A hybrid semantic attribute-based zero-shot learning model for bearing fault diagnosis under unknown working conditions
Most current intelligent fault diagnosis models, dependent on specific working condition data for training, cannot effectively diagnose faults in unknown working conditions without data. Zero-shot learning (ZSL) can identify samples unseen during the training phase and has now been applied to the fi...
Uložené v:
| Vydané v: | Engineering applications of artificial intelligence Ročník 136; s. 109020 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.10.2024
|
| Predmet: | |
| ISSN: | 0952-1976 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!