Quantized kernel recursive minimum error entropy algorithm

In this paper, we propose a online vector quantization (VQ) method based on the kernel recursive minimum error entropy (KRMEE) algorithm. According to information theoretic learning (ITL), the minimum error entropy criterion (MEE) is robust and can effective resistance to non-Gaussian noise. By comb...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Engineering applications of artificial intelligence Ročník 121; s. 105957
Hlavní autori: Jiang, Wang, Gao, Yuyi, He, Yue, Chen, Shanmou
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.05.2023
Predmet:
ISSN:0952-1976, 1873-6769
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, we propose a online vector quantization (VQ) method based on the kernel recursive minimum error entropy (KRMEE) algorithm. According to information theoretic learning (ITL), the minimum error entropy criterion (MEE) is robust and can effective resistance to non-Gaussian noise. By combining the kernel recursive least squares (KRLS) algorithm with MEE criterion, KRMEE algorithm has been generated, which has excellent performance in non-Gaussian environments. However, with the size of data increases, the computational complexity will raise. We propose a quantized to solve this problem, the input space of the algorithm is quantized to suppress the linear growth radial basis function (RBF) network in kernel adaptive filtering (KAF). The VQ method is different from novelty criterion (NC), approximate linear dependency (ALD) criterion, and other sparsity methods, the online VQ method need to construct the dictionary, and calculate the distance by Euclidean norm. We propose a novel quantized kernel recursive minimum error entropy (QKRMEE) algorithm by combining VQ method with KRMEE algorithm, and update the solution with a recursive algorithm. In Mackey-Glass time series and a real-world datasets, Monte Carlo simulation experiments show that the proposed algorithm achieves better predictive performance in non-Gaussian noise environment. Meanwhile, the algorithm can restrain the growth of RBF network well, thus reducing the computational complexity and memory consumption effectively.
AbstractList In this paper, we propose a online vector quantization (VQ) method based on the kernel recursive minimum error entropy (KRMEE) algorithm. According to information theoretic learning (ITL), the minimum error entropy criterion (MEE) is robust and can effective resistance to non-Gaussian noise. By combining the kernel recursive least squares (KRLS) algorithm with MEE criterion, KRMEE algorithm has been generated, which has excellent performance in non-Gaussian environments. However, with the size of data increases, the computational complexity will raise. We propose a quantized to solve this problem, the input space of the algorithm is quantized to suppress the linear growth radial basis function (RBF) network in kernel adaptive filtering (KAF). The VQ method is different from novelty criterion (NC), approximate linear dependency (ALD) criterion, and other sparsity methods, the online VQ method need to construct the dictionary, and calculate the distance by Euclidean norm. We propose a novel quantized kernel recursive minimum error entropy (QKRMEE) algorithm by combining VQ method with KRMEE algorithm, and update the solution with a recursive algorithm. In Mackey-Glass time series and a real-world datasets, Monte Carlo simulation experiments show that the proposed algorithm achieves better predictive performance in non-Gaussian noise environment. Meanwhile, the algorithm can restrain the growth of RBF network well, thus reducing the computational complexity and memory consumption effectively.
ArticleNumber 105957
Author Chen, Shanmou
He, Yue
Gao, Yuyi
Jiang, Wang
Author_xml – sequence: 1
  givenname: Wang
  orcidid: 0000-0001-5542-3471
  surname: Jiang
  fullname: Jiang, Wang
  email: j15856001008@163.com
– sequence: 2
  givenname: Yuyi
  surname: Gao
  fullname: Gao, Yuyi
– sequence: 3
  givenname: Yue
  surname: He
  fullname: He, Yue
– sequence: 4
  givenname: Shanmou
  surname: Chen
  fullname: Chen, Shanmou
BookMark eNqFkM1KAzEQgINUsK2-guwLbE02JumKB6X4BwUR9Bxms9OaupssyW6hPr0p1YuXnoaZ4Zufb0JGzjsk5JLRGaNMXm1m6NbQdWBnBS14KopSqBMyZnPFc6lkOSJjWooiZ6WSZ2QS44ZSyufXckxu3gZwvf3GOvvC4LDJApohRLvFrLXOtkObYQg-ZOj64LtdBs3aB9t_tufkdAVNxIvfOCUfjw_vi-d8-fr0srhf5oazos_LulZCSRRcgmJpaTUH4MpwKahJqYR9t2SK8kogLUBWnIIUNa4Ajaj4lNwe5prgYwy40sb20FufDgLbaEb13oPe6D8Peu9BHzwkXP7Du2BbCLvj4N0BxPTc1mLQ0Vh0BmubHPW69vbYiB9-In7e
CitedBy_id crossref_primary_10_1109_JSEN_2025_3568481
crossref_primary_10_1002_asjc_3402
crossref_primary_10_1016_j_aei_2024_102914
Cites_doi 10.1109/TSP.2016.2539127
10.1109/LSP.2015.2428713
10.1016/j.sigpro.2020.107836
10.1016/j.dsp.2015.09.015
10.1016/j.sigpro.2021.108410
10.1109/SPAWC.2012.6292933
10.1109/TNN.2010.2050212
10.1016/j.sigpro.2020.107810
10.1109/TSP.2007.907881
10.1109/LSP.2017.2761886
10.1109/TSP.2017.2669903
10.1016/j.physd.2008.07.006
10.1016/j.sigpro.2019.02.030
10.1016/j.sigpro.2020.107534
10.1016/j.engappai.2020.103797
10.1109/TSP.2004.830985
10.1109/TNN.2004.836241
10.1090/S0002-9947-1950-0051437-7
10.1109/TNNLS.2013.2258936
10.1109/TNN.2009.2033676
10.1109/TNNLS.2018.2868812
10.1016/j.sigpro.2020.107712
10.1109/TNNLS.2011.2178446
10.1162/neco.1991.3.2.213
10.1162/neco.1995.7.2.219
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2023.105957
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
ExternalDocumentID 10_1016_j_engappai_2023_105957
S0952197623001410
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c312t-9dd7576e536a71846b8aa37c3650c8466a576e91703b5e02a6b30a65defaec5b3
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000959795200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0952-1976
IngestDate Tue Nov 18 22:25:27 EST 2025
Sat Nov 29 07:10:38 EST 2025
Fri Feb 23 02:35:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Quantized kernel recursive minimum error entropy
Kernel recursive minimum error entropy
Online prediction
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-9dd7576e536a71846b8aa37c3650c8466a576e91703b5e02a6b30a65defaec5b3
ORCID 0000-0001-5542-3471
ParticipantIDs crossref_citationtrail_10_1016_j_engappai_2023_105957
crossref_primary_10_1016_j_engappai_2023_105957
elsevier_sciencedirect_doi_10_1016_j_engappai_2023_105957
PublicationCentury 2000
PublicationDate May 2023
2023-05-00
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: May 2023
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zheng, Wang, Feng, Chi (b30) 2016; 48
Huang, Saratchandran, Sundararajan (b12) 2005; 16
Wang, Peng, Feng, Yang, Deng, Wang (b23) 2021; 179
Li, Xing, Chen (b14) 2020; 172
Chen, Wang, Zhao, Zheng, Príncipe (b2) 2015; 22
Ghil, Zaliapin, Coluzzi (b10) 2008; 237
Karsmakers, Pelckmans, Suykens, Hamme (b13) 2007
Girosi, Jones, Poggio (b11) 1995; 7
Aronszajn (b1) 1950; 68
Chen, Zhao, Zhu, Príncipe (b6) 2012; 23
Wang, Wang, Duan, Wang (b25) 2017; 64
Zhao, Zhang (b29) 2017; 24
Nakajima, Y., Yukawa, M., 2012. Nonlinear channel equalization by multi-kernel adaptive filter. In: 2012 IEEE 13th international workshop on signal processing advances in wireless communications, SPAWC. pp. 384–388.
Scholkopf, Smola (b20) 2003
Chen, Zhao, Zhu, Príncipe (b7) 2013; 24
Chen, Xing, Zhao, Zheng, Príncipe (b4) 2016; 64
Shen, Xiong, Wang (b22) 2020; 176
Wang, Yang, Wu, Fu, Ma, He, Peng (b27) 2022; 193
Chen, Xing, Xu, Zhao, Zheng, Príncipe (b3) 2017; 65
Liu, Príncipe, Haykin (b17) 2010
Liu, Pokharel, Príncipe (b16) 2008; 56
Shen, Ren, Han (b21) 2020; 95
Engel, Mannor, Meir (b9) 2004; 52
Liu, Park, Príncipe (b15) 2009; 20
Platt (b19) 1991; 3
Wang, Qiao, Xue, Peng (b24) 2021; 178
Chen, Zhu, Hu (b8) 2010; 21
Wang, Xue, Wang (b26) 2019; 160
Chen, Xing, Zheng, Príncipe (b5) 2019; 30
Zhao, Chen, Príncipe (b28) 2011
Chen (10.1016/j.engappai.2023.105957_b6) 2012; 23
Liu (10.1016/j.engappai.2023.105957_b15) 2009; 20
Shen (10.1016/j.engappai.2023.105957_b21) 2020; 95
Aronszajn (10.1016/j.engappai.2023.105957_b1) 1950; 68
Li (10.1016/j.engappai.2023.105957_b14) 2020; 172
Engel (10.1016/j.engappai.2023.105957_b9) 2004; 52
Liu (10.1016/j.engappai.2023.105957_b17) 2010
Wang (10.1016/j.engappai.2023.105957_b27) 2022; 193
Platt (10.1016/j.engappai.2023.105957_b19) 1991; 3
Liu (10.1016/j.engappai.2023.105957_b16) 2008; 56
Zhao (10.1016/j.engappai.2023.105957_b29) 2017; 24
Zheng (10.1016/j.engappai.2023.105957_b30) 2016; 48
Shen (10.1016/j.engappai.2023.105957_b22) 2020; 176
Chen (10.1016/j.engappai.2023.105957_b2) 2015; 22
Wang (10.1016/j.engappai.2023.105957_b25) 2017; 64
Ghil (10.1016/j.engappai.2023.105957_b10) 2008; 237
Karsmakers (10.1016/j.engappai.2023.105957_b13) 2007
Huang (10.1016/j.engappai.2023.105957_b12) 2005; 16
Chen (10.1016/j.engappai.2023.105957_b3) 2017; 65
Girosi (10.1016/j.engappai.2023.105957_b11) 1995; 7
Chen (10.1016/j.engappai.2023.105957_b5) 2019; 30
Wang (10.1016/j.engappai.2023.105957_b24) 2021; 178
Chen (10.1016/j.engappai.2023.105957_b4) 2016; 64
Chen (10.1016/j.engappai.2023.105957_b7) 2013; 24
Chen (10.1016/j.engappai.2023.105957_b8) 2010; 21
Scholkopf (10.1016/j.engappai.2023.105957_b20) 2003
Zhao (10.1016/j.engappai.2023.105957_b28) 2011
10.1016/j.engappai.2023.105957_b18
Wang (10.1016/j.engappai.2023.105957_b26) 2019; 160
Wang (10.1016/j.engappai.2023.105957_b23) 2021; 179
References_xml – volume: 176
  year: 2020
  ident: b22
  article-title: Multikernel adaptive filtering based on random features approximation
  publication-title: Signal Process.
– volume: 237
  start-page: 2967
  year: 2008
  end-page: 2986
  ident: b10
  article-title: Boolean delay equations: A simple way of looking at complex systems
  publication-title: Physica D.
– year: 2003
  ident: b20
  article-title: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and beyond
– volume: 95
  year: 2020
  ident: b21
  article-title: Quantized generalized maximum correntropy criterion based kernel recursive least squares for online time series prediction
  publication-title: Eng. Appl. Artif. Intell.
– volume: 160
  start-page: 247
  year: 2019
  end-page: 251
  ident: b26
  article-title: A distributed maximum correntropy kalman filter
  publication-title: Signal Process.
– volume: 21
  start-page: 1168
  year: 2010
  end-page: 1179
  ident: b8
  article-title: Mean-square convergence analysis of ADALINE training with minimum error entropy criterion
  publication-title: IEEE Trans. Neural Netw.
– volume: 68
  start-page: 337
  year: 1950
  end-page: 404
  ident: b1
  article-title: Theory of reproducing kernels
  publication-title: Trans. Am. Math. Soc.
– volume: 30
  start-page: 1370
  year: 2019
  end-page: 1380
  ident: b5
  article-title: Quantized minimum error entropy criterion
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 27
  year: 2007
  end-page: 31
  ident: b13
  article-title: Fixed-size kernel logistic regression for phoneme classification
  publication-title: 8th Annual Conference of the International Speech Communication Association
– volume: 3
  start-page: 213
  year: 1991
  end-page: 225
  ident: b19
  article-title: A resource-allocating network for function interpolation
  publication-title: Neural Comput.
– volume: 7
  start-page: 219
  year: 1995
  end-page: 269
  ident: b11
  article-title: Regularization theory and neural networks architectures
  publication-title: Neural Comp.
– volume: 22
  start-page: 1723
  year: 2015
  end-page: 1727
  ident: b2
  article-title: Convergence of a fixed-point algorithm under maximum correntropy criterion
  publication-title: IEEE Signal Process Lett.
– volume: 16
  start-page: 57
  year: 2005
  end-page: 67
  ident: b12
  article-title: A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation
  publication-title: IEEE Trans. Neural Netw.
– volume: 178
  year: 2021
  ident: b24
  article-title: Quaternion kernel recursive least-squares algorithm
  publication-title: Signal Process.
– volume: 64
  start-page: 3376
  year: 2016
  end-page: 3387
  ident: b4
  article-title: Generalized correntropy for robust adaptive filtering
  publication-title: IEEE Trans. Signal Process.
– volume: 65
  start-page: 2888
  year: 2017
  end-page: 2901
  ident: b3
  article-title: Kernel risk-sensitive loss: definition, properties and application to robust adaptive filtering
  publication-title: IEEE Trans. Signal Process.
– volume: 23
  start-page: 22
  year: 2012
  end-page: 32
  ident: b6
  article-title: Quantized kernel least mean square algorithm
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 48
  start-page: 130
  year: 2016
  end-page: 136
  ident: b30
  article-title: A modified quantized kernel least mean square algorithm for prediction of chaotic time series
  publication-title: Digital Signal Process.
– volume: 20
  start-page: 1950
  year: 2009
  end-page: 1961
  ident: b15
  article-title: An information theoretic approach of designing sparse kernel adaptive filters
  publication-title: IEEE Trans. Neural Netw.
– volume: 64
  start-page: 1237
  year: 2017
  end-page: 1241
  ident: b25
  article-title: Kernel recursive least squares with multiple feedback and its convergence analysis
  publication-title: IEEE Trans. Circuits Syst.
– volume: 179
  year: 2021
  ident: b23
  article-title: Adaptive filtering based on recursive minimum error entropy criterion
  publication-title: Signal Process.
– volume: 172
  year: 2020
  ident: b14
  article-title: Adaptive filtering with quantized minimum error entropy criterion
  publication-title: Signal Process.
– volume: 24
  start-page: 1484
  year: 2013
  end-page: 1491
  ident: b7
  article-title: Quantized kernel recursive least squares algorithm
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 193
  year: 2022
  ident: b27
  article-title: A kernel recursive minimum error entropy adaptive filter
  publication-title: Signal Process.
– volume: 52
  start-page: 2275
  year: 2004
  end-page: 2285
  ident: b9
  article-title: The kernel recursive least-squares algorithm
  publication-title: IEEE Trans. Signal Process.
– reference: Nakajima, Y., Yukawa, M., 2012. Nonlinear channel equalization by multi-kernel adaptive filter. In: 2012 IEEE 13th international workshop on signal processing advances in wireless communications, SPAWC. pp. 384–388.
– year: 2010
  ident: b17
  article-title: Kernel adaptive filtering: A comprehensive introduction
– start-page: 2012
  year: 2011
  end-page: 2017
  ident: b28
  article-title: Kernel adaptive filtering with maximum correntropy criterion
  publication-title: 2011 International Joint Conference on Neural Networks
– volume: 56
  start-page: 543
  year: 2008
  end-page: 554
  ident: b16
  article-title: The kernel least-mean-square algorithm
  publication-title: IEEE Trans. Signal Process.
– volume: 24
  start-page: 1832
  year: 2017
  end-page: 1836
  ident: b29
  article-title: Kernel recursive generalized maximum correntropy
  publication-title: IEEE Signal Process Lett.
– volume: 64
  start-page: 3376
  issue: 13
  year: 2016
  ident: 10.1016/j.engappai.2023.105957_b4
  article-title: Generalized correntropy for robust adaptive filtering
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2016.2539127
– volume: 22
  start-page: 1723
  issue: 10
  year: 2015
  ident: 10.1016/j.engappai.2023.105957_b2
  article-title: Convergence of a fixed-point algorithm under maximum correntropy criterion
  publication-title: IEEE Signal Process Lett.
  doi: 10.1109/LSP.2015.2428713
– volume: 64
  start-page: 1237
  issue: 10
  year: 2017
  ident: 10.1016/j.engappai.2023.105957_b25
  article-title: Kernel recursive least squares with multiple feedback and its convergence analysis
  publication-title: IEEE Trans. Circuits Syst.
– volume: 179
  year: 2021
  ident: 10.1016/j.engappai.2023.105957_b23
  article-title: Adaptive filtering based on recursive minimum error entropy criterion
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2020.107836
– volume: 48
  start-page: 130
  year: 2016
  ident: 10.1016/j.engappai.2023.105957_b30
  article-title: A modified quantized kernel least mean square algorithm for prediction of chaotic time series
  publication-title: Digital Signal Process.
  doi: 10.1016/j.dsp.2015.09.015
– start-page: 2012
  year: 2011
  ident: 10.1016/j.engappai.2023.105957_b28
  article-title: Kernel adaptive filtering with maximum correntropy criterion
– volume: 193
  year: 2022
  ident: 10.1016/j.engappai.2023.105957_b27
  article-title: A kernel recursive minimum error entropy adaptive filter
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2021.108410
– ident: 10.1016/j.engappai.2023.105957_b18
  doi: 10.1109/SPAWC.2012.6292933
– volume: 21
  start-page: 1168
  issue: 7
  year: 2010
  ident: 10.1016/j.engappai.2023.105957_b8
  article-title: Mean-square convergence analysis of ADALINE training with minimum error entropy criterion
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2010.2050212
– volume: 178
  year: 2021
  ident: 10.1016/j.engappai.2023.105957_b24
  article-title: Quaternion kernel recursive least-squares algorithm
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2020.107810
– start-page: 27
  year: 2007
  ident: 10.1016/j.engappai.2023.105957_b13
  article-title: Fixed-size kernel logistic regression for phoneme classification
– volume: 56
  start-page: 543
  issue: 2
  year: 2008
  ident: 10.1016/j.engappai.2023.105957_b16
  article-title: The kernel least-mean-square algorithm
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2007.907881
– volume: 24
  start-page: 1832
  issue: 12
  year: 2017
  ident: 10.1016/j.engappai.2023.105957_b29
  article-title: Kernel recursive generalized maximum correntropy
  publication-title: IEEE Signal Process Lett.
  doi: 10.1109/LSP.2017.2761886
– volume: 65
  start-page: 2888
  issue: 11
  year: 2017
  ident: 10.1016/j.engappai.2023.105957_b3
  article-title: Kernel risk-sensitive loss: definition, properties and application to robust adaptive filtering
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2017.2669903
– volume: 237
  start-page: 2967
  issue: 23
  year: 2008
  ident: 10.1016/j.engappai.2023.105957_b10
  article-title: Boolean delay equations: A simple way of looking at complex systems
  publication-title: Physica D.
  doi: 10.1016/j.physd.2008.07.006
– volume: 160
  start-page: 247
  year: 2019
  ident: 10.1016/j.engappai.2023.105957_b26
  article-title: A distributed maximum correntropy kalman filter
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2019.02.030
– volume: 172
  year: 2020
  ident: 10.1016/j.engappai.2023.105957_b14
  article-title: Adaptive filtering with quantized minimum error entropy criterion
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2020.107534
– year: 2010
  ident: 10.1016/j.engappai.2023.105957_b17
– volume: 95
  year: 2020
  ident: 10.1016/j.engappai.2023.105957_b21
  article-title: Quantized generalized maximum correntropy criterion based kernel recursive least squares for online time series prediction
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103797
– volume: 52
  start-page: 2275
  issue: 8
  year: 2004
  ident: 10.1016/j.engappai.2023.105957_b9
  article-title: The kernel recursive least-squares algorithm
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2004.830985
– volume: 16
  start-page: 57
  issue: 1
  year: 2005
  ident: 10.1016/j.engappai.2023.105957_b12
  article-title: A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2004.836241
– year: 2003
  ident: 10.1016/j.engappai.2023.105957_b20
– volume: 68
  start-page: 337
  issue: 3
  year: 1950
  ident: 10.1016/j.engappai.2023.105957_b1
  article-title: Theory of reproducing kernels
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1950-0051437-7
– volume: 24
  start-page: 1484
  issue: 9
  year: 2013
  ident: 10.1016/j.engappai.2023.105957_b7
  article-title: Quantized kernel recursive least squares algorithm
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2013.2258936
– volume: 20
  start-page: 1950
  issue: 12
  year: 2009
  ident: 10.1016/j.engappai.2023.105957_b15
  article-title: An information theoretic approach of designing sparse kernel adaptive filters
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2009.2033676
– volume: 30
  start-page: 1370
  issue: 5
  year: 2019
  ident: 10.1016/j.engappai.2023.105957_b5
  article-title: Quantized minimum error entropy criterion
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2018.2868812
– volume: 176
  year: 2020
  ident: 10.1016/j.engappai.2023.105957_b22
  article-title: Multikernel adaptive filtering based on random features approximation
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2020.107712
– volume: 23
  start-page: 22
  issue: 1
  year: 2012
  ident: 10.1016/j.engappai.2023.105957_b6
  article-title: Quantized kernel least mean square algorithm
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2011.2178446
– volume: 3
  start-page: 213
  issue: 2
  year: 1991
  ident: 10.1016/j.engappai.2023.105957_b19
  article-title: A resource-allocating network for function interpolation
  publication-title: Neural Comput.
  doi: 10.1162/neco.1991.3.2.213
– volume: 7
  start-page: 219
  issue: 2
  year: 1995
  ident: 10.1016/j.engappai.2023.105957_b11
  article-title: Regularization theory and neural networks architectures
  publication-title: Neural Comp.
  doi: 10.1162/neco.1995.7.2.219
SSID ssj0003846
Score 2.3861113
Snippet In this paper, we propose a online vector quantization (VQ) method based on the kernel recursive minimum error entropy (KRMEE) algorithm. According to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105957
SubjectTerms Kernel recursive minimum error entropy
Online prediction
Quantized kernel recursive minimum error entropy
Title Quantized kernel recursive minimum error entropy algorithm
URI https://dx.doi.org/10.1016/j.engappai.2023.105957
Volume 121
WOSCitedRecordID wos000959795200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELag44EXxk8xBigPvFUeid3YMW_TNAQ8TKANUZ6iS-xs2da0Sptp46_nHDtpBpMGQrxE7VWu27uvzt31uztC3giVMxWBpiFnmk5iXVCYCKBC4s8yhDAEKNphE_LgIJlO1WdPt1224wRkVSWXl2rxX02NMjS2LZ39C3P3b4oCfIxGxyuaHa9_ZPgvDSqr_IGO5JmpK2P79uc2JXBhxraPyKyZjU1d20bflqS-uBrD-fG8Llcns2tZ-nWfwvHwT-6WN1C3BKN23Mego2dPxil9Dvob-Nui5fdAm5P93lyV6_Srk_QL93ylyOEJVLN5M0xIsAH9z2XJukqZNS3JpRsZjZT0ba_dYZtITi3F9tpp7AqmfzvZXZLhdMdUx_itodyxW9spxco1uP6la_ah3dDuhyFWy2W9SzaYjFUyIhu7H_enn_rbNU9cNVf3AQdl5DfvdrMHM_BKjh6SBz6cCHYdDB6RO6Z6TDZ9aBH4g3uJom56Ryd7Qt71QAkcUIIeKIEHStACJfBACXqgPCVf3-8f7X2gfpIGzXnEVlRpLTGwNDEXgM7IRGQJAJc5R_88x6cC7KsYuYc8i03IQGQ8BBFrU4DJ44w_I6NqXpnnJIiKOC4imWgl8klRZGC0Dk0SGZMJA4xtkbjTTpr7NvN22sl52vEJT9NOq6nVauq0ukXe9usWrtHKrStUp_zUu4vODUwRM7esffEPa7fJ_TXsX5LRqm7MK3Ivv1iVy_q1h9dPrASVcw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantized+kernel+recursive+minimum+error+entropy+algorithm&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Jiang%2C+Wang&rft.au=Gao%2C+Yuyi&rft.au=He%2C+Yue&rft.au=Chen%2C+Shanmou&rft.date=2023-05-01&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.eissn=1873-6769&rft.volume=121&rft_id=info:doi/10.1016%2Fj.engappai.2023.105957&rft.externalDocID=S0952197623001410
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon