Partial shading mitigation of PV systems via different meta-heuristic techniques
Recently, electricity generation from solar photovoltaic (PV) has gained popularity throughout the world due to its profuse availability and eco-friendly nature. Consequently, extraction of maximum power from solar PV energy systems was the point of interest in the current researches. Various techni...
Saved in:
| Published in: | Renewable energy Vol. 130; pp. 1159 - 1175 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.01.2019
|
| Subjects: | |
| ISSN: | 0960-1481, 1879-0682 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Recently, electricity generation from solar photovoltaic (PV) has gained popularity throughout the world due to its profuse availability and eco-friendly nature. Consequently, extraction of maximum power from solar PV energy systems was the point of interest in the current researches. Various techniques have been proposed to track the maximum power point (MPP) from solar PV energy systems under variable environmental conditions. Conventional maximum power point tracking (MPPT) techniques have demonstrated the ability to track MPP with uniform solar irradiance. However, the ability of these techniques to track the accurate MPP with the condition of partial shading (PS) is not guaranteed. Hence, this paper intended to present novel optimization techniques to mitigate the PS effect and proficiently track the global maximum power point (GMPP). Grey Wolf Optimization (GWO), Moth-Flame Optimization (MFO), Salp Swarm Algorithm (SSA) and Hybrid Particle Swarm Optimization-Gravitational Search Algorithm (PSO-GSA) techniques have been proposed to handle this dilemma. The proposed techniques have been simulated and analyzed using MATLAB/SIMULINK. Furthermore, these techniques have been compared with the conventional PSO algorithm for validation. Statistical and sensitivity analysis have been established to compare the performance, check the stability, and determine the best technique out of the proposed techniques. Results showed the superiority of GWO in the speed of convergence and the time to catch GMPP. Moreover, the sensitivity analysis demonstrated the stability, successfully rate, and tracking efficiency of PSO-GSA technique. Finally, this paper gives an open reference to these optimizers to attempt mass research works in PV systems under PS.
•Implementation of distinctive meta-heuristic optimization algorithms for increasing the PV system efficiency under PSC.•The proposed algorithms are GWO, MFO, PSO-GSA, and SSA.•Determination of the GMPP from the multiple local peaks caused by different irradiances.•Comparing the proposed algorithms with PSO algorithm for approval.•Introducing statistical and sensitivity analysis to compare the performance and check the stability of proposed algorithms. |
|---|---|
| AbstractList | Recently, electricity generation from solar photovoltaic (PV) has gained popularity throughout the world due to its profuse availability and eco-friendly nature. Consequently, extraction of maximum power from solar PV energy systems was the point of interest in the current researches. Various techniques have been proposed to track the maximum power point (MPP) from solar PV energy systems under variable environmental conditions. Conventional maximum power point tracking (MPPT) techniques have demonstrated the ability to track MPP with uniform solar irradiance. However, the ability of these techniques to track the accurate MPP with the condition of partial shading (PS) is not guaranteed. Hence, this paper intended to present novel optimization techniques to mitigate the PS effect and proficiently track the global maximum power point (GMPP). Grey Wolf Optimization (GWO), Moth-Flame Optimization (MFO), Salp Swarm Algorithm (SSA) and Hybrid Particle Swarm Optimization-Gravitational Search Algorithm (PSO-GSA) techniques have been proposed to handle this dilemma. The proposed techniques have been simulated and analyzed using MATLAB/SIMULINK. Furthermore, these techniques have been compared with the conventional PSO algorithm for validation. Statistical and sensitivity analysis have been established to compare the performance, check the stability, and determine the best technique out of the proposed techniques. Results showed the superiority of GWO in the speed of convergence and the time to catch GMPP. Moreover, the sensitivity analysis demonstrated the stability, successfully rate, and tracking efficiency of PSO-GSA technique. Finally, this paper gives an open reference to these optimizers to attempt mass research works in PV systems under PS.
•Implementation of distinctive meta-heuristic optimization algorithms for increasing the PV system efficiency under PSC.•The proposed algorithms are GWO, MFO, PSO-GSA, and SSA.•Determination of the GMPP from the multiple local peaks caused by different irradiances.•Comparing the proposed algorithms with PSO algorithm for approval.•Introducing statistical and sensitivity analysis to compare the performance and check the stability of proposed algorithms. Recently, electricity generation from solar photovoltaic (PV) has gained popularity throughout the world due to its profuse availability and eco-friendly nature. Consequently, extraction of maximum power from solar PV energy systems was the point of interest in the current researches. Various techniques have been proposed to track the maximum power point (MPP) from solar PV energy systems under variable environmental conditions. Conventional maximum power point tracking (MPPT) techniques have demonstrated the ability to track MPP with uniform solar irradiance. However, the ability of these techniques to track the accurate MPP with the condition of partial shading (PS) is not guaranteed. Hence, this paper intended to present novel optimization techniques to mitigate the PS effect and proficiently track the global maximum power point (GMPP). Grey Wolf Optimization (GWO), Moth-Flame Optimization (MFO), Salp Swarm Algorithm (SSA) and Hybrid Particle Swarm Optimization-Gravitational Search Algorithm (PSO-GSA) techniques have been proposed to handle this dilemma. The proposed techniques have been simulated and analyzed using MATLAB/SIMULINK. Furthermore, these techniques have been compared with the conventional PSO algorithm for validation. Statistical and sensitivity analysis have been established to compare the performance, check the stability, and determine the best technique out of the proposed techniques. Results showed the superiority of GWO in the speed of convergence and the time to catch GMPP. Moreover, the sensitivity analysis demonstrated the stability, successfully rate, and tracking efficiency of PSO-GSA technique. Finally, this paper gives an open reference to these optimizers to attempt mass research works in PV systems under PS. |
| Author | Mohamed, Mohamed A. Zaki Diab, Ahmed A. Rezk, Hegazy |
| Author_xml | – sequence: 1 givenname: Mohamed A. surname: Mohamed fullname: Mohamed, Mohamed A. email: dr.mohamed.abdelaziz@mu.edu.eg organization: Electrical Engineering Department, Faculty of Engineering, Minia University, Minia, Egypt – sequence: 2 givenname: Ahmed A. surname: Zaki Diab fullname: Zaki Diab, Ahmed A. email: a.diab@mu.edu.eg organization: Electrical Engineering Department, Faculty of Engineering, Minia University, Minia, Egypt – sequence: 3 givenname: Hegazy surname: Rezk fullname: Rezk, Hegazy email: hegazy.hussien@mu.edu.eg organization: Electrical Engineering Department, Faculty of Engineering, Minia University, Minia, Egypt |
| BookMark | eNqFkE1rGzEQhkVxoU7af9CDjrmsq1mtpd0eAsEkTcBQH5pcxax21h6zH64kG_Lvu65zyqFlXpjL-wHPlZgN40BCfAW1AAXm234RaJhukSsoF2qStR_EHEpbZcqU-UzMVWVUBkUJn8RVjHulYFnaYi42GwyJsZNxhw0PW9lz4i0mHgc5tnLzIuNrTNRHeWKUDbctTVtJ9pQw29ExcEzsZSK_G_j3keJn8bHFLtKXt38tnh_uf60es_XPH0-ru3XmNeQpK8kXdanI5B601VgZ0BrQLnGJta69qZe6brHRBtsasCgslHULxiuPlGOur8XNpfcQxvNucj1HT12HA43H6HIAU4HNVTVZi4vVhzHGQK07BO4xvDpQ7gzQ7d0FoDsDdGqStVPs-7uY5_SXTArI3f_Ct5cwTQxOTMFFzzR4ajiQT64Z-d8FfwAnUpJa |
| CitedBy_id | crossref_primary_10_1155_2021_9956433 crossref_primary_10_1109_ACCESS_2024_3434523 crossref_primary_10_1088_1757_899X_1096_1_012084 crossref_primary_10_3233_JIFS_224535 crossref_primary_10_1007_s00202_020_01201_5 crossref_primary_10_1177_01445987221112250 crossref_primary_10_3390_app10072575 crossref_primary_10_1007_s00521_023_09240_2 crossref_primary_10_1109_ACCESS_2019_2932694 crossref_primary_10_3390_en14227806 crossref_primary_10_1016_j_scitotenv_2020_141753 crossref_primary_10_1016_j_compeleceng_2024_109991 crossref_primary_10_1109_ACCESS_2020_2978398 crossref_primary_10_1007_s00521_023_09407_x crossref_primary_10_3390_su17135841 crossref_primary_10_1109_ACCESS_2020_3038934 crossref_primary_10_3390_en13174531 crossref_primary_10_1002_er_5605 crossref_primary_10_1016_j_enconman_2020_113409 crossref_primary_10_1109_TII_2021_3067719 crossref_primary_10_1016_j_jclepro_2019_01_150 crossref_primary_10_3390_su131910778 crossref_primary_10_1371_journal_pone_0234992 crossref_primary_10_1080_15567036_2020_1850927 crossref_primary_10_1109_ACCESS_2019_2959547 crossref_primary_10_3390_en13184971 crossref_primary_10_1016_j_egyr_2021_01_024 crossref_primary_10_3390_math7100875 crossref_primary_10_1007_s00521_019_04629_4 crossref_primary_10_1016_j_egyr_2020_11_149 crossref_primary_10_1002_er_5446 crossref_primary_10_1007_s00202_025_03228_y crossref_primary_10_1016_j_conengprac_2020_104570 crossref_primary_10_3390_math7111123 crossref_primary_10_1007_s10586_024_04895_5 crossref_primary_10_3233_JIFS_221125 crossref_primary_10_3390_pr8040382 crossref_primary_10_1016_j_energy_2020_117976 crossref_primary_10_1016_j_rser_2019_109372 crossref_primary_10_3390_en12173263 crossref_primary_10_1007_s41403_025_00518_6 crossref_primary_10_1155_2023_3345533 crossref_primary_10_3390_en12183548 crossref_primary_10_1080_15567036_2022_2096154 crossref_primary_10_1088_2631_8695_ad5f16 crossref_primary_10_1016_j_egyr_2021_08_189 crossref_primary_10_1016_j_energy_2022_126366 crossref_primary_10_1088_1742_6596_1167_1_012029 crossref_primary_10_1016_j_renene_2022_08_095 crossref_primary_10_1016_j_ijhydene_2020_02_165 crossref_primary_10_1016_j_egyr_2023_06_019 crossref_primary_10_1016_j_renene_2020_10_069 crossref_primary_10_3390_su12020608 crossref_primary_10_3390_en13174279 crossref_primary_10_3390_su14138172 crossref_primary_10_1007_s10098_021_02077_0 crossref_primary_10_1155_2023_4694583 crossref_primary_10_1016_j_epsr_2023_109426 crossref_primary_10_1016_j_seta_2019_100556 crossref_primary_10_1016_j_egyr_2022_01_185 crossref_primary_10_1016_j_est_2021_103014 crossref_primary_10_1155_2023_9905979 crossref_primary_10_1016_j_asoc_2024_112030 crossref_primary_10_1016_j_egyr_2022_03_175 crossref_primary_10_1016_j_egyr_2020_05_013 crossref_primary_10_1016_j_powtec_2019_05_036 crossref_primary_10_1049_rpg2_12958 crossref_primary_10_3390_en12122421 crossref_primary_10_3390_math9222971 crossref_primary_10_1016_j_isatra_2021_06_016 crossref_primary_10_1080_15567036_2020_1755391 crossref_primary_10_1016_j_renene_2024_119969 crossref_primary_10_1016_j_solener_2019_03_045 crossref_primary_10_1016_j_solener_2019_01_056 crossref_primary_10_1016_j_engappai_2023_106965 crossref_primary_10_1109_ACCESS_2021_3052142 crossref_primary_10_3390_math9040344 crossref_primary_10_3390_math9090963 crossref_primary_10_3390_electronics8121480 crossref_primary_10_1016_j_renene_2023_01_046 crossref_primary_10_1016_j_isatra_2023_12_024 crossref_primary_10_1016_j_ijepes_2019_04_033 crossref_primary_10_1007_s00521_019_04205_w crossref_primary_10_1016_j_seta_2021_101942 crossref_primary_10_3390_en17205024 crossref_primary_10_3390_en11102556 crossref_primary_10_1016_j_dib_2019_104931 crossref_primary_10_1016_j_rineng_2025_104290 crossref_primary_10_1016_j_egyr_2022_11_053 crossref_primary_10_3390_en13174473 crossref_primary_10_1016_j_solener_2019_11_099 crossref_primary_10_3389_fenrg_2024_1381376 crossref_primary_10_1016_j_energy_2020_117167 crossref_primary_10_1016_j_seta_2020_100849 crossref_primary_10_1109_ACCESS_2019_2930902 crossref_primary_10_1007_s42835_020_00590_8 crossref_primary_10_1016_j_renene_2023_119718 crossref_primary_10_1016_j_solener_2020_08_078 crossref_primary_10_1080_15567036_2018_1549171 crossref_primary_10_1080_02286203_2025_2485441 crossref_primary_10_1109_ACCESS_2019_2937600 crossref_primary_10_3390_su14052937 crossref_primary_10_1016_j_renene_2023_118998 crossref_primary_10_1002_er_5484 crossref_primary_10_1007_s00202_025_02982_3 crossref_primary_10_1007_s13369_023_07847_0 crossref_primary_10_1002_er_4793 crossref_primary_10_1016_j_nanoen_2024_110014 crossref_primary_10_1016_j_renene_2021_10_063 crossref_primary_10_1515_ijeeps_2021_0008 crossref_primary_10_3389_fenrg_2022_873322 crossref_primary_10_1002_er_6728 crossref_primary_10_1007_s00202_023_02006_y crossref_primary_10_1080_15567036_2024_2417089 crossref_primary_10_1109_ACCESS_2021_3072972 crossref_primary_10_3390_math8112012 crossref_primary_10_1007_s42835_021_00855_w crossref_primary_10_1007_s00202_020_01027_1 crossref_primary_10_1016_j_egyr_2020_11_035 crossref_primary_10_1080_01969722_2023_2247265 crossref_primary_10_1016_j_ref_2023_100503 crossref_primary_10_1038_s41598_024_70811_x crossref_primary_10_1080_15567036_2023_2245771 crossref_primary_10_1007_s00202_023_02180_z crossref_primary_10_3390_su12083341 crossref_primary_10_1080_15567036_2019_1677818 crossref_primary_10_1049_iet_rpg_2019_1207 crossref_primary_10_3390_math7121135 crossref_primary_10_1016_j_solener_2020_06_108 crossref_primary_10_3390_en12224335 |
| Cites_doi | 10.1016/j.measurement.2017.02.050 10.1063/1.4938154 10.1016/j.solener.2014.11.010 10.1016/j.advengsoft.2013.12.007 10.1007/s00202-016-0449-3 10.1109/TIE.2008.917118 10.1016/j.knosys.2015.07.006 10.1093/plankt/fbv024 10.1016/j.beproc.2011.09.006 10.1016/j.solener.2013.01.005 10.1063/1.4944971 10.1371/journal.pone.0159702 10.1016/j.rser.2016.09.013 10.1016/j.rser.2017.02.051 10.1016/j.asoc.2015.05.029 10.1109/TIE.2008.920550 10.1016/j.enbuild.2012.12.001 10.1016/j.solener.2017.08.024 10.1002/etep.2053 10.1016/j.solener.2017.08.084 10.1016/j.advengsoft.2017.07.002 10.1016/j.rser.2017.04.048 10.1016/j.ins.2009.03.004 10.1016/j.apenergy.2012.05.026 10.1109/4235.585893 10.1155/2014/945906 10.1109/JPHOTOV.2012.2183578 10.6113/JPE.2011.11.2.218 10.1016/j.energy.2014.07.001 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Ltd |
| Copyright_xml | – notice: 2018 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.renene.2018.08.077 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-0682 |
| EndPage | 1175 |
| ExternalDocumentID | 10_1016_j_renene_2018_08_077 S0960148118310279 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SEN SES SET SEW SPC SPCBC SSR SST SSZ T5K TN5 WUQ ZCA ~02 ~G- 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c312t-8ec4b80e62c1373a961331a75a5ab3bc6b53bfad36afb1a44718bf16c0cae2a23 |
| ISSN | 0960-1481 |
| IngestDate | Sat Sep 27 20:58:02 EDT 2025 Tue Nov 18 22:14:20 EST 2025 Sat Nov 29 07:04:36 EST 2025 Fri Feb 23 02:46:24 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Salp swarm algorithm Gravitational search algorithm Grey wolf optimization Global MPPT Moth-flame optimization Partially shaded PV system |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c312t-8ec4b80e62c1373a961331a75a5ab3bc6b53bfad36afb1a44718bf16c0cae2a23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2116917209 |
| PQPubID | 24069 |
| PageCount | 17 |
| ParticipantIDs | proquest_miscellaneous_2116917209 crossref_primary_10_1016_j_renene_2018_08_077 crossref_citationtrail_10_1016_j_renene_2018_08_077 elsevier_sciencedirect_doi_10_1016_j_renene_2018_08_077 |
| PublicationCentury | 2000 |
| PublicationDate | January 2019 2019-01-00 20190101 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – month: 01 year: 2019 text: January 2019 |
| PublicationDecade | 2010 |
| PublicationTitle | Renewable energy |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Fathy, Rezk (bib23) 2016; 8 Jiang, Maskell, Patra (bib21) 2013; 58 Henschke, Smith, Everett, Suthers (bib36) 2015; 37 Berrera, Dolara, Faranda, Leva (bib6) 2009, June Ahmed, Shoyama (bib10) 2011; 11 Babu, Rajasekar, Sangeetha (bib19) 2015; 34 Rezk, Fathy, Abdelaziz (bib24) 2017; 74 Rezk, Tyukhov, Al-Dhaifallah, Tikhonov (bib4) 2017; 104 Rashedi, Nezamabadi-Pour, Saryazdi (bib35) 2009; 179 Mohamed, Eltamaly, Alolah (bib33) 2017; 77 Patel, Agarwal (bib14) 2008; 55 Mohamed, Eltamaly, Alolah (bib32) 2016; 11 Mohamed, Eltamaly, Alolah (bib1) 2015; 7 Daraban, Petreus, Morel (bib17) 2013, November Ishaque, Salam, Shamsudin, Amjad (bib20) 2012; 99 Rezk, Fathy (bib2) 2017; 157 Diab, Rezk (bib27) 2017; 157 Liu, Duan, Liu, Liu, Kang (bib9) 2008; 55 Rezk, Fathy (bib22) 2017; 99 Muro, Escobedo, Spector, Coppinger (bib29) 2011; 88 Rezk, Eltamaly (bib8) 2015; 112 Daraban, Petreus, Morel (bib18) 2014; 74 Ramli, Twaha, Ishaque, Al-Turki (bib11) 2017; 67 Mohamed, Eltamaly, Farh, Alolah (bib5) 2015, August Shaiek, Smida, Sakly, Mimouni (bib16) 2013; 90 Koutroulis, Blaabjerg (bib15) 2012; 2 Eltamaly, Mohamed (bib34) 2018 Xiao, Dunford (bib12) 2004, June; vol. 3 Mirjalili, Hashim (bib31) 2010, December Mirjalili (bib30) 2015; 89 Tey, Mekhilef, Yang, Chuang (bib13) 2014; 2014 Rezk, Tyukhov, Raupov (bib3) 2015; 25 Faranda, Leva (bib7) 2008; 3 Wolpert, Macready (bib25) 1997; 1 Mirjalili, Mirjalili, Lewis (bib28) 2014; 69 Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (bib26) 2017; 114 Koutroulis (10.1016/j.renene.2018.08.077_bib15) 2012; 2 Rezk (10.1016/j.renene.2018.08.077_bib24) 2017; 74 Faranda (10.1016/j.renene.2018.08.077_bib7) 2008; 3 Fathy (10.1016/j.renene.2018.08.077_bib23) 2016; 8 Tey (10.1016/j.renene.2018.08.077_bib13) 2014; 2014 Rashedi (10.1016/j.renene.2018.08.077_bib35) 2009; 179 Rezk (10.1016/j.renene.2018.08.077_bib4) 2017; 104 Henschke (10.1016/j.renene.2018.08.077_bib36) 2015; 37 Rezk (10.1016/j.renene.2018.08.077_bib3) 2015; 25 Mohamed (10.1016/j.renene.2018.08.077_bib32) 2016; 11 Babu (10.1016/j.renene.2018.08.077_bib19) 2015; 34 Diab (10.1016/j.renene.2018.08.077_bib27) 2017; 157 Eltamaly (10.1016/j.renene.2018.08.077_bib34) 2018 Xiao (10.1016/j.renene.2018.08.077_bib12) 2004; vol. 3 Daraban (10.1016/j.renene.2018.08.077_bib17) 2013 Mirjalili (10.1016/j.renene.2018.08.077_bib28) 2014; 69 Mirjalili (10.1016/j.renene.2018.08.077_bib31) 2010 Ahmed (10.1016/j.renene.2018.08.077_bib10) 2011; 11 Mohamed (10.1016/j.renene.2018.08.077_bib33) 2017; 77 Ramli (10.1016/j.renene.2018.08.077_bib11) 2017; 67 Jiang (10.1016/j.renene.2018.08.077_bib21) 2013; 58 Ishaque (10.1016/j.renene.2018.08.077_bib20) 2012; 99 Mohamed (10.1016/j.renene.2018.08.077_bib1) 2015; 7 Mirjalili (10.1016/j.renene.2018.08.077_bib26) 2017; 114 Mohamed (10.1016/j.renene.2018.08.077_bib5) 2015 Rezk (10.1016/j.renene.2018.08.077_bib22) 2017; 99 Rezk (10.1016/j.renene.2018.08.077_bib2) 2017; 157 Wolpert (10.1016/j.renene.2018.08.077_bib25) 1997; 1 Rezk (10.1016/j.renene.2018.08.077_bib8) 2015; 112 Muro (10.1016/j.renene.2018.08.077_bib29) 2011; 88 Liu (10.1016/j.renene.2018.08.077_bib9) 2008; 55 Shaiek (10.1016/j.renene.2018.08.077_bib16) 2013; 90 Daraban (10.1016/j.renene.2018.08.077_bib18) 2014; 74 Patel (10.1016/j.renene.2018.08.077_bib14) 2008; 55 Mirjalili (10.1016/j.renene.2018.08.077_bib30) 2015; 89 Berrera (10.1016/j.renene.2018.08.077_bib6) 2009 |
| References_xml | – volume: 55 start-page: 2622 year: 2008 end-page: 2628 ident: bib9 article-title: A variable step size INC MPPT method for PV systems publication-title: IEEE Trans. Ind. Electron. – volume: 67 start-page: 144 year: 2017 end-page: 159 ident: bib11 article-title: A review on maximum power point tracking for photovoltaic systems with and without shading conditions publication-title: Renew. Sustain. Energy Rev. – volume: 74 start-page: 374 year: 2014 end-page: 388 ident: bib18 article-title: A novel MPPT (maximum power point tracking) algorithm based on a modified genetic algorithm specialized on tracking the global maximum power point in photovoltaic systems affected by partial shading publication-title: Energy – volume: vol. 3 start-page: 1957 year: 2004, June end-page: 1963 ident: bib12 article-title: A modified adaptive hill climbing MPPT method for photovoltaic power systems publication-title: IEEE Power Electronics Specialists Conference, 2004. PESC 04. 2004 IEEE 35th Annual – volume: 58 start-page: 227 year: 2013 end-page: 236 ident: bib21 article-title: A novel ant colony optimization-based maximum power point tracking for photovoltaic systems under partially shaded conditions publication-title: Energy Build. – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: bib28 article-title: Grey wolf optimizer publication-title: Adv. Eng. Software – volume: 11 year: 2016 ident: bib32 article-title: PSO-based smart grid application for sizing and optimization of hybrid renewable energy systems publication-title: PLoS One – volume: 77 start-page: 515 year: 2017 end-page: 524 ident: bib33 article-title: Swarm intelligence-based optimization of grid-dependent hybrid renewable energy systems publication-title: Renew. Sustain. Energy Rev. – volume: 89 start-page: 228 year: 2015 end-page: 249 ident: bib30 article-title: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm publication-title: Knowl. Base Syst. – start-page: 374 year: 2010, December end-page: 377 ident: bib31 article-title: A new hybrid PSOGSA algorithm for function optimization publication-title: IEEE Computer and Information Application (ICCIA), 2010 International Conference on – volume: 55 start-page: 1689 year: 2008 end-page: 1698 ident: bib14 article-title: Maximum power point tracking scheme for PV systems operating under partially shaded conditions publication-title: IEEE Trans. Ind. Electron. – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: bib25 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. – volume: 2 start-page: 184 year: 2012 end-page: 190 ident: bib15 article-title: A new technique for tracking the global maximum power point of PV arrays operating under partial-shading conditions publication-title: IEEE J. Photovolt. – volume: 157 start-page: 171 year: 2017 end-page: 186 ident: bib27 article-title: Global MPPT based on flower pollination and differential evolution algorithms to mitigate partial shading in building integrated PV system publication-title: Sol. Energy – start-page: 1490 year: 2013, November end-page: 1495 ident: bib17 article-title: A novel global MPPT based on genetic algorithms for photovoltaic systems under the influence of partial shading publication-title: 2013-39th Annual Conference of the IEEE – volume: 99 start-page: 414 year: 2012 end-page: 422 ident: bib20 article-title: A direct control based maximum power point tracking method for photovoltaic system under partial shading conditions using particle swarm optimization algorithm publication-title: Appl. Energy – start-page: 1 year: 2009, June end-page: 8 ident: bib6 article-title: Experimental test of seven widely-adopted MPPT algorithms publication-title: 2009 IEEE Bucharest – volume: 3 start-page: 446 year: 2008 end-page: 455 ident: bib7 article-title: Energy comparison of MPPT techniques for PV Systems publication-title: WSEAS Trans. Power Syst. – volume: 2014 year: 2014 ident: bib13 article-title: A differential evolution based MPPT method for photovoltaic modules under partial shading conditions publication-title: Int. J. Photoenergy – volume: 11 start-page: 218 year: 2011 end-page: 227 ident: bib10 article-title: Variable step size maximum power point tracker using a single variable for stand-alone battery storage PV systems publication-title: J. Power Electron. – volume: 7 year: 2015 ident: bib1 article-title: Sizing and techno-economic analysis of stand-alone hybrid photovoltaic/wind/diesel/battery power generation systems publication-title: J. Renew. Sustain. Energy – volume: 112 start-page: 1 year: 2015 end-page: 11 ident: bib8 article-title: A comprehensive comparison of different MPPT techniques for photovoltaic systems publication-title: Sol. Energy – start-page: 1 year: 2015, August end-page: 6 ident: bib5 article-title: Energy management and renewable energy integration in smart grid system publication-title: 2015 IEEE International Conference on Smart Energy Grid Engineering (SEGE) – volume: 90 start-page: 107 year: 2013 end-page: 122 ident: bib16 article-title: Comparison between conventional methods and GA approach for maximum power point tracking of shaded solar PV generators publication-title: Sol. Energy – volume: 74 start-page: 377 year: 2017 end-page: 386 ident: bib24 article-title: A comparison of different global MPPT techniques based on meta-heuristic algorithms for photovoltaic system subjected to partial shading conditions publication-title: Renew. Sustain. Energy Rev. – volume: 25 start-page: 3573 year: 2015 end-page: 3585 ident: bib3 article-title: Experimental implementation of meteorological data and photovoltaic solar radiation monitoring system publication-title: Int. Trans. Electr. Energy Syst. – volume: 157 start-page: 778 year: 2017 end-page: 791 ident: bib2 article-title: A novel optimal parameters identification of triple-junction solar cell based on a recently meta-heuristic water cycle algorithm publication-title: Sol. Energy – volume: 104 start-page: 204 year: 2017 end-page: 211 ident: bib4 article-title: Performance of data acquisition system for monitoring PV system parameters publication-title: Measurement – volume: 99 start-page: 847 year: 2017 end-page: 859 ident: bib22 article-title: Simulation of global MPPT based on teaching–learning-based optimization technique for partially shaded PV system publication-title: Electr. Eng. – volume: 88 start-page: 192 year: 2011 end-page: 197 ident: bib29 article-title: Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations publication-title: Behav. Process. – volume: 34 start-page: 613 year: 2015 end-page: 624 ident: bib19 article-title: Modified particle swarm optimization technique based maximum power point tracking for uniform and under partial shading condition publication-title: Appl. Soft Comput. – volume: 114 start-page: 163 year: 2017 end-page: 191 ident: bib26 article-title: Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems publication-title: Adv. Eng. Software – volume: 179 start-page: 2232 year: 2009 end-page: 2248 ident: bib35 article-title: GSA: a gravitational search algorithm publication-title: Inf. Sci. – volume: 37 start-page: 1074 year: 2015 end-page: 1087 ident: bib36 article-title: Population drivers of a Thalia democratica swarm: insights from population modelling publication-title: J. Plankton Res. – start-page: 231 year: 2018 end-page: 313 ident: bib34 article-title: Optimal sizing and designing of hybrid renewable energy systems in smart grid applications publication-title: Advances in Renewable Energies and Power Technologies – volume: 8 year: 2016 ident: bib23 article-title: A novel methodology for simulating maximum power point trackers using mine blast optimization and teaching learning based optimization algorithms for partially shaded photovoltaic system publication-title: J. Renew. Sustain. Energy – volume: 104 start-page: 204 year: 2017 ident: 10.1016/j.renene.2018.08.077_bib4 article-title: Performance of data acquisition system for monitoring PV system parameters publication-title: Measurement doi: 10.1016/j.measurement.2017.02.050 – volume: 7 issue: 6 year: 2015 ident: 10.1016/j.renene.2018.08.077_bib1 article-title: Sizing and techno-economic analysis of stand-alone hybrid photovoltaic/wind/diesel/battery power generation systems publication-title: J. Renew. Sustain. Energy doi: 10.1063/1.4938154 – volume: 112 start-page: 1 year: 2015 ident: 10.1016/j.renene.2018.08.077_bib8 article-title: A comprehensive comparison of different MPPT techniques for photovoltaic systems publication-title: Sol. Energy doi: 10.1016/j.solener.2014.11.010 – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.renene.2018.08.077_bib28 article-title: Grey wolf optimizer publication-title: Adv. Eng. Software doi: 10.1016/j.advengsoft.2013.12.007 – volume: 99 start-page: 847 issue: 3 year: 2017 ident: 10.1016/j.renene.2018.08.077_bib22 article-title: Simulation of global MPPT based on teaching–learning-based optimization technique for partially shaded PV system publication-title: Electr. Eng. doi: 10.1007/s00202-016-0449-3 – volume: 55 start-page: 1689 issue: 4 year: 2008 ident: 10.1016/j.renene.2018.08.077_bib14 article-title: Maximum power point tracking scheme for PV systems operating under partially shaded conditions publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2008.917118 – volume: 89 start-page: 228 year: 2015 ident: 10.1016/j.renene.2018.08.077_bib30 article-title: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm publication-title: Knowl. Base Syst. doi: 10.1016/j.knosys.2015.07.006 – volume: 37 start-page: 1074 issue: 5 year: 2015 ident: 10.1016/j.renene.2018.08.077_bib36 article-title: Population drivers of a Thalia democratica swarm: insights from population modelling publication-title: J. Plankton Res. doi: 10.1093/plankt/fbv024 – volume: 88 start-page: 192 issue: 3 year: 2011 ident: 10.1016/j.renene.2018.08.077_bib29 article-title: Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations publication-title: Behav. Process. doi: 10.1016/j.beproc.2011.09.006 – volume: vol. 3 start-page: 1957 year: 2004 ident: 10.1016/j.renene.2018.08.077_bib12 article-title: A modified adaptive hill climbing MPPT method for photovoltaic power systems – volume: 90 start-page: 107 year: 2013 ident: 10.1016/j.renene.2018.08.077_bib16 article-title: Comparison between conventional methods and GA approach for maximum power point tracking of shaded solar PV generators publication-title: Sol. Energy doi: 10.1016/j.solener.2013.01.005 – volume: 8 issue: 2 year: 2016 ident: 10.1016/j.renene.2018.08.077_bib23 article-title: A novel methodology for simulating maximum power point trackers using mine blast optimization and teaching learning based optimization algorithms for partially shaded photovoltaic system publication-title: J. Renew. Sustain. Energy doi: 10.1063/1.4944971 – volume: 11 issue: 8 year: 2016 ident: 10.1016/j.renene.2018.08.077_bib32 article-title: PSO-based smart grid application for sizing and optimization of hybrid renewable energy systems publication-title: PLoS One doi: 10.1371/journal.pone.0159702 – volume: 67 start-page: 144 year: 2017 ident: 10.1016/j.renene.2018.08.077_bib11 article-title: A review on maximum power point tracking for photovoltaic systems with and without shading conditions publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.09.013 – start-page: 1490 year: 2013 ident: 10.1016/j.renene.2018.08.077_bib17 article-title: A novel global MPPT based on genetic algorithms for photovoltaic systems under the influence of partial shading – start-page: 1 year: 2009 ident: 10.1016/j.renene.2018.08.077_bib6 article-title: Experimental test of seven widely-adopted MPPT algorithms – volume: 74 start-page: 377 year: 2017 ident: 10.1016/j.renene.2018.08.077_bib24 article-title: A comparison of different global MPPT techniques based on meta-heuristic algorithms for photovoltaic system subjected to partial shading conditions publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.02.051 – volume: 34 start-page: 613 year: 2015 ident: 10.1016/j.renene.2018.08.077_bib19 article-title: Modified particle swarm optimization technique based maximum power point tracking for uniform and under partial shading condition publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.05.029 – start-page: 231 year: 2018 ident: 10.1016/j.renene.2018.08.077_bib34 article-title: Optimal sizing and designing of hybrid renewable energy systems in smart grid applications – volume: 55 start-page: 2622 issue: 7 year: 2008 ident: 10.1016/j.renene.2018.08.077_bib9 article-title: A variable step size INC MPPT method for PV systems publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2008.920550 – volume: 58 start-page: 227 year: 2013 ident: 10.1016/j.renene.2018.08.077_bib21 article-title: A novel ant colony optimization-based maximum power point tracking for photovoltaic systems under partially shaded conditions publication-title: Energy Build. doi: 10.1016/j.enbuild.2012.12.001 – volume: 157 start-page: 171 year: 2017 ident: 10.1016/j.renene.2018.08.077_bib27 article-title: Global MPPT based on flower pollination and differential evolution algorithms to mitigate partial shading in building integrated PV system publication-title: Sol. Energy doi: 10.1016/j.solener.2017.08.024 – start-page: 1 year: 2015 ident: 10.1016/j.renene.2018.08.077_bib5 article-title: Energy management and renewable energy integration in smart grid system – volume: 25 start-page: 3573 issue: 12 year: 2015 ident: 10.1016/j.renene.2018.08.077_bib3 article-title: Experimental implementation of meteorological data and photovoltaic solar radiation monitoring system publication-title: Int. Trans. Electr. Energy Syst. doi: 10.1002/etep.2053 – volume: 157 start-page: 778 year: 2017 ident: 10.1016/j.renene.2018.08.077_bib2 article-title: A novel optimal parameters identification of triple-junction solar cell based on a recently meta-heuristic water cycle algorithm publication-title: Sol. Energy doi: 10.1016/j.solener.2017.08.084 – volume: 114 start-page: 163 year: 2017 ident: 10.1016/j.renene.2018.08.077_bib26 article-title: Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems publication-title: Adv. Eng. Software doi: 10.1016/j.advengsoft.2017.07.002 – volume: 77 start-page: 515 year: 2017 ident: 10.1016/j.renene.2018.08.077_bib33 article-title: Swarm intelligence-based optimization of grid-dependent hybrid renewable energy systems publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.04.048 – volume: 179 start-page: 2232 issue: 13 year: 2009 ident: 10.1016/j.renene.2018.08.077_bib35 article-title: GSA: a gravitational search algorithm publication-title: Inf. Sci. doi: 10.1016/j.ins.2009.03.004 – volume: 99 start-page: 414 year: 2012 ident: 10.1016/j.renene.2018.08.077_bib20 article-title: A direct control based maximum power point tracking method for photovoltaic system under partial shading conditions using particle swarm optimization algorithm publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.05.026 – volume: 3 start-page: 446 issue: 6 year: 2008 ident: 10.1016/j.renene.2018.08.077_bib7 article-title: Energy comparison of MPPT techniques for PV Systems publication-title: WSEAS Trans. Power Syst. – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 10.1016/j.renene.2018.08.077_bib25 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – volume: 2014 year: 2014 ident: 10.1016/j.renene.2018.08.077_bib13 article-title: A differential evolution based MPPT method for photovoltaic modules under partial shading conditions publication-title: Int. J. Photoenergy doi: 10.1155/2014/945906 – volume: 2 start-page: 184 issue: 2 year: 2012 ident: 10.1016/j.renene.2018.08.077_bib15 article-title: A new technique for tracking the global maximum power point of PV arrays operating under partial-shading conditions publication-title: IEEE J. Photovolt. doi: 10.1109/JPHOTOV.2012.2183578 – start-page: 374 year: 2010 ident: 10.1016/j.renene.2018.08.077_bib31 article-title: A new hybrid PSOGSA algorithm for function optimization – volume: 11 start-page: 218 issue: 2 year: 2011 ident: 10.1016/j.renene.2018.08.077_bib10 article-title: Variable step size maximum power point tracker using a single variable for stand-alone battery storage PV systems publication-title: J. Power Electron. doi: 10.6113/JPE.2011.11.2.218 – volume: 74 start-page: 374 year: 2014 ident: 10.1016/j.renene.2018.08.077_bib18 article-title: A novel MPPT (maximum power point tracking) algorithm based on a modified genetic algorithm specialized on tracking the global maximum power point in photovoltaic systems affected by partial shading publication-title: Energy doi: 10.1016/j.energy.2014.07.001 |
| SSID | ssj0015874 |
| Score | 2.6223793 |
| Snippet | Recently, electricity generation from solar photovoltaic (PV) has gained popularity throughout the world due to its profuse availability and eco-friendly... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1159 |
| SubjectTerms | algorithms electricity generation Global MPPT Gravitational search algorithm Grey wolf optimization Moth-flame optimization Partially shaded PV system renewable energy sources Salp swarm algorithm shade solar collectors solar radiation |
| Title | Partial shading mitigation of PV systems via different meta-heuristic techniques |
| URI | https://dx.doi.org/10.1016/j.renene.2018.08.077 https://www.proquest.com/docview/2116917209 |
| Volume | 130 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0682 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015874 issn: 0960-1481 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKxwM8IK5i3GQkxEtkFMdNnDxOqBOgqURTN1U8YNmOQzu2tKwXxn49x7GTtkxo44GXKHKcRvX5cvzl2Oc7CL1hkQ4zDe-3omVGerKgJDNxSaQ2CuaPMtVK1sUm-GCQjkZZ3ul8bXJhVqe8qtKLi2z2X00NbWBsmzr7D-ZufxQa4ByMDkcwOxxvZPjcttkskHG9PT44mzgZDUcM82Mv3jwPVhPZ1kdZ2FLSkozN0ik3B62263yTvh6CZ_xZJ1uZOmewNdd0LM9c2NSfrmOkX4CjBnbjTe2GxlvXDs3ldzf5fZOXvzYjEDbpqY1A-FBiEhL4rKJbXpWFwQwccpwRqwa64SNt28Z821y94stdWOHknZX2rKyiKU1rtVVf9mVLOnvwWewfHRyIYX80fDv7QWxVMbv67kus3EI7EY-ztIt29j72R5_adaY4dTrdzT9okivrHYBXH_w38vLHNF5zk-F9dM9_VOA9B4YHqGOqh-juhtTkI5R7WGAPC7yGBZ6WOD_GHhYYYIFbWOBtWOA1LB6jo_3-8P0H4qtpEM1otCCp0T2VhiaJNGWcyQyIHKOSxzKWiimdqJipUhYskaWismdZiyppokMtTSQj9gR1q2llniJcSgl9gdxFoe6VuoCJqtAFZykLw4KrZBexZpiE9lLztuLJqWj2FJ4IN7jCDq6whVA530WkvWvmpFau6c8bCwhPFx0NFICga-583RhMgDe1S2SyMtPlXETUikfxKMye3aDPc3Rn_T68QN3F-dK8RLf1ajGZn7_yWPsNAxGY9Q |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Partial+shading+mitigation+of+PV+systems+via+different+meta-heuristic+techniques&rft.jtitle=Renewable+energy&rft.au=Mohamed%2C+Mohamed+A&rft.au=Zaki+Diab%2C+Ahmed+A&rft.au=Rezk%2C+Hegazy&rft.date=2019-01-01&rft.issn=0960-1481&rft.volume=130+p.1159-1175&rft.spage=1159&rft.epage=1175&rft_id=info:doi/10.1016%2Fj.renene.2018.08.077&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon |