Partial shading mitigation of PV systems via different meta-heuristic techniques

Recently, electricity generation from solar photovoltaic (PV) has gained popularity throughout the world due to its profuse availability and eco-friendly nature. Consequently, extraction of maximum power from solar PV energy systems was the point of interest in the current researches. Various techni...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Renewable energy Ročník 130; s. 1159 - 1175
Hlavní autoři: Mohamed, Mohamed A., Zaki Diab, Ahmed A., Rezk, Hegazy
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.01.2019
Témata:
ISSN:0960-1481, 1879-0682
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Recently, electricity generation from solar photovoltaic (PV) has gained popularity throughout the world due to its profuse availability and eco-friendly nature. Consequently, extraction of maximum power from solar PV energy systems was the point of interest in the current researches. Various techniques have been proposed to track the maximum power point (MPP) from solar PV energy systems under variable environmental conditions. Conventional maximum power point tracking (MPPT) techniques have demonstrated the ability to track MPP with uniform solar irradiance. However, the ability of these techniques to track the accurate MPP with the condition of partial shading (PS) is not guaranteed. Hence, this paper intended to present novel optimization techniques to mitigate the PS effect and proficiently track the global maximum power point (GMPP). Grey Wolf Optimization (GWO), Moth-Flame Optimization (MFO), Salp Swarm Algorithm (SSA) and Hybrid Particle Swarm Optimization-Gravitational Search Algorithm (PSO-GSA) techniques have been proposed to handle this dilemma. The proposed techniques have been simulated and analyzed using MATLAB/SIMULINK. Furthermore, these techniques have been compared with the conventional PSO algorithm for validation. Statistical and sensitivity analysis have been established to compare the performance, check the stability, and determine the best technique out of the proposed techniques. Results showed the superiority of GWO in the speed of convergence and the time to catch GMPP. Moreover, the sensitivity analysis demonstrated the stability, successfully rate, and tracking efficiency of PSO-GSA technique. Finally, this paper gives an open reference to these optimizers to attempt mass research works in PV systems under PS. •Implementation of distinctive meta-heuristic optimization algorithms for increasing the PV system efficiency under PSC.•The proposed algorithms are GWO, MFO, PSO-GSA, and SSA.•Determination of the GMPP from the multiple local peaks caused by different irradiances.•Comparing the proposed algorithms with PSO algorithm for approval.•Introducing statistical and sensitivity analysis to compare the performance and check the stability of proposed algorithms.
AbstractList Recently, electricity generation from solar photovoltaic (PV) has gained popularity throughout the world due to its profuse availability and eco-friendly nature. Consequently, extraction of maximum power from solar PV energy systems was the point of interest in the current researches. Various techniques have been proposed to track the maximum power point (MPP) from solar PV energy systems under variable environmental conditions. Conventional maximum power point tracking (MPPT) techniques have demonstrated the ability to track MPP with uniform solar irradiance. However, the ability of these techniques to track the accurate MPP with the condition of partial shading (PS) is not guaranteed. Hence, this paper intended to present novel optimization techniques to mitigate the PS effect and proficiently track the global maximum power point (GMPP). Grey Wolf Optimization (GWO), Moth-Flame Optimization (MFO), Salp Swarm Algorithm (SSA) and Hybrid Particle Swarm Optimization-Gravitational Search Algorithm (PSO-GSA) techniques have been proposed to handle this dilemma. The proposed techniques have been simulated and analyzed using MATLAB/SIMULINK. Furthermore, these techniques have been compared with the conventional PSO algorithm for validation. Statistical and sensitivity analysis have been established to compare the performance, check the stability, and determine the best technique out of the proposed techniques. Results showed the superiority of GWO in the speed of convergence and the time to catch GMPP. Moreover, the sensitivity analysis demonstrated the stability, successfully rate, and tracking efficiency of PSO-GSA technique. Finally, this paper gives an open reference to these optimizers to attempt mass research works in PV systems under PS. •Implementation of distinctive meta-heuristic optimization algorithms for increasing the PV system efficiency under PSC.•The proposed algorithms are GWO, MFO, PSO-GSA, and SSA.•Determination of the GMPP from the multiple local peaks caused by different irradiances.•Comparing the proposed algorithms with PSO algorithm for approval.•Introducing statistical and sensitivity analysis to compare the performance and check the stability of proposed algorithms.
Recently, electricity generation from solar photovoltaic (PV) has gained popularity throughout the world due to its profuse availability and eco-friendly nature. Consequently, extraction of maximum power from solar PV energy systems was the point of interest in the current researches. Various techniques have been proposed to track the maximum power point (MPP) from solar PV energy systems under variable environmental conditions. Conventional maximum power point tracking (MPPT) techniques have demonstrated the ability to track MPP with uniform solar irradiance. However, the ability of these techniques to track the accurate MPP with the condition of partial shading (PS) is not guaranteed. Hence, this paper intended to present novel optimization techniques to mitigate the PS effect and proficiently track the global maximum power point (GMPP). Grey Wolf Optimization (GWO), Moth-Flame Optimization (MFO), Salp Swarm Algorithm (SSA) and Hybrid Particle Swarm Optimization-Gravitational Search Algorithm (PSO-GSA) techniques have been proposed to handle this dilemma. The proposed techniques have been simulated and analyzed using MATLAB/SIMULINK. Furthermore, these techniques have been compared with the conventional PSO algorithm for validation. Statistical and sensitivity analysis have been established to compare the performance, check the stability, and determine the best technique out of the proposed techniques. Results showed the superiority of GWO in the speed of convergence and the time to catch GMPP. Moreover, the sensitivity analysis demonstrated the stability, successfully rate, and tracking efficiency of PSO-GSA technique. Finally, this paper gives an open reference to these optimizers to attempt mass research works in PV systems under PS.
Author Mohamed, Mohamed A.
Zaki Diab, Ahmed A.
Rezk, Hegazy
Author_xml – sequence: 1
  givenname: Mohamed A.
  surname: Mohamed
  fullname: Mohamed, Mohamed A.
  email: dr.mohamed.abdelaziz@mu.edu.eg
  organization: Electrical Engineering Department, Faculty of Engineering, Minia University, Minia, Egypt
– sequence: 2
  givenname: Ahmed A.
  surname: Zaki Diab
  fullname: Zaki Diab, Ahmed A.
  email: a.diab@mu.edu.eg
  organization: Electrical Engineering Department, Faculty of Engineering, Minia University, Minia, Egypt
– sequence: 3
  givenname: Hegazy
  surname: Rezk
  fullname: Rezk, Hegazy
  email: hegazy.hussien@mu.edu.eg
  organization: Electrical Engineering Department, Faculty of Engineering, Minia University, Minia, Egypt
BookMark eNqFkE1rGzEQhkVxoU7af9CDjrmsq1mtpd0eAsEkTcBQH5pcxax21h6zH64kG_Lvu65zyqFlXpjL-wHPlZgN40BCfAW1AAXm234RaJhukSsoF2qStR_EHEpbZcqU-UzMVWVUBkUJn8RVjHulYFnaYi42GwyJsZNxhw0PW9lz4i0mHgc5tnLzIuNrTNRHeWKUDbctTVtJ9pQw29ExcEzsZSK_G_j3keJn8bHFLtKXt38tnh_uf60es_XPH0-ru3XmNeQpK8kXdanI5B601VgZ0BrQLnGJta69qZe6brHRBtsasCgslHULxiuPlGOur8XNpfcQxvNucj1HT12HA43H6HIAU4HNVTVZi4vVhzHGQK07BO4xvDpQ7gzQ7d0FoDsDdGqStVPs-7uY5_SXTArI3f_Ct5cwTQxOTMFFzzR4ajiQT64Z-d8FfwAnUpJa
CitedBy_id crossref_primary_10_1155_2021_9956433
crossref_primary_10_1109_ACCESS_2024_3434523
crossref_primary_10_1088_1757_899X_1096_1_012084
crossref_primary_10_3233_JIFS_224535
crossref_primary_10_1007_s00202_020_01201_5
crossref_primary_10_1177_01445987221112250
crossref_primary_10_3390_app10072575
crossref_primary_10_1007_s00521_023_09240_2
crossref_primary_10_1109_ACCESS_2019_2932694
crossref_primary_10_3390_en14227806
crossref_primary_10_1016_j_scitotenv_2020_141753
crossref_primary_10_1016_j_compeleceng_2024_109991
crossref_primary_10_1109_ACCESS_2020_2978398
crossref_primary_10_1007_s00521_023_09407_x
crossref_primary_10_3390_su17135841
crossref_primary_10_1109_ACCESS_2020_3038934
crossref_primary_10_3390_en13174531
crossref_primary_10_1002_er_5605
crossref_primary_10_1016_j_enconman_2020_113409
crossref_primary_10_1109_TII_2021_3067719
crossref_primary_10_1016_j_jclepro_2019_01_150
crossref_primary_10_3390_su131910778
crossref_primary_10_1371_journal_pone_0234992
crossref_primary_10_1080_15567036_2020_1850927
crossref_primary_10_1109_ACCESS_2019_2959547
crossref_primary_10_3390_en13184971
crossref_primary_10_1016_j_egyr_2021_01_024
crossref_primary_10_3390_math7100875
crossref_primary_10_1007_s00521_019_04629_4
crossref_primary_10_1016_j_egyr_2020_11_149
crossref_primary_10_1002_er_5446
crossref_primary_10_1007_s00202_025_03228_y
crossref_primary_10_1016_j_conengprac_2020_104570
crossref_primary_10_3390_math7111123
crossref_primary_10_1007_s10586_024_04895_5
crossref_primary_10_3233_JIFS_221125
crossref_primary_10_3390_pr8040382
crossref_primary_10_1016_j_energy_2020_117976
crossref_primary_10_1016_j_rser_2019_109372
crossref_primary_10_3390_en12173263
crossref_primary_10_1007_s41403_025_00518_6
crossref_primary_10_1155_2023_3345533
crossref_primary_10_3390_en12183548
crossref_primary_10_1080_15567036_2022_2096154
crossref_primary_10_1088_2631_8695_ad5f16
crossref_primary_10_1016_j_egyr_2021_08_189
crossref_primary_10_1016_j_energy_2022_126366
crossref_primary_10_1088_1742_6596_1167_1_012029
crossref_primary_10_1016_j_renene_2022_08_095
crossref_primary_10_1016_j_ijhydene_2020_02_165
crossref_primary_10_1016_j_egyr_2023_06_019
crossref_primary_10_1016_j_renene_2020_10_069
crossref_primary_10_3390_su12020608
crossref_primary_10_3390_en13174279
crossref_primary_10_3390_su14138172
crossref_primary_10_1007_s10098_021_02077_0
crossref_primary_10_1155_2023_4694583
crossref_primary_10_1016_j_epsr_2023_109426
crossref_primary_10_1016_j_seta_2019_100556
crossref_primary_10_1016_j_egyr_2022_01_185
crossref_primary_10_1016_j_est_2021_103014
crossref_primary_10_1155_2023_9905979
crossref_primary_10_1016_j_asoc_2024_112030
crossref_primary_10_1016_j_egyr_2022_03_175
crossref_primary_10_1016_j_egyr_2020_05_013
crossref_primary_10_1016_j_powtec_2019_05_036
crossref_primary_10_1049_rpg2_12958
crossref_primary_10_3390_en12122421
crossref_primary_10_3390_math9222971
crossref_primary_10_1016_j_isatra_2021_06_016
crossref_primary_10_1080_15567036_2020_1755391
crossref_primary_10_1016_j_renene_2024_119969
crossref_primary_10_1016_j_solener_2019_03_045
crossref_primary_10_1016_j_solener_2019_01_056
crossref_primary_10_1016_j_engappai_2023_106965
crossref_primary_10_1109_ACCESS_2021_3052142
crossref_primary_10_3390_math9040344
crossref_primary_10_3390_math9090963
crossref_primary_10_3390_electronics8121480
crossref_primary_10_1016_j_renene_2023_01_046
crossref_primary_10_1016_j_isatra_2023_12_024
crossref_primary_10_1016_j_ijepes_2019_04_033
crossref_primary_10_1007_s00521_019_04205_w
crossref_primary_10_1016_j_seta_2021_101942
crossref_primary_10_3390_en17205024
crossref_primary_10_3390_en11102556
crossref_primary_10_1016_j_dib_2019_104931
crossref_primary_10_1016_j_rineng_2025_104290
crossref_primary_10_1016_j_egyr_2022_11_053
crossref_primary_10_3390_en13174473
crossref_primary_10_1016_j_solener_2019_11_099
crossref_primary_10_3389_fenrg_2024_1381376
crossref_primary_10_1016_j_energy_2020_117167
crossref_primary_10_1016_j_seta_2020_100849
crossref_primary_10_1109_ACCESS_2019_2930902
crossref_primary_10_1007_s42835_020_00590_8
crossref_primary_10_1016_j_renene_2023_119718
crossref_primary_10_1016_j_solener_2020_08_078
crossref_primary_10_1080_15567036_2018_1549171
crossref_primary_10_1080_02286203_2025_2485441
crossref_primary_10_1109_ACCESS_2019_2937600
crossref_primary_10_3390_su14052937
crossref_primary_10_1016_j_renene_2023_118998
crossref_primary_10_1002_er_5484
crossref_primary_10_1007_s00202_025_02982_3
crossref_primary_10_1007_s13369_023_07847_0
crossref_primary_10_1002_er_4793
crossref_primary_10_1016_j_nanoen_2024_110014
crossref_primary_10_1016_j_renene_2021_10_063
crossref_primary_10_1515_ijeeps_2021_0008
crossref_primary_10_3389_fenrg_2022_873322
crossref_primary_10_1002_er_6728
crossref_primary_10_1007_s00202_023_02006_y
crossref_primary_10_1080_15567036_2024_2417089
crossref_primary_10_1109_ACCESS_2021_3072972
crossref_primary_10_3390_math8112012
crossref_primary_10_1007_s42835_021_00855_w
crossref_primary_10_1007_s00202_020_01027_1
crossref_primary_10_1016_j_egyr_2020_11_035
crossref_primary_10_1080_01969722_2023_2247265
crossref_primary_10_1016_j_ref_2023_100503
crossref_primary_10_1038_s41598_024_70811_x
crossref_primary_10_1080_15567036_2023_2245771
crossref_primary_10_1007_s00202_023_02180_z
crossref_primary_10_3390_su12083341
crossref_primary_10_1080_15567036_2019_1677818
crossref_primary_10_1049_iet_rpg_2019_1207
crossref_primary_10_3390_math7121135
crossref_primary_10_1016_j_solener_2020_06_108
crossref_primary_10_3390_en12224335
Cites_doi 10.1016/j.measurement.2017.02.050
10.1063/1.4938154
10.1016/j.solener.2014.11.010
10.1016/j.advengsoft.2013.12.007
10.1007/s00202-016-0449-3
10.1109/TIE.2008.917118
10.1016/j.knosys.2015.07.006
10.1093/plankt/fbv024
10.1016/j.beproc.2011.09.006
10.1016/j.solener.2013.01.005
10.1063/1.4944971
10.1371/journal.pone.0159702
10.1016/j.rser.2016.09.013
10.1016/j.rser.2017.02.051
10.1016/j.asoc.2015.05.029
10.1109/TIE.2008.920550
10.1016/j.enbuild.2012.12.001
10.1016/j.solener.2017.08.024
10.1002/etep.2053
10.1016/j.solener.2017.08.084
10.1016/j.advengsoft.2017.07.002
10.1016/j.rser.2017.04.048
10.1016/j.ins.2009.03.004
10.1016/j.apenergy.2012.05.026
10.1109/4235.585893
10.1155/2014/945906
10.1109/JPHOTOV.2012.2183578
10.6113/JPE.2011.11.2.218
10.1016/j.energy.2014.07.001
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.renene.2018.08.077
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0682
EndPage 1175
ExternalDocumentID 10_1016_j_renene_2018_08_077
S0960148118310279
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SEN
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
WUQ
ZCA
~02
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c312t-8ec4b80e62c1373a961331a75a5ab3bc6b53bfad36afb1a44718bf16c0cae2a23
ISSN 0960-1481
IngestDate Sat Sep 27 20:58:02 EDT 2025
Tue Nov 18 22:14:20 EST 2025
Sat Nov 29 07:04:36 EST 2025
Fri Feb 23 02:46:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Salp swarm algorithm
Gravitational search algorithm
Grey wolf optimization
Global MPPT
Moth-flame optimization
Partially shaded PV system
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-8ec4b80e62c1373a961331a75a5ab3bc6b53bfad36afb1a44718bf16c0cae2a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2116917209
PQPubID 24069
PageCount 17
ParticipantIDs proquest_miscellaneous_2116917209
crossref_primary_10_1016_j_renene_2018_08_077
crossref_citationtrail_10_1016_j_renene_2018_08_077
elsevier_sciencedirect_doi_10_1016_j_renene_2018_08_077
PublicationCentury 2000
PublicationDate January 2019
2019-01-00
20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: January 2019
PublicationDecade 2010
PublicationTitle Renewable energy
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Fathy, Rezk (bib23) 2016; 8
Jiang, Maskell, Patra (bib21) 2013; 58
Henschke, Smith, Everett, Suthers (bib36) 2015; 37
Berrera, Dolara, Faranda, Leva (bib6) 2009, June
Ahmed, Shoyama (bib10) 2011; 11
Babu, Rajasekar, Sangeetha (bib19) 2015; 34
Rezk, Fathy, Abdelaziz (bib24) 2017; 74
Rezk, Tyukhov, Al-Dhaifallah, Tikhonov (bib4) 2017; 104
Rashedi, Nezamabadi-Pour, Saryazdi (bib35) 2009; 179
Mohamed, Eltamaly, Alolah (bib33) 2017; 77
Patel, Agarwal (bib14) 2008; 55
Mohamed, Eltamaly, Alolah (bib32) 2016; 11
Mohamed, Eltamaly, Alolah (bib1) 2015; 7
Daraban, Petreus, Morel (bib17) 2013, November
Ishaque, Salam, Shamsudin, Amjad (bib20) 2012; 99
Rezk, Fathy (bib2) 2017; 157
Diab, Rezk (bib27) 2017; 157
Liu, Duan, Liu, Liu, Kang (bib9) 2008; 55
Rezk, Fathy (bib22) 2017; 99
Muro, Escobedo, Spector, Coppinger (bib29) 2011; 88
Rezk, Eltamaly (bib8) 2015; 112
Daraban, Petreus, Morel (bib18) 2014; 74
Ramli, Twaha, Ishaque, Al-Turki (bib11) 2017; 67
Mohamed, Eltamaly, Farh, Alolah (bib5) 2015, August
Shaiek, Smida, Sakly, Mimouni (bib16) 2013; 90
Koutroulis, Blaabjerg (bib15) 2012; 2
Eltamaly, Mohamed (bib34) 2018
Xiao, Dunford (bib12) 2004, June; vol. 3
Mirjalili, Hashim (bib31) 2010, December
Mirjalili (bib30) 2015; 89
Tey, Mekhilef, Yang, Chuang (bib13) 2014; 2014
Rezk, Tyukhov, Raupov (bib3) 2015; 25
Faranda, Leva (bib7) 2008; 3
Wolpert, Macready (bib25) 1997; 1
Mirjalili, Mirjalili, Lewis (bib28) 2014; 69
Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (bib26) 2017; 114
Koutroulis (10.1016/j.renene.2018.08.077_bib15) 2012; 2
Rezk (10.1016/j.renene.2018.08.077_bib24) 2017; 74
Faranda (10.1016/j.renene.2018.08.077_bib7) 2008; 3
Fathy (10.1016/j.renene.2018.08.077_bib23) 2016; 8
Tey (10.1016/j.renene.2018.08.077_bib13) 2014; 2014
Rashedi (10.1016/j.renene.2018.08.077_bib35) 2009; 179
Rezk (10.1016/j.renene.2018.08.077_bib4) 2017; 104
Henschke (10.1016/j.renene.2018.08.077_bib36) 2015; 37
Rezk (10.1016/j.renene.2018.08.077_bib3) 2015; 25
Mohamed (10.1016/j.renene.2018.08.077_bib32) 2016; 11
Babu (10.1016/j.renene.2018.08.077_bib19) 2015; 34
Diab (10.1016/j.renene.2018.08.077_bib27) 2017; 157
Eltamaly (10.1016/j.renene.2018.08.077_bib34) 2018
Xiao (10.1016/j.renene.2018.08.077_bib12) 2004; vol. 3
Daraban (10.1016/j.renene.2018.08.077_bib17) 2013
Mirjalili (10.1016/j.renene.2018.08.077_bib28) 2014; 69
Mirjalili (10.1016/j.renene.2018.08.077_bib31) 2010
Ahmed (10.1016/j.renene.2018.08.077_bib10) 2011; 11
Mohamed (10.1016/j.renene.2018.08.077_bib33) 2017; 77
Ramli (10.1016/j.renene.2018.08.077_bib11) 2017; 67
Jiang (10.1016/j.renene.2018.08.077_bib21) 2013; 58
Ishaque (10.1016/j.renene.2018.08.077_bib20) 2012; 99
Mohamed (10.1016/j.renene.2018.08.077_bib1) 2015; 7
Mirjalili (10.1016/j.renene.2018.08.077_bib26) 2017; 114
Mohamed (10.1016/j.renene.2018.08.077_bib5) 2015
Rezk (10.1016/j.renene.2018.08.077_bib22) 2017; 99
Rezk (10.1016/j.renene.2018.08.077_bib2) 2017; 157
Wolpert (10.1016/j.renene.2018.08.077_bib25) 1997; 1
Rezk (10.1016/j.renene.2018.08.077_bib8) 2015; 112
Muro (10.1016/j.renene.2018.08.077_bib29) 2011; 88
Liu (10.1016/j.renene.2018.08.077_bib9) 2008; 55
Shaiek (10.1016/j.renene.2018.08.077_bib16) 2013; 90
Daraban (10.1016/j.renene.2018.08.077_bib18) 2014; 74
Patel (10.1016/j.renene.2018.08.077_bib14) 2008; 55
Mirjalili (10.1016/j.renene.2018.08.077_bib30) 2015; 89
Berrera (10.1016/j.renene.2018.08.077_bib6) 2009
References_xml – volume: 55
  start-page: 2622
  year: 2008
  end-page: 2628
  ident: bib9
  article-title: A variable step size INC MPPT method for PV systems
  publication-title: IEEE Trans. Ind. Electron.
– volume: 67
  start-page: 144
  year: 2017
  end-page: 159
  ident: bib11
  article-title: A review on maximum power point tracking for photovoltaic systems with and without shading conditions
  publication-title: Renew. Sustain. Energy Rev.
– volume: 74
  start-page: 374
  year: 2014
  end-page: 388
  ident: bib18
  article-title: A novel MPPT (maximum power point tracking) algorithm based on a modified genetic algorithm specialized on tracking the global maximum power point in photovoltaic systems affected by partial shading
  publication-title: Energy
– volume: vol. 3
  start-page: 1957
  year: 2004, June
  end-page: 1963
  ident: bib12
  article-title: A modified adaptive hill climbing MPPT method for photovoltaic power systems
  publication-title: IEEE Power Electronics Specialists Conference, 2004. PESC 04. 2004 IEEE 35th Annual
– volume: 58
  start-page: 227
  year: 2013
  end-page: 236
  ident: bib21
  article-title: A novel ant colony optimization-based maximum power point tracking for photovoltaic systems under partially shaded conditions
  publication-title: Energy Build.
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: bib28
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Software
– volume: 11
  year: 2016
  ident: bib32
  article-title: PSO-based smart grid application for sizing and optimization of hybrid renewable energy systems
  publication-title: PLoS One
– volume: 77
  start-page: 515
  year: 2017
  end-page: 524
  ident: bib33
  article-title: Swarm intelligence-based optimization of grid-dependent hybrid renewable energy systems
  publication-title: Renew. Sustain. Energy Rev.
– volume: 89
  start-page: 228
  year: 2015
  end-page: 249
  ident: bib30
  article-title: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm
  publication-title: Knowl. Base Syst.
– start-page: 374
  year: 2010, December
  end-page: 377
  ident: bib31
  article-title: A new hybrid PSOGSA algorithm for function optimization
  publication-title: IEEE Computer and Information Application (ICCIA), 2010 International Conference on
– volume: 55
  start-page: 1689
  year: 2008
  end-page: 1698
  ident: bib14
  article-title: Maximum power point tracking scheme for PV systems operating under partially shaded conditions
  publication-title: IEEE Trans. Ind. Electron.
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: bib25
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 2
  start-page: 184
  year: 2012
  end-page: 190
  ident: bib15
  article-title: A new technique for tracking the global maximum power point of PV arrays operating under partial-shading conditions
  publication-title: IEEE J. Photovolt.
– volume: 157
  start-page: 171
  year: 2017
  end-page: 186
  ident: bib27
  article-title: Global MPPT based on flower pollination and differential evolution algorithms to mitigate partial shading in building integrated PV system
  publication-title: Sol. Energy
– start-page: 1490
  year: 2013, November
  end-page: 1495
  ident: bib17
  article-title: A novel global MPPT based on genetic algorithms for photovoltaic systems under the influence of partial shading
  publication-title: 2013-39th Annual Conference of the IEEE
– volume: 99
  start-page: 414
  year: 2012
  end-page: 422
  ident: bib20
  article-title: A direct control based maximum power point tracking method for photovoltaic system under partial shading conditions using particle swarm optimization algorithm
  publication-title: Appl. Energy
– start-page: 1
  year: 2009, June
  end-page: 8
  ident: bib6
  article-title: Experimental test of seven widely-adopted MPPT algorithms
  publication-title: 2009 IEEE Bucharest
– volume: 3
  start-page: 446
  year: 2008
  end-page: 455
  ident: bib7
  article-title: Energy comparison of MPPT techniques for PV Systems
  publication-title: WSEAS Trans. Power Syst.
– volume: 2014
  year: 2014
  ident: bib13
  article-title: A differential evolution based MPPT method for photovoltaic modules under partial shading conditions
  publication-title: Int. J. Photoenergy
– volume: 11
  start-page: 218
  year: 2011
  end-page: 227
  ident: bib10
  article-title: Variable step size maximum power point tracker using a single variable for stand-alone battery storage PV systems
  publication-title: J. Power Electron.
– volume: 7
  year: 2015
  ident: bib1
  article-title: Sizing and techno-economic analysis of stand-alone hybrid photovoltaic/wind/diesel/battery power generation systems
  publication-title: J. Renew. Sustain. Energy
– volume: 112
  start-page: 1
  year: 2015
  end-page: 11
  ident: bib8
  article-title: A comprehensive comparison of different MPPT techniques for photovoltaic systems
  publication-title: Sol. Energy
– start-page: 1
  year: 2015, August
  end-page: 6
  ident: bib5
  article-title: Energy management and renewable energy integration in smart grid system
  publication-title: 2015 IEEE International Conference on Smart Energy Grid Engineering (SEGE)
– volume: 90
  start-page: 107
  year: 2013
  end-page: 122
  ident: bib16
  article-title: Comparison between conventional methods and GA approach for maximum power point tracking of shaded solar PV generators
  publication-title: Sol. Energy
– volume: 74
  start-page: 377
  year: 2017
  end-page: 386
  ident: bib24
  article-title: A comparison of different global MPPT techniques based on meta-heuristic algorithms for photovoltaic system subjected to partial shading conditions
  publication-title: Renew. Sustain. Energy Rev.
– volume: 25
  start-page: 3573
  year: 2015
  end-page: 3585
  ident: bib3
  article-title: Experimental implementation of meteorological data and photovoltaic solar radiation monitoring system
  publication-title: Int. Trans. Electr. Energy Syst.
– volume: 157
  start-page: 778
  year: 2017
  end-page: 791
  ident: bib2
  article-title: A novel optimal parameters identification of triple-junction solar cell based on a recently meta-heuristic water cycle algorithm
  publication-title: Sol. Energy
– volume: 104
  start-page: 204
  year: 2017
  end-page: 211
  ident: bib4
  article-title: Performance of data acquisition system for monitoring PV system parameters
  publication-title: Measurement
– volume: 99
  start-page: 847
  year: 2017
  end-page: 859
  ident: bib22
  article-title: Simulation of global MPPT based on teaching–learning-based optimization technique for partially shaded PV system
  publication-title: Electr. Eng.
– volume: 88
  start-page: 192
  year: 2011
  end-page: 197
  ident: bib29
  article-title: Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations
  publication-title: Behav. Process.
– volume: 34
  start-page: 613
  year: 2015
  end-page: 624
  ident: bib19
  article-title: Modified particle swarm optimization technique based maximum power point tracking for uniform and under partial shading condition
  publication-title: Appl. Soft Comput.
– volume: 114
  start-page: 163
  year: 2017
  end-page: 191
  ident: bib26
  article-title: Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems
  publication-title: Adv. Eng. Software
– volume: 179
  start-page: 2232
  year: 2009
  end-page: 2248
  ident: bib35
  article-title: GSA: a gravitational search algorithm
  publication-title: Inf. Sci.
– volume: 37
  start-page: 1074
  year: 2015
  end-page: 1087
  ident: bib36
  article-title: Population drivers of a Thalia democratica swarm: insights from population modelling
  publication-title: J. Plankton Res.
– start-page: 231
  year: 2018
  end-page: 313
  ident: bib34
  article-title: Optimal sizing and designing of hybrid renewable energy systems in smart grid applications
  publication-title: Advances in Renewable Energies and Power Technologies
– volume: 8
  year: 2016
  ident: bib23
  article-title: A novel methodology for simulating maximum power point trackers using mine blast optimization and teaching learning based optimization algorithms for partially shaded photovoltaic system
  publication-title: J. Renew. Sustain. Energy
– volume: 104
  start-page: 204
  year: 2017
  ident: 10.1016/j.renene.2018.08.077_bib4
  article-title: Performance of data acquisition system for monitoring PV system parameters
  publication-title: Measurement
  doi: 10.1016/j.measurement.2017.02.050
– volume: 7
  issue: 6
  year: 2015
  ident: 10.1016/j.renene.2018.08.077_bib1
  article-title: Sizing and techno-economic analysis of stand-alone hybrid photovoltaic/wind/diesel/battery power generation systems
  publication-title: J. Renew. Sustain. Energy
  doi: 10.1063/1.4938154
– volume: 112
  start-page: 1
  year: 2015
  ident: 10.1016/j.renene.2018.08.077_bib8
  article-title: A comprehensive comparison of different MPPT techniques for photovoltaic systems
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2014.11.010
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.renene.2018.08.077_bib28
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Software
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 99
  start-page: 847
  issue: 3
  year: 2017
  ident: 10.1016/j.renene.2018.08.077_bib22
  article-title: Simulation of global MPPT based on teaching–learning-based optimization technique for partially shaded PV system
  publication-title: Electr. Eng.
  doi: 10.1007/s00202-016-0449-3
– volume: 55
  start-page: 1689
  issue: 4
  year: 2008
  ident: 10.1016/j.renene.2018.08.077_bib14
  article-title: Maximum power point tracking scheme for PV systems operating under partially shaded conditions
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2008.917118
– volume: 89
  start-page: 228
  year: 2015
  ident: 10.1016/j.renene.2018.08.077_bib30
  article-title: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm
  publication-title: Knowl. Base Syst.
  doi: 10.1016/j.knosys.2015.07.006
– volume: 37
  start-page: 1074
  issue: 5
  year: 2015
  ident: 10.1016/j.renene.2018.08.077_bib36
  article-title: Population drivers of a Thalia democratica swarm: insights from population modelling
  publication-title: J. Plankton Res.
  doi: 10.1093/plankt/fbv024
– volume: 88
  start-page: 192
  issue: 3
  year: 2011
  ident: 10.1016/j.renene.2018.08.077_bib29
  article-title: Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations
  publication-title: Behav. Process.
  doi: 10.1016/j.beproc.2011.09.006
– volume: vol. 3
  start-page: 1957
  year: 2004
  ident: 10.1016/j.renene.2018.08.077_bib12
  article-title: A modified adaptive hill climbing MPPT method for photovoltaic power systems
– volume: 90
  start-page: 107
  year: 2013
  ident: 10.1016/j.renene.2018.08.077_bib16
  article-title: Comparison between conventional methods and GA approach for maximum power point tracking of shaded solar PV generators
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2013.01.005
– volume: 8
  issue: 2
  year: 2016
  ident: 10.1016/j.renene.2018.08.077_bib23
  article-title: A novel methodology for simulating maximum power point trackers using mine blast optimization and teaching learning based optimization algorithms for partially shaded photovoltaic system
  publication-title: J. Renew. Sustain. Energy
  doi: 10.1063/1.4944971
– volume: 11
  issue: 8
  year: 2016
  ident: 10.1016/j.renene.2018.08.077_bib32
  article-title: PSO-based smart grid application for sizing and optimization of hybrid renewable energy systems
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0159702
– volume: 67
  start-page: 144
  year: 2017
  ident: 10.1016/j.renene.2018.08.077_bib11
  article-title: A review on maximum power point tracking for photovoltaic systems with and without shading conditions
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.09.013
– start-page: 1490
  year: 2013
  ident: 10.1016/j.renene.2018.08.077_bib17
  article-title: A novel global MPPT based on genetic algorithms for photovoltaic systems under the influence of partial shading
– start-page: 1
  year: 2009
  ident: 10.1016/j.renene.2018.08.077_bib6
  article-title: Experimental test of seven widely-adopted MPPT algorithms
– volume: 74
  start-page: 377
  year: 2017
  ident: 10.1016/j.renene.2018.08.077_bib24
  article-title: A comparison of different global MPPT techniques based on meta-heuristic algorithms for photovoltaic system subjected to partial shading conditions
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.02.051
– volume: 34
  start-page: 613
  year: 2015
  ident: 10.1016/j.renene.2018.08.077_bib19
  article-title: Modified particle swarm optimization technique based maximum power point tracking for uniform and under partial shading condition
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.05.029
– start-page: 231
  year: 2018
  ident: 10.1016/j.renene.2018.08.077_bib34
  article-title: Optimal sizing and designing of hybrid renewable energy systems in smart grid applications
– volume: 55
  start-page: 2622
  issue: 7
  year: 2008
  ident: 10.1016/j.renene.2018.08.077_bib9
  article-title: A variable step size INC MPPT method for PV systems
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2008.920550
– volume: 58
  start-page: 227
  year: 2013
  ident: 10.1016/j.renene.2018.08.077_bib21
  article-title: A novel ant colony optimization-based maximum power point tracking for photovoltaic systems under partially shaded conditions
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2012.12.001
– volume: 157
  start-page: 171
  year: 2017
  ident: 10.1016/j.renene.2018.08.077_bib27
  article-title: Global MPPT based on flower pollination and differential evolution algorithms to mitigate partial shading in building integrated PV system
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2017.08.024
– start-page: 1
  year: 2015
  ident: 10.1016/j.renene.2018.08.077_bib5
  article-title: Energy management and renewable energy integration in smart grid system
– volume: 25
  start-page: 3573
  issue: 12
  year: 2015
  ident: 10.1016/j.renene.2018.08.077_bib3
  article-title: Experimental implementation of meteorological data and photovoltaic solar radiation monitoring system
  publication-title: Int. Trans. Electr. Energy Syst.
  doi: 10.1002/etep.2053
– volume: 157
  start-page: 778
  year: 2017
  ident: 10.1016/j.renene.2018.08.077_bib2
  article-title: A novel optimal parameters identification of triple-junction solar cell based on a recently meta-heuristic water cycle algorithm
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2017.08.084
– volume: 114
  start-page: 163
  year: 2017
  ident: 10.1016/j.renene.2018.08.077_bib26
  article-title: Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems
  publication-title: Adv. Eng. Software
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 77
  start-page: 515
  year: 2017
  ident: 10.1016/j.renene.2018.08.077_bib33
  article-title: Swarm intelligence-based optimization of grid-dependent hybrid renewable energy systems
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.04.048
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  ident: 10.1016/j.renene.2018.08.077_bib35
  article-title: GSA: a gravitational search algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2009.03.004
– volume: 99
  start-page: 414
  year: 2012
  ident: 10.1016/j.renene.2018.08.077_bib20
  article-title: A direct control based maximum power point tracking method for photovoltaic system under partial shading conditions using particle swarm optimization algorithm
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.05.026
– volume: 3
  start-page: 446
  issue: 6
  year: 2008
  ident: 10.1016/j.renene.2018.08.077_bib7
  article-title: Energy comparison of MPPT techniques for PV Systems
  publication-title: WSEAS Trans. Power Syst.
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 10.1016/j.renene.2018.08.077_bib25
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– volume: 2014
  year: 2014
  ident: 10.1016/j.renene.2018.08.077_bib13
  article-title: A differential evolution based MPPT method for photovoltaic modules under partial shading conditions
  publication-title: Int. J. Photoenergy
  doi: 10.1155/2014/945906
– volume: 2
  start-page: 184
  issue: 2
  year: 2012
  ident: 10.1016/j.renene.2018.08.077_bib15
  article-title: A new technique for tracking the global maximum power point of PV arrays operating under partial-shading conditions
  publication-title: IEEE J. Photovolt.
  doi: 10.1109/JPHOTOV.2012.2183578
– start-page: 374
  year: 2010
  ident: 10.1016/j.renene.2018.08.077_bib31
  article-title: A new hybrid PSOGSA algorithm for function optimization
– volume: 11
  start-page: 218
  issue: 2
  year: 2011
  ident: 10.1016/j.renene.2018.08.077_bib10
  article-title: Variable step size maximum power point tracker using a single variable for stand-alone battery storage PV systems
  publication-title: J. Power Electron.
  doi: 10.6113/JPE.2011.11.2.218
– volume: 74
  start-page: 374
  year: 2014
  ident: 10.1016/j.renene.2018.08.077_bib18
  article-title: A novel MPPT (maximum power point tracking) algorithm based on a modified genetic algorithm specialized on tracking the global maximum power point in photovoltaic systems affected by partial shading
  publication-title: Energy
  doi: 10.1016/j.energy.2014.07.001
SSID ssj0015874
Score 2.6223261
Snippet Recently, electricity generation from solar photovoltaic (PV) has gained popularity throughout the world due to its profuse availability and eco-friendly...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1159
SubjectTerms algorithms
electricity generation
Global MPPT
Gravitational search algorithm
Grey wolf optimization
Moth-flame optimization
Partially shaded PV system
renewable energy sources
Salp swarm algorithm
shade
solar collectors
solar radiation
Title Partial shading mitigation of PV systems via different meta-heuristic techniques
URI https://dx.doi.org/10.1016/j.renene.2018.08.077
https://www.proquest.com/docview/2116917209
Volume 130
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0682
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015874
  issn: 0960-1481
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdKxwM8TONLjAEyEm9RpjhuYuexQkMMoSkaY-pbZLsu7djSav3Yx1_PXeykDR8aIPESRW7sWr7L-Zfz3e8IecuV1ExbeJGG6LqJFAt1mqoQdlouEisBgVc8s5_E0ZEcDLK805nVuTCrc1GW8vo6m_1XUUMbCBtTZ_9C3M2g0AD3IHS4gtjh-keCz7ENs0DGVXh8cDFxNBoOGOannrx5HqwmqqmPssBS0ioc26Vjbg4abtf5Jnw9Bst4VSVb2SpnsBHXdKwunNvU3wb9_cYnDSA1wMibyg6N2z8e29tvbvv7qm5vNn0QmPbU8kE0yTHrSKTKw5hGIcjaPWedfZUCSQ9k2wD7kxlnQgGiZhvbMVKJ_tLUO6_D2T4yf5ZIeMpkRcbqq8K0SbQ_42RwLgwLq8Uiu0e2YpFksku2-ocHg4_NyVMiHXN3Pfk63bKKCfz5v34HZ37Y2Cu0crJDtv1nBu079XhEOrZ8TB5ukE8-IblXFOoVha4VhU5HND-lXlEoKAptFIW2FYWuFeUp-fL-4OTdh9DX1wgNZ_EilNb0tIxsGhvGBVcZQDvOlEhUojTXJtUJ1yM15KkaaaZ6iGP0iKUmMsrGKubPSLeclvY5oQDEudASvi5gTJP1VGYi6CN0hNGMw3SX8HqZCuPJ57EGynlRRxmeFW5xC1zcAkujCrFLwqbXzJGv3PG8qCVQeADpgGEBSnNHzze1wAqwr3hopko7Xc6LmCGdlIij7MU_j75HHqzfmpeku7hc2lfkvlktJvPL114DvwMzCKNz
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Partial+shading+mitigation+of+PV+systems+via+different+meta-heuristic+techniques&rft.jtitle=Renewable+energy&rft.au=Mohamed%2C+Mohamed+A.&rft.au=Zaki+Diab%2C+Ahmed+A.&rft.au=Rezk%2C+Hegazy&rft.date=2019-01-01&rft.pub=Elsevier+Ltd&rft.issn=0960-1481&rft.eissn=1879-0682&rft.volume=130&rft.spage=1159&rft.epage=1175&rft_id=info:doi/10.1016%2Fj.renene.2018.08.077&rft.externalDocID=S0960148118310279
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon