IPORF: A combined improved parrot optimizer algorithm and random forest for fault diagnosis in AUV

Autonomous Underwater Vehicle (AUV) has many applications in ocean exploration and underwater operations. However, AUV are susceptible to failures due to internal and external factors when operating in complex underwater environments, which seriously affects their mission execution and reliability....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Ocean engineering Ročník 313; s. 119665
Hlavní autoři: Huang, Kangzheng, Li, Weibo, Fang, Hualiang, Wu, Xixiu, Wang, Li, Peng, Hao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.12.2024
Témata:
ISSN:0029-8018
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Autonomous Underwater Vehicle (AUV) has many applications in ocean exploration and underwater operations. However, AUV are susceptible to failures due to internal and external factors when operating in complex underwater environments, which seriously affects their mission execution and reliability. To timely and accurately diagnose the type and severity of AUV faults, this study proposes a method IPORF combining the improved parrot optimization (IPO) algorithm and random forest (RF) for AUV fault diagnosis. Experiments were conducted on a real AUV dataset, and the experimental results showed that the IPORF method was able to identify faulty and normal states with 99.59% accuracy; it was able to differentiate between five types, Normal, Add Weight, Pressure Gain Constant, Propeller Damage Slight and Propeller Damage Bad, with 98.78% accuracy. Compared with 17 advanced algorithms on the same dataset, the accuracy of IPORF is improved by a minimum of 0.42% and a maximum of 29.23%, the precision is enhanced by a minimum of 2.10% and a maximum of 88.36%, the recall improved by a minimum of 3.28% and a maximum of 34.83%, the F1-Score improved by a minimum of 0.64% and a maximum of 62.22%. The outstanding fault diagnosis capabilities demonstrated by the IPORF suggest that it offers a versatile and straightforward framework for diagnosing faults in AUV using various types of sensor time series data, making it a valuable tool for practical applications. •Improved parrot optimization algorithm for enhanced effectiveness.•IPORF method for multivariate time series classification in AUV fault diagnosis.•IPORF accurately predicts AUV states, fault types, and fault levels.•Outperforms 17 algorithms in 4 indicators and interpretability for AUV fault diagnosis.
AbstractList Autonomous Underwater Vehicle (AUV) has many applications in ocean exploration and underwater operations. However, AUV are susceptible to failures due to internal and external factors when operating in complex underwater environments, which seriously affects their mission execution and reliability. To timely and accurately diagnose the type and severity of AUV faults, this study proposes a method IPORF combining the improved parrot optimization (IPO) algorithm and random forest (RF) for AUV fault diagnosis. Experiments were conducted on a real AUV dataset, and the experimental results showed that the IPORF method was able to identify faulty and normal states with 99.59% accuracy; it was able to differentiate between five types, Normal, Add Weight, Pressure Gain Constant, Propeller Damage Slight and Propeller Damage Bad, with 98.78% accuracy. Compared with 17 advanced algorithms on the same dataset, the accuracy of IPORF is improved by a minimum of 0.42% and a maximum of 29.23%, the precision is enhanced by a minimum of 2.10% and a maximum of 88.36%, the recall improved by a minimum of 3.28% and a maximum of 34.83%, the F1-Score improved by a minimum of 0.64% and a maximum of 62.22%. The outstanding fault diagnosis capabilities demonstrated by the IPORF suggest that it offers a versatile and straightforward framework for diagnosing faults in AUV using various types of sensor time series data, making it a valuable tool for practical applications. •Improved parrot optimization algorithm for enhanced effectiveness.•IPORF method for multivariate time series classification in AUV fault diagnosis.•IPORF accurately predicts AUV states, fault types, and fault levels.•Outperforms 17 algorithms in 4 indicators and interpretability for AUV fault diagnosis.
ArticleNumber 119665
Author Huang, Kangzheng
Peng, Hao
Wu, Xixiu
Wang, Li
Li, Weibo
Fang, Hualiang
Author_xml – sequence: 1
  givenname: Kangzheng
  surname: Huang
  fullname: Huang, Kangzheng
  organization: School of Automation, Wuhan University of Technology, Wuhan, Hubei, 430070, China
– sequence: 2
  givenname: Weibo
  surname: Li
  fullname: Li, Weibo
  email: liweibo@whut.edu.cn
  organization: School of Automation, Wuhan University of Technology, Wuhan, Hubei, 430070, China
– sequence: 3
  givenname: Hualiang
  surname: Fang
  fullname: Fang, Hualiang
  organization: School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei, 430072, China
– sequence: 4
  givenname: Xixiu
  surname: Wu
  fullname: Wu, Xixiu
  organization: School of Automation, Wuhan University of Technology, Wuhan, Hubei, 430070, China
– sequence: 5
  givenname: Li
  surname: Wang
  fullname: Wang, Li
  organization: School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
– sequence: 6
  givenname: Hao
  surname: Peng
  fullname: Peng, Hao
  organization: School of Automation, Wuhan University of Technology, Wuhan, Hubei, 430070, China
BookMark eNqFkMFKAzEURbOoYFv9BckPzJhkZtKpuLAUq4VCRarb8CaTqa_MJCWJBf16p1Q3brp5923OhXtGZGCdNYTccJZyxuXtLnXagDV2mwom8pTzqZTFgAwZE9OkZLy8JKMQdowxKVk2JNXyZf26uKMzql1XoTU1xW7v3aF_9uC9i9TtI3b4bTyFdus8xo-Ogq2p74_raOO8CfEYtIHPNtIaYWtdwEDR0tnb-xW5aKAN5vo3x2SzeNzMn5PV-mk5n60SnXERkxLKogChBYPamEZyPWkmMsulYMUUpGaTnBeVlrXmQlS85BWXOYOSa8mhgWxM5KlWexeCN43ae-zAfynO1FGO2qk_OeooR53k9OD9P1BjhIjORg_YnscfTrjptx3QeBU0GqtNjd7oqGqH5yp-AANwiaw
CitedBy_id crossref_primary_10_1016_j_measurement_2025_116954
crossref_primary_10_1080_17445302_2025_2556970
crossref_primary_10_3390_en17225799
crossref_primary_10_3390_en18164336
crossref_primary_10_1088_1361_6501_adeacf
crossref_primary_10_1088_1742_6596_3004_1_012034
crossref_primary_10_1016_j_seta_2025_104479
crossref_primary_10_1016_j_swevo_2025_101908
crossref_primary_10_1080_17445302_2025_2552839
crossref_primary_10_1016_j_oceaneng_2025_121286
crossref_primary_10_1016_j_cma_2025_117908
crossref_primary_10_1177_14750902251357638
crossref_primary_10_1108_COMPEL_05_2025_0217
crossref_primary_10_3390_electronics14030612
Cites_doi 10.1016/j.oceaneng.2020.107855
10.3934/mbe.2022434
10.1016/j.oceaneng.2023.115585
10.1016/j.ijnaoe.2016.03.003
10.1166/sl.2011.1535
10.1109/3468.983434
10.1109/ACCESS.2021.3074243
10.1016/j.neucom.2020.05.055
10.1016/j.oceaneng.2021.108874
10.3390/app13158614
10.1016/j.oceaneng.2023.113861
10.1016/j.ymssp.2021.108653
10.1007/s11771-016-3127-8
10.1016/j.automatica.2015.12.027
10.3390/pr7030152
10.1016/j.oceaneng.2017.06.020
10.1016/j.oceaneng.2023.113844
10.1109/TASE.2020.2998467
10.1016/j.dib.2021.107477
10.1016/j.isatra.2023.09.027
10.3390/electronics11223795
10.1016/j.knosys.2020.105845
10.1016/j.oceaneng.2024.116738
10.1002/rob.20202
10.1016/j.compbiomed.2024.108064
10.1016/j.oceaneng.2023.113722
10.1016/j.measurement.2022.112346
10.3390/machines11100960
10.1007/s11704-022-2096-3
10.1049/cth2.12288
10.1007/s00530-021-00827-0
10.1016/j.oceaneng.2021.109049
10.3390/jmse11061121
10.1016/j.oceaneng.2021.109472
10.1016/j.oceaneng.2021.110290
10.3390/s22155507
10.1109/JSEN.2023.3279714
10.1109/JSEN.2022.3174340
10.1109/TIE.2017.2774777
10.1016/j.oceaneng.2022.112595
10.1016/j.sna.2021.112668
10.1016/j.oceaneng.2021.109651
10.1016/j.neucom.2020.06.026
10.1007/s00773-022-00891-9
10.1007/s13344-014-0048-x
10.1002/rob.21771
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.oceaneng.2024.119665
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Oceanography
ExternalDocumentID 10_1016_j_oceaneng_2024_119665
S0029801824030038
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACLOT
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKIFW
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KCYFY
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSJ
SST
SSZ
T5K
TAE
TN5
XPP
ZMT
~02
~G-
~HD
29N
6TJ
9DU
AAQXK
AAYXX
ABFNM
ABWVN
ABXDB
ACKIV
ACNNM
ACRPL
ADMUD
ADNMO
AFFNX
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SET
WUQ
ID FETCH-LOGICAL-c312t-8a855a2c20adeef61c7f763462059a6c07415bc6dc122b181b1640a81c61afa3
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001350481500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-8018
IngestDate Sat Nov 29 07:38:51 EST 2025
Tue Nov 18 22:26:35 EST 2025
Sat Sep 27 17:12:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Fault diagnosis
AUV
Random forest
Parrot optimization algorithm
Machine learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-8a855a2c20adeef61c7f763462059a6c07415bc6dc122b181b1640a81c61afa3
ParticipantIDs crossref_primary_10_1016_j_oceaneng_2024_119665
crossref_citationtrail_10_1016_j_oceaneng_2024_119665
elsevier_sciencedirect_doi_10_1016_j_oceaneng_2024_119665
PublicationCentury 2000
PublicationDate 2024-12-01
2024-12-00
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Ocean engineering
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Davoodi, Meskin, Khorasani (bib9) 2016; 66
Witten, Frank, Hall, Pal (bib44) 2016
Xia, Zhou, Shi, Li, Xu (bib48) 2021; 233
Raanan, Bellingham, Zhang, Kemp, Kieft, Singh, Girdhar (bib33) 2018; 35
Yu, Zhang, Liu, Yao (bib52) 2022; 19
Li, Wang, Ma, Zou (bib25) 2023; 271
Yang, Qin, Huang, Fu (bib50) 2018
Zhang, Wu, Chu (bib55) 2014; 28
Wen, Li, Gao, Zhang (bib43) 2018; 65
Wang, Sun, Li (bib41) 2024
Che, Yu (bib5) 2020; 411
Hamilton, Lane, Brown, Evans, Taylor (bib15) 2007; 24
Jiang, Ge (bib21) 2021; 18
Li, Zhou, Li, Sun, Yan, Chen (bib24) 2022; 168
Hou, Li, Wang, Zhai, Lu (bib16) 2023; 17
Ji, Yao, Li, Tang, Tian (bib18) 2021; 232
Sun, Ran, Li, Zhang, Zhang (bib39) 2016; 8
Ramirez-Sanz, Maestro-Prieto, Arnaiz-Gonzalez, Bustillo (bib34) 2023; 143
Ji, Wang, Zhai, Gu (bib17) 2021; 237
Yuan, Tian (bib53) 2019; 7
Gao, Liu, Zhang, Feng, He, Zio (bib13) 2023; 286
Fathy, Li (bib10) 2020; 410
Kaldmäe, Kotta, Shumsky, Zhirabok (bib23) 2018; 28
Zhang, Ji, Liu, Zhu, Xu (bib54) 2023; 273
Jiang, Feng, He, Guo, Wang, Lv (bib22) 2021; 324
Sun, Li, Zhang, Zhang, Wu (bib38) 2016; 23
Lv, Zhou, Wang, Gong, Zhang (bib31) 2020; 216
Wang, Han, Li, Zhang, Cheng (bib42) 2021; 9
Liu, Tang, Qin, Duan, Luo, Pu (bib29) 2022; 243
Chen, Wang, Yu, Wang, Gao (bib7) 2023; 11
Gao, He, Yu, Zhang, Yan, Feng (bib12) 2021; 237
Xia, Zhou, Shi, Li (bib46) 2023
Zhu, Lei, Qi, Chai, Mazur, An, Huang (bib56) 2023; 206
Chao, Zhang (bib4) 2021; 29
Abayomi-Alli, Damasevicius, Qazi, Adedoyin-Olowe, Misra (bib1) 2022; 11
Barulina, Okunkov, Ulitin, Sanbaev (bib3) 2023; 13
Pei, Wang, Han (bib32) 2023; 72
Shi, Song, Bai, Zhang (bib36) 2023; 22271
Gai, Zhang, Liu (bib11) 2024; 294
Jia, Liu, Zhang, Gao, Qian (bib20) 2023; 17
Chen, Chu, Liu, Yang, Zhu (bib6) 2020; 41
Xia, Zhou, Shi, Li, Xu (bib47) 2022; 266
Liang, Zhang, Li, Lin (bib27) 2011; 9
Shi, Ying, Yang (bib37) 2022; 22
Liang, Jiang, Li, Xue, Wang (bib28) 2020; 196
Bagci Das, Birant (bib2) 2023; 272
Ranganathan, Patel, Sathyamurthy (bib35) 2001; 31
Gerard (bib14) 2012; 13
Ji, Yao, Li, Tang, Tian (bib19) 2021; 39
Wu, Wang, Zhou, Zhu, Zeng (bib45) 2023; 11
Cui, Zhang, Zhang, Liu (bib8) 2022; 27
Yao, Chen, Liu, Zhang (bib51) 2023; 237
Liu, Ju, Liu, Miao, Zhang (bib30) 2022; 22
Xiang, Yu, Zhang (bib49) 2017; 140
Lian, Hui, Ma, Zhu, Wu, Heidari, Chen, Chen (bib26) 2024; 172
Wan, Zhou, Ning, Li (bib40) 2023; 23
Liang (10.1016/j.oceaneng.2024.119665_bib28) 2020; 196
Shi (10.1016/j.oceaneng.2024.119665_bib37) 2022; 22
Jiang (10.1016/j.oceaneng.2024.119665_bib22) 2021; 324
Xia (10.1016/j.oceaneng.2024.119665_bib48) 2021; 233
Hamilton (10.1016/j.oceaneng.2024.119665_bib15) 2007; 24
Jia (10.1016/j.oceaneng.2024.119665_bib20) 2023; 17
Ji (10.1016/j.oceaneng.2024.119665_bib18) 2021; 232
Wang (10.1016/j.oceaneng.2024.119665_bib41) 2024
Liu (10.1016/j.oceaneng.2024.119665_bib30) 2022; 22
Chao (10.1016/j.oceaneng.2024.119665_bib4) 2021; 29
Zhang (10.1016/j.oceaneng.2024.119665_bib54) 2023; 273
Fathy (10.1016/j.oceaneng.2024.119665_bib10) 2020; 410
Wan (10.1016/j.oceaneng.2024.119665_bib40) 2023; 23
Sun (10.1016/j.oceaneng.2024.119665_bib38) 2016; 23
Raanan (10.1016/j.oceaneng.2024.119665_bib33) 2018; 35
Bagci Das (10.1016/j.oceaneng.2024.119665_bib2) 2023; 272
Ramirez-Sanz (10.1016/j.oceaneng.2024.119665_bib34) 2023; 143
Kaldmäe (10.1016/j.oceaneng.2024.119665_bib23) 2018; 28
Sun (10.1016/j.oceaneng.2024.119665_bib39) 2016; 8
Yao (10.1016/j.oceaneng.2024.119665_bib51) 2023; 237
Cui (10.1016/j.oceaneng.2024.119665_bib8) 2022; 27
Liu (10.1016/j.oceaneng.2024.119665_bib29) 2022; 243
Wu (10.1016/j.oceaneng.2024.119665_bib45) 2023; 11
Zhu (10.1016/j.oceaneng.2024.119665_bib56) 2023; 206
Ji (10.1016/j.oceaneng.2024.119665_bib19) 2021; 39
Gai (10.1016/j.oceaneng.2024.119665_bib11) 2024; 294
Yang (10.1016/j.oceaneng.2024.119665_bib50) 2018
Barulina (10.1016/j.oceaneng.2024.119665_bib3) 2023; 13
Li (10.1016/j.oceaneng.2024.119665_bib25) 2023; 271
Gao (10.1016/j.oceaneng.2024.119665_bib12) 2021; 237
Davoodi (10.1016/j.oceaneng.2024.119665_bib9) 2016; 66
Xia (10.1016/j.oceaneng.2024.119665_bib46) 2023
Xiang (10.1016/j.oceaneng.2024.119665_bib49) 2017; 140
Yuan (10.1016/j.oceaneng.2024.119665_bib53) 2019; 7
Pei (10.1016/j.oceaneng.2024.119665_bib32) 2023; 72
Gerard (10.1016/j.oceaneng.2024.119665_bib14) 2012; 13
Lian (10.1016/j.oceaneng.2024.119665_bib26) 2024; 172
Che (10.1016/j.oceaneng.2024.119665_bib5) 2020; 411
Wen (10.1016/j.oceaneng.2024.119665_bib43) 2018; 65
Abayomi-Alli (10.1016/j.oceaneng.2024.119665_bib1) 2022; 11
Jiang (10.1016/j.oceaneng.2024.119665_bib21) 2021; 18
Zhang (10.1016/j.oceaneng.2024.119665_bib55) 2014; 28
Ji (10.1016/j.oceaneng.2024.119665_bib17) 2021; 237
Hou (10.1016/j.oceaneng.2024.119665_bib16) 2023; 17
Xia (10.1016/j.oceaneng.2024.119665_bib47) 2022; 266
Gao (10.1016/j.oceaneng.2024.119665_bib13) 2023; 286
Liang (10.1016/j.oceaneng.2024.119665_bib27) 2011; 9
Witten (10.1016/j.oceaneng.2024.119665_bib44) 2016
Shi (10.1016/j.oceaneng.2024.119665_bib36) 2023; 22271
Ranganathan (10.1016/j.oceaneng.2024.119665_bib35) 2001; 31
Chen (10.1016/j.oceaneng.2024.119665_bib7) 2023; 11
Lv (10.1016/j.oceaneng.2024.119665_bib31) 2020; 216
Wang (10.1016/j.oceaneng.2024.119665_bib42) 2021; 9
Chen (10.1016/j.oceaneng.2024.119665_bib6) 2020; 41
Li (10.1016/j.oceaneng.2024.119665_bib24) 2022; 168
Yu (10.1016/j.oceaneng.2024.119665_bib52) 2022; 19
References_xml – volume: 232
  year: 2021
  ident: bib18
  article-title: Model-free fault diagnosis for autonomous underwater vehicles using sequence Convolutional Neural Network
  publication-title: Ocean Eng.
– volume: 11
  start-page: 1121
  year: 2023
  ident: bib7
  article-title: a fault diagnosis method for the autonomous underwater vehicle via meta-self-attention multi-scale CNN
  publication-title: JMSE
– volume: 294
  year: 2024
  ident: bib11
  article-title: Fault feature extraction method for AUV thruster based on two-stage fusion from multi-source information
  publication-title: Ocean Eng.
– volume: 28
  start-page: 42
  year: 2018
  end-page: 53
  ident: bib23
  article-title: Disturbance decoupling in nonlinear hybrid systems
  publication-title: Nonlinear Analysis: Hybrid Systems
– volume: 23
  start-page: 14601
  year: 2023
  end-page: 14617
  ident: bib40
  article-title: An efficient I-PixelHop framework based on spark-GPU for Intelligent Fault diagnosis
  publication-title: IEEE Sensor. J.
– volume: 7
  start-page: 152
  year: 2019
  ident: bib53
  article-title: An Intelligent Fault diagnosis method using GRU neural network towards sequential data in dynamic processes
  publication-title: Processes
– volume: 237
  year: 2021
  ident: bib17
  article-title: Dynamic modeling of quadrotor AUV using a novel CFD simulation
  publication-title: Ocean Eng.
– volume: 9
  year: 2011
  ident: bib27
  article-title: Sensor Fault diagnosis for autonomous underwater vehicles
  publication-title: Sens. Lett.
– volume: 140
  start-page: 453
  year: 2017
  end-page: 465
  ident: bib49
  article-title: On intelligent risk analysis and critical decision of underwater robotic vehicle
  publication-title: Ocean Eng.
– volume: 13
  start-page: 8614
  year: 2023
  ident: bib3
  article-title: Sensitivity of modern deep learning neural networks to unbalanced datasets in multiclass classification problems
  publication-title: Applied Sciences-Basel
– volume: 35
  start-page: 705
  year: 2018
  end-page: 716
  ident: bib33
  article-title: Detection of unanticipated faults for autonomous underwater vehicles using online topic models
  publication-title: J. Field Robot.
– volume: 206
  year: 2023
  ident: bib56
  article-title: A review of the application of deep learning in intelligent fault diagnosis of rotating machinery
  publication-title: Measurement
– start-page: 393
  year: 2018
  end-page: 398
  ident: bib50
  article-title: Fault diagnosis of high-speed railway bogies based on LSTM
  publication-title: 2018 5th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS)
– start-page: 1
  year: 2023
  end-page: 13
  ident: bib46
  article-title: Hybrid feature adaptive fusion network for multivariate time series classification with application in AUV fault detection
  publication-title: Ships Offshore Struct.
– volume: 22271
  year: 2023
  ident: bib36
  article-title: Attention mechanism‐based multisensor data fusion neural network for fault diagnosis of autonomous underwater vehicles
  publication-title: Journal of Field Robotics rob
– volume: 233
  year: 2021
  ident: bib48
  article-title: A fault diagnosis method based on attention mechanism with application in Qianlong-2 autonomous underwater vehicle
  publication-title: Ocean Eng.
– volume: 24
  start-page: 497
  year: 2007
  end-page: 526
  ident: bib15
  article-title: An integrated diagnostic architecture for autonomous underwater vehicles
  publication-title: J. Field Robot.
– volume: 271
  year: 2023
  ident: bib25
  article-title: Adaptive reinforcement learning fault-tolerant control for AUVs with thruster faults based on the integral extended state observer
  publication-title: Ocean Eng.
– volume: 324
  year: 2021
  ident: bib22
  article-title: Actuator fault diagnosis in autonomous underwater vehicle based on neural network
  publication-title: Sensor Actuator Phys.
– volume: 273
  year: 2023
  ident: bib54
  article-title: Autonomous underwater vehicle navigation: a review
  publication-title: Ocean Eng.
– volume: 410
  start-page: 71
  year: 2020
  end-page: 82
  ident: bib10
  article-title: DONE: enhancing network embedding via greedy vertex domination
  publication-title: Neurocomputing
– volume: 22
  start-page: 12127
  year: 2022
  end-page: 12138
  ident: bib30
  article-title: An IMU fault diagnosis and information reconstruction method based on analytical redundancy for autonomous underwater vehicle
  publication-title: IEEE Sensor. J.
– volume: 27
  start-page: 1105
  year: 2022
  end-page: 1115
  ident: bib8
  article-title: Feature extraction and severity identification for autonomous underwater vehicle with weak thruster fault
  publication-title: J. Mar. Sci. Technol.
– volume: 272
  year: 2023
  ident: bib2
  article-title: GASEL: genetic algorithm-supported ensemble learning for fault detection in autonomous underwater vehicles
  publication-title: Ocean Eng.
– volume: 18
  start-page: 1206
  year: 2021
  end-page: 1217
  ident: bib21
  article-title: Data augmentation classifier for imbalanced fault classification
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 17
  year: 2023
  ident: bib20
  article-title: Software approaches for resilience of high performance computing systems: a survey
  publication-title: Front. Comput. Sci.
– volume: 41
  start-page: 2465
  year: 2020
  end-page: 2474
  ident: bib6
  article-title: Research progress on thruster fault diagnosis technology for deep-sea underwater vehicle
  publication-title: J. Propuls. Technol.
– volume: 39
  year: 2021
  ident: bib19
  article-title: Autonomous underwater vehicle fault diagnosis dataset
  publication-title: Data Brief
– volume: 9
  start-page: 64606
  year: 2021
  end-page: 64628
  ident: bib42
  article-title: Review of classification methods on unbalanced data sets
  publication-title: IEEE Access
– volume: 65
  start-page: 5990
  year: 2018
  end-page: 5998
  ident: bib43
  article-title: A new convolutional neural network-based data-driven fault diagnosis method
  publication-title: IEEE Trans. Ind. Electron.
– volume: 237
  year: 2021
  ident: bib12
  article-title: An abnormal motion condition monitoring method based on the dynamic model and complex network for AUV
  publication-title: Ocean Eng.
– year: 2024
  ident: bib41
  article-title: A brain-inspired spiking network framework based on multi-time-step self-attention for lithium-ion batteries capacity prediction
  publication-title: IEEE Trans. Consum. Electron.
– volume: 216
  year: 2020
  ident: bib31
  article-title: Sliding mode based fault tolerant control for autonomous underwater vehicle
  publication-title: Ocean Eng.
– year: 2016
  ident: bib44
  article-title: Data Mining: Practical Machine Learning Tools and Techniques
– volume: 266
  year: 2022
  ident: bib47
  article-title: A fault diagnosis method with multi-source data fusion based on hierarchical attention for AUV
  publication-title: Ocean Eng.
– volume: 19
  start-page: 9335
  year: 2022
  end-page: 9356
  ident: bib52
  article-title: Fault feature extraction and fusion method for AUV with weak thruster fault based on variational mode decomposition and D-S evidence theory
  publication-title: MBE
– volume: 72
  start-page: 1
  year: 2023
  end-page: 11
  ident: bib32
  article-title: Time-efficient neural architecture search for autonomous underwater vehicle fault diagnosis
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 23
  start-page: 808
  year: 2016
  end-page: 816
  ident: bib38
  article-title: Actuator fault diagnosis of autonomous underwater vehicle based on improved Elman neural network
  publication-title: J. Cent. South Univ.
– volume: 31
  start-page: 762
  year: 2001
  end-page: 767
  ident: bib35
  article-title: An intelligent system for failure detection and control in an autonomous underwater vehicle
  publication-title: IEEE Trans. Syst., Man, Cybern. A
– volume: 13
  start-page: 1063
  year: 2012
  end-page: 1095
  ident: bib14
  article-title: Analysis of a random forests model
  publication-title: J. Mach. Learn. Res.
– volume: 66
  start-page: 185
  year: 2016
  end-page: 194
  ident: bib9
  article-title: Simultaneous fault detection and consensus control design for a network of multi-agent systems
  publication-title: Automatica
– volume: 411
  start-page: 442
  year: 2020
  end-page: 454
  ident: bib5
  article-title: Neural-network estimators based fault-tolerant tracking control for AUV via ADP with rudders faults and ocean current disturbance
  publication-title: Neurocomputing
– volume: 17
  start-page: 270
  year: 2023
  end-page: 283
  ident: bib16
  article-title: Fuzzy linear extended states observer‐based iteration learning fault‐tolerant control for autonomous underwater vehicle trajectory‐tracking system
  publication-title: IET Control Theory & Appl.
– volume: 243
  year: 2022
  ident: bib29
  article-title: Review on fault diagnosis of unmanned underwater vehicles
  publication-title: Ocean Eng.
– volume: 8
  start-page: 243
  year: 2016
  end-page: 251
  ident: bib39
  article-title: Thruster fault diagnosis method based on Gaussian particle filter for autonomous underwater vehicles
  publication-title: Int. J. Nav. Archit. Ocean Eng.
– volume: 28
  start-page: 599
  year: 2014
  end-page: 616
  ident: bib55
  article-title: Multi-fault diagnosis for autonomous underwater vehicle based on fuzzy weighted support vector domain description
  publication-title: China Ocean Eng.
– volume: 11
  start-page: 3795
  year: 2022
  ident: bib1
  article-title: Data augmentation and deep learning methods in sound classification: a systematic review
  publication-title: Electronics
– volume: 286
  year: 2023
  ident: bib13
  article-title: Physics-Guided Generative Adversarial Networks for fault detection of underwater thruster
  publication-title: Ocean Eng.
– volume: 196
  year: 2020
  ident: bib28
  article-title: LR-SMOTE - an improved unbalanced data set oversampling based on K-means and SVM
  publication-title: Knowl. Base Syst.
– volume: 168
  year: 2022
  ident: bib24
  article-title: The emerging graph neural networks for intelligent fault diagnostics and prognostics: a guideline and a benchmark study
  publication-title: Mech. Syst. Signal Process.
– volume: 237
  start-page: 478
  year: 2023
  end-page: 486
  ident: bib51
  article-title: Weak thruster fault detection for AUV based on Bayesian network and Hidden Markov model
  publication-title: Proc. IME M J. Eng. Marit. Environ.
– volume: 22
  start-page: 5507
  year: 2022
  ident: bib37
  article-title: Deep unsupervised domain adaptation with time series sensor data: a survey
  publication-title: Sensors
– volume: 172
  year: 2024
  ident: bib26
  article-title: Parrot optimizer: algorithm and applications to medical problems
  publication-title: Comput. Biol. Med.
– volume: 143
  start-page: 255
  year: 2023
  end-page: 270
  ident: bib34
  article-title: Semi-supervised learning for industrial fault detection and diagnosis: a systemic review
  publication-title: ISA (Instrum. Soc. Am.) Trans.
– volume: 11
  start-page: 960
  year: 2023
  ident: bib45
  article-title: Fault diagnosis of autonomous underwater vehicle with missing data based on multi-channel full convolutional neural network
  publication-title: Machines
– volume: 29
  start-page: 2843
  year: 2021
  end-page: 2851
  ident: bib4
  article-title: Few-shot imbalanced classification based on data augmentation
  publication-title: Multimed. Syst.
– volume: 216
  year: 2020
  ident: 10.1016/j.oceaneng.2024.119665_bib31
  article-title: Sliding mode based fault tolerant control for autonomous underwater vehicle
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.107855
– volume: 19
  start-page: 9335
  year: 2022
  ident: 10.1016/j.oceaneng.2024.119665_bib52
  article-title: Fault feature extraction and fusion method for AUV with weak thruster fault based on variational mode decomposition and D-S evidence theory
  publication-title: MBE
  doi: 10.3934/mbe.2022434
– volume: 286
  year: 2023
  ident: 10.1016/j.oceaneng.2024.119665_bib13
  article-title: Physics-Guided Generative Adversarial Networks for fault detection of underwater thruster
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2023.115585
– volume: 237
  start-page: 478
  year: 2023
  ident: 10.1016/j.oceaneng.2024.119665_bib51
  article-title: Weak thruster fault detection for AUV based on Bayesian network and Hidden Markov model
  publication-title: Proc. IME M J. Eng. Marit. Environ.
– volume: 28
  start-page: 42
  year: 2018
  ident: 10.1016/j.oceaneng.2024.119665_bib23
  article-title: Disturbance decoupling in nonlinear hybrid systems
  publication-title: Nonlinear Analysis: Hybrid Systems
– volume: 8
  start-page: 243
  year: 2016
  ident: 10.1016/j.oceaneng.2024.119665_bib39
  article-title: Thruster fault diagnosis method based on Gaussian particle filter for autonomous underwater vehicles
  publication-title: Int. J. Nav. Archit. Ocean Eng.
  doi: 10.1016/j.ijnaoe.2016.03.003
– start-page: 393
  year: 2018
  ident: 10.1016/j.oceaneng.2024.119665_bib50
  article-title: Fault diagnosis of high-speed railway bogies based on LSTM
– volume: 9
  year: 2011
  ident: 10.1016/j.oceaneng.2024.119665_bib27
  article-title: Sensor Fault diagnosis for autonomous underwater vehicles
  publication-title: Sens. Lett.
  doi: 10.1166/sl.2011.1535
– year: 2024
  ident: 10.1016/j.oceaneng.2024.119665_bib41
  article-title: A brain-inspired spiking network framework based on multi-time-step self-attention for lithium-ion batteries capacity prediction
  publication-title: IEEE Trans. Consum. Electron.
– volume: 31
  start-page: 762
  year: 2001
  ident: 10.1016/j.oceaneng.2024.119665_bib35
  article-title: An intelligent system for failure detection and control in an autonomous underwater vehicle
  publication-title: IEEE Trans. Syst., Man, Cybern. A
  doi: 10.1109/3468.983434
– volume: 9
  start-page: 64606
  year: 2021
  ident: 10.1016/j.oceaneng.2024.119665_bib42
  article-title: Review of classification methods on unbalanced data sets
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3074243
– start-page: 1
  year: 2023
  ident: 10.1016/j.oceaneng.2024.119665_bib46
  article-title: Hybrid feature adaptive fusion network for multivariate time series classification with application in AUV fault detection
  publication-title: Ships Offshore Struct.
– volume: 410
  start-page: 71
  year: 2020
  ident: 10.1016/j.oceaneng.2024.119665_bib10
  article-title: DONE: enhancing network embedding via greedy vertex domination
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.05.055
– volume: 232
  year: 2021
  ident: 10.1016/j.oceaneng.2024.119665_bib18
  article-title: Model-free fault diagnosis for autonomous underwater vehicles using sequence Convolutional Neural Network
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.108874
– volume: 13
  start-page: 8614
  year: 2023
  ident: 10.1016/j.oceaneng.2024.119665_bib3
  article-title: Sensitivity of modern deep learning neural networks to unbalanced datasets in multiclass classification problems
  publication-title: Applied Sciences-Basel
  doi: 10.3390/app13158614
– volume: 273
  year: 2023
  ident: 10.1016/j.oceaneng.2024.119665_bib54
  article-title: Autonomous underwater vehicle navigation: a review
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2023.113861
– volume: 168
  year: 2022
  ident: 10.1016/j.oceaneng.2024.119665_bib24
  article-title: The emerging graph neural networks for intelligent fault diagnostics and prognostics: a guideline and a benchmark study
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2021.108653
– volume: 23
  start-page: 808
  year: 2016
  ident: 10.1016/j.oceaneng.2024.119665_bib38
  article-title: Actuator fault diagnosis of autonomous underwater vehicle based on improved Elman neural network
  publication-title: J. Cent. South Univ.
  doi: 10.1007/s11771-016-3127-8
– volume: 66
  start-page: 185
  year: 2016
  ident: 10.1016/j.oceaneng.2024.119665_bib9
  article-title: Simultaneous fault detection and consensus control design for a network of multi-agent systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2015.12.027
– volume: 7
  start-page: 152
  year: 2019
  ident: 10.1016/j.oceaneng.2024.119665_bib53
  article-title: An Intelligent Fault diagnosis method using GRU neural network towards sequential data in dynamic processes
  publication-title: Processes
  doi: 10.3390/pr7030152
– volume: 140
  start-page: 453
  year: 2017
  ident: 10.1016/j.oceaneng.2024.119665_bib49
  article-title: On intelligent risk analysis and critical decision of underwater robotic vehicle
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2017.06.020
– volume: 272
  year: 2023
  ident: 10.1016/j.oceaneng.2024.119665_bib2
  article-title: GASEL: genetic algorithm-supported ensemble learning for fault detection in autonomous underwater vehicles
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2023.113844
– volume: 18
  start-page: 1206
  year: 2021
  ident: 10.1016/j.oceaneng.2024.119665_bib21
  article-title: Data augmentation classifier for imbalanced fault classification
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2020.2998467
– year: 2016
  ident: 10.1016/j.oceaneng.2024.119665_bib44
– volume: 39
  year: 2021
  ident: 10.1016/j.oceaneng.2024.119665_bib19
  article-title: Autonomous underwater vehicle fault diagnosis dataset
  publication-title: Data Brief
  doi: 10.1016/j.dib.2021.107477
– volume: 143
  start-page: 255
  year: 2023
  ident: 10.1016/j.oceaneng.2024.119665_bib34
  article-title: Semi-supervised learning for industrial fault detection and diagnosis: a systemic review
  publication-title: ISA (Instrum. Soc. Am.) Trans.
  doi: 10.1016/j.isatra.2023.09.027
– volume: 11
  start-page: 3795
  year: 2022
  ident: 10.1016/j.oceaneng.2024.119665_bib1
  article-title: Data augmentation and deep learning methods in sound classification: a systematic review
  publication-title: Electronics
  doi: 10.3390/electronics11223795
– volume: 196
  year: 2020
  ident: 10.1016/j.oceaneng.2024.119665_bib28
  article-title: LR-SMOTE - an improved unbalanced data set oversampling based on K-means and SVM
  publication-title: Knowl. Base Syst.
  doi: 10.1016/j.knosys.2020.105845
– volume: 72
  start-page: 1
  year: 2023
  ident: 10.1016/j.oceaneng.2024.119665_bib32
  article-title: Time-efficient neural architecture search for autonomous underwater vehicle fault diagnosis
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 294
  year: 2024
  ident: 10.1016/j.oceaneng.2024.119665_bib11
  article-title: Fault feature extraction method for AUV thruster based on two-stage fusion from multi-source information
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2024.116738
– volume: 24
  start-page: 497
  year: 2007
  ident: 10.1016/j.oceaneng.2024.119665_bib15
  article-title: An integrated diagnostic architecture for autonomous underwater vehicles
  publication-title: J. Field Robot.
  doi: 10.1002/rob.20202
– volume: 172
  year: 2024
  ident: 10.1016/j.oceaneng.2024.119665_bib26
  article-title: Parrot optimizer: algorithm and applications to medical problems
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2024.108064
– volume: 271
  year: 2023
  ident: 10.1016/j.oceaneng.2024.119665_bib25
  article-title: Adaptive reinforcement learning fault-tolerant control for AUVs with thruster faults based on the integral extended state observer
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2023.113722
– volume: 206
  year: 2023
  ident: 10.1016/j.oceaneng.2024.119665_bib56
  article-title: A review of the application of deep learning in intelligent fault diagnosis of rotating machinery
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.112346
– volume: 11
  start-page: 960
  year: 2023
  ident: 10.1016/j.oceaneng.2024.119665_bib45
  article-title: Fault diagnosis of autonomous underwater vehicle with missing data based on multi-channel full convolutional neural network
  publication-title: Machines
  doi: 10.3390/machines11100960
– volume: 17
  year: 2023
  ident: 10.1016/j.oceaneng.2024.119665_bib20
  article-title: Software approaches for resilience of high performance computing systems: a survey
  publication-title: Front. Comput. Sci.
  doi: 10.1007/s11704-022-2096-3
– volume: 17
  start-page: 270
  year: 2023
  ident: 10.1016/j.oceaneng.2024.119665_bib16
  article-title: Fuzzy linear extended states observer‐based iteration learning fault‐tolerant control for autonomous underwater vehicle trajectory‐tracking system
  publication-title: IET Control Theory & Appl.
  doi: 10.1049/cth2.12288
– volume: 29
  start-page: 2843
  year: 2021
  ident: 10.1016/j.oceaneng.2024.119665_bib4
  article-title: Few-shot imbalanced classification based on data augmentation
  publication-title: Multimed. Syst.
  doi: 10.1007/s00530-021-00827-0
– volume: 233
  year: 2021
  ident: 10.1016/j.oceaneng.2024.119665_bib48
  article-title: A fault diagnosis method based on attention mechanism with application in Qianlong-2 autonomous underwater vehicle
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.109049
– volume: 11
  start-page: 1121
  year: 2023
  ident: 10.1016/j.oceaneng.2024.119665_bib7
  article-title: a fault diagnosis method for the autonomous underwater vehicle via meta-self-attention multi-scale CNN
  publication-title: JMSE
  doi: 10.3390/jmse11061121
– volume: 237
  year: 2021
  ident: 10.1016/j.oceaneng.2024.119665_bib12
  article-title: An abnormal motion condition monitoring method based on the dynamic model and complex network for AUV
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.109472
– volume: 22271
  year: 2023
  ident: 10.1016/j.oceaneng.2024.119665_bib36
  article-title: Attention mechanism‐based multisensor data fusion neural network for fault diagnosis of autonomous underwater vehicles
  publication-title: Journal of Field Robotics rob
– volume: 243
  year: 2022
  ident: 10.1016/j.oceaneng.2024.119665_bib29
  article-title: Review on fault diagnosis of unmanned underwater vehicles
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.110290
– volume: 22
  start-page: 5507
  year: 2022
  ident: 10.1016/j.oceaneng.2024.119665_bib37
  article-title: Deep unsupervised domain adaptation with time series sensor data: a survey
  publication-title: Sensors
  doi: 10.3390/s22155507
– volume: 23
  start-page: 14601
  year: 2023
  ident: 10.1016/j.oceaneng.2024.119665_bib40
  article-title: An efficient I-PixelHop framework based on spark-GPU for Intelligent Fault diagnosis
  publication-title: IEEE Sensor. J.
  doi: 10.1109/JSEN.2023.3279714
– volume: 22
  start-page: 12127
  year: 2022
  ident: 10.1016/j.oceaneng.2024.119665_bib30
  article-title: An IMU fault diagnosis and information reconstruction method based on analytical redundancy for autonomous underwater vehicle
  publication-title: IEEE Sensor. J.
  doi: 10.1109/JSEN.2022.3174340
– volume: 41
  start-page: 2465
  year: 2020
  ident: 10.1016/j.oceaneng.2024.119665_bib6
  article-title: Research progress on thruster fault diagnosis technology for deep-sea underwater vehicle
  publication-title: J. Propuls. Technol.
– volume: 65
  start-page: 5990
  year: 2018
  ident: 10.1016/j.oceaneng.2024.119665_bib43
  article-title: A new convolutional neural network-based data-driven fault diagnosis method
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2774777
– volume: 266
  year: 2022
  ident: 10.1016/j.oceaneng.2024.119665_bib47
  article-title: A fault diagnosis method with multi-source data fusion based on hierarchical attention for AUV
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2022.112595
– volume: 324
  year: 2021
  ident: 10.1016/j.oceaneng.2024.119665_bib22
  article-title: Actuator fault diagnosis in autonomous underwater vehicle based on neural network
  publication-title: Sensor Actuator Phys.
  doi: 10.1016/j.sna.2021.112668
– volume: 237
  year: 2021
  ident: 10.1016/j.oceaneng.2024.119665_bib17
  article-title: Dynamic modeling of quadrotor AUV using a novel CFD simulation
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.109651
– volume: 411
  start-page: 442
  year: 2020
  ident: 10.1016/j.oceaneng.2024.119665_bib5
  article-title: Neural-network estimators based fault-tolerant tracking control for AUV via ADP with rudders faults and ocean current disturbance
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.06.026
– volume: 27
  start-page: 1105
  year: 2022
  ident: 10.1016/j.oceaneng.2024.119665_bib8
  article-title: Feature extraction and severity identification for autonomous underwater vehicle with weak thruster fault
  publication-title: J. Mar. Sci. Technol.
  doi: 10.1007/s00773-022-00891-9
– volume: 28
  start-page: 599
  year: 2014
  ident: 10.1016/j.oceaneng.2024.119665_bib55
  article-title: Multi-fault diagnosis for autonomous underwater vehicle based on fuzzy weighted support vector domain description
  publication-title: China Ocean Eng.
  doi: 10.1007/s13344-014-0048-x
– volume: 35
  start-page: 705
  year: 2018
  ident: 10.1016/j.oceaneng.2024.119665_bib33
  article-title: Detection of unanticipated faults for autonomous underwater vehicles using online topic models
  publication-title: J. Field Robot.
  doi: 10.1002/rob.21771
– volume: 13
  start-page: 1063
  year: 2012
  ident: 10.1016/j.oceaneng.2024.119665_bib14
  article-title: Analysis of a random forests model
  publication-title: J. Mach. Learn. Res.
SSID ssj0006603
Score 2.487878
Snippet Autonomous Underwater Vehicle (AUV) has many applications in ocean exploration and underwater operations. However, AUV are susceptible to failures due to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 119665
SubjectTerms AUV
Fault diagnosis
Machine learning
Parrot optimization algorithm
Random forest
Title IPORF: A combined improved parrot optimizer algorithm and random forest for fault diagnosis in AUV
URI https://dx.doi.org/10.1016/j.oceaneng.2024.119665
Volume 313
WOSCitedRecordID wos001350481500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0029-8018
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0006603
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5QCVEBQQ5SUfuFUpzjvhtkKtWqjaCha6t8h27DbVNlltk2rVX8_4ESeCSgUhLknkzTi7nm_nlZkxQu_DMmdCEnBLciK8SOaBx1I_9wTASySkJCXT3fUP06OjbDbLT2wq75XeTiCt62y1yhf_ldUwBsxWpbN_wW43KQzANTAdjsB2OP4R4w9Ojr_umYJzmB4cXzApKx06gIuF6rnYbjcgKC6rG7HcpvOzZlm152anDFBcZXOpUg9BWegMREm7easitCohr9LJs5PvP8Ym7TFXwXwx9DUckGJj0V_gfHMuhk8OdQrBqahY4_Bj793vdODF3XraqdFZtaq6cYAiiH5J9nCVM0OakqkiyJV2zMaSODRlqb9JdRNguNhp1A-Cb7ujHgPCHly1eNBjLrvwm-4rD3OrXoPq1ed9tB6kcQ5Cb31ysDv77FR1kpCwzwFSBKMS8tufdrv1MrJIpk_QY-tK4ImBwFN0T9Sb6NGoweQm2tDMsV3JnyGmsfERT3CPDNwjAxtkYIcM7JCBARTYIAMbZKgT1sjADhm4qjEg4zma7u1OP-17dpMNj4d-0HoZzeKYBjwgtBRCJj5PJeicKAnA8KYJ1yYn40nJ_SBgYA8ycLAJzXye-FTS8AVaq5tavESYcJmGrIzLMAWbUTJKwFslUVJGqZAgELZQ3K9dwW0DerUPyrzoMw0vin7NC7XmhVnzLfTB0S1MC5Y7KfKeNYU1JI2BWACi7qB99Q-0r9HD4Q_wBq21y068RQ_4dVtdLd9Z8P0EDXOccA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IPORF%3A+A+combined+improved+parrot+optimizer+algorithm+and+random+forest+for+fault+diagnosis+in+AUV&rft.jtitle=Ocean+engineering&rft.au=Huang%2C+Kangzheng&rft.au=Li%2C+Weibo&rft.au=Fang%2C+Hualiang&rft.au=Wu%2C+Xixiu&rft.date=2024-12-01&rft.pub=Elsevier+Ltd&rft.issn=0029-8018&rft.volume=313&rft_id=info:doi/10.1016%2Fj.oceaneng.2024.119665&rft.externalDocID=S0029801824030038
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon