Classification of underwater acoustical dataset using neural network trained by Chimp Optimization Algorithm

Due to the variability of the radiated signal of the underwater targets, the classification of the underwater acoustical dataset is a challenging problem in the real world application. In this paper, to classify underwater acoustical targets, first, a new meta-heuristic Chimp Optimization Algorithm...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied acoustics Ročník 157; s. 107005
Hlavní autori: Khishe, M., Mosavi, M.R.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.01.2020
Predmet:
ISSN:0003-682X, 1872-910X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Due to the variability of the radiated signal of the underwater targets, the classification of the underwater acoustical dataset is a challenging problem in the real world application. In this paper, to classify underwater acoustical targets, first, a new meta-heuristic Chimp Optimization Algorithm (ChOA) inspired by chimp hunting behaviour is developed for training an Artificial Neural Network (ANN). Second, a new underwater acoustical dataset is developed using passive propeller acoustic data collected in a laboratory. To evaluate the proposed classifier, this algorithm is compared to the Ion Motion Algorithm (IMA), Gray Wolf Optimization (GWO), and a hybrid algorithm. Measured metrics are convergence speed, the possibility of trapping in local minimum and classification accuracy. The results show that the newly proposed algorithm in most cases provides better or comparable performance compared to the other benchmark algorithms.
AbstractList Due to the variability of the radiated signal of the underwater targets, the classification of the underwater acoustical dataset is a challenging problem in the real world application. In this paper, to classify underwater acoustical targets, first, a new meta-heuristic Chimp Optimization Algorithm (ChOA) inspired by chimp hunting behaviour is developed for training an Artificial Neural Network (ANN). Second, a new underwater acoustical dataset is developed using passive propeller acoustic data collected in a laboratory. To evaluate the proposed classifier, this algorithm is compared to the Ion Motion Algorithm (IMA), Gray Wolf Optimization (GWO), and a hybrid algorithm. Measured metrics are convergence speed, the possibility of trapping in local minimum and classification accuracy. The results show that the newly proposed algorithm in most cases provides better or comparable performance compared to the other benchmark algorithms.
ArticleNumber 107005
Author Khishe, M.
Mosavi, M.R.
Author_xml – sequence: 1
  givenname: M.
  surname: Khishe
  fullname: Khishe, M.
  email: m_khishe@alumni.iust.ac.ir
  organization: Department of Electrical Engineering, Imam Khomeini Marine Science University, Nowshahr, Iran
– sequence: 2
  givenname: M.R.
  surname: Mosavi
  fullname: Mosavi, M.R.
  email: m_mosavi@iust.ac.ir
  organization: Department of Electrical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran
BookMark eNqFkM1qwzAQhEVJoUnaVyh6AaeSjP-ghwbTPwjk0kJuQpZWiVJbNpLckD59nbq99JLTsrPMMPvN0MS2FhC6pWRBCU3v9gvRCdn2PiwYocUgZoQkF2hK84xFBSWbCZoSQuIozdnmCs283w8rYUkyRXVZC--NNlIE01rcatxbBe4gAjg8xg63GisRhIeAe2_sFlvo3SBaCIfWfeDghLGgcHXE5c40HV53wTTma8xc1tvWmbBrrtGlFrWHm985R-9Pj2_lS7RaP7-Wy1UkY8pClIssy4nOK6arKtFSk6zKmdJpFlMQGnIiCwUy1ykFmsWgAKhKJUslpFrrIp6j-zFXutZ7B5pLE366nIrWnBJ-Isf3_I8cP5HjI7nBnv6zd840wh3PGx9GIwzPfRpw3EsDVoIyDmTgqjXnIr4BiGuUDg
CitedBy_id crossref_primary_10_1007_s11042_022_12882_4
crossref_primary_10_1007_s42235_023_00414_1
crossref_primary_10_1016_j_jhydrol_2020_125130
crossref_primary_10_1007_s12555_019_1014_4
crossref_primary_10_1016_j_jobe_2022_105187
crossref_primary_10_1007_s12145_023_01160_y
crossref_primary_10_1007_s12530_022_09456_y
crossref_primary_10_1109_ACCESS_2023_3337602
crossref_primary_10_1016_j_cogr_2022_08_002
crossref_primary_10_1016_j_eswa_2022_117295
crossref_primary_10_1016_j_apor_2021_102837
crossref_primary_10_1016_j_energy_2022_125259
crossref_primary_10_1016_j_bspc_2021_102764
crossref_primary_10_1007_s11042_024_20313_9
crossref_primary_10_1080_21681163_2022_2157748
crossref_primary_10_1016_j_eswa_2022_116887
crossref_primary_10_3390_jmse10101565
crossref_primary_10_3390_jmse11010003
crossref_primary_10_1155_2022_9619530
crossref_primary_10_1109_ACCESS_2022_3186021
crossref_primary_10_1016_j_eswa_2024_124498
crossref_primary_10_1007_s11277_021_08902_5
crossref_primary_10_1007_s12530_022_09425_5
crossref_primary_10_1016_j_cose_2024_104166
crossref_primary_10_3390_math10071100
crossref_primary_10_1016_j_eswa_2021_115651
crossref_primary_10_1007_s42452_021_04598_1
crossref_primary_10_1007_s11063_022_10846_1
crossref_primary_10_1186_s40537_024_00979_6
crossref_primary_10_23919_PCMP_2023_000325
crossref_primary_10_1007_s11277_021_09432_w
crossref_primary_10_14201_adcaij_29969
crossref_primary_10_2478_jaiscr_2024_0018
crossref_primary_10_1007_s11063_022_11055_6
crossref_primary_10_1016_j_heliyon_2024_e30134
crossref_primary_10_1016_j_knosys_2023_110494
crossref_primary_10_1080_10106049_2022_2136265
crossref_primary_10_1016_j_apacoust_2020_107332
crossref_primary_10_1007_s12530_023_09547_4
crossref_primary_10_1088_1742_6596_1963_1_012027
crossref_primary_10_1007_s13369_020_05228_5
crossref_primary_10_1016_j_est_2024_111008
crossref_primary_10_1109_JSEN_2025_3570232
crossref_primary_10_1016_j_heliyon_2024_e26799
crossref_primary_10_1109_ACCESS_2024_3520706
crossref_primary_10_1016_j_apacoust_2020_107859
crossref_primary_10_1016_j_solener_2023_02_036
crossref_primary_10_1016_j_chaos_2024_115972
crossref_primary_10_1007_s11276_023_03464_9
crossref_primary_10_1007_s00521_022_08075_7
crossref_primary_10_1142_S2301385025500761
crossref_primary_10_1007_s12065_023_00884_6
crossref_primary_10_1007_s00366_021_01591_5
crossref_primary_10_1016_j_heliyon_2024_e32400
crossref_primary_10_1080_13682199_2023_2178094
crossref_primary_10_1007_s42835_023_01585_x
crossref_primary_10_1016_j_bspc_2023_105053
crossref_primary_10_1007_s00521_021_06775_0
crossref_primary_10_1007_s11042_025_20707_3
crossref_primary_10_1038_s41598_021_88799_z
crossref_primary_10_1007_s12530_022_09443_3
crossref_primary_10_1007_s12665_021_10098_7
crossref_primary_10_1016_j_oceaneng_2024_117252
crossref_primary_10_1155_2022_1326325
crossref_primary_10_32604_cmc_2022_022322
crossref_primary_10_1016_j_heliyon_2024_e28681
crossref_primary_10_1155_2022_3569261
crossref_primary_10_1186_s42490_021_00056_6
crossref_primary_10_3390_math9182335
crossref_primary_10_1080_00103624_2022_2108828
crossref_primary_10_32604_cmc_2022_020820
crossref_primary_10_1007_s12652_022_03901_1
crossref_primary_10_1007_s12652_021_03564_4
crossref_primary_10_1109_JOE_2022_3164513
crossref_primary_10_1016_j_engappai_2024_109437
crossref_primary_10_1016_j_energy_2023_128454
crossref_primary_10_1049_rsn2_12031
crossref_primary_10_1007_s00500_021_05839_6
crossref_primary_10_1016_j_jclepro_2022_132697
crossref_primary_10_1371_journal_pone_0282514
crossref_primary_10_3233_JIFS_236157
crossref_primary_10_1007_s11063_023_11173_9
crossref_primary_10_1155_2022_6139558
crossref_primary_10_1007_s12530_024_09612_6
crossref_primary_10_1007_s42979_023_02008_4
crossref_primary_10_3390_math9091002
crossref_primary_10_32604_csse_2023_039111
crossref_primary_10_1016_j_apacoust_2022_108774
crossref_primary_10_1007_s00500_023_09174_w
crossref_primary_10_1007_s00202_023_01944_x
crossref_primary_10_1016_j_aei_2022_101636
crossref_primary_10_1007_s11277_022_10000_z
crossref_primary_10_1007_s11265_024_01935_6
crossref_primary_10_1007_s11802_023_5309_y
crossref_primary_10_1109_JSEN_2024_3419434
crossref_primary_10_1016_j_eswa_2025_129122
crossref_primary_10_1016_j_knosys_2025_114252
crossref_primary_10_1007_s11042_023_15543_2
crossref_primary_10_1016_j_eswa_2024_123431
crossref_primary_10_1155_2023_3056688
crossref_primary_10_1007_s11227_022_04886_6
crossref_primary_10_1016_j_apacoust_2023_109552
crossref_primary_10_1016_j_knosys_2021_107625
crossref_primary_10_1111_exsy_70076
crossref_primary_10_1016_j_aei_2025_103510
crossref_primary_10_1080_17445302_2023_2169066
crossref_primary_10_1016_j_epsr_2022_109109
crossref_primary_10_1007_s11277_021_08244_2
crossref_primary_10_1109_ACCESS_2021_3105485
crossref_primary_10_3233_JIFS_237339
crossref_primary_10_1016_j_oceaneng_2025_121286
crossref_primary_10_1016_j_eswa_2021_115270
crossref_primary_10_1016_j_asoc_2024_111539
crossref_primary_10_1109_ACCESS_2022_3227046
crossref_primary_10_1007_s42947_025_00611_7
crossref_primary_10_1007_s40747_021_00346_5
Cites_doi 10.1016/j.ins.2014.01.038
10.3923/tasr.2012.445.455
10.1007/s12110-002-1013-6
10.1016/j.eswa.2011.07.046
10.14311/NNW.2016.26.023
10.1016/j.apacoust.2018.03.012
10.1016/j.oceaneng.2019.04.013
10.1023/A:1021251113462
10.1007/s00500-016-2442-1
10.1163/156853994X00181
10.1016/j.energy.2014.07.078
10.1016/j.cub.2009.05.034
10.1023/A:1022995128597
10.1016/j.apacoust.2016.11.012
10.1016/j.swevo.2011.02.002
10.1007/978-3-540-73729-2_30
10.1016/j.scitotenv.2015.10.037
10.1007/s11277-017-4110-x
10.1016/j.apacoust.2019.05.006
10.24425/aoa.2019.126360
10.1016/j.eswa.2013.03.017
10.1525/aa.1996.98.1.02a00090
10.1016/j.apacoust.2016.11.016
10.1142/S0218126617501857
10.2307/3001968
10.1016/0167-8191(90)90086-O
10.1007/s00521-007-0084-z
10.1007/s10489-014-0645-7
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.apacoust.2019.107005
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1872-910X
ExternalDocumentID 10_1016_j_apacoust_2019_107005
S0003682X19305067
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
XPP
ZMT
~02
~G-
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SET
SEW
VH1
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c312t-8a7780f8b2fbb5fcf07b82df6731eafe80c9dec8f61e173edee1d6c26ce6fff93
ISICitedReferencesCount 114
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000495519000015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0003-682X
IngestDate Sat Nov 29 07:33:40 EST 2025
Tue Nov 18 21:00:27 EST 2025
Fri Feb 23 02:49:33 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multi-Layer Perceptron Neural Networks
Underwater acoustical dataset
Classification
Chimp Optimization Algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-8a7780f8b2fbb5fcf07b82df6731eafe80c9dec8f61e173edee1d6c26ce6fff93
ParticipantIDs crossref_citationtrail_10_1016_j_apacoust_2019_107005
crossref_primary_10_1016_j_apacoust_2019_107005
elsevier_sciencedirect_doi_10_1016_j_apacoust_2019_107005
PublicationCentury 2000
PublicationDate 2020-01-01
2020-01-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied acoustics
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Stanford, Wallis, Mpongo, Goodall (b0190) 1994; 131
Mosavi, Kaveh, Khishe, Aghababaee (b0170) 2018; 5
Socha, Blum (b0110) 2007; 16
Mosavi, Khishe, Ghamgosar (b0045) 2016; 26
Mosavi, Khishe, Hatam Khani, Shabani (b0090) 2017; 13
Ravakhah, Khishe, Aghababaee, Hashemzadeh (b0075) 2017; 17
Stanford (b0185) 1996; 98
Mosavi, Khishe (b0055) 2017; 26
Couzin, Laidre (b0200) 2009; 19
Yu, Lam, Li (b0145) 2011
Mosavi, Khishe, Aghababaee, Mohammadzadeh (b0015) 2015; 73
Moallem, Razmjooy (b0140) 2012; 7
Boesch (b0205) 2002; 13
Karaboga, Akay, Ozturk (b0115) 2009; 4617
Mosavi, Khishe, Karimi, Malmir (b0215) 2017; 3
Mosavi, Khishe, Moridi (b0230) 2016; 3
Taghavi, Khishe (b0225) 2019; 6
Stanford, Wallis, Mpongo, Goodall (b0210) 1994; 131
Muangkote, Sunat, Chiewchanwattana (b0155) 2014
Khishe, Saffari (b0040) 2019
Mirjalili (b0160) 2015; 43
Mosavi, Khishe, Ebrahimi (b0020) 2015; 7
Tomkins, Bergman (b0195) 2012; 26
Hernández, Fernández, Guerraand, Pérez (b0035) 2017; 119
Pérez, Fernández, Shaout, Guerra (b0010) 2016; 542
Mosavi, Khishe, Akbarisani (b0080) 2017; 95
Ho, Pepyne (b0180) 2002; 115
Derrac, García, Molina, Herrera (b0235) 2011; 1
Khishe, Mosavi (b0030) 2019; 154
Blum, Socha (b0105) 2005
M. Khishe, M. Mosavi, and B. Safarpoor, “Sound of Propeller,” Mendeley Data, v1, 2017.
Whitley, Starkweather, Bogart (b0095) 1990; 14
Aljarah, Faris, Mirjalili (b0175) 2018; 22
Wilcoxon (b0240) 1945; 1
Afrakhteh, Mosavi, Khishe, Ayatollahi (b0060) 2018
Pereira, Afonso, Papa, Vale, Ramos, Gastaldello, Souza (b0135) 2013
Uzlu, Kankal, Akpınar, Dede (b0150) 2014; 75
Khishe, Mohammadi (b0025) 2019; 181
Ilonen, Kamarainen, Lampinen (b0120) 2003; 17
Pereira, Rodrigues, Ribeiro, Papa, Weber (b0130) 2014
Kaveh, Khishe, Mosavi (b0085) 2018
Mendes, Cortez, Rocha, Neves (b0100) 2002
Khishe, Mosavi, Moridi (b0070) 2018; 137
Khishe, Mosavi, Kaveh (b0065) 2017; 118
Mosavi, Khishe, Parvizi, Naseri, Ayat (b0050) 2019; 44
Green, Wang, Alam (b0125) 2012; 39
Mirjalili, Mirjalili, Lewis (b0165) 2014; 269
Pérez, Fernández, Guerra, Hernández (b0005) 2013; 40
Mosavi (10.1016/j.apacoust.2019.107005_b0090) 2017; 13
Moallem (10.1016/j.apacoust.2019.107005_b0140) 2012; 7
Mirjalili (10.1016/j.apacoust.2019.107005_b0160) 2015; 43
Khishe (10.1016/j.apacoust.2019.107005_b0030) 2019; 154
Tomkins (10.1016/j.apacoust.2019.107005_b0195) 2012; 26
Mosavi (10.1016/j.apacoust.2019.107005_b0055) 2017; 26
10.1016/j.apacoust.2019.107005_b0220
Mosavi (10.1016/j.apacoust.2019.107005_b0230) 2016; 3
Karaboga (10.1016/j.apacoust.2019.107005_b0115) 2009; 4617
Khishe (10.1016/j.apacoust.2019.107005_b0025) 2019; 181
Khishe (10.1016/j.apacoust.2019.107005_b0040) 2019
Mosavi (10.1016/j.apacoust.2019.107005_b0170) 2018; 5
Khishe (10.1016/j.apacoust.2019.107005_b0070) 2018; 137
Khishe (10.1016/j.apacoust.2019.107005_b0065) 2017; 118
Mosavi (10.1016/j.apacoust.2019.107005_b0080) 2017; 95
Mosavi (10.1016/j.apacoust.2019.107005_b0050) 2019; 44
Ravakhah (10.1016/j.apacoust.2019.107005_b0075) 2017; 17
Whitley (10.1016/j.apacoust.2019.107005_b0095) 1990; 14
Ho (10.1016/j.apacoust.2019.107005_b0180) 2002; 115
Hernández (10.1016/j.apacoust.2019.107005_b0035) 2017; 119
Green (10.1016/j.apacoust.2019.107005_b0125) 2012; 39
Stanford (10.1016/j.apacoust.2019.107005_b0190) 1994; 131
Wilcoxon (10.1016/j.apacoust.2019.107005_b0240) 1945; 1
Mirjalili (10.1016/j.apacoust.2019.107005_b0165) 2014; 269
Stanford (10.1016/j.apacoust.2019.107005_b0210) 1994; 131
Boesch (10.1016/j.apacoust.2019.107005_b0205) 2002; 13
Mosavi (10.1016/j.apacoust.2019.107005_b0045) 2016; 26
Socha (10.1016/j.apacoust.2019.107005_b0110) 2007; 16
Mosavi (10.1016/j.apacoust.2019.107005_b0215) 2017; 3
Uzlu (10.1016/j.apacoust.2019.107005_b0150) 2014; 75
Pereira (10.1016/j.apacoust.2019.107005_b0130) 2014
Ilonen (10.1016/j.apacoust.2019.107005_b0120) 2003; 17
Pérez (10.1016/j.apacoust.2019.107005_b0005) 2013; 40
Pereira (10.1016/j.apacoust.2019.107005_b0135) 2013
Mendes (10.1016/j.apacoust.2019.107005_b0100) 2002
Muangkote (10.1016/j.apacoust.2019.107005_b0155) 2014
Derrac (10.1016/j.apacoust.2019.107005_b0235) 2011; 1
Aljarah (10.1016/j.apacoust.2019.107005_b0175) 2018; 22
Stanford (10.1016/j.apacoust.2019.107005_b0185) 1996; 98
Afrakhteh (10.1016/j.apacoust.2019.107005_b0060) 2018
Couzin (10.1016/j.apacoust.2019.107005_b0200) 2009; 19
Taghavi (10.1016/j.apacoust.2019.107005_b0225) 2019; 6
Mosavi (10.1016/j.apacoust.2019.107005_b0020) 2015; 7
Blum (10.1016/j.apacoust.2019.107005_b0105) 2005
Pérez (10.1016/j.apacoust.2019.107005_b0010) 2016; 542
Mosavi (10.1016/j.apacoust.2019.107005_b0015) 2015; 73
Kaveh (10.1016/j.apacoust.2019.107005_b0085) 2018
Yu (10.1016/j.apacoust.2019.107005_b0145) 2011
References_xml – volume: 14
  start-page: 347
  year: 1990
  end-page: 361
  ident: b0095
  article-title: Genetic algorithms and neural networks: optimizing connections and connectivity
  publication-title: Parallel Comput
– volume: 39
  start-page: 555
  year: 2012
  end-page: 563
  ident: b0125
  article-title: Training neural networks using central force optimization and particle swarm optimization: insights and comparisons
  publication-title: Expert Syst Appl
– volume: 542
  start-page: 562
  year: 2016
  end-page: 577
  ident: b0010
  article-title: Airport take-off noise assessment aimed to identify responsible aircraft classes
  publication-title: Sci Total Environ
– volume: 118
  start-page: 15
  year: 2017
  end-page: 29
  ident: b0065
  article-title: Improved migration models of biogeography-based optimization for sonar data set classification using neural network
  publication-title: Appl Acoust
– volume: 44
  start-page: 137
  year: 2019
  end-page: 151
  ident: b0050
  article-title: Training multi-layer perceptron utilizing adaptive best-mass gravitational search algorithm to classify sonar dataset
  publication-title: Arch Acoust
– start-page: 1
  year: 2018
  end-page: 24
  ident: b0085
  article-title: Design and implementation of a neighborhood search biogeography-based optimization trainer for classifying sonar dataset using multi-layer perceptron neural network
  publication-title: Analog Integrated Circuits Signal Process
– start-page: 1
  year: 2013
  end-page: 6
  ident: b0135
  article-title: Multilayer perceptron neural networks training through charged system search and its application for non-technical losses detection
  publication-title: IEEE PES Conference on Innovative Smart Grid Technologies Latin America
– volume: 137
  start-page: 121
  year: 2018
  end-page: 139
  ident: b0070
  article-title: Chaotic fractal walk trainer for sonar data set classification using multi-layer perceptron neural network and its hardware implementation
  publication-title: Appl Acoust
– volume: 7
  start-page: 50
  year: 2015
  end-page: 59
  ident: b0020
  article-title: Classification of sonar targets using OMKC, genetic algorithms and statistical moments
  publication-title: J Adv Comput Res
– start-page: 2
  year: 2005
  end-page: 9
  ident: b0105
  article-title: Training feed-forward neural networks with ant colony optimization: an application to pattern classification
  publication-title: 5th International Conference on Hybrid Intelligent Systems
– volume: 13
  start-page: 27
  year: 2002
  end-page: 46
  ident: b0205
  article-title: Cooperative hunting roles among Taï chimpanzees
  publication-title: Human Nature
– volume: 17
  year: 2017
  ident: b0075
  article-title: Sonar false alarm rate suppression using classification methods based on interior search algorithm
  publication-title: IJCSNS Int J Comput Sci Network Security
– volume: 26
  start-page: 94
  year: 2012
  end-page: 100
  ident: b0195
  article-title: Genomic monkey business estimates of nearly identical human-chimp DNA similarity re-evaluated using omitted data
  publication-title: J Creation
– volume: 131
  start-page: 1
  year: 1994
  end-page: 18
  ident: b0210
  article-title: Hunting decisions in wild chimpanzees behaviour
  publication-title: Behaviour
– volume: 26
  start-page: 393
  year: 2016
  end-page: 415
  ident: b0045
  article-title: Classification of sonar data set using neural network trained by gray wolf optimization
  publication-title: J Neural Network World
– volume: 73
  start-page: 11
  year: 2015
  end-page: 22
  ident: b0015
  article-title: Approximation of active sonar clutter's statistical parameters using array's effective beam-width
  publication-title: Iran J Marine Sci Technol
– volume: 181
  start-page: 98
  year: 2019
  end-page: 108
  ident: b0025
  article-title: Sonar target classification using multi-layer perceptron trained by salp swarm algorithm
  publication-title: Ocean Eng
– volume: 131
  start-page: 1
  year: 1994
  end-page: 18
  ident: b0190
  article-title: Hunting decisions in wild chimpanzees
  publication-title: Behaviour
– volume: 13
  start-page: 100
  year: 2017
  end-page: 111
  ident: b0090
  article-title: Training radial basis function neural network using stochastic fractal search algorithm to classify sonar dataset
  publication-title: Iran J Electric Electron Eng
– volume: 16
  start-page: 235
  year: 2007
  end-page: 247
  ident: b0110
  article-title: An ant colony optimization algorithm for continuous optimization: application to feed-forward neural network training
  publication-title: Neural Comput Appl
– start-page: 1895
  year: 2002
  end-page: 1899
  ident: b0100
  article-title: Particle swarms for feedforward neural network training, learning
  publication-title: International Joint Conference on Neural Networks
– reference: M. Khishe, M. Mosavi, and B. Safarpoor, “Sound of Propeller,” Mendeley Data, v1, 2017.
– volume: 154
  start-page: 176
  year: 2019
  end-page: 192
  ident: b0030
  article-title: Improved whale trainer for sonar datasets classification using neural network
  publication-title: Appl Acoust
– volume: 22
  start-page: 1
  year: 2018
  end-page: 15
  ident: b0175
  article-title: Optimizing connection weights in neural networks using the whale optimization algorithm
  publication-title: Soft Comput
– volume: 17
  start-page: 93
  year: 2003
  end-page: 105
  ident: b0120
  article-title: Differential evolution training algorithm for feed-forward neural networks
  publication-title: Neural Process Lett
– volume: 269
  start-page: 188
  year: 2014
  end-page: 209
  ident: b0165
  article-title: Let a biogeography-based optimizer train your multi-layer perceptron
  publication-title: J Inform Sci
– volume: 40
  start-page: 5148
  year: 2013
  end-page: 5159
  ident: b0005
  article-title: Aircraft class identification based on take-off noise signal segmentation in time
  publication-title: Expert Syst Appl
– start-page: 209
  year: 2014
  end-page: 214
  ident: b0155
  article-title: An improved grey wolf optimizer for training q-gaussian radial basis functional-link nets
  publication-title: Comput Sci Eng Conf
– volume: 7
  start-page: 445
  year: 2012
  end-page: 455
  ident: b0140
  article-title: A multi-layer perceptron neural network trained by invasive weed optimization for potato color image segmentation
  publication-title: Trends Appl Sci Res
– volume: 1
  start-page: 80
  year: 1945
  end-page: 83
  ident: b0240
  article-title: Individual comparisons by ranking methods
  publication-title: Biometrics Bull
– start-page: 2083
  year: 2011
  end-page: 2090
  ident: b0145
  article-title: Evolutionary artificial neural network based on chemical reaction optimization
  publication-title: Cong Evol Comput
– volume: 119
  start-page: 17
  year: 2017
  end-page: 28
  ident: b0035
  article-title: Marine mammal sound classification based on a parallel recognition model and octave analysis
  publication-title: Appl Acoust
– start-page: 1
  year: 2019
  end-page: 19
  ident: b0040
  article-title: Classification of sonar targets using an MLP neural network trained by dragonfly algorithm
  publication-title: Wireless Personal Syst
– volume: 3
  start-page: 99
  year: 2017
  end-page: 112
  ident: b0215
  article-title: Marine propellers design using particle swarm optimization with independent groups to improve efficiency and reduce cavitation
  publication-title: J Marine Technol
– volume: 26
  start-page: 1
  year: 2017
  end-page: 20
  ident: b0055
  article-title: Training a feed-forward neural network using particle swarm optimizer with autonomous groups for sonar target classification
  publication-title: J Circuits, Syst, Comput
– volume: 95
  start-page: 4623
  year: 2017
  end-page: 4642
  ident: b0080
  article-title: Neural network trained by biogeography-based optimizer with chaos for sonar data set classification
  publication-title: J Wireless Personal Commun
– volume: 98
  start-page: 96
  year: 1996
  end-page: 113
  ident: b0185
  article-title: The hunting ecology of wild chimpanzees: implications for the evolutionary ecology of pliocene hominids
  publication-title: Am Anthropol
– volume: 4617
  start-page: 318
  year: 2009
  end-page: 329
  ident: b0115
  article-title: Artificial Bee Colony (ABC) optimization algorithm for training feed-forward neural networks
  publication-title: Lect Notes Comput Sci
– volume: 5
  start-page: 1
  year: 2018
  end-page: 12
  ident: b0170
  article-title: Design and implementation a sonar data set classifier using multi-layer perceptron neural network trained by elephant herding optimization
  publication-title: Iran J Marine Technol
– volume: 1
  start-page: 3
  year: 2011
  end-page: 18
  ident: b0235
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol Comput
– volume: 3
  start-page: 1
  year: 2016
  end-page: 13
  ident: b0230
  article-title: Classification of sonar target using hybrid particle swarm and gravitational search
  publication-title: J Marine Technol
– volume: 19
  start-page: 633
  year: 2009
  end-page: 635
  ident: b0200
  article-title: Fission-fusion populations
  publication-title: Curr Biol
– start-page: 1
  year: 2018
  end-page: 15
  ident: b0060
  article-title: Accurate classification of EEG signals using neural networks trained by hybrid population-physic-based algorithm
  publication-title: Int J Automation Comput
– volume: 6
  start-page: 133
  year: 2019
  end-page: 146
  ident: b0225
  article-title: A Modified grey wolf optimizer by individual best memory and penalty factor for sonar and radar dataset’s classification
  publication-title: Iran J Marine Technol
– volume: 115
  start-page: 549
  year: 2002
  end-page: 570
  ident: b0180
  article-title: Simple explanation of the no-free-lunch theorem and its implications
  publication-title: J Optim Theory Appl
– volume: 75
  start-page: 295
  year: 2014
  end-page: 303
  ident: b0150
  article-title: Estimates of energy consumption in turkey using neural networks with the teaching-learning-based optimization algorithm
  publication-title: Energy
– start-page: 14
  year: 2014
  end-page: 17
  ident: b0130
  article-title: Social-spider optimization-based artificial neural networks training and its applications for Parkinson’s disease identification
  publication-title: IEEE Symposium on Computer-based Medical Systems
– volume: 43
  start-page: 150
  year: 2015
  end-page: 161
  ident: b0160
  article-title: How effective is the grey wolf optimizer in training multi-layer perceptrons
  publication-title: Appl Intelligence
– start-page: 1
  year: 2018
  ident: 10.1016/j.apacoust.2019.107005_b0085
  article-title: Design and implementation of a neighborhood search biogeography-based optimization trainer for classifying sonar dataset using multi-layer perceptron neural network
  publication-title: Analog Integrated Circuits Signal Process
– volume: 269
  start-page: 188
  year: 2014
  ident: 10.1016/j.apacoust.2019.107005_b0165
  article-title: Let a biogeography-based optimizer train your multi-layer perceptron
  publication-title: J Inform Sci
  doi: 10.1016/j.ins.2014.01.038
– volume: 7
  start-page: 50
  issue: 1
  year: 2015
  ident: 10.1016/j.apacoust.2019.107005_b0020
  article-title: Classification of sonar targets using OMKC, genetic algorithms and statistical moments
  publication-title: J Adv Comput Res
– volume: 5
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.apacoust.2019.107005_b0170
  article-title: Design and implementation a sonar data set classifier using multi-layer perceptron neural network trained by elephant herding optimization
  publication-title: Iran J Marine Technol
– volume: 13
  start-page: 100
  issue: 1
  year: 2017
  ident: 10.1016/j.apacoust.2019.107005_b0090
  article-title: Training radial basis function neural network using stochastic fractal search algorithm to classify sonar dataset
  publication-title: Iran J Electric Electron Eng
– volume: 7
  start-page: 445
  issue: 6
  year: 2012
  ident: 10.1016/j.apacoust.2019.107005_b0140
  article-title: A multi-layer perceptron neural network trained by invasive weed optimization for potato color image segmentation
  publication-title: Trends Appl Sci Res
  doi: 10.3923/tasr.2012.445.455
– volume: 13
  start-page: 27
  year: 2002
  ident: 10.1016/j.apacoust.2019.107005_b0205
  article-title: Cooperative hunting roles among Taï chimpanzees
  publication-title: Human Nature
  doi: 10.1007/s12110-002-1013-6
– volume: 39
  start-page: 555
  issue: 1
  year: 2012
  ident: 10.1016/j.apacoust.2019.107005_b0125
  article-title: Training neural networks using central force optimization and particle swarm optimization: insights and comparisons
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.07.046
– volume: 26
  start-page: 393
  issue: 4
  year: 2016
  ident: 10.1016/j.apacoust.2019.107005_b0045
  article-title: Classification of sonar data set using neural network trained by gray wolf optimization
  publication-title: J Neural Network World
  doi: 10.14311/NNW.2016.26.023
– start-page: 1
  year: 2013
  ident: 10.1016/j.apacoust.2019.107005_b0135
  article-title: Multilayer perceptron neural networks training through charged system search and its application for non-technical losses detection
– volume: 137
  start-page: 121
  year: 2018
  ident: 10.1016/j.apacoust.2019.107005_b0070
  article-title: Chaotic fractal walk trainer for sonar data set classification using multi-layer perceptron neural network and its hardware implementation
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2018.03.012
– volume: 181
  start-page: 98
  year: 2019
  ident: 10.1016/j.apacoust.2019.107005_b0025
  article-title: Sonar target classification using multi-layer perceptron trained by salp swarm algorithm
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2019.04.013
– start-page: 2083
  year: 2011
  ident: 10.1016/j.apacoust.2019.107005_b0145
  article-title: Evolutionary artificial neural network based on chemical reaction optimization
  publication-title: Cong Evol Comput
– volume: 115
  start-page: 549
  issue: 3
  year: 2002
  ident: 10.1016/j.apacoust.2019.107005_b0180
  article-title: Simple explanation of the no-free-lunch theorem and its implications
  publication-title: J Optim Theory Appl
  doi: 10.1023/A:1021251113462
– volume: 26
  start-page: 94
  issue: 1
  year: 2012
  ident: 10.1016/j.apacoust.2019.107005_b0195
  article-title: Genomic monkey business estimates of nearly identical human-chimp DNA similarity re-evaluated using omitted data
  publication-title: J Creation
– volume: 22
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.apacoust.2019.107005_b0175
  article-title: Optimizing connection weights in neural networks using the whale optimization algorithm
  publication-title: Soft Comput
  doi: 10.1007/s00500-016-2442-1
– volume: 131
  start-page: 1
  year: 1994
  ident: 10.1016/j.apacoust.2019.107005_b0210
  article-title: Hunting decisions in wild chimpanzees behaviour
  publication-title: Behaviour
  doi: 10.1163/156853994X00181
– volume: 6
  start-page: 133
  issue: 1
  year: 2019
  ident: 10.1016/j.apacoust.2019.107005_b0225
  article-title: A Modified grey wolf optimizer by individual best memory and penalty factor for sonar and radar dataset’s classification
  publication-title: Iran J Marine Technol
– start-page: 1
  year: 2019
  ident: 10.1016/j.apacoust.2019.107005_b0040
  article-title: Classification of sonar targets using an MLP neural network trained by dragonfly algorithm
  publication-title: Wireless Personal Syst
– volume: 75
  start-page: 295
  year: 2014
  ident: 10.1016/j.apacoust.2019.107005_b0150
  article-title: Estimates of energy consumption in turkey using neural networks with the teaching-learning-based optimization algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2014.07.078
– volume: 19
  start-page: 633
  issue: 15
  year: 2009
  ident: 10.1016/j.apacoust.2019.107005_b0200
  article-title: Fission-fusion populations
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2009.05.034
– start-page: 1
  year: 2018
  ident: 10.1016/j.apacoust.2019.107005_b0060
  article-title: Accurate classification of EEG signals using neural networks trained by hybrid population-physic-based algorithm
  publication-title: Int J Automation Comput
– ident: 10.1016/j.apacoust.2019.107005_b0220
– volume: 17
  start-page: 93
  year: 2003
  ident: 10.1016/j.apacoust.2019.107005_b0120
  article-title: Differential evolution training algorithm for feed-forward neural networks
  publication-title: Neural Process Lett
  doi: 10.1023/A:1022995128597
– volume: 3
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.apacoust.2019.107005_b0230
  article-title: Classification of sonar target using hybrid particle swarm and gravitational search
  publication-title: J Marine Technol
– volume: 118
  start-page: 15
  year: 2017
  ident: 10.1016/j.apacoust.2019.107005_b0065
  article-title: Improved migration models of biogeography-based optimization for sonar data set classification using neural network
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2016.11.012
– start-page: 209
  year: 2014
  ident: 10.1016/j.apacoust.2019.107005_b0155
  article-title: An improved grey wolf optimizer for training q-gaussian radial basis functional-link nets
  publication-title: Comput Sci Eng Conf
– volume: 1
  start-page: 3
  issue: 1
  year: 2011
  ident: 10.1016/j.apacoust.2019.107005_b0235
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2011.02.002
– start-page: 2
  year: 2005
  ident: 10.1016/j.apacoust.2019.107005_b0105
  article-title: Training feed-forward neural networks with ant colony optimization: an application to pattern classification
– start-page: 14
  year: 2014
  ident: 10.1016/j.apacoust.2019.107005_b0130
  article-title: Social-spider optimization-based artificial neural networks training and its applications for Parkinson’s disease identification
– volume: 4617
  start-page: 318
  year: 2009
  ident: 10.1016/j.apacoust.2019.107005_b0115
  article-title: Artificial Bee Colony (ABC) optimization algorithm for training feed-forward neural networks
  publication-title: Lect Notes Comput Sci
  doi: 10.1007/978-3-540-73729-2_30
– volume: 542
  start-page: 562
  year: 2016
  ident: 10.1016/j.apacoust.2019.107005_b0010
  article-title: Airport take-off noise assessment aimed to identify responsible aircraft classes
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2015.10.037
– volume: 73
  start-page: 11
  issue: 73
  year: 2015
  ident: 10.1016/j.apacoust.2019.107005_b0015
  article-title: Approximation of active sonar clutter's statistical parameters using array's effective beam-width
  publication-title: Iran J Marine Sci Technol
– volume: 95
  start-page: 4623
  issue: 4
  year: 2017
  ident: 10.1016/j.apacoust.2019.107005_b0080
  article-title: Neural network trained by biogeography-based optimizer with chaos for sonar data set classification
  publication-title: J Wireless Personal Commun
  doi: 10.1007/s11277-017-4110-x
– volume: 154
  start-page: 176
  year: 2019
  ident: 10.1016/j.apacoust.2019.107005_b0030
  article-title: Improved whale trainer for sonar datasets classification using neural network
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2019.05.006
– volume: 44
  start-page: 137
  issue: 1
  year: 2019
  ident: 10.1016/j.apacoust.2019.107005_b0050
  article-title: Training multi-layer perceptron utilizing adaptive best-mass gravitational search algorithm to classify sonar dataset
  publication-title: Arch Acoust
  doi: 10.24425/aoa.2019.126360
– start-page: 1895
  year: 2002
  ident: 10.1016/j.apacoust.2019.107005_b0100
  article-title: Particle swarms for feedforward neural network training, learning
– volume: 131
  start-page: 1
  issue: 1
  year: 1994
  ident: 10.1016/j.apacoust.2019.107005_b0190
  article-title: Hunting decisions in wild chimpanzees
  publication-title: Behaviour
  doi: 10.1163/156853994X00181
– volume: 40
  start-page: 5148
  issue: 13
  year: 2013
  ident: 10.1016/j.apacoust.2019.107005_b0005
  article-title: Aircraft class identification based on take-off noise signal segmentation in time
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.03.017
– volume: 3
  start-page: 99
  issue: 2
  year: 2017
  ident: 10.1016/j.apacoust.2019.107005_b0215
  article-title: Marine propellers design using particle swarm optimization with independent groups to improve efficiency and reduce cavitation
  publication-title: J Marine Technol
– volume: 17
  issue: 7
  year: 2017
  ident: 10.1016/j.apacoust.2019.107005_b0075
  article-title: Sonar false alarm rate suppression using classification methods based on interior search algorithm
  publication-title: IJCSNS Int J Comput Sci Network Security
– volume: 98
  start-page: 96
  issue: 1
  year: 1996
  ident: 10.1016/j.apacoust.2019.107005_b0185
  article-title: The hunting ecology of wild chimpanzees: implications for the evolutionary ecology of pliocene hominids
  publication-title: Am Anthropol
  doi: 10.1525/aa.1996.98.1.02a00090
– volume: 119
  start-page: 17
  year: 2017
  ident: 10.1016/j.apacoust.2019.107005_b0035
  article-title: Marine mammal sound classification based on a parallel recognition model and octave analysis
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2016.11.016
– volume: 26
  start-page: 1
  issue: 11
  year: 2017
  ident: 10.1016/j.apacoust.2019.107005_b0055
  article-title: Training a feed-forward neural network using particle swarm optimizer with autonomous groups for sonar target classification
  publication-title: J Circuits, Syst, Comput
  doi: 10.1142/S0218126617501857
– volume: 1
  start-page: 80
  issue: 6
  year: 1945
  ident: 10.1016/j.apacoust.2019.107005_b0240
  article-title: Individual comparisons by ranking methods
  publication-title: Biometrics Bull
  doi: 10.2307/3001968
– volume: 14
  start-page: 347
  year: 1990
  ident: 10.1016/j.apacoust.2019.107005_b0095
  article-title: Genetic algorithms and neural networks: optimizing connections and connectivity
  publication-title: Parallel Comput
  doi: 10.1016/0167-8191(90)90086-O
– volume: 16
  start-page: 235
  year: 2007
  ident: 10.1016/j.apacoust.2019.107005_b0110
  article-title: An ant colony optimization algorithm for continuous optimization: application to feed-forward neural network training
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-007-0084-z
– volume: 43
  start-page: 150
  issue: 1
  year: 2015
  ident: 10.1016/j.apacoust.2019.107005_b0160
  article-title: How effective is the grey wolf optimizer in training multi-layer perceptrons
  publication-title: Appl Intelligence
  doi: 10.1007/s10489-014-0645-7
SSID ssj0000255
Score 2.5498602
Snippet Due to the variability of the radiated signal of the underwater targets, the classification of the underwater acoustical dataset is a challenging problem in...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107005
SubjectTerms Chimp Optimization Algorithm
Classification
Multi-Layer Perceptron Neural Networks
Underwater acoustical dataset
Title Classification of underwater acoustical dataset using neural network trained by Chimp Optimization Algorithm
URI https://dx.doi.org/10.1016/j.apacoust.2019.107005
Volume 157
WOSCitedRecordID wos000495519000015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-910X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000255
  issn: 0003-682X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKBhI8IBggxpf8wFuV4jhLbD9W0xBfGggG6ltkO_baqU2rNivjv-ds52swaSDEi5We5Dry_XJ3Pt8HQi-l0pKpWERCKBEdwI-IHxgYnG5gBeXSB2N--8COj_lkIj4NBu-bXJjtnJUlv7gQq__KaqABs13q7F-wu_1TIMAzMB1GYDuMf8R43-bSBQC1xqDLE1t_l64cIsg_377LXc3ICjRYNTz33gJX1xKIZYgKD50jgnF6OJ0tVsOPIFoWdc7mcDw_Xa5n1XTRN20be7ZZorslmrq4e-95HbX8XW7kdhZon0d91wMlv7ge2pyYLgApyNgkyrhvkg4aJohVziiIVTK5JHdDZerfZHhwJ5yNwFjwL-zi7wSQGSFpp7XaWMIvvqYOrAemKElB-d5Au5SlAkTc7vjt0eRdp5hpmjYNFN2EXsL41atdbav07I-Te-hufXDA48Dw-2hgyj10p1dOcg_d8uG8evMAzS-DAC8t7kCAOxDgGgTYgwAHEOAaBLgGAVY_sAcB7oMAtyB4iL6-Pjo5fBPVfTUincS0irhkjBPLFbVKpVZbwhSnhc1YEhtpDSdaFEZzm8UmZokpjImLTNNMm8xaK5JHaKdcluYxwhYOwEQXqjBwMDdcwRfv7mGlVCa1JJX7KG12MNd10Xn38vO8iS48y5udz93O52Hn99Grdt4qlF25doZoGJTXxmMwCnPA1TVzn_zD3KfodvdpPEM71frcPEc39baabdYvagj-BMqMnf8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+underwater+acoustical+dataset+using+neural+network+trained+by+Chimp+Optimization+Algorithm&rft.jtitle=Applied+acoustics&rft.au=Khishe%2C+M.&rft.au=Mosavi%2C+M.R.&rft.date=2020-01-01&rft.pub=Elsevier+Ltd&rft.issn=0003-682X&rft.eissn=1872-910X&rft.volume=157&rft_id=info:doi/10.1016%2Fj.apacoust.2019.107005&rft.externalDocID=S0003682X19305067
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-682X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-682X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-682X&client=summon