227024_bib29 article-title: Sizing for fuel cell/supercapacitor hybrid vehicles based on stochastic driving cycles publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.09.008 – volume: 121 start-page: 739 year: 2017 ident: 10.1016/j.jpowsour.2019.227024_bib2 article-title: Modeling and state-of-charge prediction of lithium-ion battery and ultracapacitor hybrids with a co-estimator publication-title: Energy doi: 10.1016/j.energy.2017.01.044 – volume: 258 start-page: 395 year: 2014 ident: 10.1016/j.jpowsour.2019.227024_bib14 article-title: Power split strategies for hybrid energy storage systems for vehicular applications publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.01.118 – volume: 202 start-page: 1228 year: 2018 ident: 10.1016/j.jpowsour.2019.227024_bib4 article-title: Towards a smarter hybrid energy storage system based on battery and ultracapacitor-A critical review on topology and energy management publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.08.134 – volume: 325 start-page: 273 year: 2016 ident: 10.1016/j.jpowsour.2019.227024_bib26 article-title: Lithium battery aging model based on Dakin's degradation approach publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.06.036 – volume: 374 start-page: 121 year: 2018 ident: 10.1016/j.jpowsour.2019.227024_bib3 article-title: A variable capacitance based modeling and power capability predicting method for ultracapacitor publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.11.033 – volume: 21 start-page: 924 issue: 3 year: 2013 ident: 10.1016/j.jpowsour.2019.227024_bib19 article-title: Implementation of dynamic programming for n-dimensional optimal control problems with final state constraints publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2012.2190935 – volume: 166 start-page: 796 year: 2019 ident: 10.1016/j.jpowsour.2019.227024_bib28 article-title: Degradation model and cycle life prediction for lithium-ion battery used in hybrid energy storage system publication-title: Energy doi: 10.1016/j.energy.2018.10.131 – volume: 66 start-page: 5520 issue: 7 year: 2017 ident: 10.1016/j.jpowsour.2019.227024_bib16 article-title: Adaptive energy management system based on a real-time model predictive control with nonuniform sampling time for multiple energy storage electric vehicle publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2016.2638912 – volume: 96 start-page: 197 year: 2016 ident: 10.1016/j.jpowsour.2019.227024_bib17 article-title: Particle swarm optimization-based optimal power management of plug-in hybrid electric vehicles considering uncertain driving conditions publication-title: Energy doi: 10.1016/j.energy.2015.12.071 – start-page: 1 year: 2013 ident: 10.1016/j.jpowsour.2019.227024_bib12 article-title: Energy management strategy based on frequency-varying filter for the battery supercapacitor hybrid system of electric vehicles – volume: 139 start-page: 151 year: 2015 ident: 10.1016/j.jpowsour.2019.227024_bib18 article-title: Optimization for a hybrid energy storage system in electric vehicles using dynamic programing approach[J] publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.11.020 – volume: 410 start-page: 106 year: 2019 ident: 10.1016/j.jpowsour.2019.227024_bib1 article-title: State-of-health estimation for Li-ion batteries by combing the incremental capacity analysis method with grey relational analysis publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.10.069 |
| SSID | ssj0001170 |
| Score | 2.6012712 |
| Snippet | Energy management is crucial in battery/ultracapacitor hybrid energy storage systems in electric vehicles. Rule based control is one typical strategy in... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 227024 |
| SubjectTerms | Energy management strategy Hybrid energy storage system Load-adaptive Optimal analysis Rule based control |
| Title | Load-adaptive real-time energy management strategy for battery/ultracapacitor hybrid energy storage system using dynamic programming optimization |
| URI | https://dx.doi.org/10.1016/j.jpowsour.2019.227024 |
| Volume | 438 |
| WOSCitedRecordID | wos000490030800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-2755 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001170 issn: 0378-7753 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV29btswECZcp0M7FP1F0z9w6CYwkURJJMegSNEWRtAhBdwuAkVRjQxbNhw7SB8jD5J37FEkZTlwm2boIhgEjjJ1n-6O1Hd3CL3XrBI6TCsSKloQiG8zwgsZk6oq4qyM4fWSZdtsgp2c8PFYfB0Mrn0uzMWUNQ2_vBSL_6pqGANlm9TZO6i7mxQG4DcoHa6gdrj-k-JHc1kSWcpFSwqCmHBKTAP5QNssv1nHdwnObWVaR9lsC23CI4dNKYwrcKIK3vZlcPbLJHV5cUOmNDQfWwE6WLdHDaVta-_JXrOWSQ33n7kkzz9EwAvToS2wnw-60H5Urx0NwPnU9rTfWqTv60mtbw6O6g1FwdrQH_Pm55ms-wcakeh5ApfIBRtbxmwNYW-kE1sDxptZk0WX7PQA9jBicjCBNZgFGPaeONgIbJfcvuEKO4Ki575Ncj9PbubJ7Tz30F7MUsGHaO_o8_H4S-f6TRuf9rOVW0EvJX33P9odDfUinNPH6JFTDD6ykHqCBrp5ih72ClY-Q1db4MIduLBFB96AC3twYQAXduA63IYWttDywg5a2EILt9DCDlq4By3ch9Zz9O3j8emHT8Q19SCKRvGKyLCkoQx5wSlTGZiQQmY0ykqaZUJHhWBpUkgI69OYa0ZpWJU6jmisRKgTHtOUvkDDZt7olwgrylOtOaVKREkipeAlBYvDqIJdeZWl-yj1DzdXruK9abwyzf-u3n102MktbM2XWyWE113uIlcbkeYAy1tkX935bq_Rg8178wYNV8u1fovuq4tVfb585zD5GxFjyOg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Load-adaptive+real-time+energy+management+strategy+for+battery%2Fultracapacitor+hybrid+energy+storage+system+using+dynamic+programming+optimization&rft.jtitle=Journal+of+power+sources&rft.au=Liu%2C+Chang&rft.au=Wang%2C+Yujie&rft.au=Wang%2C+Li&rft.au=Chen%2C+Zonghai&rft.date=2019-10-31&rft.issn=0378-7753&rft.volume=438&rft.spage=227024&rft_id=info:doi/10.1016%2Fj.jpowsour.2019.227024&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jpowsour_2019_227024 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon |