Optimal dual-model controller of solid oxide fuel cell output voltage using imitation distributed deep reinforcement learning
Solid oxide fuel cell (SOFC) is disadvantaged by significant nonlinearity, which makes it difficult to control output voltage of SOFC and satisfy the constraints of fuel utilization simultaneously. In order to solve this problem, a dual-model control framework (DMCF) is proposed. In particular, ther...
Gespeichert in:
| Veröffentlicht in: | International journal of hydrogen energy Jg. 48; H. 37; S. 14053 - 14067 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
30.04.2023
|
| Schlagworte: | |
| ISSN: | 0360-3199, 1879-3487 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Solid oxide fuel cell (SOFC) is disadvantaged by significant nonlinearity, which makes it difficult to control output voltage of SOFC and satisfy the constraints of fuel utilization simultaneously. In order to solve this problem, a dual-model control framework (DMCF) is proposed. In particular, there are two controllers deployed under this framework, with an PID controller and a supplementary dynamic controller to track the SOFC output voltage. The supplementary dynamic controller is conducive to the stabilization of tracking by adapting to the uncertainties, considering the constraint on fuel utilization. In addition, an imitation distributed deep deterministic policy gradient (ID3PG) algorithm, which integrates imitation learning and distributed deep reinforcement learning to enhance the robustness and adaptive capacity of this framework, is proposed for the supplementary dynamic controller. The simulation results obtained in this work have demonstrated that the proposed framework is effective in imposing control on SOFC output voltage and preventing constraint violations of fuel utilization.
•An ID3PG-PID dual-model control framework is proposed.•A new deep reinforcement learning algorithm is proposed.•ID3PG is introduced for enhancing adaptive capacity.•The proposed framework is effective in preventing constraint violations. |
|---|---|
| AbstractList | Solid oxide fuel cell (SOFC) is disadvantaged by significant nonlinearity, which makes it difficult to control output voltage of SOFC and satisfy the constraints of fuel utilization simultaneously. In order to solve this problem, a dual-model control framework (DMCF) is proposed. In particular, there are two controllers deployed under this framework, with an PID controller and a supplementary dynamic controller to track the SOFC output voltage. The supplementary dynamic controller is conducive to the stabilization of tracking by adapting to the uncertainties, considering the constraint on fuel utilization. In addition, an imitation distributed deep deterministic policy gradient (ID3PG) algorithm, which integrates imitation learning and distributed deep reinforcement learning to enhance the robustness and adaptive capacity of this framework, is proposed for the supplementary dynamic controller. The simulation results obtained in this work have demonstrated that the proposed framework is effective in imposing control on SOFC output voltage and preventing constraint violations of fuel utilization.
•An ID3PG-PID dual-model control framework is proposed.•A new deep reinforcement learning algorithm is proposed.•ID3PG is introduced for enhancing adaptive capacity.•The proposed framework is effective in preventing constraint violations. |
| Author | Li, Jiawen Cui, Haoyang Jiang, Wei Yu, Hengwen |
| Author_xml | – sequence: 1 givenname: Jiawen orcidid: 0000-0003-4097-9922 surname: Li fullname: Li, Jiawen email: lijiawen@shiep.edu.cn organization: School of Electronic and Information Engineering, Shanghai University of Electric Power, Shanghai, 201306, China – sequence: 2 givenname: Haoyang surname: Cui fullname: Cui, Haoyang email: cuihy@shiep.edu.cn organization: School of Electronic and Information Engineering, Shanghai University of Electric Power, Shanghai, 201306, China – sequence: 3 givenname: Wei surname: Jiang fullname: Jiang, Wei organization: School of Electronic and Information Engineering, Shanghai University of Electric Power, Shanghai, 201306, China – sequence: 4 givenname: Hengwen surname: Yu fullname: Yu, Hengwen organization: Shanghai Xinwei Semiconductor Co. Ltd, China |
| BookMark | eNqFkMtKAzEUhoNUsFVfQfICU5PJ3AIulOINCt3oOmSSMzVDmpQkU-zCd3dK68ZN4YezOHw_53wzNHHeAUJ3lMwpodV9Pzf9116Dg3lO8nxOx_DiAk1pU_OMFU09QVPCKpIxyvkVmsXYE0JrUvAp-lltk9lIi_UgbbbxGixW3qXgrYWAfYejt0Zj_2004G44rMFa7Ie0HRLeeZvkGvAQjVtjszFJJuMd1iamYNohgcYaYIsDGNf5oGADLmELMriRuEGXnbQRbk_zGn2-PH8s3rLl6vV98bTMFKN5yriuijIHXjecq1w2iuaVbhnRdc5UJytWa0XqBmreSl4VWrelJFXByqIc9wzYNXo49qrgYwzQCXW6NAVprKBEHFSKXvypFAeVgo7hxYhX__BtGKWF_Xnw8QjC-NzOQBBRGXAKtAmgktDenKv4BeCYmLM |
| CitedBy_id | crossref_primary_10_1109_JIOT_2023_3325482 crossref_primary_10_1088_2631_8695_ad33ff crossref_primary_10_1109_TTE_2023_3253060 crossref_primary_10_1016_j_arcontrol_2025_101014 crossref_primary_10_1016_j_rser_2025_116000 crossref_primary_10_1109_TII_2024_3514084 crossref_primary_10_1016_j_ijhydene_2024_01_191 crossref_primary_10_1016_j_jpowsour_2025_238281 crossref_primary_10_1016_j_apenergy_2023_121181 crossref_primary_10_1109_TSG_2025_3567616 crossref_primary_10_1007_s40435_024_01453_0 crossref_primary_10_1109_TASE_2023_3263005 crossref_primary_10_3389_fenrg_2023_1333827 crossref_primary_10_1109_JIOT_2023_3253693 crossref_primary_10_3389_fenrg_2024_1377465 crossref_primary_10_1016_j_scs_2023_104917 crossref_primary_10_3389_fenrg_2024_1361869 crossref_primary_10_1109_JESTIE_2023_3263372 |
| Cites_doi | 10.1016/j.apenergy.2020.116386 10.1016/j.jpowsour.2018.12.058 10.1016/j.jclepro.2021.128929 10.1016/j.ijhydene.2012.01.130 10.1109/TPWRS.2019.2941134 10.1016/j.isatra.2019.10.009 10.1016/j.trc.2018.10.024 10.1109/TIA.2020.2999037 10.1016/j.jpowsour.2005.01.017 10.1109/TPEL.2017.2723358 10.1109/ACCESS.2019.2904910 10.1016/j.apenergy.2022.119313 10.1109/TIE.2015.2404811 10.1016/j.ijhydene.2018.01.203 10.1016/j.ijhydene.2017.10.171 10.1016/S0020-0255(99)00133-4 10.3390/app8101758 10.1016/j.csite.2021.101752 10.3390/en12081435 10.1016/j.jpowsour.2017.10.070 10.3390/a11050065 10.1016/j.apenergy.2021.117541 10.1109/TPEL.2020.2988565 10.1016/j.neucom.2016.05.076 10.1016/j.ijhydene.2017.06.208 10.1016/j.jprocont.2017.03.016 10.1016/j.ijhydene.2018.10.180 10.1016/j.ijhydene.2020.03.063 10.1016/j.jfranklin.2022.02.007 |
| ContentType | Journal Article |
| Copyright | 2022 Hydrogen Energy Publications LLC |
| Copyright_xml | – notice: 2022 Hydrogen Energy Publications LLC |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ijhydene.2022.12.194 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-3487 |
| EndPage | 14067 |
| ExternalDocumentID | 10_1016_j_ijhydene_2022_12_194 S0360319922059079 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SES SEW SPC SPCBC SSK SSM SSR SSZ T5K TN5 XPP ZMT ~G- 29J 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF R2- SAC SCB T9H WUQ ~HD |
| ID | FETCH-LOGICAL-c312t-9d6452e97899c2a8c126db30d723cfa637dc078e79ba964ddb5a06435453cf3e3 |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000981351900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-3199 |
| IngestDate | Sat Nov 29 07:21:42 EST 2025 Tue Nov 18 22:21:28 EST 2025 Fri Feb 23 02:37:13 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 37 |
| Keywords | Deep reinforcement learning Optimal control framework Solid oxide fuel cell Output voltage control Fuel utilization Imitation distributed deep deterministic policy gradient algorithm (ID3PG) |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c312t-9d6452e97899c2a8c126db30d723cfa637dc078e79ba964ddb5a06435453cf3e3 |
| ORCID | 0000-0003-4097-9922 |
| PageCount | 15 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_ijhydene_2022_12_194 crossref_primary_10_1016_j_ijhydene_2022_12_194 elsevier_sciencedirect_doi_10_1016_j_ijhydene_2022_12_194 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-04-30 |
| PublicationDateYYYYMMDD | 2023-04-30 |
| PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of hydrogen energy |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Ji, Xu, Liu (bib17) 2016; 214 Aguiar, Adjiman, Brandon (bib9) 2005; 147 Ahmadi, Abdi, Kakavand (bib44) 2017; 42 Han, Zhou (bib21) 2017 Yang, Wang, Chen (bib1) 2020; 45 Wu, Gao (bib15) 2018; 374 Xu, Yan, Ji (bib23) 2016 Horgan, Quan, Budden, Barth-Maron, Hessel, Van Hasselt (bib46) 2018 Deng, Li, Cui, Zhu, Chen (bib2) 2019; 44 Xiao, Liu (bib27) 2018 Mozelli, Souza, Mendes (bib43) 2014 Li, Yu, Zhang, Li, Lin, Zhu (bib3) 2021; 285 Rauh, Senkel, Aschemann (bib14) 2015; 62 Zhu, Wang, Wang (bib35) 2018; 97 Shi, Sun, Li, Wang, Li (bib39) 2019; 7 Li, Yu, Yang (bib5) 2021; 304 Ruan, Han, Han (bib26) 2006 Wang, Bao (bib29) 2010 Fujimoto, Hoof, Meger (bib47) 2018 Li, Yu, Zhang (bib7) 2022; 15 Allag, Das (bib19) 2012; 20 Xi, Wu, Xu, Sun (bib37) 2020 Wu, Chen, Hwang, Hsu (bib8) 2017; 54 Men, Zhang, Zhou, Ye, Lu (bib28) 2011 Ying (bib42) 2000; 123 Marsala, Ragusa (bib45) 2012 Szabłowski, Milewski, Badyda, Kupecki (bib16) 2018; 43 Marzooghi, Raoofat (bib25) 2012; 37 Abouomar, Zhang, Su (bib40) 2019; 12 Pan, Cao, Shen (bib18) 2015 Li, Li, Yu, Yang (bib33) 2022; 30 Zhao, Li, Rui, Zhao, Huangfu (bib41) 2020; 56 Lillicrap, Hunt, P, Heess, Erez, Tassa (bib34) 2015; 8 Li, Yu (bib6) 2021; 321 Xia, Zou, Yan, Li (bib10) 2018; 8 Wu, Yang, Wang, Li (bib13) 2019; 414 Duan, Shi, Diao, Li, Yi (bib38) 2019; 35 Vreko, Nerat, Vrani, Dolanc, Dolenc, Pregelj (bib12) 2018; 43 Lee, Kwon, Park (bib24) 2012; 218 Awryńczuk (bib22) 2020; 99 Sajadian, Ahmadi (bib31) 2017; 33 Knyazkin, Soder, Canizares (bib11) 2003 Jiawen, Haoyang (bib32) 2022; 359 Han, Zhou (bib20) 2016 Chen, He, Chen, Xu (bib36) 2018; 11 Li (bib4) 2022; 324 Z, X, Y, Y, G, X (bib30) 2020; 35 Wu (10.1016/j.ijhydene.2022.12.194_bib8) 2017; 54 Wu (10.1016/j.ijhydene.2022.12.194_bib13) 2019; 414 Li (10.1016/j.ijhydene.2022.12.194_bib3) 2021; 285 Han (10.1016/j.ijhydene.2022.12.194_bib20) 2016 Z (10.1016/j.ijhydene.2022.12.194_bib30) 2020; 35 Abouomar (10.1016/j.ijhydene.2022.12.194_bib40) 2019; 12 Li (10.1016/j.ijhydene.2022.12.194_bib7) 2022; 15 Jiawen (10.1016/j.ijhydene.2022.12.194_bib32) 2022; 359 Ji (10.1016/j.ijhydene.2022.12.194_bib17) 2016; 214 Li (10.1016/j.ijhydene.2022.12.194_bib6) 2021; 321 Pan (10.1016/j.ijhydene.2022.12.194_bib18) 2015 Shi (10.1016/j.ijhydene.2022.12.194_bib39) 2019; 7 Aguiar (10.1016/j.ijhydene.2022.12.194_bib9) 2005; 147 Xia (10.1016/j.ijhydene.2022.12.194_bib10) 2018; 8 Marsala (10.1016/j.ijhydene.2022.12.194_bib45) 2012 Zhao (10.1016/j.ijhydene.2022.12.194_bib41) 2020; 56 Allag (10.1016/j.ijhydene.2022.12.194_bib19) 2012; 20 Awryńczuk (10.1016/j.ijhydene.2022.12.194_bib22) 2020; 99 Han (10.1016/j.ijhydene.2022.12.194_bib21) 2017 Horgan (10.1016/j.ijhydene.2022.12.194_bib46) 2018 Lillicrap (10.1016/j.ijhydene.2022.12.194_bib34) 2015; 8 Sajadian (10.1016/j.ijhydene.2022.12.194_bib31) 2017; 33 Xiao (10.1016/j.ijhydene.2022.12.194_bib27) 2018 Xu (10.1016/j.ijhydene.2022.12.194_bib23) 2016 Ahmadi (10.1016/j.ijhydene.2022.12.194_bib44) 2017; 42 Duan (10.1016/j.ijhydene.2022.12.194_bib38) 2019; 35 Wang (10.1016/j.ijhydene.2022.12.194_bib29) 2010 Li (10.1016/j.ijhydene.2022.12.194_bib5) 2021; 304 Rauh (10.1016/j.ijhydene.2022.12.194_bib14) 2015; 62 Li (10.1016/j.ijhydene.2022.12.194_bib4) 2022; 324 Wu (10.1016/j.ijhydene.2022.12.194_bib15) 2018; 374 Szabłowski (10.1016/j.ijhydene.2022.12.194_bib16) 2018; 43 Mozelli (10.1016/j.ijhydene.2022.12.194_bib43) 2014 Xi (10.1016/j.ijhydene.2022.12.194_bib37) 2020 Men (10.1016/j.ijhydene.2022.12.194_bib28) 2011 Ying (10.1016/j.ijhydene.2022.12.194_bib42) 2000; 123 Yang (10.1016/j.ijhydene.2022.12.194_bib1) 2020; 45 Fujimoto (10.1016/j.ijhydene.2022.12.194_bib47) 2018 Lee (10.1016/j.ijhydene.2022.12.194_bib24) 2012; 218 Vreko (10.1016/j.ijhydene.2022.12.194_bib12) 2018; 43 Li (10.1016/j.ijhydene.2022.12.194_bib33) 2022; 30 Ruan (10.1016/j.ijhydene.2022.12.194_bib26) 2006 Zhu (10.1016/j.ijhydene.2022.12.194_bib35) 2018; 97 Knyazkin (10.1016/j.ijhydene.2022.12.194_bib11) 2003 Marzooghi (10.1016/j.ijhydene.2022.12.194_bib25) 2012; 37 Chen (10.1016/j.ijhydene.2022.12.194_bib36) 2018; 11 Deng (10.1016/j.ijhydene.2022.12.194_bib2) 2019; 44 |
| References_xml | – volume: 43 start-page: 3555 year: 2018 end-page: 3565 ident: bib16 article-title: ANN–supported control strategy for a solid oxide fuel cell working on demand for a public utility building publication-title: Int J Hydrogen Energy – volume: 45 start-page: 13508 year: 2020 end-page: 13522 ident: bib1 article-title: Robust fault diagnosis and fault tolerant control for PEMFC system based on an augmented LPV observer publication-title: Int J Hydrogen Energy – start-page: 5985 year: 2018 end-page: 5989 ident: bib27 article-title: PID-explicit predictive dual mode control for double-water tank publication-title: 2018 Chinese control and decision conference (CCDC) – start-page: 6 year: 2003 ident: bib11 article-title: Control challenges of fuel cell-driven distributed generation publication-title: 2003 IEEE bologna power tech conference proceedings – volume: 99 start-page: 270 year: 2020 end-page: 289 ident: bib22 article-title: Constrained computationally efficient nonlinear predictive control of Solid Oxide Fuel Cell: tuning, feasibility and performance publication-title: ISA Trans – volume: 97 start-page: 348 year: 2018 end-page: 368 ident: bib35 article-title: Human-like autonomous car-following model with deep reinforcement learning publication-title: Transport Res C Emerg Technol – volume: 54 start-page: 90 year: 2017 end-page: 100 ident: bib8 article-title: Optimization and control of a stand-alone hybrid solid oxide fuel cells/gas turbine system coupled with dry reforming of methane - ScienceDirect publication-title: J Process Control – volume: 20 start-page: 1 year: 2012 end-page: 10 ident: bib19 article-title: Robust control of solid oxide fuel cell ultracapacitor hybrid system publication-title: IEEE Trans Control Syst Technol – volume: 304 year: 2021 ident: bib5 article-title: A data-driven output voltage control of solid oxide fuel cell using multi-agent deep reinforcement learning publication-title: Appl Energy – start-page: 499 year: 2015 end-page: 507 ident: bib18 article-title: L1 adaptive output feedback controller with operating constraints for solid oxide fuel cells publication-title: International conference on informatics in control – volume: 35 start-page: 814 year: 2019 end-page: 817 ident: bib38 article-title: Deep-reinforcement-learning-based autonomous voltage control for power grid operations publication-title: IEEE Trans Power Syst – volume: 42 start-page: 20430 year: 2017 end-page: 20443 ident: bib44 article-title: Maximum power point tracking of a proton exchange membrane fuel cell system using PSO-PID controller publication-title: Int J Hydrogen Energy – volume: 30 start-page: 101752 year: 2022 ident: bib33 article-title: Large-scale multi-agent reinforcement learning-based method for coordinated output voltage control of solid oxide fuel cell publication-title: Case Stud Therm Eng – start-page: 5 year: 2006 ident: bib26 article-title: Real-time reconfigurable micro-system based on FPGA and CPLD for dual-mode PID control through backpropagation neural network publication-title: International conference on industrial electronics & control applications – start-page: 1278 year: 2017 end-page: 1281 ident: bib21 article-title: The multi-parameter programming control of solid oxide fuel cell publication-title: 2017 4th international conference on information science and control engineering (ICISCE) – start-page: 3137 year: 2010 end-page: 3140 ident: bib29 article-title: Fuzzy-PID dual mode fuzzy control of the electro-hydraulic deviation control system publication-title: 2010 international conference on mechanic automation and control engineering – volume: 218 start-page: 9296 year: 2012 end-page: 9304 ident: bib24 article-title: Predictive control for sector bounded nonlinear model and its application to solid oxide fuel cell systems publication-title: Appl Math Comput – volume: 147 start-page: 136 year: 2005 end-page: 147 ident: bib9 article-title: Anode-supported intermediate-temperature direct internal reforming solid oxide fuel cell: II. Model-based dynamic performance and control publication-title: J Power Sources – volume: 123 start-page: 281 year: 2000 end-page: 293 ident: bib42 article-title: Theory and application of a novel fuzzy PID controller using a simplified Takagi–Sugeno rule scheme publication-title: Inf Sci – volume: 8 start-page: 1758 year: 2018 ident: bib10 article-title: Adaptive tracking constrained controller design for solid oxide fuel cells based on a wiener-type neural network publication-title: Appl Sci – start-page: 908 year: 2012 end-page: 913 ident: bib45 article-title: Increase of the performance of a low ripple boost converter for PEM FC applications using GA and PSO algorithms publication-title: Vehicle power and propulsion conference (VPPC) – volume: 15 start-page: 117900 year: 2022 ident: bib7 article-title: Coordinated Load Frequency Control of Multi-Area Integrated Energy System Using Multi-Agent publication-title: Deep Reinforcement Learning – volume: 7 start-page: 41799 year: 2019 end-page: 41810 ident: bib39 article-title: Hierarchical intermittent motor control with deterministic policy gradient publication-title: IEEE Access – volume: 374 start-page: 163 year: 2018 end-page: 181 ident: bib15 article-title: Optimal robust control strategy of a solid oxide fuel cell system publication-title: J Power Sources – volume: 285 start-page: 116386 year: 2021 ident: bib3 article-title: Efficient experience replay based deep deterministic policy gradient for AGC dispatch in integrated energy system publication-title: Appl Energy – volume: 35 start-page: 12555 year: 2020 end-page: 12569 ident: bib30 article-title: Stability blind-area-free control design for microgrid-interfaced voltage source inverters under dual-mode operation publication-title: IEEE Trans Power Electron – volume: 414 start-page: 345 year: 2019 end-page: 353 ident: bib13 article-title: Temperature gradient control of a solid oxide fuel cell stack publication-title: J Power Sources – start-page: 953 year: 2016 end-page: 957 ident: bib20 article-title: Dual-mode predictive control of solid oxide fuel cell publication-title: 2016 3rd international conference on information science and control engineering (ICISCE) – volume: 8 start-page: A187 year: 2015 ident: bib34 article-title: Continuous control with deep reinforcement learning publication-title: Comput Sci – volume: 214 start-page: 134 year: 2016 end-page: 142 ident: bib17 article-title: A novel adaptive neural network constrained control for solid oxide fuel cells via dynamic anti-windup publication-title: Neurocomputing – volume: 324 start-page: 119313 year: 2022 ident: bib4 article-title: A multi-objective energy coordinative and management policy for solid oxide fuel cell using triune brain large-scale multi-agent deep deterministic policy gradient publication-title: Appl Energy – volume: 62 start-page: 5208 year: 2015 end-page: 5217 ident: bib14 article-title: Interval-based sliding mode control design for solid oxide fuel cells with state and actuator constraints publication-title: IEEE Trans Ind Electron – volume: 11 start-page: 65 year: 2018 ident: bib36 article-title: Control strategy of speed servo systems based on deep reinforcement learning publication-title: Algorithms – volume: 33 start-page: 4488 year: 2017 end-page: 4497 ident: bib31 article-title: Model predictive control of dual-mode operations Z-source inverter: islanded and grid-connected publication-title: IEEE Trans Power Electron – volume: 37 start-page: 7796 year: 2012 end-page: 7806 ident: bib25 article-title: Improving the performance of proton exchange membrane and solid oxide fuel cells under voltage flicker using Fuzzy-PI controller publication-title: Int J Hydrogen Energy – volume: 359 start-page: 8107 year: 2022 end-page: 8126 ident: bib32 article-title: Optimal trajectory exploration large-scale deep reinforcement learning tuned optimal controller for proton exchange membrane fuel cell publication-title: J Franklin Inst – volume: 43 start-page: 6352 year: 2018 end-page: 6363 ident: bib12 article-title: Feedforward-feedback control of a solid oxide fuel cell power system publication-title: Int J Hydrogen Energy – start-page: 6378 year: 2011 end-page: 6382 ident: bib28 article-title: CMP pressure control based on dual-modes controller publication-title: 2011 second international conference on mechanic automation and control engineering, 2011 second international conference on mechanic automation and control engineering – volume: 44 start-page: 19357 year: 2019 end-page: 19369 ident: bib2 article-title: Nonlinear controller design based on cascade adaptive sliding mode control for PEM fuel cell air supply systems publication-title: Int J Hydrogen Energy – start-page: 3986 year: 2016 end-page: 3991 ident: bib23 article-title: RBF neural network based adaptive constrained PID control of a solid oxide fuel cell publication-title: 2016 Chinese control and decision conference (CCDC) – start-page: 1 year: 2020 end-page: 11 ident: bib37 article-title: Automatic generation control based on multiple neural networks with actor-critic strategy publication-title: Trans Neural Netw Learn Syst – volume: 12 start-page: 1435 year: 2019 ident: bib40 article-title: Fractional order fuzzy PID control of automotive PEM fuel cell air feed system using neural network optimization algorithm publication-title: Energies – year: 2018 ident: bib46 article-title: Distributed prioritized experience replay publication-title: (arXiv arXiv – volume: 321 start-page: 128929 year: 2021 ident: bib6 article-title: A novel data-driven controller for solid oxide fuel cell via deep reinforcement learning publication-title: Journal of Cleaner Production – year: 2014 ident: bib43 article-title: SOFC for TS fuzzy systems: less conservative and local stabilization conditions publication-title: 2014 IEEE symposium on computational intelligence in control and automation (CICA) – volume: 56 start-page: 5523 year: 2020 end-page: 5532 ident: bib41 article-title: An unknown input nonlinear observer based fractional order PID control of fuel cell air supply system publication-title: IEEE Trans Ind Appl – start-page: 1587 year: 2018 end-page: 1596 ident: bib47 article-title: Addressing function approximation error in actor-critic methods publication-title: Proceedings of the 35th international conference on machine learning – start-page: 3986 year: 2016 ident: 10.1016/j.ijhydene.2022.12.194_bib23 article-title: RBF neural network based adaptive constrained PID control of a solid oxide fuel cell – volume: 285 start-page: 116386 year: 2021 ident: 10.1016/j.ijhydene.2022.12.194_bib3 article-title: Efficient experience replay based deep deterministic policy gradient for AGC dispatch in integrated energy system publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.116386 – volume: 414 start-page: 345 year: 2019 ident: 10.1016/j.ijhydene.2022.12.194_bib13 article-title: Temperature gradient control of a solid oxide fuel cell stack publication-title: J Power Sources doi: 10.1016/j.jpowsour.2018.12.058 – start-page: 953 year: 2016 ident: 10.1016/j.ijhydene.2022.12.194_bib20 article-title: Dual-mode predictive control of solid oxide fuel cell – volume: 321 start-page: 128929 year: 2021 ident: 10.1016/j.ijhydene.2022.12.194_bib6 article-title: A novel data-driven controller for solid oxide fuel cell via deep reinforcement learning publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2021.128929 – volume: 37 start-page: 7796 year: 2012 ident: 10.1016/j.ijhydene.2022.12.194_bib25 article-title: Improving the performance of proton exchange membrane and solid oxide fuel cells under voltage flicker using Fuzzy-PI controller publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2012.01.130 – volume: 8 start-page: A187 year: 2015 ident: 10.1016/j.ijhydene.2022.12.194_bib34 article-title: Continuous control with deep reinforcement learning publication-title: Comput Sci – volume: 35 start-page: 814 year: 2019 ident: 10.1016/j.ijhydene.2022.12.194_bib38 article-title: Deep-reinforcement-learning-based autonomous voltage control for power grid operations publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2019.2941134 – volume: 99 start-page: 270 year: 2020 ident: 10.1016/j.ijhydene.2022.12.194_bib22 article-title: Constrained computationally efficient nonlinear predictive control of Solid Oxide Fuel Cell: tuning, feasibility and performance publication-title: ISA Trans doi: 10.1016/j.isatra.2019.10.009 – volume: 97 start-page: 348 year: 2018 ident: 10.1016/j.ijhydene.2022.12.194_bib35 article-title: Human-like autonomous car-following model with deep reinforcement learning publication-title: Transport Res C Emerg Technol doi: 10.1016/j.trc.2018.10.024 – volume: 56 start-page: 5523 year: 2020 ident: 10.1016/j.ijhydene.2022.12.194_bib41 article-title: An unknown input nonlinear observer based fractional order PID control of fuel cell air supply system publication-title: IEEE Trans Ind Appl doi: 10.1109/TIA.2020.2999037 – start-page: 908 year: 2012 ident: 10.1016/j.ijhydene.2022.12.194_bib45 article-title: Increase of the performance of a low ripple boost converter for PEM FC applications using GA and PSO algorithms – volume: 147 start-page: 136 year: 2005 ident: 10.1016/j.ijhydene.2022.12.194_bib9 article-title: Anode-supported intermediate-temperature direct internal reforming solid oxide fuel cell: II. Model-based dynamic performance and control publication-title: J Power Sources doi: 10.1016/j.jpowsour.2005.01.017 – start-page: 499 year: 2015 ident: 10.1016/j.ijhydene.2022.12.194_bib18 article-title: L1 adaptive output feedback controller with operating constraints for solid oxide fuel cells – volume: 33 start-page: 4488 year: 2017 ident: 10.1016/j.ijhydene.2022.12.194_bib31 article-title: Model predictive control of dual-mode operations Z-source inverter: islanded and grid-connected publication-title: IEEE Trans Power Electron doi: 10.1109/TPEL.2017.2723358 – volume: 7 start-page: 41799 year: 2019 ident: 10.1016/j.ijhydene.2022.12.194_bib39 article-title: Hierarchical intermittent motor control with deterministic policy gradient publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2904910 – volume: 324 start-page: 119313 year: 2022 ident: 10.1016/j.ijhydene.2022.12.194_bib4 article-title: A multi-objective energy coordinative and management policy for solid oxide fuel cell using triune brain large-scale multi-agent deep deterministic policy gradient publication-title: Appl Energy doi: 10.1016/j.apenergy.2022.119313 – volume: 62 start-page: 5208 year: 2015 ident: 10.1016/j.ijhydene.2022.12.194_bib14 article-title: Interval-based sliding mode control design for solid oxide fuel cells with state and actuator constraints publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2015.2404811 – volume: 218 start-page: 9296 year: 2012 ident: 10.1016/j.ijhydene.2022.12.194_bib24 article-title: Predictive control for sector bounded nonlinear model and its application to solid oxide fuel cell systems publication-title: Appl Math Comput – start-page: 6378 year: 2011 ident: 10.1016/j.ijhydene.2022.12.194_bib28 article-title: CMP pressure control based on dual-modes controller – year: 2018 ident: 10.1016/j.ijhydene.2022.12.194_bib46 article-title: Distributed prioritized experience replay publication-title: (arXiv arXiv – start-page: 1278 year: 2017 ident: 10.1016/j.ijhydene.2022.12.194_bib21 article-title: The multi-parameter programming control of solid oxide fuel cell – start-page: 5985 year: 2018 ident: 10.1016/j.ijhydene.2022.12.194_bib27 article-title: PID-explicit predictive dual mode control for double-water tank – volume: 43 start-page: 6352 year: 2018 ident: 10.1016/j.ijhydene.2022.12.194_bib12 article-title: Feedforward-feedback control of a solid oxide fuel cell power system publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2018.01.203 – volume: 20 start-page: 1 year: 2012 ident: 10.1016/j.ijhydene.2022.12.194_bib19 article-title: Robust control of solid oxide fuel cell ultracapacitor hybrid system publication-title: IEEE Trans Control Syst Technol – year: 2014 ident: 10.1016/j.ijhydene.2022.12.194_bib43 article-title: SOFC for TS fuzzy systems: less conservative and local stabilization conditions – volume: 43 start-page: 3555 year: 2018 ident: 10.1016/j.ijhydene.2022.12.194_bib16 article-title: ANN–supported control strategy for a solid oxide fuel cell working on demand for a public utility building publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2017.10.171 – volume: 15 start-page: 117900 year: 2022 ident: 10.1016/j.ijhydene.2022.12.194_bib7 article-title: Coordinated Load Frequency Control of Multi-Area Integrated Energy System Using Multi-Agent publication-title: Deep Reinforcement Learning – start-page: 5 year: 2006 ident: 10.1016/j.ijhydene.2022.12.194_bib26 article-title: Real-time reconfigurable micro-system based on FPGA and CPLD for dual-mode PID control through backpropagation neural network – volume: 123 start-page: 281 year: 2000 ident: 10.1016/j.ijhydene.2022.12.194_bib42 article-title: Theory and application of a novel fuzzy PID controller using a simplified Takagi–Sugeno rule scheme publication-title: Inf Sci doi: 10.1016/S0020-0255(99)00133-4 – start-page: 3137 year: 2010 ident: 10.1016/j.ijhydene.2022.12.194_bib29 article-title: Fuzzy-PID dual mode fuzzy control of the electro-hydraulic deviation control system – volume: 8 start-page: 1758 year: 2018 ident: 10.1016/j.ijhydene.2022.12.194_bib10 article-title: Adaptive tracking constrained controller design for solid oxide fuel cells based on a wiener-type neural network publication-title: Appl Sci doi: 10.3390/app8101758 – volume: 30 start-page: 101752 year: 2022 ident: 10.1016/j.ijhydene.2022.12.194_bib33 article-title: Large-scale multi-agent reinforcement learning-based method for coordinated output voltage control of solid oxide fuel cell publication-title: Case Stud Therm Eng doi: 10.1016/j.csite.2021.101752 – volume: 12 start-page: 1435 year: 2019 ident: 10.1016/j.ijhydene.2022.12.194_bib40 article-title: Fractional order fuzzy PID control of automotive PEM fuel cell air feed system using neural network optimization algorithm publication-title: Energies doi: 10.3390/en12081435 – start-page: 6 year: 2003 ident: 10.1016/j.ijhydene.2022.12.194_bib11 article-title: Control challenges of fuel cell-driven distributed generation – volume: 374 start-page: 163 year: 2018 ident: 10.1016/j.ijhydene.2022.12.194_bib15 article-title: Optimal robust control strategy of a solid oxide fuel cell system publication-title: J Power Sources doi: 10.1016/j.jpowsour.2017.10.070 – volume: 11 start-page: 65 year: 2018 ident: 10.1016/j.ijhydene.2022.12.194_bib36 article-title: Control strategy of speed servo systems based on deep reinforcement learning publication-title: Algorithms doi: 10.3390/a11050065 – start-page: 1587 year: 2018 ident: 10.1016/j.ijhydene.2022.12.194_bib47 article-title: Addressing function approximation error in actor-critic methods – volume: 304 year: 2021 ident: 10.1016/j.ijhydene.2022.12.194_bib5 article-title: A data-driven output voltage control of solid oxide fuel cell using multi-agent deep reinforcement learning publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.117541 – start-page: 1 year: 2020 ident: 10.1016/j.ijhydene.2022.12.194_bib37 article-title: Automatic generation control based on multiple neural networks with actor-critic strategy publication-title: Trans Neural Netw Learn Syst – volume: 35 start-page: 12555 year: 2020 ident: 10.1016/j.ijhydene.2022.12.194_bib30 article-title: Stability blind-area-free control design for microgrid-interfaced voltage source inverters under dual-mode operation publication-title: IEEE Trans Power Electron doi: 10.1109/TPEL.2020.2988565 – volume: 214 start-page: 134 year: 2016 ident: 10.1016/j.ijhydene.2022.12.194_bib17 article-title: A novel adaptive neural network constrained control for solid oxide fuel cells via dynamic anti-windup publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.05.076 – volume: 42 start-page: 20430 year: 2017 ident: 10.1016/j.ijhydene.2022.12.194_bib44 article-title: Maximum power point tracking of a proton exchange membrane fuel cell system using PSO-PID controller publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2017.06.208 – volume: 54 start-page: 90 year: 2017 ident: 10.1016/j.ijhydene.2022.12.194_bib8 article-title: Optimization and control of a stand-alone hybrid solid oxide fuel cells/gas turbine system coupled with dry reforming of methane - ScienceDirect publication-title: J Process Control doi: 10.1016/j.jprocont.2017.03.016 – volume: 44 start-page: 19357 year: 2019 ident: 10.1016/j.ijhydene.2022.12.194_bib2 article-title: Nonlinear controller design based on cascade adaptive sliding mode control for PEM fuel cell air supply systems publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2018.10.180 – volume: 45 start-page: 13508 year: 2020 ident: 10.1016/j.ijhydene.2022.12.194_bib1 article-title: Robust fault diagnosis and fault tolerant control for PEMFC system based on an augmented LPV observer publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2020.03.063 – volume: 359 start-page: 8107 issue: 15 year: 2022 ident: 10.1016/j.ijhydene.2022.12.194_bib32 article-title: Optimal trajectory exploration large-scale deep reinforcement learning tuned optimal controller for proton exchange membrane fuel cell publication-title: J Franklin Inst doi: 10.1016/j.jfranklin.2022.02.007 |
| SSID | ssj0017049 |
| Score | 2.5070295 |
| Snippet | Solid oxide fuel cell (SOFC) is disadvantaged by significant nonlinearity, which makes it difficult to control output voltage of SOFC and satisfy the... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 14053 |
| SubjectTerms | Deep reinforcement learning Fuel utilization Imitation distributed deep deterministic policy gradient algorithm (ID3PG) Optimal control framework Output voltage control Solid oxide fuel cell |
| Title | Optimal dual-model controller of solid oxide fuel cell output voltage using imitation distributed deep reinforcement learning |
| URI | https://dx.doi.org/10.1016/j.ijhydene.2022.12.194 |
| Volume | 48 |
| WOSCitedRecordID | wos000981351900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-3487 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017049 issn: 0360-3199 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKxgEOiE-x8SEfuFUZjePU8XGahmBCg8OA3iLHdkuqklQl2boDfx3_GM9faQoTYwekKmoS2U76fn3--fl9IPQqlrGkpEgioLfTiEqiIgGsGJQhKTRPqFY2iv_ze3Z6mk0m_ONg8DPEwpwvWFVl6zVf_ldRwzUQtgmdvYG4u07hAnwHocMRxA7HfxL8B1AC38zWSysWkS10E_zRF9puCcDwpRrW61Lp4bQ1t439rm6bZdsMQVs1xo2ntTYEE_3kEKJMgl1TGwsIqtJ6OVxpm3NVWvNiKD4x63PdbWNjL0XF10u1qmemvIANPOx8gqxjwUkpLjbhaUetq6ot6kvhezfuPqW3cn_RZae2WjeLVrPQ3NsySNLblgkxXGZWcCWTgn6mWQ-HLkOM17awOHSZhv3UDeeutscf84IzUcwPyjm8IrzcAYxOjB04diWWtxNx_zZBdm6LwSNunod-ctNPHsOH01tol7CUg2rdPXx3PDnpNrOYX4WFl-sFql_9RFdzpB7vObuP7vkFCz50QHuABrp6iO720lg-Qj885PAGcngDOVxPsYUctpDDBnLYQA47yGEPOWwhhzvI4R7ksIEc3oIcDpB7jD69OT47ehv5sh6RTGLSRFyZzXTNGSz1JRGZjMlYFclIMZLIqRgnTEkgrprxQvAxVapIhSHOwPXhfqKTJ2inqiv9FGE6EpzGmUw1i2k60jye8iJTSmVjymjB9lAafshc-qc3pVcW-d9FuYded-2WLuvLtS14kFPuuavjpDlA8Jq2-zce7Rm6s_n7PEc7zarVL9Bted6U31cvPf5-AWY5xnY |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+dual-model+controller+of+solid+oxide+fuel+cell+output+voltage+using+imitation+distributed+deep+reinforcement+learning&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Li%2C+Jiawen&rft.au=Cui%2C+Haoyang&rft.au=Jiang%2C+Wei&rft.au=Yu%2C+Hengwen&rft.date=2023-04-30&rft.issn=0360-3199&rft.volume=48&rft.issue=37&rft.spage=14053&rft.epage=14067&rft_id=info:doi/10.1016%2Fj.ijhydene.2022.12.194&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijhydene_2022_12_194 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon |