Optimal dual-model controller of solid oxide fuel cell output voltage using imitation distributed deep reinforcement learning

Solid oxide fuel cell (SOFC) is disadvantaged by significant nonlinearity, which makes it difficult to control output voltage of SOFC and satisfy the constraints of fuel utilization simultaneously. In order to solve this problem, a dual-model control framework (DMCF) is proposed. In particular, ther...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of hydrogen energy Jg. 48; H. 37; S. 14053 - 14067
Hauptverfasser: Li, Jiawen, Cui, Haoyang, Jiang, Wei, Yu, Hengwen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 30.04.2023
Schlagworte:
ISSN:0360-3199, 1879-3487
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Solid oxide fuel cell (SOFC) is disadvantaged by significant nonlinearity, which makes it difficult to control output voltage of SOFC and satisfy the constraints of fuel utilization simultaneously. In order to solve this problem, a dual-model control framework (DMCF) is proposed. In particular, there are two controllers deployed under this framework, with an PID controller and a supplementary dynamic controller to track the SOFC output voltage. The supplementary dynamic controller is conducive to the stabilization of tracking by adapting to the uncertainties, considering the constraint on fuel utilization. In addition, an imitation distributed deep deterministic policy gradient (ID3PG) algorithm, which integrates imitation learning and distributed deep reinforcement learning to enhance the robustness and adaptive capacity of this framework, is proposed for the supplementary dynamic controller. The simulation results obtained in this work have demonstrated that the proposed framework is effective in imposing control on SOFC output voltage and preventing constraint violations of fuel utilization. •An ID3PG-PID dual-model control framework is proposed.•A new deep reinforcement learning algorithm is proposed.•ID3PG is introduced for enhancing adaptive capacity.•The proposed framework is effective in preventing constraint violations.
AbstractList Solid oxide fuel cell (SOFC) is disadvantaged by significant nonlinearity, which makes it difficult to control output voltage of SOFC and satisfy the constraints of fuel utilization simultaneously. In order to solve this problem, a dual-model control framework (DMCF) is proposed. In particular, there are two controllers deployed under this framework, with an PID controller and a supplementary dynamic controller to track the SOFC output voltage. The supplementary dynamic controller is conducive to the stabilization of tracking by adapting to the uncertainties, considering the constraint on fuel utilization. In addition, an imitation distributed deep deterministic policy gradient (ID3PG) algorithm, which integrates imitation learning and distributed deep reinforcement learning to enhance the robustness and adaptive capacity of this framework, is proposed for the supplementary dynamic controller. The simulation results obtained in this work have demonstrated that the proposed framework is effective in imposing control on SOFC output voltage and preventing constraint violations of fuel utilization. •An ID3PG-PID dual-model control framework is proposed.•A new deep reinforcement learning algorithm is proposed.•ID3PG is introduced for enhancing adaptive capacity.•The proposed framework is effective in preventing constraint violations.
Author Li, Jiawen
Cui, Haoyang
Jiang, Wei
Yu, Hengwen
Author_xml – sequence: 1
  givenname: Jiawen
  orcidid: 0000-0003-4097-9922
  surname: Li
  fullname: Li, Jiawen
  email: lijiawen@shiep.edu.cn
  organization: School of Electronic and Information Engineering, Shanghai University of Electric Power, Shanghai, 201306, China
– sequence: 2
  givenname: Haoyang
  surname: Cui
  fullname: Cui, Haoyang
  email: cuihy@shiep.edu.cn
  organization: School of Electronic and Information Engineering, Shanghai University of Electric Power, Shanghai, 201306, China
– sequence: 3
  givenname: Wei
  surname: Jiang
  fullname: Jiang, Wei
  organization: School of Electronic and Information Engineering, Shanghai University of Electric Power, Shanghai, 201306, China
– sequence: 4
  givenname: Hengwen
  surname: Yu
  fullname: Yu, Hengwen
  organization: Shanghai Xinwei Semiconductor Co. Ltd, China
BookMark eNqFkMtKAzEUhoNUsFVfQfICU5PJ3AIulOINCt3oOmSSMzVDmpQkU-zCd3dK68ZN4YezOHw_53wzNHHeAUJ3lMwpodV9Pzf9116Dg3lO8nxOx_DiAk1pU_OMFU09QVPCKpIxyvkVmsXYE0JrUvAp-lltk9lIi_UgbbbxGixW3qXgrYWAfYejt0Zj_2004G44rMFa7Ie0HRLeeZvkGvAQjVtjszFJJuMd1iamYNohgcYaYIsDGNf5oGADLmELMriRuEGXnbQRbk_zGn2-PH8s3rLl6vV98bTMFKN5yriuijIHXjecq1w2iuaVbhnRdc5UJytWa0XqBmreSl4VWrelJFXByqIc9wzYNXo49qrgYwzQCXW6NAVprKBEHFSKXvypFAeVgo7hxYhX__BtGKWF_Xnw8QjC-NzOQBBRGXAKtAmgktDenKv4BeCYmLM
CitedBy_id crossref_primary_10_1109_JIOT_2023_3325482
crossref_primary_10_1088_2631_8695_ad33ff
crossref_primary_10_1109_TTE_2023_3253060
crossref_primary_10_1016_j_arcontrol_2025_101014
crossref_primary_10_1016_j_rser_2025_116000
crossref_primary_10_1109_TII_2024_3514084
crossref_primary_10_1016_j_ijhydene_2024_01_191
crossref_primary_10_1016_j_jpowsour_2025_238281
crossref_primary_10_1016_j_apenergy_2023_121181
crossref_primary_10_1109_TSG_2025_3567616
crossref_primary_10_1007_s40435_024_01453_0
crossref_primary_10_1109_TASE_2023_3263005
crossref_primary_10_3389_fenrg_2023_1333827
crossref_primary_10_1109_JIOT_2023_3253693
crossref_primary_10_3389_fenrg_2024_1377465
crossref_primary_10_1016_j_scs_2023_104917
crossref_primary_10_3389_fenrg_2024_1361869
crossref_primary_10_1109_JESTIE_2023_3263372
Cites_doi 10.1016/j.apenergy.2020.116386
10.1016/j.jpowsour.2018.12.058
10.1016/j.jclepro.2021.128929
10.1016/j.ijhydene.2012.01.130
10.1109/TPWRS.2019.2941134
10.1016/j.isatra.2019.10.009
10.1016/j.trc.2018.10.024
10.1109/TIA.2020.2999037
10.1016/j.jpowsour.2005.01.017
10.1109/TPEL.2017.2723358
10.1109/ACCESS.2019.2904910
10.1016/j.apenergy.2022.119313
10.1109/TIE.2015.2404811
10.1016/j.ijhydene.2018.01.203
10.1016/j.ijhydene.2017.10.171
10.1016/S0020-0255(99)00133-4
10.3390/app8101758
10.1016/j.csite.2021.101752
10.3390/en12081435
10.1016/j.jpowsour.2017.10.070
10.3390/a11050065
10.1016/j.apenergy.2021.117541
10.1109/TPEL.2020.2988565
10.1016/j.neucom.2016.05.076
10.1016/j.ijhydene.2017.06.208
10.1016/j.jprocont.2017.03.016
10.1016/j.ijhydene.2018.10.180
10.1016/j.ijhydene.2020.03.063
10.1016/j.jfranklin.2022.02.007
ContentType Journal Article
Copyright 2022 Hydrogen Energy Publications LLC
Copyright_xml – notice: 2022 Hydrogen Energy Publications LLC
DBID AAYXX
CITATION
DOI 10.1016/j.ijhydene.2022.12.194
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3487
EndPage 14067
ExternalDocumentID 10_1016_j_ijhydene_2022_12_194
S0360319922059079
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SES
SEW
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
TN5
XPP
ZMT
~G-
29J
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
R2-
SAC
SCB
T9H
WUQ
~HD
ID FETCH-LOGICAL-c312t-9d6452e97899c2a8c126db30d723cfa637dc078e79ba964ddb5a06435453cf3e3
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000981351900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-3199
IngestDate Sat Nov 29 07:21:42 EST 2025
Tue Nov 18 22:21:28 EST 2025
Fri Feb 23 02:37:13 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 37
Keywords Deep reinforcement learning
Optimal control framework
Solid oxide fuel cell
Output voltage control
Fuel utilization
Imitation distributed deep deterministic policy gradient algorithm (ID3PG)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-9d6452e97899c2a8c126db30d723cfa637dc078e79ba964ddb5a06435453cf3e3
ORCID 0000-0003-4097-9922
PageCount 15
ParticipantIDs crossref_citationtrail_10_1016_j_ijhydene_2022_12_194
crossref_primary_10_1016_j_ijhydene_2022_12_194
elsevier_sciencedirect_doi_10_1016_j_ijhydene_2022_12_194
PublicationCentury 2000
PublicationDate 2023-04-30
PublicationDateYYYYMMDD 2023-04-30
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-30
  day: 30
PublicationDecade 2020
PublicationTitle International journal of hydrogen energy
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ji, Xu, Liu (bib17) 2016; 214
Aguiar, Adjiman, Brandon (bib9) 2005; 147
Ahmadi, Abdi, Kakavand (bib44) 2017; 42
Han, Zhou (bib21) 2017
Yang, Wang, Chen (bib1) 2020; 45
Wu, Gao (bib15) 2018; 374
Xu, Yan, Ji (bib23) 2016
Horgan, Quan, Budden, Barth-Maron, Hessel, Van Hasselt (bib46) 2018
Deng, Li, Cui, Zhu, Chen (bib2) 2019; 44
Xiao, Liu (bib27) 2018
Mozelli, Souza, Mendes (bib43) 2014
Li, Yu, Zhang, Li, Lin, Zhu (bib3) 2021; 285
Rauh, Senkel, Aschemann (bib14) 2015; 62
Zhu, Wang, Wang (bib35) 2018; 97
Shi, Sun, Li, Wang, Li (bib39) 2019; 7
Li, Yu, Yang (bib5) 2021; 304
Ruan, Han, Han (bib26) 2006
Wang, Bao (bib29) 2010
Fujimoto, Hoof, Meger (bib47) 2018
Li, Yu, Zhang (bib7) 2022; 15
Allag, Das (bib19) 2012; 20
Xi, Wu, Xu, Sun (bib37) 2020
Wu, Chen, Hwang, Hsu (bib8) 2017; 54
Men, Zhang, Zhou, Ye, Lu (bib28) 2011
Ying (bib42) 2000; 123
Marsala, Ragusa (bib45) 2012
Szabłowski, Milewski, Badyda, Kupecki (bib16) 2018; 43
Marzooghi, Raoofat (bib25) 2012; 37
Abouomar, Zhang, Su (bib40) 2019; 12
Pan, Cao, Shen (bib18) 2015
Li, Li, Yu, Yang (bib33) 2022; 30
Zhao, Li, Rui, Zhao, Huangfu (bib41) 2020; 56
Lillicrap, Hunt, P, Heess, Erez, Tassa (bib34) 2015; 8
Li, Yu (bib6) 2021; 321
Xia, Zou, Yan, Li (bib10) 2018; 8
Wu, Yang, Wang, Li (bib13) 2019; 414
Duan, Shi, Diao, Li, Yi (bib38) 2019; 35
Vreko, Nerat, Vrani, Dolanc, Dolenc, Pregelj (bib12) 2018; 43
Lee, Kwon, Park (bib24) 2012; 218
Awryńczuk (bib22) 2020; 99
Sajadian, Ahmadi (bib31) 2017; 33
Knyazkin, Soder, Canizares (bib11) 2003
Jiawen, Haoyang (bib32) 2022; 359
Han, Zhou (bib20) 2016
Chen, He, Chen, Xu (bib36) 2018; 11
Li (bib4) 2022; 324
Z, X, Y, Y, G, X (bib30) 2020; 35
Wu (10.1016/j.ijhydene.2022.12.194_bib8) 2017; 54
Wu (10.1016/j.ijhydene.2022.12.194_bib13) 2019; 414
Li (10.1016/j.ijhydene.2022.12.194_bib3) 2021; 285
Han (10.1016/j.ijhydene.2022.12.194_bib20) 2016
Z (10.1016/j.ijhydene.2022.12.194_bib30) 2020; 35
Abouomar (10.1016/j.ijhydene.2022.12.194_bib40) 2019; 12
Li (10.1016/j.ijhydene.2022.12.194_bib7) 2022; 15
Jiawen (10.1016/j.ijhydene.2022.12.194_bib32) 2022; 359
Ji (10.1016/j.ijhydene.2022.12.194_bib17) 2016; 214
Li (10.1016/j.ijhydene.2022.12.194_bib6) 2021; 321
Pan (10.1016/j.ijhydene.2022.12.194_bib18) 2015
Shi (10.1016/j.ijhydene.2022.12.194_bib39) 2019; 7
Aguiar (10.1016/j.ijhydene.2022.12.194_bib9) 2005; 147
Xia (10.1016/j.ijhydene.2022.12.194_bib10) 2018; 8
Marsala (10.1016/j.ijhydene.2022.12.194_bib45) 2012
Zhao (10.1016/j.ijhydene.2022.12.194_bib41) 2020; 56
Allag (10.1016/j.ijhydene.2022.12.194_bib19) 2012; 20
Awryńczuk (10.1016/j.ijhydene.2022.12.194_bib22) 2020; 99
Han (10.1016/j.ijhydene.2022.12.194_bib21) 2017
Horgan (10.1016/j.ijhydene.2022.12.194_bib46) 2018
Lillicrap (10.1016/j.ijhydene.2022.12.194_bib34) 2015; 8
Sajadian (10.1016/j.ijhydene.2022.12.194_bib31) 2017; 33
Xiao (10.1016/j.ijhydene.2022.12.194_bib27) 2018
Xu (10.1016/j.ijhydene.2022.12.194_bib23) 2016
Ahmadi (10.1016/j.ijhydene.2022.12.194_bib44) 2017; 42
Duan (10.1016/j.ijhydene.2022.12.194_bib38) 2019; 35
Wang (10.1016/j.ijhydene.2022.12.194_bib29) 2010
Li (10.1016/j.ijhydene.2022.12.194_bib5) 2021; 304
Rauh (10.1016/j.ijhydene.2022.12.194_bib14) 2015; 62
Li (10.1016/j.ijhydene.2022.12.194_bib4) 2022; 324
Wu (10.1016/j.ijhydene.2022.12.194_bib15) 2018; 374
Szabłowski (10.1016/j.ijhydene.2022.12.194_bib16) 2018; 43
Mozelli (10.1016/j.ijhydene.2022.12.194_bib43) 2014
Xi (10.1016/j.ijhydene.2022.12.194_bib37) 2020
Men (10.1016/j.ijhydene.2022.12.194_bib28) 2011
Ying (10.1016/j.ijhydene.2022.12.194_bib42) 2000; 123
Yang (10.1016/j.ijhydene.2022.12.194_bib1) 2020; 45
Fujimoto (10.1016/j.ijhydene.2022.12.194_bib47) 2018
Lee (10.1016/j.ijhydene.2022.12.194_bib24) 2012; 218
Vreko (10.1016/j.ijhydene.2022.12.194_bib12) 2018; 43
Li (10.1016/j.ijhydene.2022.12.194_bib33) 2022; 30
Ruan (10.1016/j.ijhydene.2022.12.194_bib26) 2006
Zhu (10.1016/j.ijhydene.2022.12.194_bib35) 2018; 97
Knyazkin (10.1016/j.ijhydene.2022.12.194_bib11) 2003
Marzooghi (10.1016/j.ijhydene.2022.12.194_bib25) 2012; 37
Chen (10.1016/j.ijhydene.2022.12.194_bib36) 2018; 11
Deng (10.1016/j.ijhydene.2022.12.194_bib2) 2019; 44
References_xml – volume: 43
  start-page: 3555
  year: 2018
  end-page: 3565
  ident: bib16
  article-title: ANN–supported control strategy for a solid oxide fuel cell working on demand for a public utility building
  publication-title: Int J Hydrogen Energy
– volume: 45
  start-page: 13508
  year: 2020
  end-page: 13522
  ident: bib1
  article-title: Robust fault diagnosis and fault tolerant control for PEMFC system based on an augmented LPV observer
  publication-title: Int J Hydrogen Energy
– start-page: 5985
  year: 2018
  end-page: 5989
  ident: bib27
  article-title: PID-explicit predictive dual mode control for double-water tank
  publication-title: 2018 Chinese control and decision conference (CCDC)
– start-page: 6
  year: 2003
  ident: bib11
  article-title: Control challenges of fuel cell-driven distributed generation
  publication-title: 2003 IEEE bologna power tech conference proceedings
– volume: 99
  start-page: 270
  year: 2020
  end-page: 289
  ident: bib22
  article-title: Constrained computationally efficient nonlinear predictive control of Solid Oxide Fuel Cell: tuning, feasibility and performance
  publication-title: ISA Trans
– volume: 97
  start-page: 348
  year: 2018
  end-page: 368
  ident: bib35
  article-title: Human-like autonomous car-following model with deep reinforcement learning
  publication-title: Transport Res C Emerg Technol
– volume: 54
  start-page: 90
  year: 2017
  end-page: 100
  ident: bib8
  article-title: Optimization and control of a stand-alone hybrid solid oxide fuel cells/gas turbine system coupled with dry reforming of methane - ScienceDirect
  publication-title: J Process Control
– volume: 20
  start-page: 1
  year: 2012
  end-page: 10
  ident: bib19
  article-title: Robust control of solid oxide fuel cell ultracapacitor hybrid system
  publication-title: IEEE Trans Control Syst Technol
– volume: 304
  year: 2021
  ident: bib5
  article-title: A data-driven output voltage control of solid oxide fuel cell using multi-agent deep reinforcement learning
  publication-title: Appl Energy
– start-page: 499
  year: 2015
  end-page: 507
  ident: bib18
  article-title: L1 adaptive output feedback controller with operating constraints for solid oxide fuel cells
  publication-title: International conference on informatics in control
– volume: 35
  start-page: 814
  year: 2019
  end-page: 817
  ident: bib38
  article-title: Deep-reinforcement-learning-based autonomous voltage control for power grid operations
  publication-title: IEEE Trans Power Syst
– volume: 42
  start-page: 20430
  year: 2017
  end-page: 20443
  ident: bib44
  article-title: Maximum power point tracking of a proton exchange membrane fuel cell system using PSO-PID controller
  publication-title: Int J Hydrogen Energy
– volume: 30
  start-page: 101752
  year: 2022
  ident: bib33
  article-title: Large-scale multi-agent reinforcement learning-based method for coordinated output voltage control of solid oxide fuel cell
  publication-title: Case Stud Therm Eng
– start-page: 5
  year: 2006
  ident: bib26
  article-title: Real-time reconfigurable micro-system based on FPGA and CPLD for dual-mode PID control through backpropagation neural network
  publication-title: International conference on industrial electronics & control applications
– start-page: 1278
  year: 2017
  end-page: 1281
  ident: bib21
  article-title: The multi-parameter programming control of solid oxide fuel cell
  publication-title: 2017 4th international conference on information science and control engineering (ICISCE)
– start-page: 3137
  year: 2010
  end-page: 3140
  ident: bib29
  article-title: Fuzzy-PID dual mode fuzzy control of the electro-hydraulic deviation control system
  publication-title: 2010 international conference on mechanic automation and control engineering
– volume: 218
  start-page: 9296
  year: 2012
  end-page: 9304
  ident: bib24
  article-title: Predictive control for sector bounded nonlinear model and its application to solid oxide fuel cell systems
  publication-title: Appl Math Comput
– volume: 147
  start-page: 136
  year: 2005
  end-page: 147
  ident: bib9
  article-title: Anode-supported intermediate-temperature direct internal reforming solid oxide fuel cell: II. Model-based dynamic performance and control
  publication-title: J Power Sources
– volume: 123
  start-page: 281
  year: 2000
  end-page: 293
  ident: bib42
  article-title: Theory and application of a novel fuzzy PID controller using a simplified Takagi–Sugeno rule scheme
  publication-title: Inf Sci
– volume: 8
  start-page: 1758
  year: 2018
  ident: bib10
  article-title: Adaptive tracking constrained controller design for solid oxide fuel cells based on a wiener-type neural network
  publication-title: Appl Sci
– start-page: 908
  year: 2012
  end-page: 913
  ident: bib45
  article-title: Increase of the performance of a low ripple boost converter for PEM FC applications using GA and PSO algorithms
  publication-title: Vehicle power and propulsion conference (VPPC)
– volume: 15
  start-page: 117900
  year: 2022
  ident: bib7
  article-title: Coordinated Load Frequency Control of Multi-Area Integrated Energy System Using Multi-Agent
  publication-title: Deep Reinforcement Learning
– volume: 7
  start-page: 41799
  year: 2019
  end-page: 41810
  ident: bib39
  article-title: Hierarchical intermittent motor control with deterministic policy gradient
  publication-title: IEEE Access
– volume: 374
  start-page: 163
  year: 2018
  end-page: 181
  ident: bib15
  article-title: Optimal robust control strategy of a solid oxide fuel cell system
  publication-title: J Power Sources
– volume: 285
  start-page: 116386
  year: 2021
  ident: bib3
  article-title: Efficient experience replay based deep deterministic policy gradient for AGC dispatch in integrated energy system
  publication-title: Appl Energy
– volume: 35
  start-page: 12555
  year: 2020
  end-page: 12569
  ident: bib30
  article-title: Stability blind-area-free control design for microgrid-interfaced voltage source inverters under dual-mode operation
  publication-title: IEEE Trans Power Electron
– volume: 414
  start-page: 345
  year: 2019
  end-page: 353
  ident: bib13
  article-title: Temperature gradient control of a solid oxide fuel cell stack
  publication-title: J Power Sources
– start-page: 953
  year: 2016
  end-page: 957
  ident: bib20
  article-title: Dual-mode predictive control of solid oxide fuel cell
  publication-title: 2016 3rd international conference on information science and control engineering (ICISCE)
– volume: 8
  start-page: A187
  year: 2015
  ident: bib34
  article-title: Continuous control with deep reinforcement learning
  publication-title: Comput Sci
– volume: 214
  start-page: 134
  year: 2016
  end-page: 142
  ident: bib17
  article-title: A novel adaptive neural network constrained control for solid oxide fuel cells via dynamic anti-windup
  publication-title: Neurocomputing
– volume: 324
  start-page: 119313
  year: 2022
  ident: bib4
  article-title: A multi-objective energy coordinative and management policy for solid oxide fuel cell using triune brain large-scale multi-agent deep deterministic policy gradient
  publication-title: Appl Energy
– volume: 62
  start-page: 5208
  year: 2015
  end-page: 5217
  ident: bib14
  article-title: Interval-based sliding mode control design for solid oxide fuel cells with state and actuator constraints
  publication-title: IEEE Trans Ind Electron
– volume: 11
  start-page: 65
  year: 2018
  ident: bib36
  article-title: Control strategy of speed servo systems based on deep reinforcement learning
  publication-title: Algorithms
– volume: 33
  start-page: 4488
  year: 2017
  end-page: 4497
  ident: bib31
  article-title: Model predictive control of dual-mode operations Z-source inverter: islanded and grid-connected
  publication-title: IEEE Trans Power Electron
– volume: 37
  start-page: 7796
  year: 2012
  end-page: 7806
  ident: bib25
  article-title: Improving the performance of proton exchange membrane and solid oxide fuel cells under voltage flicker using Fuzzy-PI controller
  publication-title: Int J Hydrogen Energy
– volume: 359
  start-page: 8107
  year: 2022
  end-page: 8126
  ident: bib32
  article-title: Optimal trajectory exploration large-scale deep reinforcement learning tuned optimal controller for proton exchange membrane fuel cell
  publication-title: J Franklin Inst
– volume: 43
  start-page: 6352
  year: 2018
  end-page: 6363
  ident: bib12
  article-title: Feedforward-feedback control of a solid oxide fuel cell power system
  publication-title: Int J Hydrogen Energy
– start-page: 6378
  year: 2011
  end-page: 6382
  ident: bib28
  article-title: CMP pressure control based on dual-modes controller
  publication-title: 2011 second international conference on mechanic automation and control engineering, 2011 second international conference on mechanic automation and control engineering
– volume: 44
  start-page: 19357
  year: 2019
  end-page: 19369
  ident: bib2
  article-title: Nonlinear controller design based on cascade adaptive sliding mode control for PEM fuel cell air supply systems
  publication-title: Int J Hydrogen Energy
– start-page: 3986
  year: 2016
  end-page: 3991
  ident: bib23
  article-title: RBF neural network based adaptive constrained PID control of a solid oxide fuel cell
  publication-title: 2016 Chinese control and decision conference (CCDC)
– start-page: 1
  year: 2020
  end-page: 11
  ident: bib37
  article-title: Automatic generation control based on multiple neural networks with actor-critic strategy
  publication-title: Trans Neural Netw Learn Syst
– volume: 12
  start-page: 1435
  year: 2019
  ident: bib40
  article-title: Fractional order fuzzy PID control of automotive PEM fuel cell air feed system using neural network optimization algorithm
  publication-title: Energies
– year: 2018
  ident: bib46
  article-title: Distributed prioritized experience replay
  publication-title: (arXiv arXiv
– volume: 321
  start-page: 128929
  year: 2021
  ident: bib6
  article-title: A novel data-driven controller for solid oxide fuel cell via deep reinforcement learning
  publication-title: Journal of Cleaner Production
– year: 2014
  ident: bib43
  article-title: SOFC for TS fuzzy systems: less conservative and local stabilization conditions
  publication-title: 2014 IEEE symposium on computational intelligence in control and automation (CICA)
– volume: 56
  start-page: 5523
  year: 2020
  end-page: 5532
  ident: bib41
  article-title: An unknown input nonlinear observer based fractional order PID control of fuel cell air supply system
  publication-title: IEEE Trans Ind Appl
– start-page: 1587
  year: 2018
  end-page: 1596
  ident: bib47
  article-title: Addressing function approximation error in actor-critic methods
  publication-title: Proceedings of the 35th international conference on machine learning
– start-page: 3986
  year: 2016
  ident: 10.1016/j.ijhydene.2022.12.194_bib23
  article-title: RBF neural network based adaptive constrained PID control of a solid oxide fuel cell
– volume: 285
  start-page: 116386
  year: 2021
  ident: 10.1016/j.ijhydene.2022.12.194_bib3
  article-title: Efficient experience replay based deep deterministic policy gradient for AGC dispatch in integrated energy system
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.116386
– volume: 414
  start-page: 345
  year: 2019
  ident: 10.1016/j.ijhydene.2022.12.194_bib13
  article-title: Temperature gradient control of a solid oxide fuel cell stack
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2018.12.058
– start-page: 953
  year: 2016
  ident: 10.1016/j.ijhydene.2022.12.194_bib20
  article-title: Dual-mode predictive control of solid oxide fuel cell
– volume: 321
  start-page: 128929
  year: 2021
  ident: 10.1016/j.ijhydene.2022.12.194_bib6
  article-title: A novel data-driven controller for solid oxide fuel cell via deep reinforcement learning
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2021.128929
– volume: 37
  start-page: 7796
  year: 2012
  ident: 10.1016/j.ijhydene.2022.12.194_bib25
  article-title: Improving the performance of proton exchange membrane and solid oxide fuel cells under voltage flicker using Fuzzy-PI controller
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.01.130
– volume: 8
  start-page: A187
  year: 2015
  ident: 10.1016/j.ijhydene.2022.12.194_bib34
  article-title: Continuous control with deep reinforcement learning
  publication-title: Comput Sci
– volume: 35
  start-page: 814
  year: 2019
  ident: 10.1016/j.ijhydene.2022.12.194_bib38
  article-title: Deep-reinforcement-learning-based autonomous voltage control for power grid operations
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2019.2941134
– volume: 99
  start-page: 270
  year: 2020
  ident: 10.1016/j.ijhydene.2022.12.194_bib22
  article-title: Constrained computationally efficient nonlinear predictive control of Solid Oxide Fuel Cell: tuning, feasibility and performance
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2019.10.009
– volume: 97
  start-page: 348
  year: 2018
  ident: 10.1016/j.ijhydene.2022.12.194_bib35
  article-title: Human-like autonomous car-following model with deep reinforcement learning
  publication-title: Transport Res C Emerg Technol
  doi: 10.1016/j.trc.2018.10.024
– volume: 56
  start-page: 5523
  year: 2020
  ident: 10.1016/j.ijhydene.2022.12.194_bib41
  article-title: An unknown input nonlinear observer based fractional order PID control of fuel cell air supply system
  publication-title: IEEE Trans Ind Appl
  doi: 10.1109/TIA.2020.2999037
– start-page: 908
  year: 2012
  ident: 10.1016/j.ijhydene.2022.12.194_bib45
  article-title: Increase of the performance of a low ripple boost converter for PEM FC applications using GA and PSO algorithms
– volume: 147
  start-page: 136
  year: 2005
  ident: 10.1016/j.ijhydene.2022.12.194_bib9
  article-title: Anode-supported intermediate-temperature direct internal reforming solid oxide fuel cell: II. Model-based dynamic performance and control
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2005.01.017
– start-page: 499
  year: 2015
  ident: 10.1016/j.ijhydene.2022.12.194_bib18
  article-title: L1 adaptive output feedback controller with operating constraints for solid oxide fuel cells
– volume: 33
  start-page: 4488
  year: 2017
  ident: 10.1016/j.ijhydene.2022.12.194_bib31
  article-title: Model predictive control of dual-mode operations Z-source inverter: islanded and grid-connected
  publication-title: IEEE Trans Power Electron
  doi: 10.1109/TPEL.2017.2723358
– volume: 7
  start-page: 41799
  year: 2019
  ident: 10.1016/j.ijhydene.2022.12.194_bib39
  article-title: Hierarchical intermittent motor control with deterministic policy gradient
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2904910
– volume: 324
  start-page: 119313
  year: 2022
  ident: 10.1016/j.ijhydene.2022.12.194_bib4
  article-title: A multi-objective energy coordinative and management policy for solid oxide fuel cell using triune brain large-scale multi-agent deep deterministic policy gradient
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.119313
– volume: 62
  start-page: 5208
  year: 2015
  ident: 10.1016/j.ijhydene.2022.12.194_bib14
  article-title: Interval-based sliding mode control design for solid oxide fuel cells with state and actuator constraints
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2015.2404811
– volume: 218
  start-page: 9296
  year: 2012
  ident: 10.1016/j.ijhydene.2022.12.194_bib24
  article-title: Predictive control for sector bounded nonlinear model and its application to solid oxide fuel cell systems
  publication-title: Appl Math Comput
– start-page: 6378
  year: 2011
  ident: 10.1016/j.ijhydene.2022.12.194_bib28
  article-title: CMP pressure control based on dual-modes controller
– year: 2018
  ident: 10.1016/j.ijhydene.2022.12.194_bib46
  article-title: Distributed prioritized experience replay
  publication-title: (arXiv arXiv
– start-page: 1278
  year: 2017
  ident: 10.1016/j.ijhydene.2022.12.194_bib21
  article-title: The multi-parameter programming control of solid oxide fuel cell
– start-page: 5985
  year: 2018
  ident: 10.1016/j.ijhydene.2022.12.194_bib27
  article-title: PID-explicit predictive dual mode control for double-water tank
– volume: 43
  start-page: 6352
  year: 2018
  ident: 10.1016/j.ijhydene.2022.12.194_bib12
  article-title: Feedforward-feedback control of a solid oxide fuel cell power system
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.01.203
– volume: 20
  start-page: 1
  year: 2012
  ident: 10.1016/j.ijhydene.2022.12.194_bib19
  article-title: Robust control of solid oxide fuel cell ultracapacitor hybrid system
  publication-title: IEEE Trans Control Syst Technol
– year: 2014
  ident: 10.1016/j.ijhydene.2022.12.194_bib43
  article-title: SOFC for TS fuzzy systems: less conservative and local stabilization conditions
– volume: 43
  start-page: 3555
  year: 2018
  ident: 10.1016/j.ijhydene.2022.12.194_bib16
  article-title: ANN–supported control strategy for a solid oxide fuel cell working on demand for a public utility building
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.10.171
– volume: 15
  start-page: 117900
  year: 2022
  ident: 10.1016/j.ijhydene.2022.12.194_bib7
  article-title: Coordinated Load Frequency Control of Multi-Area Integrated Energy System Using Multi-Agent
  publication-title: Deep Reinforcement Learning
– start-page: 5
  year: 2006
  ident: 10.1016/j.ijhydene.2022.12.194_bib26
  article-title: Real-time reconfigurable micro-system based on FPGA and CPLD for dual-mode PID control through backpropagation neural network
– volume: 123
  start-page: 281
  year: 2000
  ident: 10.1016/j.ijhydene.2022.12.194_bib42
  article-title: Theory and application of a novel fuzzy PID controller using a simplified Takagi–Sugeno rule scheme
  publication-title: Inf Sci
  doi: 10.1016/S0020-0255(99)00133-4
– start-page: 3137
  year: 2010
  ident: 10.1016/j.ijhydene.2022.12.194_bib29
  article-title: Fuzzy-PID dual mode fuzzy control of the electro-hydraulic deviation control system
– volume: 8
  start-page: 1758
  year: 2018
  ident: 10.1016/j.ijhydene.2022.12.194_bib10
  article-title: Adaptive tracking constrained controller design for solid oxide fuel cells based on a wiener-type neural network
  publication-title: Appl Sci
  doi: 10.3390/app8101758
– volume: 30
  start-page: 101752
  year: 2022
  ident: 10.1016/j.ijhydene.2022.12.194_bib33
  article-title: Large-scale multi-agent reinforcement learning-based method for coordinated output voltage control of solid oxide fuel cell
  publication-title: Case Stud Therm Eng
  doi: 10.1016/j.csite.2021.101752
– volume: 12
  start-page: 1435
  year: 2019
  ident: 10.1016/j.ijhydene.2022.12.194_bib40
  article-title: Fractional order fuzzy PID control of automotive PEM fuel cell air feed system using neural network optimization algorithm
  publication-title: Energies
  doi: 10.3390/en12081435
– start-page: 6
  year: 2003
  ident: 10.1016/j.ijhydene.2022.12.194_bib11
  article-title: Control challenges of fuel cell-driven distributed generation
– volume: 374
  start-page: 163
  year: 2018
  ident: 10.1016/j.ijhydene.2022.12.194_bib15
  article-title: Optimal robust control strategy of a solid oxide fuel cell system
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2017.10.070
– volume: 11
  start-page: 65
  year: 2018
  ident: 10.1016/j.ijhydene.2022.12.194_bib36
  article-title: Control strategy of speed servo systems based on deep reinforcement learning
  publication-title: Algorithms
  doi: 10.3390/a11050065
– start-page: 1587
  year: 2018
  ident: 10.1016/j.ijhydene.2022.12.194_bib47
  article-title: Addressing function approximation error in actor-critic methods
– volume: 304
  year: 2021
  ident: 10.1016/j.ijhydene.2022.12.194_bib5
  article-title: A data-driven output voltage control of solid oxide fuel cell using multi-agent deep reinforcement learning
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.117541
– start-page: 1
  year: 2020
  ident: 10.1016/j.ijhydene.2022.12.194_bib37
  article-title: Automatic generation control based on multiple neural networks with actor-critic strategy
  publication-title: Trans Neural Netw Learn Syst
– volume: 35
  start-page: 12555
  year: 2020
  ident: 10.1016/j.ijhydene.2022.12.194_bib30
  article-title: Stability blind-area-free control design for microgrid-interfaced voltage source inverters under dual-mode operation
  publication-title: IEEE Trans Power Electron
  doi: 10.1109/TPEL.2020.2988565
– volume: 214
  start-page: 134
  year: 2016
  ident: 10.1016/j.ijhydene.2022.12.194_bib17
  article-title: A novel adaptive neural network constrained control for solid oxide fuel cells via dynamic anti-windup
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.05.076
– volume: 42
  start-page: 20430
  year: 2017
  ident: 10.1016/j.ijhydene.2022.12.194_bib44
  article-title: Maximum power point tracking of a proton exchange membrane fuel cell system using PSO-PID controller
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.06.208
– volume: 54
  start-page: 90
  year: 2017
  ident: 10.1016/j.ijhydene.2022.12.194_bib8
  article-title: Optimization and control of a stand-alone hybrid solid oxide fuel cells/gas turbine system coupled with dry reforming of methane - ScienceDirect
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2017.03.016
– volume: 44
  start-page: 19357
  year: 2019
  ident: 10.1016/j.ijhydene.2022.12.194_bib2
  article-title: Nonlinear controller design based on cascade adaptive sliding mode control for PEM fuel cell air supply systems
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.10.180
– volume: 45
  start-page: 13508
  year: 2020
  ident: 10.1016/j.ijhydene.2022.12.194_bib1
  article-title: Robust fault diagnosis and fault tolerant control for PEMFC system based on an augmented LPV observer
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.03.063
– volume: 359
  start-page: 8107
  issue: 15
  year: 2022
  ident: 10.1016/j.ijhydene.2022.12.194_bib32
  article-title: Optimal trajectory exploration large-scale deep reinforcement learning tuned optimal controller for proton exchange membrane fuel cell
  publication-title: J Franklin Inst
  doi: 10.1016/j.jfranklin.2022.02.007
SSID ssj0017049
Score 2.5070295
Snippet Solid oxide fuel cell (SOFC) is disadvantaged by significant nonlinearity, which makes it difficult to control output voltage of SOFC and satisfy the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 14053
SubjectTerms Deep reinforcement learning
Fuel utilization
Imitation distributed deep deterministic policy gradient algorithm (ID3PG)
Optimal control framework
Output voltage control
Solid oxide fuel cell
Title Optimal dual-model controller of solid oxide fuel cell output voltage using imitation distributed deep reinforcement learning
URI https://dx.doi.org/10.1016/j.ijhydene.2022.12.194
Volume 48
WOSCitedRecordID wos000981351900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-3487
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017049
  issn: 0360-3199
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKxgEOiE-x8SEfuFUZjePU8XGahmBCg8OA3iLHdkuqklQl2boDfx3_GM9faQoTYwekKmoS2U76fn3--fl9IPQqlrGkpEgioLfTiEqiIgGsGJQhKTRPqFY2iv_ze3Z6mk0m_ONg8DPEwpwvWFVl6zVf_ldRwzUQtgmdvYG4u07hAnwHocMRxA7HfxL8B1AC38zWSysWkS10E_zRF9puCcDwpRrW61Lp4bQ1t439rm6bZdsMQVs1xo2ntTYEE_3kEKJMgl1TGwsIqtJ6OVxpm3NVWvNiKD4x63PdbWNjL0XF10u1qmemvIANPOx8gqxjwUkpLjbhaUetq6ot6kvhezfuPqW3cn_RZae2WjeLVrPQ3NsySNLblgkxXGZWcCWTgn6mWQ-HLkOM17awOHSZhv3UDeeutscf84IzUcwPyjm8IrzcAYxOjB04diWWtxNx_zZBdm6LwSNunod-ctNPHsOH01tol7CUg2rdPXx3PDnpNrOYX4WFl-sFql_9RFdzpB7vObuP7vkFCz50QHuABrp6iO720lg-Qj885PAGcngDOVxPsYUctpDDBnLYQA47yGEPOWwhhzvI4R7ksIEc3oIcDpB7jD69OT47ehv5sh6RTGLSRFyZzXTNGSz1JRGZjMlYFclIMZLIqRgnTEkgrprxQvAxVapIhSHOwPXhfqKTJ2inqiv9FGE6EpzGmUw1i2k60jye8iJTSmVjymjB9lAafshc-qc3pVcW-d9FuYded-2WLuvLtS14kFPuuavjpDlA8Jq2-zce7Rm6s_n7PEc7zarVL9Bted6U31cvPf5-AWY5xnY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+dual-model+controller+of+solid+oxide+fuel+cell+output+voltage+using+imitation+distributed+deep+reinforcement+learning&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Li%2C+Jiawen&rft.au=Cui%2C+Haoyang&rft.au=Jiang%2C+Wei&rft.au=Yu%2C+Hengwen&rft.date=2023-04-30&rft.issn=0360-3199&rft.volume=48&rft.issue=37&rft.spage=14053&rft.epage=14067&rft_id=info:doi/10.1016%2Fj.ijhydene.2022.12.194&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijhydene_2022_12_194
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon