IPORF: A combined improved parrot optimizer algorithm and random forest for fault diagnosis in AUV
Autonomous Underwater Vehicle (AUV) has many applications in ocean exploration and underwater operations. However, AUV are susceptible to failures due to internal and external factors when operating in complex underwater environments, which seriously affects their mission execution and reliability....
Uloženo v:
| Vydáno v: | Ocean engineering Ročník 313; s. 119665 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.12.2024
|
| Témata: | |
| ISSN: | 0029-8018 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Autonomous Underwater Vehicle (AUV) has many applications in ocean exploration and underwater operations. However, AUV are susceptible to failures due to internal and external factors when operating in complex underwater environments, which seriously affects their mission execution and reliability. To timely and accurately diagnose the type and severity of AUV faults, this study proposes a method IPORF combining the improved parrot optimization (IPO) algorithm and random forest (RF) for AUV fault diagnosis. Experiments were conducted on a real AUV dataset, and the experimental results showed that the IPORF method was able to identify faulty and normal states with 99.59% accuracy; it was able to differentiate between five types, Normal, Add Weight, Pressure Gain Constant, Propeller Damage Slight and Propeller Damage Bad, with 98.78% accuracy. Compared with 17 advanced algorithms on the same dataset, the accuracy of IPORF is improved by a minimum of 0.42% and a maximum of 29.23%, the precision is enhanced by a minimum of 2.10% and a maximum of 88.36%, the recall improved by a minimum of 3.28% and a maximum of 34.83%, the F1-Score improved by a minimum of 0.64% and a maximum of 62.22%. The outstanding fault diagnosis capabilities demonstrated by the IPORF suggest that it offers a versatile and straightforward framework for diagnosing faults in AUV using various types of sensor time series data, making it a valuable tool for practical applications.
•Improved parrot optimization algorithm for enhanced effectiveness.•IPORF method for multivariate time series classification in AUV fault diagnosis.•IPORF accurately predicts AUV states, fault types, and fault levels.•Outperforms 17 algorithms in 4 indicators and interpretability for AUV fault diagnosis. |
|---|---|
| AbstractList | Autonomous Underwater Vehicle (AUV) has many applications in ocean exploration and underwater operations. However, AUV are susceptible to failures due to internal and external factors when operating in complex underwater environments, which seriously affects their mission execution and reliability. To timely and accurately diagnose the type and severity of AUV faults, this study proposes a method IPORF combining the improved parrot optimization (IPO) algorithm and random forest (RF) for AUV fault diagnosis. Experiments were conducted on a real AUV dataset, and the experimental results showed that the IPORF method was able to identify faulty and normal states with 99.59% accuracy; it was able to differentiate between five types, Normal, Add Weight, Pressure Gain Constant, Propeller Damage Slight and Propeller Damage Bad, with 98.78% accuracy. Compared with 17 advanced algorithms on the same dataset, the accuracy of IPORF is improved by a minimum of 0.42% and a maximum of 29.23%, the precision is enhanced by a minimum of 2.10% and a maximum of 88.36%, the recall improved by a minimum of 3.28% and a maximum of 34.83%, the F1-Score improved by a minimum of 0.64% and a maximum of 62.22%. The outstanding fault diagnosis capabilities demonstrated by the IPORF suggest that it offers a versatile and straightforward framework for diagnosing faults in AUV using various types of sensor time series data, making it a valuable tool for practical applications.
•Improved parrot optimization algorithm for enhanced effectiveness.•IPORF method for multivariate time series classification in AUV fault diagnosis.•IPORF accurately predicts AUV states, fault types, and fault levels.•Outperforms 17 algorithms in 4 indicators and interpretability for AUV fault diagnosis. |
| ArticleNumber | 119665 |
| Author | Huang, Kangzheng Peng, Hao Wu, Xixiu Wang, Li Li, Weibo Fang, Hualiang |
| Author_xml | – sequence: 1 givenname: Kangzheng surname: Huang fullname: Huang, Kangzheng organization: School of Automation, Wuhan University of Technology, Wuhan, Hubei, 430070, China – sequence: 2 givenname: Weibo surname: Li fullname: Li, Weibo email: liweibo@whut.edu.cn organization: School of Automation, Wuhan University of Technology, Wuhan, Hubei, 430070, China – sequence: 3 givenname: Hualiang surname: Fang fullname: Fang, Hualiang organization: School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei, 430072, China – sequence: 4 givenname: Xixiu surname: Wu fullname: Wu, Xixiu organization: School of Automation, Wuhan University of Technology, Wuhan, Hubei, 430070, China – sequence: 5 givenname: Li surname: Wang fullname: Wang, Li organization: School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China – sequence: 6 givenname: Hao surname: Peng fullname: Peng, Hao organization: School of Automation, Wuhan University of Technology, Wuhan, Hubei, 430070, China |
| BookMark | eNqFkMFKAzEURbOoYFv9BckPzJhkZtKpuLAUq4VCRarb8CaTqa_MJCWJBf16p1Q3brp5923OhXtGZGCdNYTccJZyxuXtLnXagDV2mwom8pTzqZTFgAwZE9OkZLy8JKMQdowxKVk2JNXyZf26uKMzql1XoTU1xW7v3aF_9uC9i9TtI3b4bTyFdus8xo-Ogq2p74_raOO8CfEYtIHPNtIaYWtdwEDR0tnb-xW5aKAN5vo3x2SzeNzMn5PV-mk5n60SnXERkxLKogChBYPamEZyPWkmMsulYMUUpGaTnBeVlrXmQlS85BWXOYOSa8mhgWxM5KlWexeCN43ae-zAfynO1FGO2qk_OeooR53k9OD9P1BjhIjORg_YnscfTrjptx3QeBU0GqtNjd7oqGqH5yp-AANwiaw |
| CitedBy_id | crossref_primary_10_1016_j_measurement_2025_116954 crossref_primary_10_1080_17445302_2025_2556970 crossref_primary_10_3390_en17225799 crossref_primary_10_3390_en18164336 crossref_primary_10_1088_1361_6501_adeacf crossref_primary_10_1088_1742_6596_3004_1_012034 crossref_primary_10_1016_j_seta_2025_104479 crossref_primary_10_1016_j_swevo_2025_101908 crossref_primary_10_1080_17445302_2025_2552839 crossref_primary_10_1016_j_oceaneng_2025_121286 crossref_primary_10_1016_j_cma_2025_117908 crossref_primary_10_1177_14750902251357638 crossref_primary_10_1108_COMPEL_05_2025_0217 crossref_primary_10_3390_electronics14030612 |
| Cites_doi | 10.1016/j.oceaneng.2020.107855 10.3934/mbe.2022434 10.1016/j.oceaneng.2023.115585 10.1016/j.ijnaoe.2016.03.003 10.1166/sl.2011.1535 10.1109/3468.983434 10.1109/ACCESS.2021.3074243 10.1016/j.neucom.2020.05.055 10.1016/j.oceaneng.2021.108874 10.3390/app13158614 10.1016/j.oceaneng.2023.113861 10.1016/j.ymssp.2021.108653 10.1007/s11771-016-3127-8 10.1016/j.automatica.2015.12.027 10.3390/pr7030152 10.1016/j.oceaneng.2017.06.020 10.1016/j.oceaneng.2023.113844 10.1109/TASE.2020.2998467 10.1016/j.dib.2021.107477 10.1016/j.isatra.2023.09.027 10.3390/electronics11223795 10.1016/j.knosys.2020.105845 10.1016/j.oceaneng.2024.116738 10.1002/rob.20202 10.1016/j.compbiomed.2024.108064 10.1016/j.oceaneng.2023.113722 10.1016/j.measurement.2022.112346 10.3390/machines11100960 10.1007/s11704-022-2096-3 10.1049/cth2.12288 10.1007/s00530-021-00827-0 10.1016/j.oceaneng.2021.109049 10.3390/jmse11061121 10.1016/j.oceaneng.2021.109472 10.1016/j.oceaneng.2021.110290 10.3390/s22155507 10.1109/JSEN.2023.3279714 10.1109/JSEN.2022.3174340 10.1109/TIE.2017.2774777 10.1016/j.oceaneng.2022.112595 10.1016/j.sna.2021.112668 10.1016/j.oceaneng.2021.109651 10.1016/j.neucom.2020.06.026 10.1007/s00773-022-00891-9 10.1007/s13344-014-0048-x 10.1002/rob.21771 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.oceaneng.2024.119665 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Oceanography |
| ExternalDocumentID | 10_1016_j_oceaneng_2024_119665 S0029801824030038 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACLOT ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KCYFY KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SEW SPC SPCBC SSJ SST SSZ T5K TAE TN5 XPP ZMT ~02 ~G- ~HD 29N 6TJ 9DU AAQXK AAYXX ABFNM ABWVN ABXDB ACKIV ACNNM ACRPL ADMUD ADNMO AFFNX AGQPQ ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SET WUQ |
| ID | FETCH-LOGICAL-c312t-8a855a2c20adeef61c7f763462059a6c07415bc6dc122b181b1640a81c61afa3 |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001350481500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0029-8018 |
| IngestDate | Sat Nov 29 07:38:51 EST 2025 Tue Nov 18 22:26:35 EST 2025 Sat Sep 27 17:12:48 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Fault diagnosis AUV Random forest Parrot optimization algorithm Machine learning |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c312t-8a855a2c20adeef61c7f763462059a6c07415bc6dc122b181b1640a81c61afa3 |
| ParticipantIDs | crossref_primary_10_1016_j_oceaneng_2024_119665 crossref_citationtrail_10_1016_j_oceaneng_2024_119665 elsevier_sciencedirect_doi_10_1016_j_oceaneng_2024_119665 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 2024-12-00 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Ocean engineering |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Davoodi, Meskin, Khorasani (bib9) 2016; 66 Witten, Frank, Hall, Pal (bib44) 2016 Xia, Zhou, Shi, Li, Xu (bib48) 2021; 233 Raanan, Bellingham, Zhang, Kemp, Kieft, Singh, Girdhar (bib33) 2018; 35 Yu, Zhang, Liu, Yao (bib52) 2022; 19 Li, Wang, Ma, Zou (bib25) 2023; 271 Yang, Qin, Huang, Fu (bib50) 2018 Zhang, Wu, Chu (bib55) 2014; 28 Wen, Li, Gao, Zhang (bib43) 2018; 65 Wang, Sun, Li (bib41) 2024 Che, Yu (bib5) 2020; 411 Hamilton, Lane, Brown, Evans, Taylor (bib15) 2007; 24 Jiang, Ge (bib21) 2021; 18 Li, Zhou, Li, Sun, Yan, Chen (bib24) 2022; 168 Hou, Li, Wang, Zhai, Lu (bib16) 2023; 17 Ji, Yao, Li, Tang, Tian (bib18) 2021; 232 Sun, Ran, Li, Zhang, Zhang (bib39) 2016; 8 Ramirez-Sanz, Maestro-Prieto, Arnaiz-Gonzalez, Bustillo (bib34) 2023; 143 Ji, Wang, Zhai, Gu (bib17) 2021; 237 Yuan, Tian (bib53) 2019; 7 Gao, Liu, Zhang, Feng, He, Zio (bib13) 2023; 286 Fathy, Li (bib10) 2020; 410 Kaldmäe, Kotta, Shumsky, Zhirabok (bib23) 2018; 28 Zhang, Ji, Liu, Zhu, Xu (bib54) 2023; 273 Jiang, Feng, He, Guo, Wang, Lv (bib22) 2021; 324 Sun, Li, Zhang, Zhang, Wu (bib38) 2016; 23 Lv, Zhou, Wang, Gong, Zhang (bib31) 2020; 216 Wang, Han, Li, Zhang, Cheng (bib42) 2021; 9 Liu, Tang, Qin, Duan, Luo, Pu (bib29) 2022; 243 Chen, Wang, Yu, Wang, Gao (bib7) 2023; 11 Gao, He, Yu, Zhang, Yan, Feng (bib12) 2021; 237 Xia, Zhou, Shi, Li (bib46) 2023 Zhu, Lei, Qi, Chai, Mazur, An, Huang (bib56) 2023; 206 Chao, Zhang (bib4) 2021; 29 Abayomi-Alli, Damasevicius, Qazi, Adedoyin-Olowe, Misra (bib1) 2022; 11 Barulina, Okunkov, Ulitin, Sanbaev (bib3) 2023; 13 Pei, Wang, Han (bib32) 2023; 72 Shi, Song, Bai, Zhang (bib36) 2023; 22271 Gai, Zhang, Liu (bib11) 2024; 294 Jia, Liu, Zhang, Gao, Qian (bib20) 2023; 17 Chen, Chu, Liu, Yang, Zhu (bib6) 2020; 41 Xia, Zhou, Shi, Li, Xu (bib47) 2022; 266 Liang, Zhang, Li, Lin (bib27) 2011; 9 Shi, Ying, Yang (bib37) 2022; 22 Liang, Jiang, Li, Xue, Wang (bib28) 2020; 196 Bagci Das, Birant (bib2) 2023; 272 Ranganathan, Patel, Sathyamurthy (bib35) 2001; 31 Gerard (bib14) 2012; 13 Ji, Yao, Li, Tang, Tian (bib19) 2021; 39 Wu, Wang, Zhou, Zhu, Zeng (bib45) 2023; 11 Cui, Zhang, Zhang, Liu (bib8) 2022; 27 Yao, Chen, Liu, Zhang (bib51) 2023; 237 Liu, Ju, Liu, Miao, Zhang (bib30) 2022; 22 Xiang, Yu, Zhang (bib49) 2017; 140 Lian, Hui, Ma, Zhu, Wu, Heidari, Chen, Chen (bib26) 2024; 172 Wan, Zhou, Ning, Li (bib40) 2023; 23 Liang (10.1016/j.oceaneng.2024.119665_bib28) 2020; 196 Shi (10.1016/j.oceaneng.2024.119665_bib37) 2022; 22 Jiang (10.1016/j.oceaneng.2024.119665_bib22) 2021; 324 Xia (10.1016/j.oceaneng.2024.119665_bib48) 2021; 233 Hamilton (10.1016/j.oceaneng.2024.119665_bib15) 2007; 24 Jia (10.1016/j.oceaneng.2024.119665_bib20) 2023; 17 Ji (10.1016/j.oceaneng.2024.119665_bib18) 2021; 232 Wang (10.1016/j.oceaneng.2024.119665_bib41) 2024 Liu (10.1016/j.oceaneng.2024.119665_bib30) 2022; 22 Chao (10.1016/j.oceaneng.2024.119665_bib4) 2021; 29 Zhang (10.1016/j.oceaneng.2024.119665_bib54) 2023; 273 Fathy (10.1016/j.oceaneng.2024.119665_bib10) 2020; 410 Wan (10.1016/j.oceaneng.2024.119665_bib40) 2023; 23 Sun (10.1016/j.oceaneng.2024.119665_bib38) 2016; 23 Raanan (10.1016/j.oceaneng.2024.119665_bib33) 2018; 35 Bagci Das (10.1016/j.oceaneng.2024.119665_bib2) 2023; 272 Ramirez-Sanz (10.1016/j.oceaneng.2024.119665_bib34) 2023; 143 Kaldmäe (10.1016/j.oceaneng.2024.119665_bib23) 2018; 28 Sun (10.1016/j.oceaneng.2024.119665_bib39) 2016; 8 Yao (10.1016/j.oceaneng.2024.119665_bib51) 2023; 237 Cui (10.1016/j.oceaneng.2024.119665_bib8) 2022; 27 Liu (10.1016/j.oceaneng.2024.119665_bib29) 2022; 243 Wu (10.1016/j.oceaneng.2024.119665_bib45) 2023; 11 Zhu (10.1016/j.oceaneng.2024.119665_bib56) 2023; 206 Ji (10.1016/j.oceaneng.2024.119665_bib19) 2021; 39 Gai (10.1016/j.oceaneng.2024.119665_bib11) 2024; 294 Yang (10.1016/j.oceaneng.2024.119665_bib50) 2018 Barulina (10.1016/j.oceaneng.2024.119665_bib3) 2023; 13 Li (10.1016/j.oceaneng.2024.119665_bib25) 2023; 271 Gao (10.1016/j.oceaneng.2024.119665_bib12) 2021; 237 Davoodi (10.1016/j.oceaneng.2024.119665_bib9) 2016; 66 Xia (10.1016/j.oceaneng.2024.119665_bib46) 2023 Xiang (10.1016/j.oceaneng.2024.119665_bib49) 2017; 140 Yuan (10.1016/j.oceaneng.2024.119665_bib53) 2019; 7 Pei (10.1016/j.oceaneng.2024.119665_bib32) 2023; 72 Gerard (10.1016/j.oceaneng.2024.119665_bib14) 2012; 13 Lian (10.1016/j.oceaneng.2024.119665_bib26) 2024; 172 Che (10.1016/j.oceaneng.2024.119665_bib5) 2020; 411 Wen (10.1016/j.oceaneng.2024.119665_bib43) 2018; 65 Abayomi-Alli (10.1016/j.oceaneng.2024.119665_bib1) 2022; 11 Jiang (10.1016/j.oceaneng.2024.119665_bib21) 2021; 18 Zhang (10.1016/j.oceaneng.2024.119665_bib55) 2014; 28 Ji (10.1016/j.oceaneng.2024.119665_bib17) 2021; 237 Hou (10.1016/j.oceaneng.2024.119665_bib16) 2023; 17 Xia (10.1016/j.oceaneng.2024.119665_bib47) 2022; 266 Gao (10.1016/j.oceaneng.2024.119665_bib13) 2023; 286 Liang (10.1016/j.oceaneng.2024.119665_bib27) 2011; 9 Witten (10.1016/j.oceaneng.2024.119665_bib44) 2016 Shi (10.1016/j.oceaneng.2024.119665_bib36) 2023; 22271 Ranganathan (10.1016/j.oceaneng.2024.119665_bib35) 2001; 31 Chen (10.1016/j.oceaneng.2024.119665_bib7) 2023; 11 Lv (10.1016/j.oceaneng.2024.119665_bib31) 2020; 216 Wang (10.1016/j.oceaneng.2024.119665_bib42) 2021; 9 Chen (10.1016/j.oceaneng.2024.119665_bib6) 2020; 41 Li (10.1016/j.oceaneng.2024.119665_bib24) 2022; 168 Yu (10.1016/j.oceaneng.2024.119665_bib52) 2022; 19 |
| References_xml | – volume: 232 year: 2021 ident: bib18 article-title: Model-free fault diagnosis for autonomous underwater vehicles using sequence Convolutional Neural Network publication-title: Ocean Eng. – volume: 11 start-page: 1121 year: 2023 ident: bib7 article-title: a fault diagnosis method for the autonomous underwater vehicle via meta-self-attention multi-scale CNN publication-title: JMSE – volume: 294 year: 2024 ident: bib11 article-title: Fault feature extraction method for AUV thruster based on two-stage fusion from multi-source information publication-title: Ocean Eng. – volume: 28 start-page: 42 year: 2018 end-page: 53 ident: bib23 article-title: Disturbance decoupling in nonlinear hybrid systems publication-title: Nonlinear Analysis: Hybrid Systems – volume: 23 start-page: 14601 year: 2023 end-page: 14617 ident: bib40 article-title: An efficient I-PixelHop framework based on spark-GPU for Intelligent Fault diagnosis publication-title: IEEE Sensor. J. – volume: 7 start-page: 152 year: 2019 ident: bib53 article-title: An Intelligent Fault diagnosis method using GRU neural network towards sequential data in dynamic processes publication-title: Processes – volume: 237 year: 2021 ident: bib17 article-title: Dynamic modeling of quadrotor AUV using a novel CFD simulation publication-title: Ocean Eng. – volume: 9 year: 2011 ident: bib27 article-title: Sensor Fault diagnosis for autonomous underwater vehicles publication-title: Sens. Lett. – volume: 140 start-page: 453 year: 2017 end-page: 465 ident: bib49 article-title: On intelligent risk analysis and critical decision of underwater robotic vehicle publication-title: Ocean Eng. – volume: 13 start-page: 8614 year: 2023 ident: bib3 article-title: Sensitivity of modern deep learning neural networks to unbalanced datasets in multiclass classification problems publication-title: Applied Sciences-Basel – volume: 35 start-page: 705 year: 2018 end-page: 716 ident: bib33 article-title: Detection of unanticipated faults for autonomous underwater vehicles using online topic models publication-title: J. Field Robot. – volume: 206 year: 2023 ident: bib56 article-title: A review of the application of deep learning in intelligent fault diagnosis of rotating machinery publication-title: Measurement – start-page: 393 year: 2018 end-page: 398 ident: bib50 article-title: Fault diagnosis of high-speed railway bogies based on LSTM publication-title: 2018 5th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS) – start-page: 1 year: 2023 end-page: 13 ident: bib46 article-title: Hybrid feature adaptive fusion network for multivariate time series classification with application in AUV fault detection publication-title: Ships Offshore Struct. – volume: 22271 year: 2023 ident: bib36 article-title: Attention mechanism‐based multisensor data fusion neural network for fault diagnosis of autonomous underwater vehicles publication-title: Journal of Field Robotics rob – volume: 233 year: 2021 ident: bib48 article-title: A fault diagnosis method based on attention mechanism with application in Qianlong-2 autonomous underwater vehicle publication-title: Ocean Eng. – volume: 24 start-page: 497 year: 2007 end-page: 526 ident: bib15 article-title: An integrated diagnostic architecture for autonomous underwater vehicles publication-title: J. Field Robot. – volume: 271 year: 2023 ident: bib25 article-title: Adaptive reinforcement learning fault-tolerant control for AUVs with thruster faults based on the integral extended state observer publication-title: Ocean Eng. – volume: 324 year: 2021 ident: bib22 article-title: Actuator fault diagnosis in autonomous underwater vehicle based on neural network publication-title: Sensor Actuator Phys. – volume: 273 year: 2023 ident: bib54 article-title: Autonomous underwater vehicle navigation: a review publication-title: Ocean Eng. – volume: 410 start-page: 71 year: 2020 end-page: 82 ident: bib10 article-title: DONE: enhancing network embedding via greedy vertex domination publication-title: Neurocomputing – volume: 22 start-page: 12127 year: 2022 end-page: 12138 ident: bib30 article-title: An IMU fault diagnosis and information reconstruction method based on analytical redundancy for autonomous underwater vehicle publication-title: IEEE Sensor. J. – volume: 27 start-page: 1105 year: 2022 end-page: 1115 ident: bib8 article-title: Feature extraction and severity identification for autonomous underwater vehicle with weak thruster fault publication-title: J. Mar. Sci. Technol. – volume: 272 year: 2023 ident: bib2 article-title: GASEL: genetic algorithm-supported ensemble learning for fault detection in autonomous underwater vehicles publication-title: Ocean Eng. – volume: 18 start-page: 1206 year: 2021 end-page: 1217 ident: bib21 article-title: Data augmentation classifier for imbalanced fault classification publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 17 year: 2023 ident: bib20 article-title: Software approaches for resilience of high performance computing systems: a survey publication-title: Front. Comput. Sci. – volume: 41 start-page: 2465 year: 2020 end-page: 2474 ident: bib6 article-title: Research progress on thruster fault diagnosis technology for deep-sea underwater vehicle publication-title: J. Propuls. Technol. – volume: 39 year: 2021 ident: bib19 article-title: Autonomous underwater vehicle fault diagnosis dataset publication-title: Data Brief – volume: 9 start-page: 64606 year: 2021 end-page: 64628 ident: bib42 article-title: Review of classification methods on unbalanced data sets publication-title: IEEE Access – volume: 65 start-page: 5990 year: 2018 end-page: 5998 ident: bib43 article-title: A new convolutional neural network-based data-driven fault diagnosis method publication-title: IEEE Trans. Ind. Electron. – volume: 237 year: 2021 ident: bib12 article-title: An abnormal motion condition monitoring method based on the dynamic model and complex network for AUV publication-title: Ocean Eng. – year: 2024 ident: bib41 article-title: A brain-inspired spiking network framework based on multi-time-step self-attention for lithium-ion batteries capacity prediction publication-title: IEEE Trans. Consum. Electron. – volume: 216 year: 2020 ident: bib31 article-title: Sliding mode based fault tolerant control for autonomous underwater vehicle publication-title: Ocean Eng. – year: 2016 ident: bib44 article-title: Data Mining: Practical Machine Learning Tools and Techniques – volume: 266 year: 2022 ident: bib47 article-title: A fault diagnosis method with multi-source data fusion based on hierarchical attention for AUV publication-title: Ocean Eng. – volume: 19 start-page: 9335 year: 2022 end-page: 9356 ident: bib52 article-title: Fault feature extraction and fusion method for AUV with weak thruster fault based on variational mode decomposition and D-S evidence theory publication-title: MBE – volume: 72 start-page: 1 year: 2023 end-page: 11 ident: bib32 article-title: Time-efficient neural architecture search for autonomous underwater vehicle fault diagnosis publication-title: IEEE Trans. Instrum. Meas. – volume: 23 start-page: 808 year: 2016 end-page: 816 ident: bib38 article-title: Actuator fault diagnosis of autonomous underwater vehicle based on improved Elman neural network publication-title: J. Cent. South Univ. – volume: 31 start-page: 762 year: 2001 end-page: 767 ident: bib35 article-title: An intelligent system for failure detection and control in an autonomous underwater vehicle publication-title: IEEE Trans. Syst., Man, Cybern. A – volume: 13 start-page: 1063 year: 2012 end-page: 1095 ident: bib14 article-title: Analysis of a random forests model publication-title: J. Mach. Learn. Res. – volume: 66 start-page: 185 year: 2016 end-page: 194 ident: bib9 article-title: Simultaneous fault detection and consensus control design for a network of multi-agent systems publication-title: Automatica – volume: 411 start-page: 442 year: 2020 end-page: 454 ident: bib5 article-title: Neural-network estimators based fault-tolerant tracking control for AUV via ADP with rudders faults and ocean current disturbance publication-title: Neurocomputing – volume: 17 start-page: 270 year: 2023 end-page: 283 ident: bib16 article-title: Fuzzy linear extended states observer‐based iteration learning fault‐tolerant control for autonomous underwater vehicle trajectory‐tracking system publication-title: IET Control Theory & Appl. – volume: 243 year: 2022 ident: bib29 article-title: Review on fault diagnosis of unmanned underwater vehicles publication-title: Ocean Eng. – volume: 8 start-page: 243 year: 2016 end-page: 251 ident: bib39 article-title: Thruster fault diagnosis method based on Gaussian particle filter for autonomous underwater vehicles publication-title: Int. J. Nav. Archit. Ocean Eng. – volume: 28 start-page: 599 year: 2014 end-page: 616 ident: bib55 article-title: Multi-fault diagnosis for autonomous underwater vehicle based on fuzzy weighted support vector domain description publication-title: China Ocean Eng. – volume: 11 start-page: 3795 year: 2022 ident: bib1 article-title: Data augmentation and deep learning methods in sound classification: a systematic review publication-title: Electronics – volume: 286 year: 2023 ident: bib13 article-title: Physics-Guided Generative Adversarial Networks for fault detection of underwater thruster publication-title: Ocean Eng. – volume: 196 year: 2020 ident: bib28 article-title: LR-SMOTE - an improved unbalanced data set oversampling based on K-means and SVM publication-title: Knowl. Base Syst. – volume: 168 year: 2022 ident: bib24 article-title: The emerging graph neural networks for intelligent fault diagnostics and prognostics: a guideline and a benchmark study publication-title: Mech. Syst. Signal Process. – volume: 237 start-page: 478 year: 2023 end-page: 486 ident: bib51 article-title: Weak thruster fault detection for AUV based on Bayesian network and Hidden Markov model publication-title: Proc. IME M J. Eng. Marit. Environ. – volume: 22 start-page: 5507 year: 2022 ident: bib37 article-title: Deep unsupervised domain adaptation with time series sensor data: a survey publication-title: Sensors – volume: 172 year: 2024 ident: bib26 article-title: Parrot optimizer: algorithm and applications to medical problems publication-title: Comput. Biol. Med. – volume: 143 start-page: 255 year: 2023 end-page: 270 ident: bib34 article-title: Semi-supervised learning for industrial fault detection and diagnosis: a systemic review publication-title: ISA (Instrum. Soc. Am.) Trans. – volume: 11 start-page: 960 year: 2023 ident: bib45 article-title: Fault diagnosis of autonomous underwater vehicle with missing data based on multi-channel full convolutional neural network publication-title: Machines – volume: 29 start-page: 2843 year: 2021 end-page: 2851 ident: bib4 article-title: Few-shot imbalanced classification based on data augmentation publication-title: Multimed. Syst. – volume: 216 year: 2020 ident: 10.1016/j.oceaneng.2024.119665_bib31 article-title: Sliding mode based fault tolerant control for autonomous underwater vehicle publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.107855 – volume: 19 start-page: 9335 year: 2022 ident: 10.1016/j.oceaneng.2024.119665_bib52 article-title: Fault feature extraction and fusion method for AUV with weak thruster fault based on variational mode decomposition and D-S evidence theory publication-title: MBE doi: 10.3934/mbe.2022434 – volume: 286 year: 2023 ident: 10.1016/j.oceaneng.2024.119665_bib13 article-title: Physics-Guided Generative Adversarial Networks for fault detection of underwater thruster publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.115585 – volume: 237 start-page: 478 year: 2023 ident: 10.1016/j.oceaneng.2024.119665_bib51 article-title: Weak thruster fault detection for AUV based on Bayesian network and Hidden Markov model publication-title: Proc. IME M J. Eng. Marit. Environ. – volume: 28 start-page: 42 year: 2018 ident: 10.1016/j.oceaneng.2024.119665_bib23 article-title: Disturbance decoupling in nonlinear hybrid systems publication-title: Nonlinear Analysis: Hybrid Systems – volume: 8 start-page: 243 year: 2016 ident: 10.1016/j.oceaneng.2024.119665_bib39 article-title: Thruster fault diagnosis method based on Gaussian particle filter for autonomous underwater vehicles publication-title: Int. J. Nav. Archit. Ocean Eng. doi: 10.1016/j.ijnaoe.2016.03.003 – start-page: 393 year: 2018 ident: 10.1016/j.oceaneng.2024.119665_bib50 article-title: Fault diagnosis of high-speed railway bogies based on LSTM – volume: 9 year: 2011 ident: 10.1016/j.oceaneng.2024.119665_bib27 article-title: Sensor Fault diagnosis for autonomous underwater vehicles publication-title: Sens. Lett. doi: 10.1166/sl.2011.1535 – year: 2024 ident: 10.1016/j.oceaneng.2024.119665_bib41 article-title: A brain-inspired spiking network framework based on multi-time-step self-attention for lithium-ion batteries capacity prediction publication-title: IEEE Trans. Consum. Electron. – volume: 31 start-page: 762 year: 2001 ident: 10.1016/j.oceaneng.2024.119665_bib35 article-title: An intelligent system for failure detection and control in an autonomous underwater vehicle publication-title: IEEE Trans. Syst., Man, Cybern. A doi: 10.1109/3468.983434 – volume: 9 start-page: 64606 year: 2021 ident: 10.1016/j.oceaneng.2024.119665_bib42 article-title: Review of classification methods on unbalanced data sets publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3074243 – start-page: 1 year: 2023 ident: 10.1016/j.oceaneng.2024.119665_bib46 article-title: Hybrid feature adaptive fusion network for multivariate time series classification with application in AUV fault detection publication-title: Ships Offshore Struct. – volume: 410 start-page: 71 year: 2020 ident: 10.1016/j.oceaneng.2024.119665_bib10 article-title: DONE: enhancing network embedding via greedy vertex domination publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.05.055 – volume: 232 year: 2021 ident: 10.1016/j.oceaneng.2024.119665_bib18 article-title: Model-free fault diagnosis for autonomous underwater vehicles using sequence Convolutional Neural Network publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.108874 – volume: 13 start-page: 8614 year: 2023 ident: 10.1016/j.oceaneng.2024.119665_bib3 article-title: Sensitivity of modern deep learning neural networks to unbalanced datasets in multiclass classification problems publication-title: Applied Sciences-Basel doi: 10.3390/app13158614 – volume: 273 year: 2023 ident: 10.1016/j.oceaneng.2024.119665_bib54 article-title: Autonomous underwater vehicle navigation: a review publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.113861 – volume: 168 year: 2022 ident: 10.1016/j.oceaneng.2024.119665_bib24 article-title: The emerging graph neural networks for intelligent fault diagnostics and prognostics: a guideline and a benchmark study publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2021.108653 – volume: 23 start-page: 808 year: 2016 ident: 10.1016/j.oceaneng.2024.119665_bib38 article-title: Actuator fault diagnosis of autonomous underwater vehicle based on improved Elman neural network publication-title: J. Cent. South Univ. doi: 10.1007/s11771-016-3127-8 – volume: 66 start-page: 185 year: 2016 ident: 10.1016/j.oceaneng.2024.119665_bib9 article-title: Simultaneous fault detection and consensus control design for a network of multi-agent systems publication-title: Automatica doi: 10.1016/j.automatica.2015.12.027 – volume: 7 start-page: 152 year: 2019 ident: 10.1016/j.oceaneng.2024.119665_bib53 article-title: An Intelligent Fault diagnosis method using GRU neural network towards sequential data in dynamic processes publication-title: Processes doi: 10.3390/pr7030152 – volume: 140 start-page: 453 year: 2017 ident: 10.1016/j.oceaneng.2024.119665_bib49 article-title: On intelligent risk analysis and critical decision of underwater robotic vehicle publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2017.06.020 – volume: 272 year: 2023 ident: 10.1016/j.oceaneng.2024.119665_bib2 article-title: GASEL: genetic algorithm-supported ensemble learning for fault detection in autonomous underwater vehicles publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.113844 – volume: 18 start-page: 1206 year: 2021 ident: 10.1016/j.oceaneng.2024.119665_bib21 article-title: Data augmentation classifier for imbalanced fault classification publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2020.2998467 – year: 2016 ident: 10.1016/j.oceaneng.2024.119665_bib44 – volume: 39 year: 2021 ident: 10.1016/j.oceaneng.2024.119665_bib19 article-title: Autonomous underwater vehicle fault diagnosis dataset publication-title: Data Brief doi: 10.1016/j.dib.2021.107477 – volume: 143 start-page: 255 year: 2023 ident: 10.1016/j.oceaneng.2024.119665_bib34 article-title: Semi-supervised learning for industrial fault detection and diagnosis: a systemic review publication-title: ISA (Instrum. Soc. Am.) Trans. doi: 10.1016/j.isatra.2023.09.027 – volume: 11 start-page: 3795 year: 2022 ident: 10.1016/j.oceaneng.2024.119665_bib1 article-title: Data augmentation and deep learning methods in sound classification: a systematic review publication-title: Electronics doi: 10.3390/electronics11223795 – volume: 196 year: 2020 ident: 10.1016/j.oceaneng.2024.119665_bib28 article-title: LR-SMOTE - an improved unbalanced data set oversampling based on K-means and SVM publication-title: Knowl. Base Syst. doi: 10.1016/j.knosys.2020.105845 – volume: 72 start-page: 1 year: 2023 ident: 10.1016/j.oceaneng.2024.119665_bib32 article-title: Time-efficient neural architecture search for autonomous underwater vehicle fault diagnosis publication-title: IEEE Trans. Instrum. Meas. – volume: 294 year: 2024 ident: 10.1016/j.oceaneng.2024.119665_bib11 article-title: Fault feature extraction method for AUV thruster based on two-stage fusion from multi-source information publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2024.116738 – volume: 24 start-page: 497 year: 2007 ident: 10.1016/j.oceaneng.2024.119665_bib15 article-title: An integrated diagnostic architecture for autonomous underwater vehicles publication-title: J. Field Robot. doi: 10.1002/rob.20202 – volume: 172 year: 2024 ident: 10.1016/j.oceaneng.2024.119665_bib26 article-title: Parrot optimizer: algorithm and applications to medical problems publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2024.108064 – volume: 271 year: 2023 ident: 10.1016/j.oceaneng.2024.119665_bib25 article-title: Adaptive reinforcement learning fault-tolerant control for AUVs with thruster faults based on the integral extended state observer publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.113722 – volume: 206 year: 2023 ident: 10.1016/j.oceaneng.2024.119665_bib56 article-title: A review of the application of deep learning in intelligent fault diagnosis of rotating machinery publication-title: Measurement doi: 10.1016/j.measurement.2022.112346 – volume: 11 start-page: 960 year: 2023 ident: 10.1016/j.oceaneng.2024.119665_bib45 article-title: Fault diagnosis of autonomous underwater vehicle with missing data based on multi-channel full convolutional neural network publication-title: Machines doi: 10.3390/machines11100960 – volume: 17 year: 2023 ident: 10.1016/j.oceaneng.2024.119665_bib20 article-title: Software approaches for resilience of high performance computing systems: a survey publication-title: Front. Comput. Sci. doi: 10.1007/s11704-022-2096-3 – volume: 17 start-page: 270 year: 2023 ident: 10.1016/j.oceaneng.2024.119665_bib16 article-title: Fuzzy linear extended states observer‐based iteration learning fault‐tolerant control for autonomous underwater vehicle trajectory‐tracking system publication-title: IET Control Theory & Appl. doi: 10.1049/cth2.12288 – volume: 29 start-page: 2843 year: 2021 ident: 10.1016/j.oceaneng.2024.119665_bib4 article-title: Few-shot imbalanced classification based on data augmentation publication-title: Multimed. Syst. doi: 10.1007/s00530-021-00827-0 – volume: 233 year: 2021 ident: 10.1016/j.oceaneng.2024.119665_bib48 article-title: A fault diagnosis method based on attention mechanism with application in Qianlong-2 autonomous underwater vehicle publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.109049 – volume: 11 start-page: 1121 year: 2023 ident: 10.1016/j.oceaneng.2024.119665_bib7 article-title: a fault diagnosis method for the autonomous underwater vehicle via meta-self-attention multi-scale CNN publication-title: JMSE doi: 10.3390/jmse11061121 – volume: 237 year: 2021 ident: 10.1016/j.oceaneng.2024.119665_bib12 article-title: An abnormal motion condition monitoring method based on the dynamic model and complex network for AUV publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.109472 – volume: 22271 year: 2023 ident: 10.1016/j.oceaneng.2024.119665_bib36 article-title: Attention mechanism‐based multisensor data fusion neural network for fault diagnosis of autonomous underwater vehicles publication-title: Journal of Field Robotics rob – volume: 243 year: 2022 ident: 10.1016/j.oceaneng.2024.119665_bib29 article-title: Review on fault diagnosis of unmanned underwater vehicles publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.110290 – volume: 22 start-page: 5507 year: 2022 ident: 10.1016/j.oceaneng.2024.119665_bib37 article-title: Deep unsupervised domain adaptation with time series sensor data: a survey publication-title: Sensors doi: 10.3390/s22155507 – volume: 23 start-page: 14601 year: 2023 ident: 10.1016/j.oceaneng.2024.119665_bib40 article-title: An efficient I-PixelHop framework based on spark-GPU for Intelligent Fault diagnosis publication-title: IEEE Sensor. J. doi: 10.1109/JSEN.2023.3279714 – volume: 22 start-page: 12127 year: 2022 ident: 10.1016/j.oceaneng.2024.119665_bib30 article-title: An IMU fault diagnosis and information reconstruction method based on analytical redundancy for autonomous underwater vehicle publication-title: IEEE Sensor. J. doi: 10.1109/JSEN.2022.3174340 – volume: 41 start-page: 2465 year: 2020 ident: 10.1016/j.oceaneng.2024.119665_bib6 article-title: Research progress on thruster fault diagnosis technology for deep-sea underwater vehicle publication-title: J. Propuls. Technol. – volume: 65 start-page: 5990 year: 2018 ident: 10.1016/j.oceaneng.2024.119665_bib43 article-title: A new convolutional neural network-based data-driven fault diagnosis method publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2017.2774777 – volume: 266 year: 2022 ident: 10.1016/j.oceaneng.2024.119665_bib47 article-title: A fault diagnosis method with multi-source data fusion based on hierarchical attention for AUV publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.112595 – volume: 324 year: 2021 ident: 10.1016/j.oceaneng.2024.119665_bib22 article-title: Actuator fault diagnosis in autonomous underwater vehicle based on neural network publication-title: Sensor Actuator Phys. doi: 10.1016/j.sna.2021.112668 – volume: 237 year: 2021 ident: 10.1016/j.oceaneng.2024.119665_bib17 article-title: Dynamic modeling of quadrotor AUV using a novel CFD simulation publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.109651 – volume: 411 start-page: 442 year: 2020 ident: 10.1016/j.oceaneng.2024.119665_bib5 article-title: Neural-network estimators based fault-tolerant tracking control for AUV via ADP with rudders faults and ocean current disturbance publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.06.026 – volume: 27 start-page: 1105 year: 2022 ident: 10.1016/j.oceaneng.2024.119665_bib8 article-title: Feature extraction and severity identification for autonomous underwater vehicle with weak thruster fault publication-title: J. Mar. Sci. Technol. doi: 10.1007/s00773-022-00891-9 – volume: 28 start-page: 599 year: 2014 ident: 10.1016/j.oceaneng.2024.119665_bib55 article-title: Multi-fault diagnosis for autonomous underwater vehicle based on fuzzy weighted support vector domain description publication-title: China Ocean Eng. doi: 10.1007/s13344-014-0048-x – volume: 35 start-page: 705 year: 2018 ident: 10.1016/j.oceaneng.2024.119665_bib33 article-title: Detection of unanticipated faults for autonomous underwater vehicles using online topic models publication-title: J. Field Robot. doi: 10.1002/rob.21771 – volume: 13 start-page: 1063 year: 2012 ident: 10.1016/j.oceaneng.2024.119665_bib14 article-title: Analysis of a random forests model publication-title: J. Mach. Learn. Res. |
| SSID | ssj0006603 |
| Score | 2.487878 |
| Snippet | Autonomous Underwater Vehicle (AUV) has many applications in ocean exploration and underwater operations. However, AUV are susceptible to failures due to... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 119665 |
| SubjectTerms | AUV Fault diagnosis Machine learning Parrot optimization algorithm Random forest |
| Title | IPORF: A combined improved parrot optimizer algorithm and random forest for fault diagnosis in AUV |
| URI | https://dx.doi.org/10.1016/j.oceaneng.2024.119665 |
| Volume | 313 |
| WOSCitedRecordID | wos001350481500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0029-8018 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0006603 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5QCVEBQQ5SUfuFUpzjvhtkKtWqjaCha6t8h27DbVNlltk2rVX8_4ESeCSgUhLknkzTi7nm_nlZkxQu_DMmdCEnBLciK8SOaBx1I_9wTASySkJCXT3fUP06OjbDbLT2wq75XeTiCt62y1yhf_ldUwBsxWpbN_wW43KQzANTAdjsB2OP4R4w9Ojr_umYJzmB4cXzApKx06gIuF6rnYbjcgKC6rG7HcpvOzZlm152anDFBcZXOpUg9BWegMREm7easitCohr9LJs5PvP8Ym7TFXwXwx9DUckGJj0V_gfHMuhk8OdQrBqahY4_Bj793vdODF3XraqdFZtaq6cYAiiH5J9nCVM0OakqkiyJV2zMaSODRlqb9JdRNguNhp1A-Cb7ujHgPCHly1eNBjLrvwm-4rD3OrXoPq1ed9tB6kcQ5Cb31ysDv77FR1kpCwzwFSBKMS8tufdrv1MrJIpk_QY-tK4ImBwFN0T9Sb6NGoweQm2tDMsV3JnyGmsfERT3CPDNwjAxtkYIcM7JCBARTYIAMbZKgT1sjADhm4qjEg4zma7u1OP-17dpMNj4d-0HoZzeKYBjwgtBRCJj5PJeicKAnA8KYJ1yYn40nJ_SBgYA8ycLAJzXye-FTS8AVaq5tavESYcJmGrIzLMAWbUTJKwFslUVJGqZAgELZQ3K9dwW0DerUPyrzoMw0vin7NC7XmhVnzLfTB0S1MC5Y7KfKeNYU1JI2BWACi7qB99Q-0r9HD4Q_wBq21y068RQ_4dVtdLd9Z8P0EDXOccA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IPORF%3A+A+combined+improved+parrot+optimizer+algorithm+and+random+forest+for+fault+diagnosis+in+AUV&rft.jtitle=Ocean+engineering&rft.au=Huang%2C+Kangzheng&rft.au=Li%2C+Weibo&rft.au=Fang%2C+Hualiang&rft.au=Wu%2C+Xixiu&rft.date=2024-12-01&rft.pub=Elsevier+Ltd&rft.issn=0029-8018&rft.volume=313&rft_id=info:doi/10.1016%2Fj.oceaneng.2024.119665&rft.externalDocID=S0029801824030038 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon |