Towards a machine-learning-based large eddy simulation of offshore wind farms

This study introduces a Scale-Adaptive Machine-Learning Subgrid-Scale model developed to predict subgrid-scale turbulence within the framework of large eddy simulations for offshore wind farms. Unlike traditional subgrid-scale models that rely on blending of isotropy and scale similarity, the propos...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers & fluids Ročník 302; s. 106823
Hlavní autoři: Marefat, H. Ali, Alam, Jahrul, Pope, Kevin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 15.11.2025
Témata:
ISSN:0045-7930
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This study introduces a Scale-Adaptive Machine-Learning Subgrid-Scale model developed to predict subgrid-scale turbulence within the framework of large eddy simulations for offshore wind farms. Unlike traditional subgrid-scale models that rely on blending of isotropy and scale similarity, the proposed approach leverages a supervised learning framework based on physically informed flow observables derived from mixed modelling theory and Leonard decomposition. The model employs a novel encoder–decoder neural network architecture designed to capture coherent enstrophy dynamics and multi-scale turbulence interactions. Skip connections and latent representations serve as implicit filters, enabling the model to represent both structural and functional aspects of turbulence. Trained using data from a scale-adaptive LES method, outcome of the presented model has been validated for its ability to learn and reproduce key turbulence characteristics, such as intermittency and energy transfer, across resolutions and flow scenarios. A-priori tests confirm its capacity to capture statistical turbulence features, while a-posteriori tests demonstrate that the model dynamically predicts eddy viscosity and produces flow fields comparable to high-resolution LES with traditional SGS models. When applied on coarser meshes, the model maintains accuracy, as evidenced by agreement in the ratio of subgrid to total kinetic energy. These findings support the potential of this machine-learning-based model as a physics-aware, scalable modelling approach for complex turbulent flows. [Display omitted] •ML–LES integration using scale-adaptive and mixed modelling: Introduces SAM-SGS, a model that learns enstrophy dynamics and energy cascade.•Encoder–decoder architecture improves LES performance: Uses skip connections to boost interpretability, gradient flow, and spatial detail.•Scalable and generalizable AI for offshore LES: SAM-SGS adapts to flow variations, enabling robust LES in wind farm applications.
AbstractList This study introduces a Scale-Adaptive Machine-Learning Subgrid-Scale model developed to predict subgrid-scale turbulence within the framework of large eddy simulations for offshore wind farms. Unlike traditional subgrid-scale models that rely on blending of isotropy and scale similarity, the proposed approach leverages a supervised learning framework based on physically informed flow observables derived from mixed modelling theory and Leonard decomposition. The model employs a novel encoder–decoder neural network architecture designed to capture coherent enstrophy dynamics and multi-scale turbulence interactions. Skip connections and latent representations serve as implicit filters, enabling the model to represent both structural and functional aspects of turbulence. Trained using data from a scale-adaptive LES method, outcome of the presented model has been validated for its ability to learn and reproduce key turbulence characteristics, such as intermittency and energy transfer, across resolutions and flow scenarios. A-priori tests confirm its capacity to capture statistical turbulence features, while a-posteriori tests demonstrate that the model dynamically predicts eddy viscosity and produces flow fields comparable to high-resolution LES with traditional SGS models. When applied on coarser meshes, the model maintains accuracy, as evidenced by agreement in the ratio of subgrid to total kinetic energy. These findings support the potential of this machine-learning-based model as a physics-aware, scalable modelling approach for complex turbulent flows. [Display omitted] •ML–LES integration using scale-adaptive and mixed modelling: Introduces SAM-SGS, a model that learns enstrophy dynamics and energy cascade.•Encoder–decoder architecture improves LES performance: Uses skip connections to boost interpretability, gradient flow, and spatial detail.•Scalable and generalizable AI for offshore LES: SAM-SGS adapts to flow variations, enabling robust LES in wind farm applications.
ArticleNumber 106823
Author Alam, Jahrul
Pope, Kevin
Marefat, H. Ali
Author_xml – sequence: 1
  givenname: H. Ali
  orcidid: 0000-0001-9274-7854
  surname: Marefat
  fullname: Marefat, H. Ali
  email: hmarefat@mun.ca
  organization: Scientific Computing Program, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
– sequence: 2
  givenname: Jahrul
  orcidid: 0000-0002-3075-591X
  surname: Alam
  fullname: Alam, Jahrul
  organization: Dept. of Mathematics and Statistics, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
– sequence: 3
  givenname: Kevin
  surname: Pope
  fullname: Pope, Kevin
  organization: Dept. of Mechanical and Mechatronics Engineering, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
BookMark eNqFkN1qAjEQhXNhoWr7DM0LrJ0k--NeivQPLL2x1yFOJhrZTSTRim_fLZbeFg4MZ-AcDt-EjUIMxNiDgJkAUT_uZxj7g-tO3s4kyGr41nOpRmwMUFZF0yq4ZZOc9zB4Jcsxe1_Hs0k2c8N7gzsfqOjIpODDttiYTJZ3Jm2Jk7UXnn1_6szRx8CjG-TyLibiZx8sdyb1-Y7dONNluv-9U_b5_LRevharj5e35WJVoBLyWLRomtI6rEAIBGigbRUB4EbOqRKynLu6sSiUMKYafF23sgWBrcGSmtqCmrLm2osp5pzI6UPyvUkXLUD_kNB7_UdC_5DQVxJDcnFN0jDvy1PSGT0FJOsT4VHb6P_t-AZCxW9i
Cites_doi 10.1146/annurev-fluid-121021-031431
10.1146/annurev.fluid.32.1.1
10.1007/s10546-018-0351-9
10.1017/jfm.2016.803
10.1146/annurev-fluid-122316-045241
10.3390/aerospace8120375
10.1063/5.0099347
10.1103/PhysRevFluids.5.014605
10.1017/jfm.2017.93
10.1146/annurev-fluid-010816-060206
10.1146/annurev-fluid-010719-060214
10.1016/j.jweia.2014.07.002
10.1063/1.868333
10.1063/1.3291077
10.3390/fluids9060144
10.1016/j.apenergy.2018.08.049
10.1063/1.857955
10.1006/jcph.2002.7146
10.1063/1.1839152
10.1063/1.4921264
10.1007/s10546-012-9757-y
10.1175/2009MWR2990.1
10.1002/qj.49708135027
10.3390/fluids8080219
10.1002/we.451
10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
10.1063/1.4940025
10.1063/5.0222245
10.1016/j.jcp.2019.108910
10.1016/j.renene.2017.08.072
10.1002/we.469
10.3390/en4111916
10.1016/j.compfluid.2018.05.027
10.1016/j.renene.2022.10.013
10.1016/j.euromechflu.2022.05.004
10.1088/1367-2630/6/1/035
10.1146/annurev-fluid-060420-023735
10.1002/we.408
10.1016/j.jweia.2011.01.011
10.1017/jfm.2018.770
10.1017/jfm.2023.260
10.1063/1.5110788
10.1016/S0065-2687(08)60464-1
10.1017/S0022112000008776
10.1016/S0045-7930(01)00098-6
10.1023/A:1009995426001
10.1063/1.4863096
10.1017/S0022112070000691
10.1016/S0140-6736(86)90837-8
10.1063/1.858675
10.1146/annurev-fluid-122109-160801
10.3390/en16165941
10.1146/annurev-fluid-010518-040547
10.1016/j.renene.2014.12.036
10.1063/1.4824195
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.compfluid.2025.106823
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_compfluid_2025_106823
S004579302500283X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABAOU
ABJNI
ABMAC
ACDAQ
ACGFS
ACIWK
ACLOT
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIGVJ
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SST
SSW
SSZ
T5K
TN5
XPP
ZMT
~G-
~HD
29F
6TJ
9DU
AAQXK
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACKIV
ACNNM
ACRPL
ADIYS
ADMUD
ADNMO
AFFNX
AGQPQ
AI.
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
T9H
VH1
WUQ
ID FETCH-LOGICAL-c312t-9ca74dfc5011c0070993e00cb28e51248f67dc131aa55126692901c9ac4e76d03
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001575601700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7930
IngestDate Sat Nov 29 07:04:19 EST 2025
Sat Nov 22 16:51:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords LES
Encoder–decoder models
Subgrid-scale model
Machine learning
Offshore wind farms
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-9ca74dfc5011c0070993e00cb28e51248f67dc131aa55126692901c9ac4e76d03
ORCID 0000-0001-9274-7854
0000-0002-3075-591X
OpenAccessLink https://dx.doi.org/10.1016/j.compfluid.2025.106823
ParticipantIDs crossref_primary_10_1016_j_compfluid_2025_106823
elsevier_sciencedirect_doi_10_1016_j_compfluid_2025_106823
PublicationCentury 2000
PublicationDate 2025-11-15
PublicationDateYYYYMMDD 2025-11-15
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-15
  day: 15
PublicationDecade 2020
PublicationTitle Computers & fluids
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wu, Porté-Agel (b32) 2013; 146
Pawar, Sharma, Vijayakumar, Bay, Yellapantula, San (b27) 2022; 200
Bose, Park (b38) 2018; 50
Simley, Angelou, Mikkelsen, Sjöholm, Mann, Pao (b70) 2016; 8
Smagorinsky (b39) 1963; 91
Garratt (b75) 1994
Beck, Flad, Munz (b18) 2019; 398
Moser, Haering, Yalla (b37) 2021; 53
Porté-Agel, Meneveau, Parlange (b7) 2010; 415
Marefat (b77) 2024
Porté-Agel, Wu, Lu, Conzemius (b66) 2011; 99
Zang, Street, Koseff (b13) 1993; 5
Abkar, Zehtabiyan-Rezaie, Iosifidis (b28) 2024; 211
Davidson (b57) 2004
Vreman, Geurts, Kuerten (b63) 1994; 6
Leonard (b11) 1974; 18
Bland, Altman (b79) 1986; 327
Qi, Li, Luo, Yu (b14) 2023; 242
Shinde (b20) 2020; 5
Alam (b49) 2022; 34
Xie, Wang, Li, Wan, Chen (b17) 2019; 31
Beck, Flad, Munz (b34) 2019; 398
Sørensen (b29) 2011; 43
Singh, Alam (b2) 2024
Kang, Jeon, You (b62) 2023; 962
Meneveau, Katz (b8) 2000; 32
Meyers, Meneveau (b65) 2012; 15
Stevens, Meneveau (b44) 2017; 49
Dallas, Alexakis (b58) 2013; 25
Churchfield, Lee, Moriarty, Martínez, Leonardi, Vijayakumar, Brasseur (b30) 2012; vol. 2012
Maulik, San, Rasheed, Vedula (b33) 2018; 858
Pan, Archer (b5) 2018; 168
Hossen, Mulayath Variyath, Alam (b48) 2021; 8
Lilly DK. The representation of small-scale turbulence in numerical simulation experiments. In: Proc. IBM sci. comput. symp. on environmental science. 1967, p. 195–210.
Sagaut (b21) 2005
Nicoud, Ducros (b61) 1999; 62
Charnock (b73) 1955; 81
Stevens, Martínez-Tossas, Meneveau (b1) 2018; 116
Buxton, Breda, Chen (b59) 2017; 817
Singh, Alam (b3) 2024; 36
Mehta, Van Zuijlen, Koren, Holierhoek, Bijl (b42) 2014; 133
Marefat, Alam, Pope (b51) 2024; 9
Fleming, Churchfield, Scholbrock (b67) 2014; 85
Calaf, Meneveau, Meyers (b9) 2010; 22
Farge (b19) 1992; 24
Strickland, Stevens (b71) 2022; 95
Sarghini, de Felice, Santini (b16) 2003; 32
Medici, Ivanell, Dahlberg, Alfredsson (b69) 2011; 14
Singh, Alam (b74) 2024; 36
Johnson, Wilczek (b52) 2024; 56
Bou-Zeid, Meneveau, Parlange (b55) 2005; 17
Hasslberger (b64) 2023; 8
Yang, Pakula, Sotiropoulos (b72) 2018; 229
Milano, Koumoutsakos (b15) 2002; 182
Bou-Zeid, Meneveau, Parlange (b10) 2005; 17
Brunton, Noack, Koumoutsakos (b24) 2020; 52
Chamorro, Porté-Agel (b31) 2011; 4
Ling, Kurzawski, Templeton (b26) 2016; 341
Deardorff (b56) 1970; 41
Lundquist, Chow, Lundquist (b4) 2010; 138
Yang, Meneveau, Shen (b6) 2014; 26
Goodfellow (b53) 2016
Barthelmie, Jensen, Pryor (b68) 2010; 13
Kutz (b25) 2017; 814
Singh, Alam (b50) 2023; 16
Bhuiyan, Alam (b47) 2020; 1
Pope (b12) 2000
Duraisamy, Iaccarino, Xiao (b23) 2019; 51
Kingma, Welling (b54) 2014
Wang, Wu, Xiao (b35) 2018; 366
Germano, Piomelli, Moin, Cabot (b22) 1991; 3
Bishop (b78) 2006
Shin, Ge, Lampmann, Pfitzner (b36) 2023; 40
Alam, Fitzpatrick (b46) 2018; 171
Chamorro, Hill, Neary, Gunawan, Arndt, Sotiropoulos (b45) 2015; 27
Sarlak, Meneveau, Sørensen (b43) 2015; 77
Germano, Piomelli, Moin, Cabot (b40) 1991; 3
Danish, Meneveau (b60) 2018; 3
Pope (b76) 2004; 6
Hasslberger (10.1016/j.compfluid.2025.106823_b64) 2023; 8
Kingma (10.1016/j.compfluid.2025.106823_b54) 2014
Kang (10.1016/j.compfluid.2025.106823_b62) 2023; 962
Deardorff (10.1016/j.compfluid.2025.106823_b56) 1970; 41
Shin (10.1016/j.compfluid.2025.106823_b36) 2023; 40
Barthelmie (10.1016/j.compfluid.2025.106823_b68) 2010; 13
Beck (10.1016/j.compfluid.2025.106823_b18) 2019; 398
Brunton (10.1016/j.compfluid.2025.106823_b24) 2020; 52
Bhuiyan (10.1016/j.compfluid.2025.106823_b47) 2020; 1
Singh (10.1016/j.compfluid.2025.106823_b3) 2024; 36
Meneveau (10.1016/j.compfluid.2025.106823_b8) 2000; 32
Singh (10.1016/j.compfluid.2025.106823_b2) 2024
Wang (10.1016/j.compfluid.2025.106823_b35) 2018; 366
Alam (10.1016/j.compfluid.2025.106823_b49) 2022; 34
Marefat (10.1016/j.compfluid.2025.106823_b51) 2024; 9
Simley (10.1016/j.compfluid.2025.106823_b70) 2016; 8
Wu (10.1016/j.compfluid.2025.106823_b32) 2013; 146
Alam (10.1016/j.compfluid.2025.106823_b46) 2018; 171
Strickland (10.1016/j.compfluid.2025.106823_b71) 2022; 95
Stevens (10.1016/j.compfluid.2025.106823_b1) 2018; 116
Calaf (10.1016/j.compfluid.2025.106823_b9) 2010; 22
Churchfield (10.1016/j.compfluid.2025.106823_b30) 2012; vol. 2012
Xie (10.1016/j.compfluid.2025.106823_b17) 2019; 31
Bland (10.1016/j.compfluid.2025.106823_b79) 1986; 327
Sagaut (10.1016/j.compfluid.2025.106823_b21) 2005
Moser (10.1016/j.compfluid.2025.106823_b37) 2021; 53
Kutz (10.1016/j.compfluid.2025.106823_b25) 2017; 814
Germano (10.1016/j.compfluid.2025.106823_b22) 1991; 3
Stevens (10.1016/j.compfluid.2025.106823_b44) 2017; 49
Pope (10.1016/j.compfluid.2025.106823_b76) 2004; 6
Milano (10.1016/j.compfluid.2025.106823_b15) 2002; 182
Meyers (10.1016/j.compfluid.2025.106823_b65) 2012; 15
Lundquist (10.1016/j.compfluid.2025.106823_b4) 2010; 138
Mehta (10.1016/j.compfluid.2025.106823_b42) 2014; 133
10.1016/j.compfluid.2025.106823_b41
Ling (10.1016/j.compfluid.2025.106823_b26) 2016; 341
Chamorro (10.1016/j.compfluid.2025.106823_b31) 2011; 4
Chamorro (10.1016/j.compfluid.2025.106823_b45) 2015; 27
Yang (10.1016/j.compfluid.2025.106823_b72) 2018; 229
Sarlak (10.1016/j.compfluid.2025.106823_b43) 2015; 77
Davidson (10.1016/j.compfluid.2025.106823_b57) 2004
Smagorinsky (10.1016/j.compfluid.2025.106823_b39) 1963; 91
Pope (10.1016/j.compfluid.2025.106823_b12) 2000
Hossen (10.1016/j.compfluid.2025.106823_b48) 2021; 8
Yang (10.1016/j.compfluid.2025.106823_b6) 2014; 26
Pan (10.1016/j.compfluid.2025.106823_b5) 2018; 168
Fleming (10.1016/j.compfluid.2025.106823_b67) 2014; 85
Goodfellow (10.1016/j.compfluid.2025.106823_b53) 2016
Bose (10.1016/j.compfluid.2025.106823_b38) 2018; 50
Qi (10.1016/j.compfluid.2025.106823_b14) 2023; 242
Maulik (10.1016/j.compfluid.2025.106823_b33) 2018; 858
Danish (10.1016/j.compfluid.2025.106823_b60) 2018; 3
Shinde (10.1016/j.compfluid.2025.106823_b20) 2020; 5
Dallas (10.1016/j.compfluid.2025.106823_b58) 2013; 25
Farge (10.1016/j.compfluid.2025.106823_b19) 1992; 24
Pawar (10.1016/j.compfluid.2025.106823_b27) 2022; 200
Marefat (10.1016/j.compfluid.2025.106823_b77) 2024
Bou-Zeid (10.1016/j.compfluid.2025.106823_b55) 2005; 17
Bou-Zeid (10.1016/j.compfluid.2025.106823_b10) 2005; 17
Germano (10.1016/j.compfluid.2025.106823_b40) 1991; 3
Porté-Agel (10.1016/j.compfluid.2025.106823_b66) 2011; 99
Vreman (10.1016/j.compfluid.2025.106823_b63) 1994; 6
Singh (10.1016/j.compfluid.2025.106823_b50) 2023; 16
Singh (10.1016/j.compfluid.2025.106823_b74) 2024; 36
Leonard (10.1016/j.compfluid.2025.106823_b11) 1974; 18
Buxton (10.1016/j.compfluid.2025.106823_b59) 2017; 817
Porté-Agel (10.1016/j.compfluid.2025.106823_b7) 2010; 415
Abkar (10.1016/j.compfluid.2025.106823_b28) 2024; 211
Nicoud (10.1016/j.compfluid.2025.106823_b61) 1999; 62
Bishop (10.1016/j.compfluid.2025.106823_b78) 2006
Zang (10.1016/j.compfluid.2025.106823_b13) 1993; 5
Beck (10.1016/j.compfluid.2025.106823_b34) 2019; 398
Sarghini (10.1016/j.compfluid.2025.106823_b16) 2003; 32
Duraisamy (10.1016/j.compfluid.2025.106823_b23) 2019; 51
Medici (10.1016/j.compfluid.2025.106823_b69) 2011; 14
Sørensen (10.1016/j.compfluid.2025.106823_b29) 2011; 43
Johnson (10.1016/j.compfluid.2025.106823_b52) 2024; 56
Charnock (10.1016/j.compfluid.2025.106823_b73) 1955; 81
Garratt (10.1016/j.compfluid.2025.106823_b75) 1994
References_xml – volume: 242
  year: 2023
  ident: b14
  article-title: A new dynamic subgrid-scale model using artificial neural network for compressible flow
  publication-title: Comput & Fluids
– volume: 962
  start-page: A38
  year: 2023
  ident: b62
  article-title: Neural-network-based mixed subgrid-scale model for turbulent flow
  publication-title: J Fluid Mech
– volume: 6
  start-page: 35
  year: 2004
  ident: b76
  article-title: Ten questions concerning the large-eddy simulation of turbulent flows
  publication-title: New J Phys
– volume: 50
  start-page: 535
  year: 2018
  end-page: 561
  ident: b38
  article-title: Wall-modeled large-eddy simulation for complex turbulent flows
  publication-title: Annu Rev Fluid Mech
– volume: 52
  start-page: 477
  year: 2020
  end-page: 508
  ident: b24
  article-title: Machine learning for fluid mechanics
  publication-title: Annu Rev Fluid Mech
– year: 1994
  ident: b75
  article-title: The atmospheric boundary layer
– volume: 138
  year: 2010
  ident: b4
  article-title: An immersed boundary method for the weather research and forecasting model
  publication-title: Mon Weather Rev
– volume: 211
  start-page: 252
  year: 2024
  end-page: 264
  ident: b28
  article-title: Reinforcement learning for wind-farm flow control: Current state and future actions
  publication-title: Renew Energy
– volume: 133
  start-page: 1
  year: 2014
  end-page: 17
  ident: b42
  article-title: Large eddy simulation of wind farm aerodynamics: A review
  publication-title: J Wind Eng Ind Aerodyn
– volume: 146
  year: 2013
  ident: b32
  article-title: Simulation of turbulent flow inside and above wind farms: Model validation and layout effects
  publication-title: Bound-Layer Meteorol
– volume: 8
  year: 2021
  ident: b48
  article-title: Statistical analysis of dynamic subgrid modeling approaches in large eddy simulation
  publication-title: Aerospace
– volume: 36
  year: 2024
  ident: b74
  article-title: Impact of atmospheric turbulence on wind farms sited over complex terrain
  publication-title: Phys Fluids
– year: 2024
  ident: b2
  article-title: Characterization of atmospheric and wind farm turbulence
  publication-title: Comput & Fluids
– volume: 16
  year: 2023
  ident: b50
  article-title: Large-eddy simulation of utility-scale wind farm sited over complex terrain
  publication-title: Energies
– volume: 40
  start-page: 3287
  year: 2023
  end-page: 3294
  ident: b36
  article-title: A data-driven subgrid scale model in large eddy simulation of turbulent premixed combustion
  publication-title: Proc Combust Inst
– volume: 168
  year: 2018
  ident: b5
  article-title: A hybrid wind-farm parametrization for mesoscale and climate models
  publication-title: Bound-Layer Meteorol
– volume: 200
  year: 2022
  ident: b27
  article-title: Towards multi-fidelity deep learning of wind turbine wakes
  publication-title: Renew Energy
– volume: 8
  year: 2023
  ident: b64
  article-title: Dynamic mixed modeling in large eddy simulation using the concept of a subgrid activity sensor
  publication-title: Fluids
– volume: 77
  start-page: 386
  year: 2015
  end-page: 399
  ident: b43
  article-title: Role of subgrid-scale modeling in large eddy simulation of wind turbine wake interactions
  publication-title: Renew Energy
– volume: 5
  start-page: 3186
  year: 1993
  end-page: 3196
  ident: b13
  article-title: A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows
  publication-title: Phys Fluids A: Fluid Dyn
– volume: 182
  start-page: 1
  year: 2002
  end-page: 26
  ident: b15
  article-title: Neural network modeling for near wall turbulent flow
  publication-title: J Comput Phys
– volume: 1
  year: 2020
  ident: b47
  article-title: Scale-adaptive turbulence modelling for LES over complex terrain
  publication-title: Eng Comput
– volume: 95
  start-page: 303
  year: 2022
  end-page: 314
  ident: b71
  article-title: Investigating wind farm blockage in a neutral boundary layer using large-eddy simulations
  publication-title: Eur J Mech B Fluids
– year: 2006
  ident: b78
  article-title: Pattern recognition and machine learning
– volume: 341
  start-page: 272
  year: 2016
  end-page: 297
  ident: b26
  article-title: Reynolds averaged turbulence modelling using deep neural networks with embedded invariance
  publication-title: J Comput Phys
– volume: 34
  year: 2022
  ident: b49
  article-title: Interaction of vortex stretching with wind power fluctuations
  publication-title: Phys Fluids
– volume: 81
  start-page: 639
  year: 1955
  end-page: 640
  ident: b73
  article-title: Wind stress on a water surface
  publication-title: Q J R Meteorol Soc
– year: 2014
  ident: b54
  article-title: Auto-encoding variational Bayes
– volume: 43
  year: 2011
  ident: b29
  article-title: Aerodynamic aspects of wind energy conversion
  publication-title: Annu Rev Fluid Mech
– volume: 3
  start-page: 1760
  year: 1991
  end-page: 1765
  ident: b22
  article-title: A dynamic subgrid-scale eddy viscosity model
  publication-title: Phys Fluids A: Fluid Dyn
– year: 2005
  ident: b21
  article-title: Large eddy simulation for incompressible flows: an introduction
– volume: 13
  start-page: 573
  year: 2010
  end-page: 586
  ident: b68
  article-title: Modelling the impact of wakes on power output at nysted and horns rev
  publication-title: Wind Energy
– volume: 41
  start-page: 453
  year: 1970
  end-page: 480
  ident: b56
  article-title: A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers
  publication-title: J Fluid Mech
– volume: 858
  start-page: 122
  year: 2018
  end-page: 144
  ident: b33
  article-title: Subgrid modelling for two-dimensional turbulence using neural networks
  publication-title: J Fluid Mech
– volume: 27
  year: 2015
  ident: b45
  article-title: Effects of energetic coherent motions on the power and wake of an axial-flow turbine
  publication-title: Phys Fluids
– volume: 8
  year: 2016
  ident: b70
  article-title: Characterization of wind velocities in the upstream induction zone of a wind turbine using scanning continuous-wave lidars
  publication-title: J Renew Sustain Energy
– volume: 6
  start-page: 4057
  year: 1994
  end-page: 4059
  ident: b63
  article-title: On the formulation of the dynamic mixed subgrid-scale model
  publication-title: Phys Fluids
– volume: 15
  start-page: 305
  year: 2012
  end-page: 317
  ident: b65
  article-title: Optimal turbine spacing in fully developed wind farm boundary layers
  publication-title: Wind Energy
– volume: 56
  start-page: 463
  year: 2024
  end-page: 490
  ident: b52
  article-title: Multiscale velocity gradients in turbulence
  publication-title: Annu Rev Fluid Mech
– volume: 99
  start-page: 154
  year: 2011
  end-page: 168
  ident: b66
  article-title: Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms
  publication-title: J Wind Eng Ind Aerodyn
– volume: 814
  start-page: 1
  year: 2017
  end-page: 4
  ident: b25
  article-title: Deep learning in fluid dynamics
  publication-title: J Fluid Mech
– year: 2004
  ident: b57
  article-title: Turbulence - an introduction for scientists and engineers
– volume: 116
  year: 2018
  ident: b1
  article-title: Comparison of wind farm large eddy simulations using actuator disk and actuator line models with wind tunnel experiments
  publication-title: Renew Energy
– volume: 51
  start-page: 357
  year: 2019
  end-page: 377
  ident: b23
  article-title: Turbulence modeling in the age of data
  publication-title: Annu Rev Fluid Mech
– year: 2000
  ident: b12
  article-title: Turbulent flows
– volume: 53
  year: 2021
  ident: b37
  article-title: Statistical properties of subgrid-scale turbulence models
  publication-title: Annu Rev Fluid Mech
– volume: 3
  year: 2018
  ident: b60
  article-title: Variance of force distributions in homogeneous isotropic turbulence
  publication-title: Phys Rev Fluids
– volume: 17
  year: 2005
  ident: b10
  article-title: A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows
  publication-title: Phys Fluids
– volume: 5
  year: 2020
  ident: b20
  article-title: Proper orthogonal decomposition assisted subfilter-scale model of turbulence for large eddy simulation
  publication-title: Phys Rev Fluids
– volume: 415
  start-page: 261
  year: 2010
  end-page: 284
  ident: b7
  article-title: A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer
  publication-title: J Fluid Mech
– volume: 18
  start-page: 237
  year: 1974
  end-page: 248
  ident: b11
  article-title: Energy cascade in large eddy simulations of turbulent fluid flow
  publication-title: Adv Geophys
– volume: 229
  start-page: 767
  year: 2018
  end-page: 777
  ident: b72
  article-title: Large-eddy simulation of a utility-scale wind farm in complex terrain
  publication-title: Appl Energy
– volume: vol. 2012
  year: 2012
  ident: b30
  article-title: A large-eddy simulation of wind-plant aerodynamics
  publication-title: 50th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition
– volume: 398
  start-page: 609
  year: 2019
  end-page: 630
  ident: b34
  article-title: Deep neural networks for data-driven turbulence models
  publication-title: J Comput Phys
– reference: Lilly DK. The representation of small-scale turbulence in numerical simulation experiments. In: Proc. IBM sci. comput. symp. on environmental science. 1967, p. 195–210.
– volume: 171
  start-page: 65
  year: 2018
  end-page: 78
  ident: b46
  article-title: Large eddy simulation of flow through a periodic array of urban-like obstacles using a canopy stress method
  publication-title: Comput & Fluids
– year: 2024
  ident: b77
  article-title: Advancing machine learning for large eddy simulation of offshore wind farms
– volume: 22
  year: 2010
  ident: b9
  article-title: Large eddy simulation study of fully developed wind-turbine array boundary layers
  publication-title: Phys Fluids
– volume: 3
  start-page: 1760
  year: 1991
  end-page: 1775
  ident: b40
  article-title: A dynamic subgrid scale eddy viscosity model
  publication-title: Phys Fluids A
– volume: 4
  start-page: 1916
  year: 2011
  end-page: 1936
  ident: b31
  article-title: Turbulent flow inside and above a wind farm: A wind-tunnel study
  publication-title: Energies
– volume: 85
  start-page: 419
  year: 2014
  end-page: 429
  ident: b67
  article-title: Evaluating techniques for redirecting turbine wakes using SOWFA
  publication-title: Renew Energy
– volume: 32
  start-page: 1
  year: 2000
  end-page: 32
  ident: b8
  article-title: Scale-invariance and turbulence models for large-eddy simulation
  publication-title: Annu Rev Fluid Mech
– volume: 91
  start-page: 99
  year: 1963
  end-page: 164
  ident: b39
  article-title: General circulation experiments with the primitive equations: I. The basic experiment
  publication-title: Mon Weather Rev
– year: 2016
  ident: b53
  article-title: Deep learning
– volume: 14
  start-page: 691
  year: 2011
  end-page: 697
  ident: b69
  article-title: The upstream flow of a wind turbine: Blockage effect
  publication-title: Wind Energy
– volume: 817
  start-page: 1
  year: 2017
  end-page: 20
  ident: b59
  article-title: The effects of Reynolds number and Stokes number on particle-pair relative velocity in isotropic turbulence: A systematic experimental study
  publication-title: J Fluid Mech
– volume: 398
  year: 2019
  ident: b18
  article-title: Deep neural networks for data-driven LES closure models
  publication-title: J Comput Phys
– volume: 32
  start-page: 97
  year: 2003
  end-page: 108
  ident: b16
  article-title: Neural networks based subgrid scale modeling in large eddy simulations
  publication-title: Comput & Fluids
– volume: 17
  year: 2005
  ident: b55
  article-title: A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows
  publication-title: Phys Fluids
– volume: 25
  year: 2013
  ident: b58
  article-title: Structures and dynamics of small scales in three-dimensional magnetohydrodynamic turbulence
  publication-title: Phys Fluids
– volume: 31
  year: 2019
  ident: b17
  article-title: Artificial neural network mixed model for large eddy simulation of compressible isotropic turbulence
  publication-title: Phys Fluids
– volume: 9
  year: 2024
  ident: b51
  article-title: Toward scale-adaptive subgrid-scale model in LES for turbulent flow past a sphere
  publication-title: Fluids
– volume: 327
  start-page: 307
  year: 1986
  end-page: 310
  ident: b79
  article-title: Statistical methods for assessing agreement between two methods of clinical measurement
  publication-title: Lancet
– volume: 366
  start-page: 341
  year: 2018
  end-page: 363
  ident: b35
  article-title: A physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data
  publication-title: J Comput Phys
– volume: 36
  year: 2024
  ident: b3
  article-title: Impact of atmospheric turbulence on wind farms sited over complex terrain
  publication-title: Phys Fluids
– volume: 26
  year: 2014
  ident: b6
  article-title: Large-eddy simulation of offshore wind farm
  publication-title: Phys Fluids
– volume: 49
  start-page: 311
  year: 2017
  end-page: 339
  ident: b44
  article-title: Flow structure and turbulence in wind farms
  publication-title: Annu Rev Fluid Mech
– volume: 62
  year: 1999
  ident: b61
  article-title: Subgrid-scale stress modelling based on the square of the velocity gradient tensor
  publication-title: Flow, Turbul Combust
– volume: 24
  year: 1992
  ident: b19
  article-title: Wavelet transforms and their application to turbulence
  publication-title: Annu Rev Fluid Mech
– volume: vol. 2012
  year: 2012
  ident: 10.1016/j.compfluid.2025.106823_b30
  article-title: A large-eddy simulation of wind-plant aerodynamics
– volume: 56
  start-page: 463
  issn: 1545-4479
  year: 2024
  ident: 10.1016/j.compfluid.2025.106823_b52
  article-title: Multiscale velocity gradients in turbulence
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev-fluid-121021-031431
– volume: 85
  start-page: 419
  year: 2014
  ident: 10.1016/j.compfluid.2025.106823_b67
  article-title: Evaluating techniques for redirecting turbine wakes using SOWFA
  publication-title: Renew Energy
– volume: 32
  start-page: 1
  issue: 1
  year: 2000
  ident: 10.1016/j.compfluid.2025.106823_b8
  article-title: Scale-invariance and turbulence models for large-eddy simulation
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev.fluid.32.1.1
– volume: 168
  year: 2018
  ident: 10.1016/j.compfluid.2025.106823_b5
  article-title: A hybrid wind-farm parametrization for mesoscale and climate models
  publication-title: Bound-Layer Meteorol
  doi: 10.1007/s10546-018-0351-9
– volume: 814
  start-page: 1
  year: 2017
  ident: 10.1016/j.compfluid.2025.106823_b25
  article-title: Deep learning in fluid dynamics
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2016.803
– ident: 10.1016/j.compfluid.2025.106823_b41
– volume: 50
  start-page: 535
  year: 2018
  ident: 10.1016/j.compfluid.2025.106823_b38
  article-title: Wall-modeled large-eddy simulation for complex turbulent flows
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev-fluid-122316-045241
– volume: 8
  issn: 2226-4310
  issue: 12
  year: 2021
  ident: 10.1016/j.compfluid.2025.106823_b48
  article-title: Statistical analysis of dynamic subgrid modeling approaches in large eddy simulation
  publication-title: Aerospace
  doi: 10.3390/aerospace8120375
– volume: 34
  year: 2022
  ident: 10.1016/j.compfluid.2025.106823_b49
  article-title: Interaction of vortex stretching with wind power fluctuations
  publication-title: Phys Fluids
  doi: 10.1063/5.0099347
– volume: 5
  year: 2020
  ident: 10.1016/j.compfluid.2025.106823_b20
  article-title: Proper orthogonal decomposition assisted subfilter-scale model of turbulence for large eddy simulation
  publication-title: Phys Rev Fluids
  doi: 10.1103/PhysRevFluids.5.014605
– volume: 817
  start-page: 1
  year: 2017
  ident: 10.1016/j.compfluid.2025.106823_b59
  article-title: The effects of Reynolds number and Stokes number on particle-pair relative velocity in isotropic turbulence: A systematic experimental study
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2017.93
– volume: 49
  start-page: 311
  year: 2017
  ident: 10.1016/j.compfluid.2025.106823_b44
  article-title: Flow structure and turbulence in wind farms
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev-fluid-010816-060206
– year: 2004
  ident: 10.1016/j.compfluid.2025.106823_b57
– volume: 1
  year: 2020
  ident: 10.1016/j.compfluid.2025.106823_b47
  article-title: Scale-adaptive turbulence modelling for LES over complex terrain
  publication-title: Eng Comput
– volume: 52
  start-page: 477
  issue: 1
  year: 2020
  ident: 10.1016/j.compfluid.2025.106823_b24
  article-title: Machine learning for fluid mechanics
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev-fluid-010719-060214
– volume: 341
  start-page: 272
  year: 2016
  ident: 10.1016/j.compfluid.2025.106823_b26
  article-title: Reynolds averaged turbulence modelling using deep neural networks with embedded invariance
  publication-title: J Comput Phys
– volume: 366
  start-page: 341
  year: 2018
  ident: 10.1016/j.compfluid.2025.106823_b35
  article-title: A physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data
  publication-title: J Comput Phys
– volume: 133
  start-page: 1
  year: 2014
  ident: 10.1016/j.compfluid.2025.106823_b42
  article-title: Large eddy simulation of wind farm aerodynamics: A review
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/j.jweia.2014.07.002
– volume: 6
  start-page: 4057
  issue: 12
  year: 1994
  ident: 10.1016/j.compfluid.2025.106823_b63
  article-title: On the formulation of the dynamic mixed subgrid-scale model
  publication-title: Phys Fluids
  doi: 10.1063/1.868333
– volume: 22
  issue: 1
  year: 2010
  ident: 10.1016/j.compfluid.2025.106823_b9
  article-title: Large eddy simulation study of fully developed wind-turbine array boundary layers
  publication-title: Phys Fluids
  doi: 10.1063/1.3291077
– volume: 9
  year: 2024
  ident: 10.1016/j.compfluid.2025.106823_b51
  article-title: Toward scale-adaptive subgrid-scale model in LES for turbulent flow past a sphere
  publication-title: Fluids
  doi: 10.3390/fluids9060144
– volume: 229
  start-page: 767
  year: 2018
  ident: 10.1016/j.compfluid.2025.106823_b72
  article-title: Large-eddy simulation of a utility-scale wind farm in complex terrain
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.08.049
– volume: 3
  start-page: 1760
  issue: 7
  year: 1991
  ident: 10.1016/j.compfluid.2025.106823_b22
  article-title: A dynamic subgrid-scale eddy viscosity model
  publication-title: Phys Fluids A: Fluid Dyn
  doi: 10.1063/1.857955
– volume: 182
  start-page: 1
  issue: 1
  year: 2002
  ident: 10.1016/j.compfluid.2025.106823_b15
  article-title: Neural network modeling for near wall turbulent flow
  publication-title: J Comput Phys
  doi: 10.1006/jcph.2002.7146
– volume: 17
  issue: 2
  year: 2005
  ident: 10.1016/j.compfluid.2025.106823_b10
  article-title: A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows
  publication-title: Phys Fluids
  doi: 10.1063/1.1839152
– year: 2016
  ident: 10.1016/j.compfluid.2025.106823_b53
– year: 2000
  ident: 10.1016/j.compfluid.2025.106823_b12
– year: 2005
  ident: 10.1016/j.compfluid.2025.106823_b21
– year: 1994
  ident: 10.1016/j.compfluid.2025.106823_b75
– volume: 27
  issue: 5
  year: 2015
  ident: 10.1016/j.compfluid.2025.106823_b45
  article-title: Effects of energetic coherent motions on the power and wake of an axial-flow turbine
  publication-title: Phys Fluids
  doi: 10.1063/1.4921264
– volume: 146
  year: 2013
  ident: 10.1016/j.compfluid.2025.106823_b32
  article-title: Simulation of turbulent flow inside and above wind farms: Model validation and layout effects
  publication-title: Bound-Layer Meteorol
  doi: 10.1007/s10546-012-9757-y
– volume: 138
  year: 2010
  ident: 10.1016/j.compfluid.2025.106823_b4
  article-title: An immersed boundary method for the weather research and forecasting model
  publication-title: Mon Weather Rev
  doi: 10.1175/2009MWR2990.1
– year: 2014
  ident: 10.1016/j.compfluid.2025.106823_b54
– volume: 81
  start-page: 639
  issue: 350
  year: 1955
  ident: 10.1016/j.compfluid.2025.106823_b73
  article-title: Wind stress on a water surface
  publication-title: Q J R Meteorol Soc
  doi: 10.1002/qj.49708135027
– volume: 8
  issue: 8
  year: 2023
  ident: 10.1016/j.compfluid.2025.106823_b64
  article-title: Dynamic mixed modeling in large eddy simulation using the concept of a subgrid activity sensor
  publication-title: Fluids
  doi: 10.3390/fluids8080219
– volume: 211
  start-page: 252
  year: 2024
  ident: 10.1016/j.compfluid.2025.106823_b28
  article-title: Reinforcement learning for wind-farm flow control: Current state and future actions
  publication-title: Renew Energy
– volume: 17
  issue: 2
  year: 2005
  ident: 10.1016/j.compfluid.2025.106823_b55
  article-title: A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows
  publication-title: Phys Fluids
  doi: 10.1063/1.1839152
– volume: 14
  start-page: 691
  year: 2011
  ident: 10.1016/j.compfluid.2025.106823_b69
  article-title: The upstream flow of a wind turbine: Blockage effect
  publication-title: Wind Energy
  doi: 10.1002/we.451
– volume: 91
  start-page: 99
  issue: 3
  year: 1963
  ident: 10.1016/j.compfluid.2025.106823_b39
  article-title: General circulation experiments with the primitive equations: I. The basic experiment
  publication-title: Mon Weather Rev
  doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
– volume: 8
  issn: 1941-7012
  year: 2016
  ident: 10.1016/j.compfluid.2025.106823_b70
  article-title: Characterization of wind velocities in the upstream induction zone of a wind turbine using scanning continuous-wave lidars
  publication-title: J Renew Sustain Energy
  doi: 10.1063/1.4940025
– volume: 36
  issue: 9
  year: 2024
  ident: 10.1016/j.compfluid.2025.106823_b74
  article-title: Impact of atmospheric turbulence on wind farms sited over complex terrain
  publication-title: Phys Fluids
  doi: 10.1063/5.0222245
– volume: 398
  year: 2019
  ident: 10.1016/j.compfluid.2025.106823_b18
  article-title: Deep neural networks for data-driven LES closure models
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2019.108910
– volume: 116
  year: 2018
  ident: 10.1016/j.compfluid.2025.106823_b1
  article-title: Comparison of wind farm large eddy simulations using actuator disk and actuator line models with wind tunnel experiments
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.08.072
– volume: 15
  start-page: 305
  issue: 2
  year: 2012
  ident: 10.1016/j.compfluid.2025.106823_b65
  article-title: Optimal turbine spacing in fully developed wind farm boundary layers
  publication-title: Wind Energy
  doi: 10.1002/we.469
– volume: 4
  start-page: 1916
  year: 2011
  ident: 10.1016/j.compfluid.2025.106823_b31
  article-title: Turbulent flow inside and above a wind farm: A wind-tunnel study
  publication-title: Energies
  doi: 10.3390/en4111916
– volume: 171
  start-page: 65
  issn: 0045-7930
  year: 2018
  ident: 10.1016/j.compfluid.2025.106823_b46
  article-title: Large eddy simulation of flow through a periodic array of urban-like obstacles using a canopy stress method
  publication-title: Comput & Fluids
  doi: 10.1016/j.compfluid.2018.05.027
– volume: 3
  start-page: 1760
  issue: 7
  year: 1991
  ident: 10.1016/j.compfluid.2025.106823_b40
  article-title: A dynamic subgrid scale eddy viscosity model
  publication-title: Phys Fluids A
  doi: 10.1063/1.857955
– volume: 200
  year: 2022
  ident: 10.1016/j.compfluid.2025.106823_b27
  article-title: Towards multi-fidelity deep learning of wind turbine wakes
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2022.10.013
– volume: 95
  start-page: 303
  year: 2022
  ident: 10.1016/j.compfluid.2025.106823_b71
  article-title: Investigating wind farm blockage in a neutral boundary layer using large-eddy simulations
  publication-title: Eur J Mech B Fluids
  doi: 10.1016/j.euromechflu.2022.05.004
– volume: 6
  start-page: 35
  issue: 1
  year: 2004
  ident: 10.1016/j.compfluid.2025.106823_b76
  article-title: Ten questions concerning the large-eddy simulation of turbulent flows
  publication-title: New J Phys
  doi: 10.1088/1367-2630/6/1/035
– volume: 53
  year: 2021
  ident: 10.1016/j.compfluid.2025.106823_b37
  article-title: Statistical properties of subgrid-scale turbulence models
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev-fluid-060420-023735
– volume: 13
  start-page: 573
  issue: 6
  year: 2010
  ident: 10.1016/j.compfluid.2025.106823_b68
  article-title: Modelling the impact of wakes on power output at nysted and horns rev
  publication-title: Wind Energy
  doi: 10.1002/we.408
– volume: 242
  year: 2023
  ident: 10.1016/j.compfluid.2025.106823_b14
  article-title: A new dynamic subgrid-scale model using artificial neural network for compressible flow
  publication-title: Comput & Fluids
– year: 2024
  ident: 10.1016/j.compfluid.2025.106823_b2
  article-title: Characterization of atmospheric and wind farm turbulence
  publication-title: Comput & Fluids
  doi: 10.1063/5.0222245
– volume: 99
  start-page: 154
  issue: 4
  year: 2011
  ident: 10.1016/j.compfluid.2025.106823_b66
  article-title: Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/j.jweia.2011.01.011
– volume: 858
  start-page: 122
  year: 2018
  ident: 10.1016/j.compfluid.2025.106823_b33
  article-title: Subgrid modelling for two-dimensional turbulence using neural networks
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2018.770
– volume: 40
  start-page: 3287
  year: 2023
  ident: 10.1016/j.compfluid.2025.106823_b36
  article-title: A data-driven subgrid scale model in large eddy simulation of turbulent premixed combustion
  publication-title: Proc Combust Inst
– volume: 962
  start-page: A38
  year: 2023
  ident: 10.1016/j.compfluid.2025.106823_b62
  article-title: Neural-network-based mixed subgrid-scale model for turbulent flow
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2023.260
– year: 2024
  ident: 10.1016/j.compfluid.2025.106823_b77
– volume: 31
  issue: 8
  year: 2019
  ident: 10.1016/j.compfluid.2025.106823_b17
  article-title: Artificial neural network mixed model for large eddy simulation of compressible isotropic turbulence
  publication-title: Phys Fluids
  doi: 10.1063/1.5110788
– volume: 18
  start-page: 237
  year: 1974
  ident: 10.1016/j.compfluid.2025.106823_b11
  article-title: Energy cascade in large eddy simulations of turbulent fluid flow
  publication-title: Adv Geophys
  doi: 10.1016/S0065-2687(08)60464-1
– volume: 24
  issue: 395–457
  year: 1992
  ident: 10.1016/j.compfluid.2025.106823_b19
  article-title: Wavelet transforms and their application to turbulence
  publication-title: Annu Rev Fluid Mech
– volume: 415
  start-page: 261
  year: 2010
  ident: 10.1016/j.compfluid.2025.106823_b7
  article-title: A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112000008776
– volume: 32
  start-page: 97
  issue: 1
  year: 2003
  ident: 10.1016/j.compfluid.2025.106823_b16
  article-title: Neural networks based subgrid scale modeling in large eddy simulations
  publication-title: Comput & Fluids
  doi: 10.1016/S0045-7930(01)00098-6
– volume: 62
  year: 1999
  ident: 10.1016/j.compfluid.2025.106823_b61
  article-title: Subgrid-scale stress modelling based on the square of the velocity gradient tensor
  publication-title: Flow, Turbul Combust
  doi: 10.1023/A:1009995426001
– volume: 3
  issue: 4
  year: 2018
  ident: 10.1016/j.compfluid.2025.106823_b60
  article-title: Variance of force distributions in homogeneous isotropic turbulence
  publication-title: Phys Rev Fluids
– volume: 26
  issue: 2
  year: 2014
  ident: 10.1016/j.compfluid.2025.106823_b6
  article-title: Large-eddy simulation of offshore wind farm
  publication-title: Phys Fluids
  doi: 10.1063/1.4863096
– volume: 41
  start-page: 453
  issue: 2
  year: 1970
  ident: 10.1016/j.compfluid.2025.106823_b56
  article-title: A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112070000691
– volume: 36
  issue: 9
  year: 2024
  ident: 10.1016/j.compfluid.2025.106823_b3
  article-title: Impact of atmospheric turbulence on wind farms sited over complex terrain
  publication-title: Phys Fluids
  doi: 10.1063/5.0222245
– volume: 398
  start-page: 609
  year: 2019
  ident: 10.1016/j.compfluid.2025.106823_b34
  article-title: Deep neural networks for data-driven turbulence models
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2019.108910
– volume: 327
  start-page: 307
  issue: 8476
  year: 1986
  ident: 10.1016/j.compfluid.2025.106823_b79
  article-title: Statistical methods for assessing agreement between two methods of clinical measurement
  publication-title: Lancet
  doi: 10.1016/S0140-6736(86)90837-8
– volume: 5
  start-page: 3186
  issue: 12
  year: 1993
  ident: 10.1016/j.compfluid.2025.106823_b13
  article-title: A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows
  publication-title: Phys Fluids A: Fluid Dyn
  doi: 10.1063/1.858675
– volume: 43
  issn: 0066-4189
  year: 2011
  ident: 10.1016/j.compfluid.2025.106823_b29
  article-title: Aerodynamic aspects of wind energy conversion
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev-fluid-122109-160801
– volume: 16
  year: 2023
  ident: 10.1016/j.compfluid.2025.106823_b50
  article-title: Large-eddy simulation of utility-scale wind farm sited over complex terrain
  publication-title: Energies
  doi: 10.3390/en16165941
– volume: 51
  start-page: 357
  year: 2019
  ident: 10.1016/j.compfluid.2025.106823_b23
  article-title: Turbulence modeling in the age of data
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev-fluid-010518-040547
– volume: 77
  start-page: 386
  year: 2015
  ident: 10.1016/j.compfluid.2025.106823_b43
  article-title: Role of subgrid-scale modeling in large eddy simulation of wind turbine wake interactions
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2014.12.036
– year: 2006
  ident: 10.1016/j.compfluid.2025.106823_b78
– volume: 25
  issue: 10
  year: 2013
  ident: 10.1016/j.compfluid.2025.106823_b58
  article-title: Structures and dynamics of small scales in three-dimensional magnetohydrodynamic turbulence
  publication-title: Phys Fluids
  doi: 10.1063/1.4824195
SSID ssj0004324
Score 2.445219
Snippet This study introduces a Scale-Adaptive Machine-Learning Subgrid-Scale model developed to predict subgrid-scale turbulence within the framework of large eddy...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 106823
SubjectTerms Encoder–decoder models
LES
Machine learning
Offshore wind farms
Subgrid-scale model
Title Towards a machine-learning-based large eddy simulation of offshore wind farms
URI https://dx.doi.org/10.1016/j.compfluid.2025.106823
Volume 302
WOSCitedRecordID wos001575601700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0045-7930
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0004324
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwELagcIADWl7isbvygVuUKnWS2uFWrUAsEogDSL1FxrGhqE2qpLz-PeNHkgKVWA57iSpLcRLP1_E3ycw3CB3FVFc8KuILFUGAAoQa_nMQtbIsZownQQzjptkEvbxkw2Fy5eQJKtNOgOY5e3lJpv_V1DAGxtals98wdzMpDMBvMDocwexw_DfDm0TYyuPexCRKSt91hrjz9ZaVeWOd_O3JLHv1qtHEte_SpLFQqrovSuk9Q6DuKV46JfNayMA1gKgMXNT4cZQ1hPyCw07LjUM_63qD8agBkkPcOb8v2xzEq2IqbVXQk1P-di8eSKwr8GzpZe1MI6126T6rOGcaBmTOHUK8yWw58SdPbV8aPOiFnpo77uprdNsz3mtjf9izmkzCOkntIW0mSvVEqZ1oGa0QGiesg1YGf0-G523JbEisQLd7hnepfwvvaTFxmSMj1z_Qhosi8MBafxMtyXwLrc9pS26jC4cDzPFiHGCDA6xxgFsc4ELhGgdY4wAbHOygm9OT6z9nvuud4YuwR2Z-IjiNMiVi8N9CazoBD5VBIG4Jk8DxIqb6NBO9sMc5cGZgaYn-oC4SLiJJ-1kQ7qJOXuRyD2EIIKgWaoNFoJFUivf7hMiQR4JJKXrBPgrqhUmnViIl_cIs--i4XsDUMT3L4FKAx1cnH3z_eodorUXwT9SZlY_yF1oVT7NRVf522HgDjtx24w
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+a+machine-learning-based+large+eddy+simulation+of+offshore+wind+farms&rft.jtitle=Computers+%26+fluids&rft.au=Marefat%2C+H.+Ali&rft.au=Alam%2C+Jahrul&rft.au=Pope%2C+Kevin&rft.date=2025-11-15&rft.issn=0045-7930&rft.volume=302&rft.spage=106823&rft_id=info:doi/10.1016%2Fj.compfluid.2025.106823&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compfluid_2025_106823
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7930&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7930&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7930&client=summon