Towards a machine-learning-based large eddy simulation of offshore wind farms
This study introduces a Scale-Adaptive Machine-Learning Subgrid-Scale model developed to predict subgrid-scale turbulence within the framework of large eddy simulations for offshore wind farms. Unlike traditional subgrid-scale models that rely on blending of isotropy and scale similarity, the propos...
Uložené v:
| Vydané v: | Computers & fluids Ročník 302; s. 106823 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
15.11.2025
|
| Predmet: | |
| ISSN: | 0045-7930 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This study introduces a Scale-Adaptive Machine-Learning Subgrid-Scale model developed to predict subgrid-scale turbulence within the framework of large eddy simulations for offshore wind farms. Unlike traditional subgrid-scale models that rely on blending of isotropy and scale similarity, the proposed approach leverages a supervised learning framework based on physically informed flow observables derived from mixed modelling theory and Leonard decomposition. The model employs a novel encoder–decoder neural network architecture designed to capture coherent enstrophy dynamics and multi-scale turbulence interactions. Skip connections and latent representations serve as implicit filters, enabling the model to represent both structural and functional aspects of turbulence. Trained using data from a scale-adaptive LES method, outcome of the presented model has been validated for its ability to learn and reproduce key turbulence characteristics, such as intermittency and energy transfer, across resolutions and flow scenarios. A-priori tests confirm its capacity to capture statistical turbulence features, while a-posteriori tests demonstrate that the model dynamically predicts eddy viscosity and produces flow fields comparable to high-resolution LES with traditional SGS models. When applied on coarser meshes, the model maintains accuracy, as evidenced by agreement in the ratio of subgrid to total kinetic energy. These findings support the potential of this machine-learning-based model as a physics-aware, scalable modelling approach for complex turbulent flows.
[Display omitted]
•ML–LES integration using scale-adaptive and mixed modelling: Introduces SAM-SGS, a model that learns enstrophy dynamics and energy cascade.•Encoder–decoder architecture improves LES performance: Uses skip connections to boost interpretability, gradient flow, and spatial detail.•Scalable and generalizable AI for offshore LES: SAM-SGS adapts to flow variations, enabling robust LES in wind farm applications. |
|---|---|
| AbstractList | This study introduces a Scale-Adaptive Machine-Learning Subgrid-Scale model developed to predict subgrid-scale turbulence within the framework of large eddy simulations for offshore wind farms. Unlike traditional subgrid-scale models that rely on blending of isotropy and scale similarity, the proposed approach leverages a supervised learning framework based on physically informed flow observables derived from mixed modelling theory and Leonard decomposition. The model employs a novel encoder–decoder neural network architecture designed to capture coherent enstrophy dynamics and multi-scale turbulence interactions. Skip connections and latent representations serve as implicit filters, enabling the model to represent both structural and functional aspects of turbulence. Trained using data from a scale-adaptive LES method, outcome of the presented model has been validated for its ability to learn and reproduce key turbulence characteristics, such as intermittency and energy transfer, across resolutions and flow scenarios. A-priori tests confirm its capacity to capture statistical turbulence features, while a-posteriori tests demonstrate that the model dynamically predicts eddy viscosity and produces flow fields comparable to high-resolution LES with traditional SGS models. When applied on coarser meshes, the model maintains accuracy, as evidenced by agreement in the ratio of subgrid to total kinetic energy. These findings support the potential of this machine-learning-based model as a physics-aware, scalable modelling approach for complex turbulent flows.
[Display omitted]
•ML–LES integration using scale-adaptive and mixed modelling: Introduces SAM-SGS, a model that learns enstrophy dynamics and energy cascade.•Encoder–decoder architecture improves LES performance: Uses skip connections to boost interpretability, gradient flow, and spatial detail.•Scalable and generalizable AI for offshore LES: SAM-SGS adapts to flow variations, enabling robust LES in wind farm applications. |
| ArticleNumber | 106823 |
| Author | Alam, Jahrul Pope, Kevin Marefat, H. Ali |
| Author_xml | – sequence: 1 givenname: H. Ali orcidid: 0000-0001-9274-7854 surname: Marefat fullname: Marefat, H. Ali email: hmarefat@mun.ca organization: Scientific Computing Program, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada – sequence: 2 givenname: Jahrul orcidid: 0000-0002-3075-591X surname: Alam fullname: Alam, Jahrul organization: Dept. of Mathematics and Statistics, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada – sequence: 3 givenname: Kevin surname: Pope fullname: Pope, Kevin organization: Dept. of Mechanical and Mechatronics Engineering, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada |
| BookMark | eNqFkN1qAjEQhXNhoWr7DM0LrJ0k--NeivQPLL2x1yFOJhrZTSTRim_fLZbeFg4MZ-AcDt-EjUIMxNiDgJkAUT_uZxj7g-tO3s4kyGr41nOpRmwMUFZF0yq4ZZOc9zB4Jcsxe1_Hs0k2c8N7gzsfqOjIpODDttiYTJZ3Jm2Jk7UXnn1_6szRx8CjG-TyLibiZx8sdyb1-Y7dONNluv-9U_b5_LRevharj5e35WJVoBLyWLRomtI6rEAIBGigbRUB4EbOqRKynLu6sSiUMKYafF23sgWBrcGSmtqCmrLm2osp5pzI6UPyvUkXLUD_kNB7_UdC_5DQVxJDcnFN0jDvy1PSGT0FJOsT4VHb6P_t-AZCxW9i |
| Cites_doi | 10.1146/annurev-fluid-121021-031431 10.1146/annurev.fluid.32.1.1 10.1007/s10546-018-0351-9 10.1017/jfm.2016.803 10.1146/annurev-fluid-122316-045241 10.3390/aerospace8120375 10.1063/5.0099347 10.1103/PhysRevFluids.5.014605 10.1017/jfm.2017.93 10.1146/annurev-fluid-010816-060206 10.1146/annurev-fluid-010719-060214 10.1016/j.jweia.2014.07.002 10.1063/1.868333 10.1063/1.3291077 10.3390/fluids9060144 10.1016/j.apenergy.2018.08.049 10.1063/1.857955 10.1006/jcph.2002.7146 10.1063/1.1839152 10.1063/1.4921264 10.1007/s10546-012-9757-y 10.1175/2009MWR2990.1 10.1002/qj.49708135027 10.3390/fluids8080219 10.1002/we.451 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2 10.1063/1.4940025 10.1063/5.0222245 10.1016/j.jcp.2019.108910 10.1016/j.renene.2017.08.072 10.1002/we.469 10.3390/en4111916 10.1016/j.compfluid.2018.05.027 10.1016/j.renene.2022.10.013 10.1016/j.euromechflu.2022.05.004 10.1088/1367-2630/6/1/035 10.1146/annurev-fluid-060420-023735 10.1002/we.408 10.1016/j.jweia.2011.01.011 10.1017/jfm.2018.770 10.1017/jfm.2023.260 10.1063/1.5110788 10.1016/S0065-2687(08)60464-1 10.1017/S0022112000008776 10.1016/S0045-7930(01)00098-6 10.1023/A:1009995426001 10.1063/1.4863096 10.1017/S0022112070000691 10.1016/S0140-6736(86)90837-8 10.1063/1.858675 10.1146/annurev-fluid-122109-160801 10.3390/en16165941 10.1146/annurev-fluid-010518-040547 10.1016/j.renene.2014.12.036 10.1063/1.4824195 |
| ContentType | Journal Article |
| Copyright | 2025 The Authors |
| Copyright_xml | – notice: 2025 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.compfluid.2025.106823 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_compfluid_2025_106823 S004579302500283X |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABAOU ABJNI ABMAC ACDAQ ACGFS ACIWK ACLOT ACRLP ACVFH ADBBV ADCNI ADEZE ADGUI ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGII AIGVJ AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SST SSW SSZ T5K TN5 XPP ZMT ~G- ~HD 29F 6TJ 9DU AAQXK AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACKIV ACNNM ACRPL ADIYS ADMUD ADNMO AFFNX AGQPQ AI. ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET T9H VH1 WUQ |
| ID | FETCH-LOGICAL-c312t-9ca74dfc5011c0070993e00cb28e51248f67dc131aa55126692901c9ac4e76d03 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001575601700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0045-7930 |
| IngestDate | Sat Nov 29 07:04:19 EST 2025 Sat Nov 22 16:51:10 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | LES Encoder–decoder models Subgrid-scale model Machine learning Offshore wind farms |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c312t-9ca74dfc5011c0070993e00cb28e51248f67dc131aa55126692901c9ac4e76d03 |
| ORCID | 0000-0001-9274-7854 0000-0002-3075-591X |
| OpenAccessLink | https://dx.doi.org/10.1016/j.compfluid.2025.106823 |
| ParticipantIDs | crossref_primary_10_1016_j_compfluid_2025_106823 elsevier_sciencedirect_doi_10_1016_j_compfluid_2025_106823 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-11-15 |
| PublicationDateYYYYMMDD | 2025-11-15 |
| PublicationDate_xml | – month: 11 year: 2025 text: 2025-11-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Computers & fluids |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Wu, Porté-Agel (b32) 2013; 146 Pawar, Sharma, Vijayakumar, Bay, Yellapantula, San (b27) 2022; 200 Bose, Park (b38) 2018; 50 Simley, Angelou, Mikkelsen, Sjöholm, Mann, Pao (b70) 2016; 8 Smagorinsky (b39) 1963; 91 Garratt (b75) 1994 Beck, Flad, Munz (b18) 2019; 398 Moser, Haering, Yalla (b37) 2021; 53 Porté-Agel, Meneveau, Parlange (b7) 2010; 415 Marefat (b77) 2024 Porté-Agel, Wu, Lu, Conzemius (b66) 2011; 99 Zang, Street, Koseff (b13) 1993; 5 Abkar, Zehtabiyan-Rezaie, Iosifidis (b28) 2024; 211 Davidson (b57) 2004 Vreman, Geurts, Kuerten (b63) 1994; 6 Leonard (b11) 1974; 18 Bland, Altman (b79) 1986; 327 Qi, Li, Luo, Yu (b14) 2023; 242 Shinde (b20) 2020; 5 Alam (b49) 2022; 34 Xie, Wang, Li, Wan, Chen (b17) 2019; 31 Beck, Flad, Munz (b34) 2019; 398 Sørensen (b29) 2011; 43 Singh, Alam (b2) 2024 Kang, Jeon, You (b62) 2023; 962 Meneveau, Katz (b8) 2000; 32 Meyers, Meneveau (b65) 2012; 15 Stevens, Meneveau (b44) 2017; 49 Dallas, Alexakis (b58) 2013; 25 Churchfield, Lee, Moriarty, Martínez, Leonardi, Vijayakumar, Brasseur (b30) 2012; vol. 2012 Maulik, San, Rasheed, Vedula (b33) 2018; 858 Pan, Archer (b5) 2018; 168 Hossen, Mulayath Variyath, Alam (b48) 2021; 8 Lilly DK. The representation of small-scale turbulence in numerical simulation experiments. In: Proc. IBM sci. comput. symp. on environmental science. 1967, p. 195–210. Sagaut (b21) 2005 Nicoud, Ducros (b61) 1999; 62 Charnock (b73) 1955; 81 Stevens, Martínez-Tossas, Meneveau (b1) 2018; 116 Buxton, Breda, Chen (b59) 2017; 817 Singh, Alam (b3) 2024; 36 Mehta, Van Zuijlen, Koren, Holierhoek, Bijl (b42) 2014; 133 Marefat, Alam, Pope (b51) 2024; 9 Fleming, Churchfield, Scholbrock (b67) 2014; 85 Calaf, Meneveau, Meyers (b9) 2010; 22 Farge (b19) 1992; 24 Strickland, Stevens (b71) 2022; 95 Sarghini, de Felice, Santini (b16) 2003; 32 Medici, Ivanell, Dahlberg, Alfredsson (b69) 2011; 14 Singh, Alam (b74) 2024; 36 Johnson, Wilczek (b52) 2024; 56 Bou-Zeid, Meneveau, Parlange (b55) 2005; 17 Hasslberger (b64) 2023; 8 Yang, Pakula, Sotiropoulos (b72) 2018; 229 Milano, Koumoutsakos (b15) 2002; 182 Bou-Zeid, Meneveau, Parlange (b10) 2005; 17 Brunton, Noack, Koumoutsakos (b24) 2020; 52 Chamorro, Porté-Agel (b31) 2011; 4 Ling, Kurzawski, Templeton (b26) 2016; 341 Deardorff (b56) 1970; 41 Lundquist, Chow, Lundquist (b4) 2010; 138 Yang, Meneveau, Shen (b6) 2014; 26 Goodfellow (b53) 2016 Barthelmie, Jensen, Pryor (b68) 2010; 13 Kutz (b25) 2017; 814 Singh, Alam (b50) 2023; 16 Bhuiyan, Alam (b47) 2020; 1 Pope (b12) 2000 Duraisamy, Iaccarino, Xiao (b23) 2019; 51 Kingma, Welling (b54) 2014 Wang, Wu, Xiao (b35) 2018; 366 Germano, Piomelli, Moin, Cabot (b22) 1991; 3 Bishop (b78) 2006 Shin, Ge, Lampmann, Pfitzner (b36) 2023; 40 Alam, Fitzpatrick (b46) 2018; 171 Chamorro, Hill, Neary, Gunawan, Arndt, Sotiropoulos (b45) 2015; 27 Sarlak, Meneveau, Sørensen (b43) 2015; 77 Germano, Piomelli, Moin, Cabot (b40) 1991; 3 Danish, Meneveau (b60) 2018; 3 Pope (b76) 2004; 6 Hasslberger (10.1016/j.compfluid.2025.106823_b64) 2023; 8 Kingma (10.1016/j.compfluid.2025.106823_b54) 2014 Kang (10.1016/j.compfluid.2025.106823_b62) 2023; 962 Deardorff (10.1016/j.compfluid.2025.106823_b56) 1970; 41 Shin (10.1016/j.compfluid.2025.106823_b36) 2023; 40 Barthelmie (10.1016/j.compfluid.2025.106823_b68) 2010; 13 Beck (10.1016/j.compfluid.2025.106823_b18) 2019; 398 Brunton (10.1016/j.compfluid.2025.106823_b24) 2020; 52 Bhuiyan (10.1016/j.compfluid.2025.106823_b47) 2020; 1 Singh (10.1016/j.compfluid.2025.106823_b3) 2024; 36 Meneveau (10.1016/j.compfluid.2025.106823_b8) 2000; 32 Singh (10.1016/j.compfluid.2025.106823_b2) 2024 Wang (10.1016/j.compfluid.2025.106823_b35) 2018; 366 Alam (10.1016/j.compfluid.2025.106823_b49) 2022; 34 Marefat (10.1016/j.compfluid.2025.106823_b51) 2024; 9 Simley (10.1016/j.compfluid.2025.106823_b70) 2016; 8 Wu (10.1016/j.compfluid.2025.106823_b32) 2013; 146 Alam (10.1016/j.compfluid.2025.106823_b46) 2018; 171 Strickland (10.1016/j.compfluid.2025.106823_b71) 2022; 95 Stevens (10.1016/j.compfluid.2025.106823_b1) 2018; 116 Calaf (10.1016/j.compfluid.2025.106823_b9) 2010; 22 Churchfield (10.1016/j.compfluid.2025.106823_b30) 2012; vol. 2012 Xie (10.1016/j.compfluid.2025.106823_b17) 2019; 31 Bland (10.1016/j.compfluid.2025.106823_b79) 1986; 327 Sagaut (10.1016/j.compfluid.2025.106823_b21) 2005 Moser (10.1016/j.compfluid.2025.106823_b37) 2021; 53 Kutz (10.1016/j.compfluid.2025.106823_b25) 2017; 814 Germano (10.1016/j.compfluid.2025.106823_b22) 1991; 3 Stevens (10.1016/j.compfluid.2025.106823_b44) 2017; 49 Pope (10.1016/j.compfluid.2025.106823_b76) 2004; 6 Milano (10.1016/j.compfluid.2025.106823_b15) 2002; 182 Meyers (10.1016/j.compfluid.2025.106823_b65) 2012; 15 Lundquist (10.1016/j.compfluid.2025.106823_b4) 2010; 138 Mehta (10.1016/j.compfluid.2025.106823_b42) 2014; 133 10.1016/j.compfluid.2025.106823_b41 Ling (10.1016/j.compfluid.2025.106823_b26) 2016; 341 Chamorro (10.1016/j.compfluid.2025.106823_b31) 2011; 4 Chamorro (10.1016/j.compfluid.2025.106823_b45) 2015; 27 Yang (10.1016/j.compfluid.2025.106823_b72) 2018; 229 Sarlak (10.1016/j.compfluid.2025.106823_b43) 2015; 77 Davidson (10.1016/j.compfluid.2025.106823_b57) 2004 Smagorinsky (10.1016/j.compfluid.2025.106823_b39) 1963; 91 Pope (10.1016/j.compfluid.2025.106823_b12) 2000 Hossen (10.1016/j.compfluid.2025.106823_b48) 2021; 8 Yang (10.1016/j.compfluid.2025.106823_b6) 2014; 26 Pan (10.1016/j.compfluid.2025.106823_b5) 2018; 168 Fleming (10.1016/j.compfluid.2025.106823_b67) 2014; 85 Goodfellow (10.1016/j.compfluid.2025.106823_b53) 2016 Bose (10.1016/j.compfluid.2025.106823_b38) 2018; 50 Qi (10.1016/j.compfluid.2025.106823_b14) 2023; 242 Maulik (10.1016/j.compfluid.2025.106823_b33) 2018; 858 Danish (10.1016/j.compfluid.2025.106823_b60) 2018; 3 Shinde (10.1016/j.compfluid.2025.106823_b20) 2020; 5 Dallas (10.1016/j.compfluid.2025.106823_b58) 2013; 25 Farge (10.1016/j.compfluid.2025.106823_b19) 1992; 24 Pawar (10.1016/j.compfluid.2025.106823_b27) 2022; 200 Marefat (10.1016/j.compfluid.2025.106823_b77) 2024 Bou-Zeid (10.1016/j.compfluid.2025.106823_b55) 2005; 17 Bou-Zeid (10.1016/j.compfluid.2025.106823_b10) 2005; 17 Germano (10.1016/j.compfluid.2025.106823_b40) 1991; 3 Porté-Agel (10.1016/j.compfluid.2025.106823_b66) 2011; 99 Vreman (10.1016/j.compfluid.2025.106823_b63) 1994; 6 Singh (10.1016/j.compfluid.2025.106823_b50) 2023; 16 Singh (10.1016/j.compfluid.2025.106823_b74) 2024; 36 Leonard (10.1016/j.compfluid.2025.106823_b11) 1974; 18 Buxton (10.1016/j.compfluid.2025.106823_b59) 2017; 817 Porté-Agel (10.1016/j.compfluid.2025.106823_b7) 2010; 415 Abkar (10.1016/j.compfluid.2025.106823_b28) 2024; 211 Nicoud (10.1016/j.compfluid.2025.106823_b61) 1999; 62 Bishop (10.1016/j.compfluid.2025.106823_b78) 2006 Zang (10.1016/j.compfluid.2025.106823_b13) 1993; 5 Beck (10.1016/j.compfluid.2025.106823_b34) 2019; 398 Sarghini (10.1016/j.compfluid.2025.106823_b16) 2003; 32 Duraisamy (10.1016/j.compfluid.2025.106823_b23) 2019; 51 Medici (10.1016/j.compfluid.2025.106823_b69) 2011; 14 Sørensen (10.1016/j.compfluid.2025.106823_b29) 2011; 43 Johnson (10.1016/j.compfluid.2025.106823_b52) 2024; 56 Charnock (10.1016/j.compfluid.2025.106823_b73) 1955; 81 Garratt (10.1016/j.compfluid.2025.106823_b75) 1994 |
| References_xml | – volume: 242 year: 2023 ident: b14 article-title: A new dynamic subgrid-scale model using artificial neural network for compressible flow publication-title: Comput & Fluids – volume: 962 start-page: A38 year: 2023 ident: b62 article-title: Neural-network-based mixed subgrid-scale model for turbulent flow publication-title: J Fluid Mech – volume: 6 start-page: 35 year: 2004 ident: b76 article-title: Ten questions concerning the large-eddy simulation of turbulent flows publication-title: New J Phys – volume: 50 start-page: 535 year: 2018 end-page: 561 ident: b38 article-title: Wall-modeled large-eddy simulation for complex turbulent flows publication-title: Annu Rev Fluid Mech – volume: 52 start-page: 477 year: 2020 end-page: 508 ident: b24 article-title: Machine learning for fluid mechanics publication-title: Annu Rev Fluid Mech – year: 1994 ident: b75 article-title: The atmospheric boundary layer – volume: 138 year: 2010 ident: b4 article-title: An immersed boundary method for the weather research and forecasting model publication-title: Mon Weather Rev – volume: 211 start-page: 252 year: 2024 end-page: 264 ident: b28 article-title: Reinforcement learning for wind-farm flow control: Current state and future actions publication-title: Renew Energy – volume: 133 start-page: 1 year: 2014 end-page: 17 ident: b42 article-title: Large eddy simulation of wind farm aerodynamics: A review publication-title: J Wind Eng Ind Aerodyn – volume: 146 year: 2013 ident: b32 article-title: Simulation of turbulent flow inside and above wind farms: Model validation and layout effects publication-title: Bound-Layer Meteorol – volume: 8 year: 2021 ident: b48 article-title: Statistical analysis of dynamic subgrid modeling approaches in large eddy simulation publication-title: Aerospace – volume: 36 year: 2024 ident: b74 article-title: Impact of atmospheric turbulence on wind farms sited over complex terrain publication-title: Phys Fluids – year: 2024 ident: b2 article-title: Characterization of atmospheric and wind farm turbulence publication-title: Comput & Fluids – volume: 16 year: 2023 ident: b50 article-title: Large-eddy simulation of utility-scale wind farm sited over complex terrain publication-title: Energies – volume: 40 start-page: 3287 year: 2023 end-page: 3294 ident: b36 article-title: A data-driven subgrid scale model in large eddy simulation of turbulent premixed combustion publication-title: Proc Combust Inst – volume: 168 year: 2018 ident: b5 article-title: A hybrid wind-farm parametrization for mesoscale and climate models publication-title: Bound-Layer Meteorol – volume: 200 year: 2022 ident: b27 article-title: Towards multi-fidelity deep learning of wind turbine wakes publication-title: Renew Energy – volume: 8 year: 2023 ident: b64 article-title: Dynamic mixed modeling in large eddy simulation using the concept of a subgrid activity sensor publication-title: Fluids – volume: 77 start-page: 386 year: 2015 end-page: 399 ident: b43 article-title: Role of subgrid-scale modeling in large eddy simulation of wind turbine wake interactions publication-title: Renew Energy – volume: 5 start-page: 3186 year: 1993 end-page: 3196 ident: b13 article-title: A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows publication-title: Phys Fluids A: Fluid Dyn – volume: 182 start-page: 1 year: 2002 end-page: 26 ident: b15 article-title: Neural network modeling for near wall turbulent flow publication-title: J Comput Phys – volume: 1 year: 2020 ident: b47 article-title: Scale-adaptive turbulence modelling for LES over complex terrain publication-title: Eng Comput – volume: 95 start-page: 303 year: 2022 end-page: 314 ident: b71 article-title: Investigating wind farm blockage in a neutral boundary layer using large-eddy simulations publication-title: Eur J Mech B Fluids – year: 2006 ident: b78 article-title: Pattern recognition and machine learning – volume: 341 start-page: 272 year: 2016 end-page: 297 ident: b26 article-title: Reynolds averaged turbulence modelling using deep neural networks with embedded invariance publication-title: J Comput Phys – volume: 34 year: 2022 ident: b49 article-title: Interaction of vortex stretching with wind power fluctuations publication-title: Phys Fluids – volume: 81 start-page: 639 year: 1955 end-page: 640 ident: b73 article-title: Wind stress on a water surface publication-title: Q J R Meteorol Soc – year: 2014 ident: b54 article-title: Auto-encoding variational Bayes – volume: 43 year: 2011 ident: b29 article-title: Aerodynamic aspects of wind energy conversion publication-title: Annu Rev Fluid Mech – volume: 3 start-page: 1760 year: 1991 end-page: 1765 ident: b22 article-title: A dynamic subgrid-scale eddy viscosity model publication-title: Phys Fluids A: Fluid Dyn – year: 2005 ident: b21 article-title: Large eddy simulation for incompressible flows: an introduction – volume: 13 start-page: 573 year: 2010 end-page: 586 ident: b68 article-title: Modelling the impact of wakes on power output at nysted and horns rev publication-title: Wind Energy – volume: 41 start-page: 453 year: 1970 end-page: 480 ident: b56 article-title: A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers publication-title: J Fluid Mech – volume: 858 start-page: 122 year: 2018 end-page: 144 ident: b33 article-title: Subgrid modelling for two-dimensional turbulence using neural networks publication-title: J Fluid Mech – volume: 27 year: 2015 ident: b45 article-title: Effects of energetic coherent motions on the power and wake of an axial-flow turbine publication-title: Phys Fluids – volume: 8 year: 2016 ident: b70 article-title: Characterization of wind velocities in the upstream induction zone of a wind turbine using scanning continuous-wave lidars publication-title: J Renew Sustain Energy – volume: 6 start-page: 4057 year: 1994 end-page: 4059 ident: b63 article-title: On the formulation of the dynamic mixed subgrid-scale model publication-title: Phys Fluids – volume: 15 start-page: 305 year: 2012 end-page: 317 ident: b65 article-title: Optimal turbine spacing in fully developed wind farm boundary layers publication-title: Wind Energy – volume: 56 start-page: 463 year: 2024 end-page: 490 ident: b52 article-title: Multiscale velocity gradients in turbulence publication-title: Annu Rev Fluid Mech – volume: 99 start-page: 154 year: 2011 end-page: 168 ident: b66 article-title: Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms publication-title: J Wind Eng Ind Aerodyn – volume: 814 start-page: 1 year: 2017 end-page: 4 ident: b25 article-title: Deep learning in fluid dynamics publication-title: J Fluid Mech – year: 2004 ident: b57 article-title: Turbulence - an introduction for scientists and engineers – volume: 116 year: 2018 ident: b1 article-title: Comparison of wind farm large eddy simulations using actuator disk and actuator line models with wind tunnel experiments publication-title: Renew Energy – volume: 51 start-page: 357 year: 2019 end-page: 377 ident: b23 article-title: Turbulence modeling in the age of data publication-title: Annu Rev Fluid Mech – year: 2000 ident: b12 article-title: Turbulent flows – volume: 53 year: 2021 ident: b37 article-title: Statistical properties of subgrid-scale turbulence models publication-title: Annu Rev Fluid Mech – volume: 3 year: 2018 ident: b60 article-title: Variance of force distributions in homogeneous isotropic turbulence publication-title: Phys Rev Fluids – volume: 17 year: 2005 ident: b10 article-title: A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows publication-title: Phys Fluids – volume: 5 year: 2020 ident: b20 article-title: Proper orthogonal decomposition assisted subfilter-scale model of turbulence for large eddy simulation publication-title: Phys Rev Fluids – volume: 415 start-page: 261 year: 2010 end-page: 284 ident: b7 article-title: A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer publication-title: J Fluid Mech – volume: 18 start-page: 237 year: 1974 end-page: 248 ident: b11 article-title: Energy cascade in large eddy simulations of turbulent fluid flow publication-title: Adv Geophys – volume: 229 start-page: 767 year: 2018 end-page: 777 ident: b72 article-title: Large-eddy simulation of a utility-scale wind farm in complex terrain publication-title: Appl Energy – volume: vol. 2012 year: 2012 ident: b30 article-title: A large-eddy simulation of wind-plant aerodynamics publication-title: 50th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition – volume: 398 start-page: 609 year: 2019 end-page: 630 ident: b34 article-title: Deep neural networks for data-driven turbulence models publication-title: J Comput Phys – reference: Lilly DK. The representation of small-scale turbulence in numerical simulation experiments. In: Proc. IBM sci. comput. symp. on environmental science. 1967, p. 195–210. – volume: 171 start-page: 65 year: 2018 end-page: 78 ident: b46 article-title: Large eddy simulation of flow through a periodic array of urban-like obstacles using a canopy stress method publication-title: Comput & Fluids – year: 2024 ident: b77 article-title: Advancing machine learning for large eddy simulation of offshore wind farms – volume: 22 year: 2010 ident: b9 article-title: Large eddy simulation study of fully developed wind-turbine array boundary layers publication-title: Phys Fluids – volume: 3 start-page: 1760 year: 1991 end-page: 1775 ident: b40 article-title: A dynamic subgrid scale eddy viscosity model publication-title: Phys Fluids A – volume: 4 start-page: 1916 year: 2011 end-page: 1936 ident: b31 article-title: Turbulent flow inside and above a wind farm: A wind-tunnel study publication-title: Energies – volume: 85 start-page: 419 year: 2014 end-page: 429 ident: b67 article-title: Evaluating techniques for redirecting turbine wakes using SOWFA publication-title: Renew Energy – volume: 32 start-page: 1 year: 2000 end-page: 32 ident: b8 article-title: Scale-invariance and turbulence models for large-eddy simulation publication-title: Annu Rev Fluid Mech – volume: 91 start-page: 99 year: 1963 end-page: 164 ident: b39 article-title: General circulation experiments with the primitive equations: I. The basic experiment publication-title: Mon Weather Rev – year: 2016 ident: b53 article-title: Deep learning – volume: 14 start-page: 691 year: 2011 end-page: 697 ident: b69 article-title: The upstream flow of a wind turbine: Blockage effect publication-title: Wind Energy – volume: 817 start-page: 1 year: 2017 end-page: 20 ident: b59 article-title: The effects of Reynolds number and Stokes number on particle-pair relative velocity in isotropic turbulence: A systematic experimental study publication-title: J Fluid Mech – volume: 398 year: 2019 ident: b18 article-title: Deep neural networks for data-driven LES closure models publication-title: J Comput Phys – volume: 32 start-page: 97 year: 2003 end-page: 108 ident: b16 article-title: Neural networks based subgrid scale modeling in large eddy simulations publication-title: Comput & Fluids – volume: 17 year: 2005 ident: b55 article-title: A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows publication-title: Phys Fluids – volume: 25 year: 2013 ident: b58 article-title: Structures and dynamics of small scales in three-dimensional magnetohydrodynamic turbulence publication-title: Phys Fluids – volume: 31 year: 2019 ident: b17 article-title: Artificial neural network mixed model for large eddy simulation of compressible isotropic turbulence publication-title: Phys Fluids – volume: 9 year: 2024 ident: b51 article-title: Toward scale-adaptive subgrid-scale model in LES for turbulent flow past a sphere publication-title: Fluids – volume: 327 start-page: 307 year: 1986 end-page: 310 ident: b79 article-title: Statistical methods for assessing agreement between two methods of clinical measurement publication-title: Lancet – volume: 366 start-page: 341 year: 2018 end-page: 363 ident: b35 article-title: A physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data publication-title: J Comput Phys – volume: 36 year: 2024 ident: b3 article-title: Impact of atmospheric turbulence on wind farms sited over complex terrain publication-title: Phys Fluids – volume: 26 year: 2014 ident: b6 article-title: Large-eddy simulation of offshore wind farm publication-title: Phys Fluids – volume: 49 start-page: 311 year: 2017 end-page: 339 ident: b44 article-title: Flow structure and turbulence in wind farms publication-title: Annu Rev Fluid Mech – volume: 62 year: 1999 ident: b61 article-title: Subgrid-scale stress modelling based on the square of the velocity gradient tensor publication-title: Flow, Turbul Combust – volume: 24 year: 1992 ident: b19 article-title: Wavelet transforms and their application to turbulence publication-title: Annu Rev Fluid Mech – volume: vol. 2012 year: 2012 ident: 10.1016/j.compfluid.2025.106823_b30 article-title: A large-eddy simulation of wind-plant aerodynamics – volume: 56 start-page: 463 issn: 1545-4479 year: 2024 ident: 10.1016/j.compfluid.2025.106823_b52 article-title: Multiscale velocity gradients in turbulence publication-title: Annu Rev Fluid Mech doi: 10.1146/annurev-fluid-121021-031431 – volume: 85 start-page: 419 year: 2014 ident: 10.1016/j.compfluid.2025.106823_b67 article-title: Evaluating techniques for redirecting turbine wakes using SOWFA publication-title: Renew Energy – volume: 32 start-page: 1 issue: 1 year: 2000 ident: 10.1016/j.compfluid.2025.106823_b8 article-title: Scale-invariance and turbulence models for large-eddy simulation publication-title: Annu Rev Fluid Mech doi: 10.1146/annurev.fluid.32.1.1 – volume: 168 year: 2018 ident: 10.1016/j.compfluid.2025.106823_b5 article-title: A hybrid wind-farm parametrization for mesoscale and climate models publication-title: Bound-Layer Meteorol doi: 10.1007/s10546-018-0351-9 – volume: 814 start-page: 1 year: 2017 ident: 10.1016/j.compfluid.2025.106823_b25 article-title: Deep learning in fluid dynamics publication-title: J Fluid Mech doi: 10.1017/jfm.2016.803 – ident: 10.1016/j.compfluid.2025.106823_b41 – volume: 50 start-page: 535 year: 2018 ident: 10.1016/j.compfluid.2025.106823_b38 article-title: Wall-modeled large-eddy simulation for complex turbulent flows publication-title: Annu Rev Fluid Mech doi: 10.1146/annurev-fluid-122316-045241 – volume: 8 issn: 2226-4310 issue: 12 year: 2021 ident: 10.1016/j.compfluid.2025.106823_b48 article-title: Statistical analysis of dynamic subgrid modeling approaches in large eddy simulation publication-title: Aerospace doi: 10.3390/aerospace8120375 – volume: 34 year: 2022 ident: 10.1016/j.compfluid.2025.106823_b49 article-title: Interaction of vortex stretching with wind power fluctuations publication-title: Phys Fluids doi: 10.1063/5.0099347 – volume: 5 year: 2020 ident: 10.1016/j.compfluid.2025.106823_b20 article-title: Proper orthogonal decomposition assisted subfilter-scale model of turbulence for large eddy simulation publication-title: Phys Rev Fluids doi: 10.1103/PhysRevFluids.5.014605 – volume: 817 start-page: 1 year: 2017 ident: 10.1016/j.compfluid.2025.106823_b59 article-title: The effects of Reynolds number and Stokes number on particle-pair relative velocity in isotropic turbulence: A systematic experimental study publication-title: J Fluid Mech doi: 10.1017/jfm.2017.93 – volume: 49 start-page: 311 year: 2017 ident: 10.1016/j.compfluid.2025.106823_b44 article-title: Flow structure and turbulence in wind farms publication-title: Annu Rev Fluid Mech doi: 10.1146/annurev-fluid-010816-060206 – year: 2004 ident: 10.1016/j.compfluid.2025.106823_b57 – volume: 1 year: 2020 ident: 10.1016/j.compfluid.2025.106823_b47 article-title: Scale-adaptive turbulence modelling for LES over complex terrain publication-title: Eng Comput – volume: 52 start-page: 477 issue: 1 year: 2020 ident: 10.1016/j.compfluid.2025.106823_b24 article-title: Machine learning for fluid mechanics publication-title: Annu Rev Fluid Mech doi: 10.1146/annurev-fluid-010719-060214 – volume: 341 start-page: 272 year: 2016 ident: 10.1016/j.compfluid.2025.106823_b26 article-title: Reynolds averaged turbulence modelling using deep neural networks with embedded invariance publication-title: J Comput Phys – volume: 366 start-page: 341 year: 2018 ident: 10.1016/j.compfluid.2025.106823_b35 article-title: A physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data publication-title: J Comput Phys – volume: 133 start-page: 1 year: 2014 ident: 10.1016/j.compfluid.2025.106823_b42 article-title: Large eddy simulation of wind farm aerodynamics: A review publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/j.jweia.2014.07.002 – volume: 6 start-page: 4057 issue: 12 year: 1994 ident: 10.1016/j.compfluid.2025.106823_b63 article-title: On the formulation of the dynamic mixed subgrid-scale model publication-title: Phys Fluids doi: 10.1063/1.868333 – volume: 22 issue: 1 year: 2010 ident: 10.1016/j.compfluid.2025.106823_b9 article-title: Large eddy simulation study of fully developed wind-turbine array boundary layers publication-title: Phys Fluids doi: 10.1063/1.3291077 – volume: 9 year: 2024 ident: 10.1016/j.compfluid.2025.106823_b51 article-title: Toward scale-adaptive subgrid-scale model in LES for turbulent flow past a sphere publication-title: Fluids doi: 10.3390/fluids9060144 – volume: 229 start-page: 767 year: 2018 ident: 10.1016/j.compfluid.2025.106823_b72 article-title: Large-eddy simulation of a utility-scale wind farm in complex terrain publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.08.049 – volume: 3 start-page: 1760 issue: 7 year: 1991 ident: 10.1016/j.compfluid.2025.106823_b22 article-title: A dynamic subgrid-scale eddy viscosity model publication-title: Phys Fluids A: Fluid Dyn doi: 10.1063/1.857955 – volume: 182 start-page: 1 issue: 1 year: 2002 ident: 10.1016/j.compfluid.2025.106823_b15 article-title: Neural network modeling for near wall turbulent flow publication-title: J Comput Phys doi: 10.1006/jcph.2002.7146 – volume: 17 issue: 2 year: 2005 ident: 10.1016/j.compfluid.2025.106823_b10 article-title: A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows publication-title: Phys Fluids doi: 10.1063/1.1839152 – year: 2016 ident: 10.1016/j.compfluid.2025.106823_b53 – year: 2000 ident: 10.1016/j.compfluid.2025.106823_b12 – year: 2005 ident: 10.1016/j.compfluid.2025.106823_b21 – year: 1994 ident: 10.1016/j.compfluid.2025.106823_b75 – volume: 27 issue: 5 year: 2015 ident: 10.1016/j.compfluid.2025.106823_b45 article-title: Effects of energetic coherent motions on the power and wake of an axial-flow turbine publication-title: Phys Fluids doi: 10.1063/1.4921264 – volume: 146 year: 2013 ident: 10.1016/j.compfluid.2025.106823_b32 article-title: Simulation of turbulent flow inside and above wind farms: Model validation and layout effects publication-title: Bound-Layer Meteorol doi: 10.1007/s10546-012-9757-y – volume: 138 year: 2010 ident: 10.1016/j.compfluid.2025.106823_b4 article-title: An immersed boundary method for the weather research and forecasting model publication-title: Mon Weather Rev doi: 10.1175/2009MWR2990.1 – year: 2014 ident: 10.1016/j.compfluid.2025.106823_b54 – volume: 81 start-page: 639 issue: 350 year: 1955 ident: 10.1016/j.compfluid.2025.106823_b73 article-title: Wind stress on a water surface publication-title: Q J R Meteorol Soc doi: 10.1002/qj.49708135027 – volume: 8 issue: 8 year: 2023 ident: 10.1016/j.compfluid.2025.106823_b64 article-title: Dynamic mixed modeling in large eddy simulation using the concept of a subgrid activity sensor publication-title: Fluids doi: 10.3390/fluids8080219 – volume: 211 start-page: 252 year: 2024 ident: 10.1016/j.compfluid.2025.106823_b28 article-title: Reinforcement learning for wind-farm flow control: Current state and future actions publication-title: Renew Energy – volume: 17 issue: 2 year: 2005 ident: 10.1016/j.compfluid.2025.106823_b55 article-title: A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows publication-title: Phys Fluids doi: 10.1063/1.1839152 – volume: 14 start-page: 691 year: 2011 ident: 10.1016/j.compfluid.2025.106823_b69 article-title: The upstream flow of a wind turbine: Blockage effect publication-title: Wind Energy doi: 10.1002/we.451 – volume: 91 start-page: 99 issue: 3 year: 1963 ident: 10.1016/j.compfluid.2025.106823_b39 article-title: General circulation experiments with the primitive equations: I. The basic experiment publication-title: Mon Weather Rev doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2 – volume: 8 issn: 1941-7012 year: 2016 ident: 10.1016/j.compfluid.2025.106823_b70 article-title: Characterization of wind velocities in the upstream induction zone of a wind turbine using scanning continuous-wave lidars publication-title: J Renew Sustain Energy doi: 10.1063/1.4940025 – volume: 36 issue: 9 year: 2024 ident: 10.1016/j.compfluid.2025.106823_b74 article-title: Impact of atmospheric turbulence on wind farms sited over complex terrain publication-title: Phys Fluids doi: 10.1063/5.0222245 – volume: 398 year: 2019 ident: 10.1016/j.compfluid.2025.106823_b18 article-title: Deep neural networks for data-driven LES closure models publication-title: J Comput Phys doi: 10.1016/j.jcp.2019.108910 – volume: 116 year: 2018 ident: 10.1016/j.compfluid.2025.106823_b1 article-title: Comparison of wind farm large eddy simulations using actuator disk and actuator line models with wind tunnel experiments publication-title: Renew Energy doi: 10.1016/j.renene.2017.08.072 – volume: 15 start-page: 305 issue: 2 year: 2012 ident: 10.1016/j.compfluid.2025.106823_b65 article-title: Optimal turbine spacing in fully developed wind farm boundary layers publication-title: Wind Energy doi: 10.1002/we.469 – volume: 4 start-page: 1916 year: 2011 ident: 10.1016/j.compfluid.2025.106823_b31 article-title: Turbulent flow inside and above a wind farm: A wind-tunnel study publication-title: Energies doi: 10.3390/en4111916 – volume: 171 start-page: 65 issn: 0045-7930 year: 2018 ident: 10.1016/j.compfluid.2025.106823_b46 article-title: Large eddy simulation of flow through a periodic array of urban-like obstacles using a canopy stress method publication-title: Comput & Fluids doi: 10.1016/j.compfluid.2018.05.027 – volume: 3 start-page: 1760 issue: 7 year: 1991 ident: 10.1016/j.compfluid.2025.106823_b40 article-title: A dynamic subgrid scale eddy viscosity model publication-title: Phys Fluids A doi: 10.1063/1.857955 – volume: 200 year: 2022 ident: 10.1016/j.compfluid.2025.106823_b27 article-title: Towards multi-fidelity deep learning of wind turbine wakes publication-title: Renew Energy doi: 10.1016/j.renene.2022.10.013 – volume: 95 start-page: 303 year: 2022 ident: 10.1016/j.compfluid.2025.106823_b71 article-title: Investigating wind farm blockage in a neutral boundary layer using large-eddy simulations publication-title: Eur J Mech B Fluids doi: 10.1016/j.euromechflu.2022.05.004 – volume: 6 start-page: 35 issue: 1 year: 2004 ident: 10.1016/j.compfluid.2025.106823_b76 article-title: Ten questions concerning the large-eddy simulation of turbulent flows publication-title: New J Phys doi: 10.1088/1367-2630/6/1/035 – volume: 53 year: 2021 ident: 10.1016/j.compfluid.2025.106823_b37 article-title: Statistical properties of subgrid-scale turbulence models publication-title: Annu Rev Fluid Mech doi: 10.1146/annurev-fluid-060420-023735 – volume: 13 start-page: 573 issue: 6 year: 2010 ident: 10.1016/j.compfluid.2025.106823_b68 article-title: Modelling the impact of wakes on power output at nysted and horns rev publication-title: Wind Energy doi: 10.1002/we.408 – volume: 242 year: 2023 ident: 10.1016/j.compfluid.2025.106823_b14 article-title: A new dynamic subgrid-scale model using artificial neural network for compressible flow publication-title: Comput & Fluids – year: 2024 ident: 10.1016/j.compfluid.2025.106823_b2 article-title: Characterization of atmospheric and wind farm turbulence publication-title: Comput & Fluids doi: 10.1063/5.0222245 – volume: 99 start-page: 154 issue: 4 year: 2011 ident: 10.1016/j.compfluid.2025.106823_b66 article-title: Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/j.jweia.2011.01.011 – volume: 858 start-page: 122 year: 2018 ident: 10.1016/j.compfluid.2025.106823_b33 article-title: Subgrid modelling for two-dimensional turbulence using neural networks publication-title: J Fluid Mech doi: 10.1017/jfm.2018.770 – volume: 40 start-page: 3287 year: 2023 ident: 10.1016/j.compfluid.2025.106823_b36 article-title: A data-driven subgrid scale model in large eddy simulation of turbulent premixed combustion publication-title: Proc Combust Inst – volume: 962 start-page: A38 year: 2023 ident: 10.1016/j.compfluid.2025.106823_b62 article-title: Neural-network-based mixed subgrid-scale model for turbulent flow publication-title: J Fluid Mech doi: 10.1017/jfm.2023.260 – year: 2024 ident: 10.1016/j.compfluid.2025.106823_b77 – volume: 31 issue: 8 year: 2019 ident: 10.1016/j.compfluid.2025.106823_b17 article-title: Artificial neural network mixed model for large eddy simulation of compressible isotropic turbulence publication-title: Phys Fluids doi: 10.1063/1.5110788 – volume: 18 start-page: 237 year: 1974 ident: 10.1016/j.compfluid.2025.106823_b11 article-title: Energy cascade in large eddy simulations of turbulent fluid flow publication-title: Adv Geophys doi: 10.1016/S0065-2687(08)60464-1 – volume: 24 issue: 395–457 year: 1992 ident: 10.1016/j.compfluid.2025.106823_b19 article-title: Wavelet transforms and their application to turbulence publication-title: Annu Rev Fluid Mech – volume: 415 start-page: 261 year: 2010 ident: 10.1016/j.compfluid.2025.106823_b7 article-title: A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer publication-title: J Fluid Mech doi: 10.1017/S0022112000008776 – volume: 32 start-page: 97 issue: 1 year: 2003 ident: 10.1016/j.compfluid.2025.106823_b16 article-title: Neural networks based subgrid scale modeling in large eddy simulations publication-title: Comput & Fluids doi: 10.1016/S0045-7930(01)00098-6 – volume: 62 year: 1999 ident: 10.1016/j.compfluid.2025.106823_b61 article-title: Subgrid-scale stress modelling based on the square of the velocity gradient tensor publication-title: Flow, Turbul Combust doi: 10.1023/A:1009995426001 – volume: 3 issue: 4 year: 2018 ident: 10.1016/j.compfluid.2025.106823_b60 article-title: Variance of force distributions in homogeneous isotropic turbulence publication-title: Phys Rev Fluids – volume: 26 issue: 2 year: 2014 ident: 10.1016/j.compfluid.2025.106823_b6 article-title: Large-eddy simulation of offshore wind farm publication-title: Phys Fluids doi: 10.1063/1.4863096 – volume: 41 start-page: 453 issue: 2 year: 1970 ident: 10.1016/j.compfluid.2025.106823_b56 article-title: A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers publication-title: J Fluid Mech doi: 10.1017/S0022112070000691 – volume: 36 issue: 9 year: 2024 ident: 10.1016/j.compfluid.2025.106823_b3 article-title: Impact of atmospheric turbulence on wind farms sited over complex terrain publication-title: Phys Fluids doi: 10.1063/5.0222245 – volume: 398 start-page: 609 year: 2019 ident: 10.1016/j.compfluid.2025.106823_b34 article-title: Deep neural networks for data-driven turbulence models publication-title: J Comput Phys doi: 10.1016/j.jcp.2019.108910 – volume: 327 start-page: 307 issue: 8476 year: 1986 ident: 10.1016/j.compfluid.2025.106823_b79 article-title: Statistical methods for assessing agreement between two methods of clinical measurement publication-title: Lancet doi: 10.1016/S0140-6736(86)90837-8 – volume: 5 start-page: 3186 issue: 12 year: 1993 ident: 10.1016/j.compfluid.2025.106823_b13 article-title: A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows publication-title: Phys Fluids A: Fluid Dyn doi: 10.1063/1.858675 – volume: 43 issn: 0066-4189 year: 2011 ident: 10.1016/j.compfluid.2025.106823_b29 article-title: Aerodynamic aspects of wind energy conversion publication-title: Annu Rev Fluid Mech doi: 10.1146/annurev-fluid-122109-160801 – volume: 16 year: 2023 ident: 10.1016/j.compfluid.2025.106823_b50 article-title: Large-eddy simulation of utility-scale wind farm sited over complex terrain publication-title: Energies doi: 10.3390/en16165941 – volume: 51 start-page: 357 year: 2019 ident: 10.1016/j.compfluid.2025.106823_b23 article-title: Turbulence modeling in the age of data publication-title: Annu Rev Fluid Mech doi: 10.1146/annurev-fluid-010518-040547 – volume: 77 start-page: 386 year: 2015 ident: 10.1016/j.compfluid.2025.106823_b43 article-title: Role of subgrid-scale modeling in large eddy simulation of wind turbine wake interactions publication-title: Renew Energy doi: 10.1016/j.renene.2014.12.036 – year: 2006 ident: 10.1016/j.compfluid.2025.106823_b78 – volume: 25 issue: 10 year: 2013 ident: 10.1016/j.compfluid.2025.106823_b58 article-title: Structures and dynamics of small scales in three-dimensional magnetohydrodynamic turbulence publication-title: Phys Fluids doi: 10.1063/1.4824195 |
| SSID | ssj0004324 |
| Score | 2.4451385 |
| Snippet | This study introduces a Scale-Adaptive Machine-Learning Subgrid-Scale model developed to predict subgrid-scale turbulence within the framework of large eddy... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 106823 |
| SubjectTerms | Encoder–decoder models LES Machine learning Offshore wind farms Subgrid-scale model |
| Title | Towards a machine-learning-based large eddy simulation of offshore wind farms |
| URI | https://dx.doi.org/10.1016/j.compfluid.2025.106823 |
| Volume | 302 |
| WOSCitedRecordID | wos001575601700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0045-7930 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0004324 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbtpof2UPokSR_o0JvxYvklu7elpKShCTmksDcjy6Nmw8Ze7E2a_PuOHrY37UKaQy_CGCTbmo_RJ3nmG0I-MQCuRMm0bmvpx2kqfRFGpa8iphSTFYPEJAp_5ycn2Xyenzp5gs6UE-B1nd3c5Kv_amq8h8bWqbMPMPcwKN7AazQ6tmh2bP_N8CYQtvOEd2kCJcF3lSF--nrJqrylDv72oKpuvW5x6cp3adLYKNWdNy14v3Cj7inROiXzXsjAFYDoDFzU8mpRDYT8WOBKK4xDP5x6s-ViAJJD3JE4b8cYxNNmBTYr6Nopf7uDhzDRGXg29bJ3prFWu3S_VZwzjYJwwx3ifjOz6cR_eWp7aHChJ3pl3niqnzEde9zVxv5jzRoiCfsgtYtiGKjQAxV2oMdkJ-RJnk3IzuzbwfxoTJmNQivQ7b7hTujf1nfaTlw2yMjZC_Lc7SLozFr_JXkE9SvybENb8jU5djiggm7HATU4oBoHdMQBbRTtcUA1DqjBwRvy4-vB2ZdD39XO8GXEwrWfS8HjSskE_bfUmk7IQyEIZBlmgBwvzlTKK8kiJgRyZmRpuf6hLnMhY-BpFURvyaRuatglFGSFpKXkMhMp9osF5DxJIYhKbAHYHgn6iSlWViKluMcse-RzP4GFY3qWwRUIj_s67z_8ee_I0xHB78lk3V7BB_JEXq8XXfvRYeM3nrZ5Pw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+a+machine-learning-based+large+eddy+simulation+of+offshore+wind+farms&rft.jtitle=Computers+%26+fluids&rft.au=Marefat%2C+H.+Ali&rft.au=Alam%2C+Jahrul&rft.au=Pope%2C+Kevin&rft.date=2025-11-15&rft.issn=0045-7930&rft.volume=302&rft.spage=106823&rft_id=info:doi/10.1016%2Fj.compfluid.2025.106823&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compfluid_2025_106823 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7930&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7930&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7930&client=summon |