Load-adaptive real-time energy management strategy for battery/ultracapacitor hybrid energy storage system using dynamic programming optimization

Energy management is crucial in battery/ultracapacitor hybrid energy storage systems in electric vehicles. Rule based control is one typical strategy in real-time management, but its adaptability in dynamic load is quite poor. This paper aims to develop a practical energy management strategy with ne...

Full description

Saved in:
Bibliographic Details
Published in:Journal of power sources Vol. 438; p. 227024
Main Authors: Liu, Chang, Wang, Yujie, Wang, Li, Chen, Zonghai
Format: Journal Article
Language:English
Published: Elsevier B.V 31.10.2019
Subjects:
ISSN:0378-7753, 1873-2755
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Energy management is crucial in battery/ultracapacitor hybrid energy storage systems in electric vehicles. Rule based control is one typical strategy in real-time management, but its adaptability in dynamic load is quite poor. This paper aims to develop a practical energy management strategy with near-optimal performance in both energy-saving and battery life extending. Firstly, dynamic programming (DP) analysis is used to find out the optimal control mode. Three-segment control rules are then extracted from the DP results. A functional relationship is established between the power splitting parameters and load statistics. Finally, a load-adaptive rule based control strategy is proposed based on that. Two composite load cycles are tested for verification. Results show that compared with the ordinary rule based control strategy, the proposed strategy has the stronger capability of battery protecting and energy-saving under unknown load patterns, where the battery Ah throughput and total energy loss are reduced by 3.4%–15.7% and 3.0%–15.1%, respectively. The results are quite close to DP results, showing that the proposed strategy can achieve near-optimal energy management in real time with low computational cost. [Display omitted] •A practical load-adaptive real-time energy management strategy is designed.•Control rules are extracted from the optimization results of 4 load cycles.•Real-time power splitting factors are decided by functions of load statistics.•Near optimal results are given under unknown cycles by the proposed strategy.
AbstractList Energy management is crucial in battery/ultracapacitor hybrid energy storage systems in electric vehicles. Rule based control is one typical strategy in real-time management, but its adaptability in dynamic load is quite poor. This paper aims to develop a practical energy management strategy with near-optimal performance in both energy-saving and battery life extending. Firstly, dynamic programming (DP) analysis is used to find out the optimal control mode. Three-segment control rules are then extracted from the DP results. A functional relationship is established between the power splitting parameters and load statistics. Finally, a load-adaptive rule based control strategy is proposed based on that. Two composite load cycles are tested for verification. Results show that compared with the ordinary rule based control strategy, the proposed strategy has the stronger capability of battery protecting and energy-saving under unknown load patterns, where the battery Ah throughput and total energy loss are reduced by 3.4%–15.7% and 3.0%–15.1%, respectively. The results are quite close to DP results, showing that the proposed strategy can achieve near-optimal energy management in real time with low computational cost. [Display omitted] •A practical load-adaptive real-time energy management strategy is designed.•Control rules are extracted from the optimization results of 4 load cycles.•Real-time power splitting factors are decided by functions of load statistics.•Near optimal results are given under unknown cycles by the proposed strategy.
ArticleNumber 227024
Author Chen, Zonghai
Wang, Li
Wang, Yujie
Liu, Chang
Author_xml – sequence: 1
  givenname: Chang
  orcidid: 0000-0002-7292-6107
  surname: Liu
  fullname: Liu, Chang
– sequence: 2
  givenname: Yujie
  orcidid: 0000-0001-5722-2673
  surname: Wang
  fullname: Wang, Yujie
– sequence: 3
  givenname: Li
  surname: Wang
  fullname: Wang, Li
– sequence: 4
  givenname: Zonghai
  orcidid: 0000-0001-9312-9089
  surname: Chen
  fullname: Chen, Zonghai
  email: chenzh@ustc.edu.cn
BookMark eNqFkM9qGzEQh0VJoE6aVyh6gXX0x7taQw8Npk0Dhlzas5iVxq6MJS2S7LB9i75x5Tq-5JLTwAffzPx-N-QqxICEfOZszhnv7nfz3RhfcjykuWB8ORdCMbH4QGa8V7IRqm2vyIxJ1TdKtfIjucl5xxjjXLEZ-buOYBuwMBZ3RJoQ9k1xHikGTNuJegiwRY-h0FwSFKxsExMdoBRM0_1hX6mBEYwrFf-ehuTsRc4VVZvmKRf09JBd2FI7BfDO0DHFbQLvTyzW6979geJi-ESuN7DPePc6b8mv799-rn406-fHp9XDujGSi9IAs5IB64deKtPhgAN0kndWdt0S-bBU7WKAdtG2okclJdtYFFwKs2S46IVs5S35ct5rUsw54UbXCP8_qIncXnOmT_Xqnb7Uq0_16nO9Ve_e6GNyHtL0vvj1LGINd3SYdDYOg0HrEpqibXTvrfgHE1qg_w
CitedBy_id crossref_primary_10_1109_ACCESS_2020_3013596
crossref_primary_10_1016_j_est_2023_109828
crossref_primary_10_1016_j_energy_2023_129344
crossref_primary_10_1016_j_apenergy_2021_116932
crossref_primary_10_1016_j_enconman_2023_117288
crossref_primary_10_1016_j_est_2025_117213
crossref_primary_10_1016_j_est_2022_105181
crossref_primary_10_1016_j_est_2023_110139
crossref_primary_10_1109_TVT_2022_3168870
crossref_primary_10_3390_en16093687
crossref_primary_10_3390_en18051280
crossref_primary_10_1016_j_est_2025_115719
crossref_primary_10_3233_JIFS_212262
crossref_primary_10_1016_j_etran_2020_100064
crossref_primary_10_3390_app12062961
crossref_primary_10_1016_j_energy_2024_130564
crossref_primary_10_1109_TTE_2024_3506834
crossref_primary_10_3390_electronics13071258
crossref_primary_10_1109_TTE_2024_3353765
crossref_primary_10_1016_j_energy_2021_122260
crossref_primary_10_1016_j_est_2024_110787
crossref_primary_10_1016_j_est_2024_110545
crossref_primary_10_1016_j_rser_2022_112416
crossref_primary_10_1016_j_energy_2022_126112
crossref_primary_10_1016_j_apenergy_2024_124832
crossref_primary_10_1109_TVT_2024_3372137
crossref_primary_10_1016_j_ijepes_2022_108165
crossref_primary_10_3390_jmse13010094
crossref_primary_10_1007_s43236_023_00649_5
crossref_primary_10_1016_j_est_2021_103678
crossref_primary_10_1109_TITS_2020_3045264
crossref_primary_10_1016_j_est_2025_117073
crossref_primary_10_1016_j_est_2023_108517
crossref_primary_10_1177_01423312221149381
crossref_primary_10_3390_smartcities7060125
crossref_primary_10_1016_j_renene_2024_121628
crossref_primary_10_1002_cta_3822
crossref_primary_10_1016_j_energy_2022_123098
crossref_primary_10_1016_j_ijhydene_2024_01_361
crossref_primary_10_3390_s23167149
crossref_primary_10_1177_1687814021994381
crossref_primary_10_1080_01969722_2023_2176588
crossref_primary_10_1016_j_energy_2024_134083
crossref_primary_10_1016_j_est_2020_101721
crossref_primary_10_1109_TITS_2021_3126324
crossref_primary_10_1016_j_renene_2022_05_007
crossref_primary_10_1007_s00202_024_02243_9
crossref_primary_10_1002_er_7848
crossref_primary_10_3390_electronics12122642
crossref_primary_10_3390_wevj12040253
crossref_primary_10_1016_j_est_2024_111012
crossref_primary_10_1109_TPEL_2021_3070393
crossref_primary_10_1016_j_apenergy_2022_119270
crossref_primary_10_1016_j_energy_2022_124233
crossref_primary_10_1016_j_applthermaleng_2023_121113
crossref_primary_10_1016_j_energy_2025_135860
crossref_primary_10_1177_09544070251354819
crossref_primary_10_1016_j_enconman_2025_119791
crossref_primary_10_1007_s40430_024_04736_x
crossref_primary_10_1016_j_jpowsour_2025_237852
crossref_primary_10_1109_TTE_2022_3218341
crossref_primary_10_1109_TTE_2024_3500881
crossref_primary_10_3390_wevj16060313
crossref_primary_10_1016_j_enconman_2021_114408
crossref_primary_10_3390_s21196427
crossref_primary_10_1016_j_enconman_2020_112474
crossref_primary_10_1016_j_energy_2022_123430
crossref_primary_10_3390_en16031051
crossref_primary_10_1016_j_enconman_2023_117474
crossref_primary_10_1016_j_energy_2023_127112
crossref_primary_10_1016_j_energy_2024_131854
crossref_primary_10_1016_j_epsr_2024_110372
crossref_primary_10_1038_s41598_024_68964_w
crossref_primary_10_1002_ese3_1068
crossref_primary_10_1016_j_jpowsour_2024_234292
crossref_primary_10_1016_j_energy_2022_124653
crossref_primary_10_1016_j_energy_2023_129365
crossref_primary_10_1109_TIE_2025_3531458
crossref_primary_10_3390_en15124325
crossref_primary_10_1016_j_energy_2022_123182
crossref_primary_10_1080_15325008_2023_2261467
crossref_primary_10_1016_j_suscom_2024_100982
crossref_primary_10_1016_j_energy_2024_131567
crossref_primary_10_1016_j_apenergy_2025_126484
crossref_primary_10_1007_s00202_022_01510_x
crossref_primary_10_1080_15567036_2020_1849456
crossref_primary_10_1016_j_est_2025_117319
crossref_primary_10_1016_j_ijepes_2023_109665
crossref_primary_10_1016_j_ijhydene_2024_03_012
crossref_primary_10_1109_TTE_2023_3303213
crossref_primary_10_1016_j_apenergy_2020_116152
crossref_primary_10_1016_j_apenergy_2022_118668
crossref_primary_10_3390_en17071586
crossref_primary_10_1177_09544070251341959
crossref_primary_10_3390_math12121849
crossref_primary_10_1016_j_jer_2024_01_016
crossref_primary_10_1002_ente_202300503
crossref_primary_10_1080_1448837X_2024_2309426
crossref_primary_10_1016_j_jclepro_2025_145251
crossref_primary_10_3390_jmse13010034
crossref_primary_10_1109_TITS_2022_3178151
crossref_primary_10_1016_j_enconman_2021_115030
crossref_primary_10_3390_wevj13090172
crossref_primary_10_1016_j_est_2021_102366
crossref_primary_10_1049_iet_rpg_2020_0102
Cites_doi 10.1109/TPEL.2011.2151206
10.1016/j.apenergy.2018.04.106
10.1016/j.apenergy.2015.11.020
10.1016/j.jpowsour.2018.04.012
10.1016/j.apenergy.2014.06.087
10.1016/j.jpowsour.2010.11.134
10.1016/j.energy.2017.06.096
10.1016/j.epsr.2016.03.005
10.1109/TTE.2015.2464690
10.1016/j.apenergy.2015.06.003
10.1016/j.energy.2019.03.155
10.1016/j.apenergy.2017.02.022
10.1016/j.apenergy.2017.11.072
10.1016/j.apenergy.2016.09.008
10.1016/j.energy.2017.01.044
10.1016/j.jpowsour.2014.01.118
10.1016/j.jclepro.2018.08.134
10.1016/j.jpowsour.2016.06.036
10.1016/j.jpowsour.2017.11.033
10.1109/TCST.2012.2190935
10.1016/j.energy.2018.10.131
10.1109/TVT.2016.2638912
10.1016/j.energy.2015.12.071
10.1016/j.apenergy.2014.11.020
10.1016/j.jpowsour.2018.10.069
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.jpowsour.2019.227024
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2755
ExternalDocumentID 10_1016_j_jpowsour_2019_227024
S0378775319310171
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LX7
LY6
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
XPP
ZMT
~G-
29L
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
NDZJH
R2-
SAC
SCB
SCE
SEW
T9H
VH1
VOH
WUQ
~HD
ID FETCH-LOGICAL-c312t-a0d30a08b837c6ebeba6316d3669e1b9754ba545528e7330fde2132c90e482353
ISICitedReferencesCount 112
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000490030800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-7753
IngestDate Tue Nov 18 21:26:59 EST 2025
Sat Nov 29 07:13:43 EST 2025
Fri Feb 23 02:48:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hybrid energy storage system
Optimal analysis
Energy management strategy
Rule based control
Load-adaptive
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-a0d30a08b837c6ebeba6316d3669e1b9754ba545528e7330fde2132c90e482353
ORCID 0000-0002-7292-6107
0000-0001-5722-2673
0000-0001-9312-9089
ParticipantIDs crossref_citationtrail_10_1016_j_jpowsour_2019_227024
crossref_primary_10_1016_j_jpowsour_2019_227024
elsevier_sciencedirect_doi_10_1016_j_jpowsour_2019_227024
PublicationCentury 2000
PublicationDate 2019-10-31
PublicationDateYYYYMMDD 2019-10-31
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-31
  day: 31
PublicationDecade 2010
PublicationTitle Journal of power sources
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wang, Liu, Hicks-Garner (bib27) 2011; 196
Huang, Hiramatsu, Yoichi (bib12) 2013
Sisakat, Barakati (bib11) 2015
Xiong, Chen, Wang (bib4) 2018; 202
Wieczorek, Lewandowski (bib15) 2017; 192
Song, Hofmann, Li (bib18) 2015; 139
Wang, Liu, Pan (bib2) 2017; 121
Xiong, Cao, Yu (bib23) 2018; 211
Cao, Emadi (bib7) 2012; 27
Chen, Xiong, Cao (bib17) 2016; 96
Liu, Wang, Chen (bib3) 2018; 374
Li, Wang, Zhang (bib1) 2019; 410
Castaings, Lhomme, Trigui (bib10) 2016; 163
Elbert, Ebbesen, Guzzella (bib19) 2013; 21
Shen, Khaligh (bib22) 2015; 1
Baghdadi, Briat, Delétage (bib26) 2016; 325
Wang, Zhang, Liu (bib5) 2018; 389
Jing, Lai, Wong (bib6) 2018; 224
Liu, Wang, Chen (bib28) 2019; 166
Zhang, Xiong (bib20) 2015; 155
bib25
Ibrahim, Jemei, Wimmer (bib13) 2016; 136
bib24
Wang, Sun, Chen (bib9) 2019; 175
Santucci, Sorniotti, Lekakou (bib14) 2014; 258
Gomozov, Trovão, Kestelyn (bib16) 2017; 66
Song, Hou, Xu (bib21) 2017; 135
Song, Li, Han (bib8) 2014; 135
Feroldi, Carignano (bib29) 2016; 183
Castaings (10.1016/j.jpowsour.2019.227024_bib10) 2016; 163
Xiong (10.1016/j.jpowsour.2019.227024_bib23) 2018; 211
Wang (10.1016/j.jpowsour.2019.227024_bib5) 2018; 389
Wang (10.1016/j.jpowsour.2019.227024_bib9) 2019; 175
Wang (10.1016/j.jpowsour.2019.227024_bib27) 2011; 196
Elbert (10.1016/j.jpowsour.2019.227024_bib19) 2013; 21
Santucci (10.1016/j.jpowsour.2019.227024_bib14) 2014; 258
Li (10.1016/j.jpowsour.2019.227024_bib1) 2019; 410
Sisakat (10.1016/j.jpowsour.2019.227024_bib11) 2015
Jing (10.1016/j.jpowsour.2019.227024_bib6) 2018; 224
Huang (10.1016/j.jpowsour.2019.227024_bib12) 2013
Wieczorek (10.1016/j.jpowsour.2019.227024_bib15) 2017; 192
Liu (10.1016/j.jpowsour.2019.227024_bib28) 2019; 166
Zhang (10.1016/j.jpowsour.2019.227024_bib20) 2015; 155
Xiong (10.1016/j.jpowsour.2019.227024_bib4) 2018; 202
Liu (10.1016/j.jpowsour.2019.227024_bib3) 2018; 374
Shen (10.1016/j.jpowsour.2019.227024_bib22) 2015; 1
Cao (10.1016/j.jpowsour.2019.227024_bib7) 2012; 27
Feroldi (10.1016/j.jpowsour.2019.227024_bib29) 2016; 183
Song (10.1016/j.jpowsour.2019.227024_bib8) 2014; 135
Song (10.1016/j.jpowsour.2019.227024_bib18) 2015; 139
Chen (10.1016/j.jpowsour.2019.227024_bib17) 2016; 96
Ibrahim (10.1016/j.jpowsour.2019.227024_bib13) 2016; 136
Gomozov (10.1016/j.jpowsour.2019.227024_bib16) 2017; 66
Wang (10.1016/j.jpowsour.2019.227024_bib2) 2017; 121
Song (10.1016/j.jpowsour.2019.227024_bib21) 2017; 135
Baghdadi (10.1016/j.jpowsour.2019.227024_bib26) 2016; 325
References_xml – volume: 410
  start-page: 106
  year: 2019
  end-page: 114
  ident: bib1
  article-title: State-of-health estimation for Li-ion batteries by combing the incremental capacity analysis method with grey relational analysis
  publication-title: J. Power Sources
– volume: 196
  start-page: 3942
  year: 2011
  end-page: 3948
  ident: bib27
  article-title: Cycle-life model for graphite-LiFePO4 cells
  publication-title: J. Power Sources
– volume: 389
  start-page: 93
  year: 2018
  end-page: 105
  ident: bib5
  article-title: Multi-timescale power and energy assessment of lithium-ion battery and supercapacitor hybrid system using extended Kalman filter
  publication-title: J. Power Sources
– volume: 258
  start-page: 395
  year: 2014
  end-page: 407
  ident: bib14
  article-title: Power split strategies for hybrid energy storage systems for vehicular applications
  publication-title: J. Power Sources
– volume: 139
  start-page: 151
  year: 2015
  end-page: 162
  ident: bib18
  article-title: Optimization for a hybrid energy storage system in electric vehicles using dynamic programing approach[J]
  publication-title: Appl. Energy
– volume: 183
  start-page: 645
  year: 2016
  end-page: 658
  ident: bib29
  article-title: Sizing for fuel cell/supercapacitor hybrid vehicles based on stochastic driving cycles
  publication-title: Appl. Energy
– volume: 202
  start-page: 1228
  year: 2018
  end-page: 1240
  ident: bib4
  article-title: Towards a smarter hybrid energy storage system based on battery and ultracapacitor-A critical review on topology and energy management
  publication-title: J. Clean. Prod.
– volume: 27
  start-page: 122
  year: 2012
  end-page: 132
  ident: bib7
  article-title: A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles
  publication-title: IEEE Trans. Power Electron.
– start-page: 1
  year: 2013
  end-page: 6
  ident: bib12
  article-title: Energy management strategy based on frequency-varying filter for the battery supercapacitor hybrid system of electric vehicles
  publication-title: 2013 World Electric Vehicle Symposium and Exhibition (EVS27)
– volume: 121
  start-page: 739
  year: 2017
  end-page: 750
  ident: bib2
  article-title: Modeling and state-of-charge prediction of lithium-ion battery and ultracapacitor hybrids with a co-estimator
  publication-title: Energy
– volume: 21
  start-page: 924
  year: 2013
  end-page: 931
  ident: bib19
  article-title: Implementation of dynamic programming for n-dimensional optimal control problems with final state constraints
  publication-title: IEEE Trans. Control Syst. Technol.
– ident: bib24
– volume: 192
  start-page: 222
  year: 2017
  end-page: 233
  ident: bib15
  article-title: A mathematical representation of an energy management strategy for hybrid energy storage system in electric vehicle and real time optimization using a genetic algorithm
  publication-title: Appl. Energy
– volume: 135
  start-page: 91
  year: 2017
  end-page: 100
  ident: bib21
  article-title: The influence of driving cycle characteristics on the integrated optimization of hybrid energy storage system for electric city buses
  publication-title: Energy
– start-page: 1
  year: 2015
  end-page: 6
  ident: bib11
  article-title: Fuzzy energy management in electrical vehicles with different hybrid energy storage topologies
  publication-title: 2015 4th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS)
– volume: 224
  start-page: 340
  year: 2018
  end-page: 356
  ident: bib6
  article-title: A comprehensive study of battery-supercapacitor hybrid energy storage system for standalone PV power system in rural electrification
  publication-title: Appl. Energy
– volume: 136
  start-page: 262
  year: 2016
  end-page: 269
  ident: bib13
  article-title: Nonlinear autoregressive neural network in an energy management strategy for battery/ultra-capacitor hybrid electrical vehicles
  publication-title: Electr. Power Syst. Res.
– volume: 166
  start-page: 796
  year: 2019
  end-page: 806
  ident: bib28
  article-title: Degradation model and cycle life prediction for lithium-ion battery used in hybrid energy storage system
  publication-title: Energy
– volume: 175
  start-page: 1055
  year: 2019
  end-page: 1066
  ident: bib9
  article-title: Development of energy management system based on a rule-based power distribution strategy for hybrid power sources
  publication-title: Energy
– volume: 135
  start-page: 212
  year: 2014
  end-page: 224
  ident: bib8
  article-title: Multi-objective optimization of a semi-active battery/supercapacitor energy storage system for electric vehicles
  publication-title: Appl. Energy
– volume: 163
  start-page: 190
  year: 2016
  end-page: 200
  ident: bib10
  article-title: Comparison of energy management strategies of a battery/supercapacitors system for electric vehicle under real-time constraints
  publication-title: Appl. Energy
– volume: 96
  start-page: 197
  year: 2016
  end-page: 208
  ident: bib17
  article-title: Particle swarm optimization-based optimal power management of plug-in hybrid electric vehicles considering uncertain driving conditions
  publication-title: Energy
– volume: 155
  start-page: 68
  year: 2015
  end-page: 78
  ident: bib20
  article-title: Adaptive energy management of a plug-in hybrid electric vehicle based on driving pattern recognition and dynamic programming
  publication-title: Appl. Energy
– ident: bib25
– volume: 374
  start-page: 121
  year: 2018
  end-page: 133
  ident: bib3
  article-title: A variable capacitance based modeling and power capability predicting method for ultracapacitor
  publication-title: J. Power Sources
– volume: 1
  start-page: 223
  year: 2015
  end-page: 231
  ident: bib22
  article-title: A supervisory energy management control strategy in a battery/ultracapacitor hybrid energy storage system
  publication-title: IEEE Trans. Transp. Electrification
– volume: 211
  start-page: 538
  year: 2018
  end-page: 548
  ident: bib23
  article-title: Reinforcement learning-based real-time power management for hybrid energy storage system in the plug-in hybrid electric vehicle[J]
  publication-title: Appl. Energy
– volume: 66
  start-page: 5520
  year: 2017
  end-page: 5530
  ident: bib16
  article-title: Adaptive energy management system based on a real-time model predictive control with nonuniform sampling time for multiple energy storage electric vehicle
  publication-title: IEEE Trans. Veh. Technol.
– volume: 325
  start-page: 273
  year: 2016
  end-page: 285
  ident: bib26
  article-title: Lithium battery aging model based on Dakin's degradation approach
  publication-title: J. Power Sources
– volume: 27
  start-page: 122
  issue: 1
  year: 2012
  ident: 10.1016/j.jpowsour.2019.227024_bib7
  article-title: A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2011.2151206
– volume: 224
  start-page: 340
  year: 2018
  ident: 10.1016/j.jpowsour.2019.227024_bib6
  article-title: A comprehensive study of battery-supercapacitor hybrid energy storage system for standalone PV power system in rural electrification
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.04.106
– volume: 163
  start-page: 190
  year: 2016
  ident: 10.1016/j.jpowsour.2019.227024_bib10
  article-title: Comparison of energy management strategies of a battery/supercapacitors system for electric vehicle under real-time constraints
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.11.020
– volume: 389
  start-page: 93
  year: 2018
  ident: 10.1016/j.jpowsour.2019.227024_bib5
  article-title: Multi-timescale power and energy assessment of lithium-ion battery and supercapacitor hybrid system using extended Kalman filter
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.04.012
– volume: 135
  start-page: 212
  year: 2014
  ident: 10.1016/j.jpowsour.2019.227024_bib8
  article-title: Multi-objective optimization of a semi-active battery/supercapacitor energy storage system for electric vehicles
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.06.087
– volume: 196
  start-page: 3942
  issue: 8
  year: 2011
  ident: 10.1016/j.jpowsour.2019.227024_bib27
  article-title: Cycle-life model for graphite-LiFePO4 cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.11.134
– volume: 135
  start-page: 91
  year: 2017
  ident: 10.1016/j.jpowsour.2019.227024_bib21
  article-title: The influence of driving cycle characteristics on the integrated optimization of hybrid energy storage system for electric city buses
  publication-title: Energy
  doi: 10.1016/j.energy.2017.06.096
– volume: 136
  start-page: 262
  year: 2016
  ident: 10.1016/j.jpowsour.2019.227024_bib13
  article-title: Nonlinear autoregressive neural network in an energy management strategy for battery/ultra-capacitor hybrid electrical vehicles
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2016.03.005
– volume: 1
  start-page: 223
  issue: 3
  year: 2015
  ident: 10.1016/j.jpowsour.2019.227024_bib22
  article-title: A supervisory energy management control strategy in a battery/ultracapacitor hybrid energy storage system
  publication-title: IEEE Trans. Transp. Electrification
  doi: 10.1109/TTE.2015.2464690
– volume: 155
  start-page: 68
  year: 2015
  ident: 10.1016/j.jpowsour.2019.227024_bib20
  article-title: Adaptive energy management of a plug-in hybrid electric vehicle based on driving pattern recognition and dynamic programming
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.06.003
– start-page: 1
  year: 2015
  ident: 10.1016/j.jpowsour.2019.227024_bib11
  article-title: Fuzzy energy management in electrical vehicles with different hybrid energy storage topologies
– volume: 175
  start-page: 1055
  year: 2019
  ident: 10.1016/j.jpowsour.2019.227024_bib9
  article-title: Development of energy management system based on a rule-based power distribution strategy for hybrid power sources
  publication-title: Energy
  doi: 10.1016/j.energy.2019.03.155
– volume: 192
  start-page: 222
  year: 2017
  ident: 10.1016/j.jpowsour.2019.227024_bib15
  article-title: A mathematical representation of an energy management strategy for hybrid energy storage system in electric vehicle and real time optimization using a genetic algorithm
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.02.022
– volume: 211
  start-page: 538
  year: 2018
  ident: 10.1016/j.jpowsour.2019.227024_bib23
  article-title: Reinforcement learning-based real-time power management for hybrid energy storage system in the plug-in hybrid electric vehicle[J]
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.11.072
– volume: 183
  start-page: 645
  year: 2016
  ident: 10.1016/j.jpowsour.2019.227024_bib29
  article-title: Sizing for fuel cell/supercapacitor hybrid vehicles based on stochastic driving cycles
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.09.008
– volume: 121
  start-page: 739
  year: 2017
  ident: 10.1016/j.jpowsour.2019.227024_bib2
  article-title: Modeling and state-of-charge prediction of lithium-ion battery and ultracapacitor hybrids with a co-estimator
  publication-title: Energy
  doi: 10.1016/j.energy.2017.01.044
– volume: 258
  start-page: 395
  year: 2014
  ident: 10.1016/j.jpowsour.2019.227024_bib14
  article-title: Power split strategies for hybrid energy storage systems for vehicular applications
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.01.118
– volume: 202
  start-page: 1228
  year: 2018
  ident: 10.1016/j.jpowsour.2019.227024_bib4
  article-title: Towards a smarter hybrid energy storage system based on battery and ultracapacitor-A critical review on topology and energy management
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.08.134
– volume: 325
  start-page: 273
  year: 2016
  ident: 10.1016/j.jpowsour.2019.227024_bib26
  article-title: Lithium battery aging model based on Dakin's degradation approach
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.06.036
– volume: 374
  start-page: 121
  year: 2018
  ident: 10.1016/j.jpowsour.2019.227024_bib3
  article-title: A variable capacitance based modeling and power capability predicting method for ultracapacitor
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.11.033
– volume: 21
  start-page: 924
  issue: 3
  year: 2013
  ident: 10.1016/j.jpowsour.2019.227024_bib19
  article-title: Implementation of dynamic programming for n-dimensional optimal control problems with final state constraints
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2012.2190935
– volume: 166
  start-page: 796
  year: 2019
  ident: 10.1016/j.jpowsour.2019.227024_bib28
  article-title: Degradation model and cycle life prediction for lithium-ion battery used in hybrid energy storage system
  publication-title: Energy
  doi: 10.1016/j.energy.2018.10.131
– volume: 66
  start-page: 5520
  issue: 7
  year: 2017
  ident: 10.1016/j.jpowsour.2019.227024_bib16
  article-title: Adaptive energy management system based on a real-time model predictive control with nonuniform sampling time for multiple energy storage electric vehicle
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2016.2638912
– volume: 96
  start-page: 197
  year: 2016
  ident: 10.1016/j.jpowsour.2019.227024_bib17
  article-title: Particle swarm optimization-based optimal power management of plug-in hybrid electric vehicles considering uncertain driving conditions
  publication-title: Energy
  doi: 10.1016/j.energy.2015.12.071
– start-page: 1
  year: 2013
  ident: 10.1016/j.jpowsour.2019.227024_bib12
  article-title: Energy management strategy based on frequency-varying filter for the battery supercapacitor hybrid system of electric vehicles
– volume: 139
  start-page: 151
  year: 2015
  ident: 10.1016/j.jpowsour.2019.227024_bib18
  article-title: Optimization for a hybrid energy storage system in electric vehicles using dynamic programing approach[J]
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.11.020
– volume: 410
  start-page: 106
  year: 2019
  ident: 10.1016/j.jpowsour.2019.227024_bib1
  article-title: State-of-health estimation for Li-ion batteries by combing the incremental capacity analysis method with grey relational analysis
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.10.069
SSID ssj0001170
Score 2.6012712
Snippet Energy management is crucial in battery/ultracapacitor hybrid energy storage systems in electric vehicles. Rule based control is one typical strategy in...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 227024
SubjectTerms Energy management strategy
Hybrid energy storage system
Load-adaptive
Optimal analysis
Rule based control
Title Load-adaptive real-time energy management strategy for battery/ultracapacitor hybrid energy storage system using dynamic programming optimization
URI https://dx.doi.org/10.1016/j.jpowsour.2019.227024
Volume 438
WOSCitedRecordID wos000490030800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2755
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001170
  issn: 0378-7753
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV29btswECZcp0M7FP1F0z9w6CYwkURJJMegSNEWRtAhBdwuAkVRjQxbNhw7SB8jD5J37FEkZTlwm2boIhgEjjJ1n-6O1Hd3CL3XrBI6TCsSKloQiG8zwgsZk6oq4qyM4fWSZdtsgp2c8PFYfB0Mrn0uzMWUNQ2_vBSL_6pqGANlm9TZO6i7mxQG4DcoHa6gdrj-k-JHc1kSWcpFSwqCmHBKTAP5QNssv1nHdwnObWVaR9lsC23CI4dNKYwrcKIK3vZlcPbLJHV5cUOmNDQfWwE6WLdHDaVta-_JXrOWSQ33n7kkzz9EwAvToS2wnw-60H5Urx0NwPnU9rTfWqTv60mtbw6O6g1FwdrQH_Pm55ms-wcakeh5ApfIBRtbxmwNYW-kE1sDxptZk0WX7PQA9jBicjCBNZgFGPaeONgIbJfcvuEKO4Ki575Ncj9PbubJ7Tz30F7MUsGHaO_o8_H4S-f6TRuf9rOVW0EvJX33P9odDfUinNPH6JFTDD6ykHqCBrp5ih72ClY-Q1db4MIduLBFB96AC3twYQAXduA63IYWttDywg5a2EILt9DCDlq4By3ch9Zz9O3j8emHT8Q19SCKRvGKyLCkoQx5wSlTGZiQQmY0ykqaZUJHhWBpUkgI69OYa0ZpWJU6jmisRKgTHtOUvkDDZt7olwgrylOtOaVKREkipeAlBYvDqIJdeZWl-yj1DzdXruK9abwyzf-u3n102MktbM2XWyWE113uIlcbkeYAy1tkX935bq_Rg8178wYNV8u1fovuq4tVfb585zD5GxFjyOg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Load-adaptive+real-time+energy+management+strategy+for+battery%2Fultracapacitor+hybrid+energy+storage+system+using+dynamic+programming+optimization&rft.jtitle=Journal+of+power+sources&rft.au=Liu%2C+Chang&rft.au=Wang%2C+Yujie&rft.au=Wang%2C+Li&rft.au=Chen%2C+Zonghai&rft.date=2019-10-31&rft.issn=0378-7753&rft.volume=438&rft.spage=227024&rft_id=info:doi/10.1016%2Fj.jpowsour.2019.227024&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jpowsour_2019_227024
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon