Classification of underwater acoustical dataset using neural network trained by Chimp Optimization Algorithm

Due to the variability of the radiated signal of the underwater targets, the classification of the underwater acoustical dataset is a challenging problem in the real world application. In this paper, to classify underwater acoustical targets, first, a new meta-heuristic Chimp Optimization Algorithm...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied acoustics Ročník 157; s. 107005
Hlavní autoři: Khishe, M., Mosavi, M.R.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.01.2020
Témata:
ISSN:0003-682X, 1872-910X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Due to the variability of the radiated signal of the underwater targets, the classification of the underwater acoustical dataset is a challenging problem in the real world application. In this paper, to classify underwater acoustical targets, first, a new meta-heuristic Chimp Optimization Algorithm (ChOA) inspired by chimp hunting behaviour is developed for training an Artificial Neural Network (ANN). Second, a new underwater acoustical dataset is developed using passive propeller acoustic data collected in a laboratory. To evaluate the proposed classifier, this algorithm is compared to the Ion Motion Algorithm (IMA), Gray Wolf Optimization (GWO), and a hybrid algorithm. Measured metrics are convergence speed, the possibility of trapping in local minimum and classification accuracy. The results show that the newly proposed algorithm in most cases provides better or comparable performance compared to the other benchmark algorithms.
ISSN:0003-682X
1872-910X
DOI:10.1016/j.apacoust.2019.107005