Design of 2D LiDAR and camera fusion system improved by differential evolutionary PID with nonlinear tracking compensator
•A differential evolutionary PID with nonlinear tracking compensator is proposed to accurately control the lidar pitching motion.•The quadratic polynomial transition function is used to optimize the pitching trajectory.•The fused system can obtain homogeneous, and dense colored 3D point cloud. An im...
Gespeichert in:
| Veröffentlicht in: | Infrared physics & technology Jg. 116; S. 103776 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.08.2021
|
| Schlagworte: | |
| ISSN: | 1350-4495, 1879-0275 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •A differential evolutionary PID with nonlinear tracking compensator is proposed to accurately control the lidar pitching motion.•The quadratic polynomial transition function is used to optimize the pitching trajectory.•The fused system can obtain homogeneous, and dense colored 3D point cloud.
An improved 2D LiDAR and camera fusion system is proposed for the 3D reconstruction of unknown environments. It combines the advantages of dense 2D point cloud and rich color image, adopting a differential evolutionary nonlinear tracking PID to control the pitching motion of LiDAR and camera accurately. The quadratic polynomial transition function is used to optimize the pitching trajectory. The environment was scanned by the system and converted into a 3D colored point cloud by the data fusion algorithm. The experimental results show: the proposed PID control algorithm can accurately control the pitching motion with a small average error (0.0267°) and significantly reduce the point cloud inhomogeneity (0.00698); the processing time for converting each 2D point cloud into the 3D point cloud is about 0.6 ms; combined with the data fusion algorithm, the system can obtain the dense colored 3D point cloud; compared with binocular camera, depth camera and 3D LiDAR under the condition of strong light interference, the fusion system outperforms, with the reconstruction object errors of distance, length and width of 0.23%, 0.17% and 0.46% respectively. In conclusion, the system can obtain homogeneous, and dense colored 3D point cloud in real time while ensuring stable refresh frame rate. |
|---|---|
| AbstractList | •A differential evolutionary PID with nonlinear tracking compensator is proposed to accurately control the lidar pitching motion.•The quadratic polynomial transition function is used to optimize the pitching trajectory.•The fused system can obtain homogeneous, and dense colored 3D point cloud.
An improved 2D LiDAR and camera fusion system is proposed for the 3D reconstruction of unknown environments. It combines the advantages of dense 2D point cloud and rich color image, adopting a differential evolutionary nonlinear tracking PID to control the pitching motion of LiDAR and camera accurately. The quadratic polynomial transition function is used to optimize the pitching trajectory. The environment was scanned by the system and converted into a 3D colored point cloud by the data fusion algorithm. The experimental results show: the proposed PID control algorithm can accurately control the pitching motion with a small average error (0.0267°) and significantly reduce the point cloud inhomogeneity (0.00698); the processing time for converting each 2D point cloud into the 3D point cloud is about 0.6 ms; combined with the data fusion algorithm, the system can obtain the dense colored 3D point cloud; compared with binocular camera, depth camera and 3D LiDAR under the condition of strong light interference, the fusion system outperforms, with the reconstruction object errors of distance, length and width of 0.23%, 0.17% and 0.46% respectively. In conclusion, the system can obtain homogeneous, and dense colored 3D point cloud in real time while ensuring stable refresh frame rate. |
| ArticleNumber | 103776 |
| Author | Zhao, Minghui Lu, Yonghua Luo, Minzhou Ran, Yingying Xu, Xiaobin Tan, Zhiying |
| Author_xml | – sequence: 1 givenname: Xiaobin surname: Xu fullname: Xu, Xiaobin email: xxbtc@hhu.edu.cn organization: College of Mechanical & Electrical Engineering, Hohai University, Changzhou 213022, China – sequence: 2 givenname: Minghui surname: Zhao fullname: Zhao, Minghui organization: College of Mechanical & Electrical Engineering, Hohai University, Changzhou 213022, China – sequence: 3 givenname: Yonghua surname: Lu fullname: Lu, Yonghua organization: College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China – sequence: 4 givenname: Yingying surname: Ran fullname: Ran, Yingying organization: College of Mechanical & Electrical Engineering, Hohai University, Changzhou 213022, China – sequence: 5 givenname: Zhiying surname: Tan fullname: Tan, Zhiying organization: College of Mechanical & Electrical Engineering, Hohai University, Changzhou 213022, China – sequence: 6 givenname: Minzhou surname: Luo fullname: Luo, Minzhou organization: College of Mechanical & Electrical Engineering, Hohai University, Changzhou 213022, China |
| BookMark | eNqFkMFq3DAQhkVJoUnaVyh6AW8lWbJl6KEh26SBhZaSnIUsj9LZ2tIiKRv27aNlm0svOc0wM9_w__8FOQsxACGfOVtxxrsv2xUGn2yCaSWY4HXY9n33jpxz3Q8NE706q32rWCPloD6Qi5y3rIKSdefksIaMj4FGT8WabnB99ZvaMFFnF0iW-qeMMdB8yAUWissuxT1MdDzQCb2HBKGgnSns4_xU6qVNB_rrbk2fsfyhVeeMAWyiJVn3F8MjdXHZQci2xPSRvPd2zvDpX70kDzff769_NJuft3fXV5vGtVyURls1gtZCDRpk17ZSMt4O2nunXTdy1To1jMr3vR2kdtoLOU1iHIWsWw2qay_J19Nfl2LOCbxxWOxRbFWFs-HMHGM0W_MaoznGaE4xVrz7D98lXKrPt8FvJxCquT1CMtkhBAcTJnDFTBHfevECc0yU8g |
| CitedBy_id | crossref_primary_10_1016_j_optlaseng_2024_108206 crossref_primary_10_1109_JSEN_2023_3312322 crossref_primary_10_3390_s24103148 crossref_primary_10_1016_j_infrared_2021_103852 crossref_primary_10_1061_JCEMD4_COENG_16053 crossref_primary_10_1016_j_infrared_2024_105432 |
| Cites_doi | 10.1155/2016/3715129 10.3390/s18020497 10.1016/j.robot.2019.03.005 10.1016/j.robot.2018.04.007 10.1109/SSRR.2014.7017677 10.2298/CSIS141020093K 10.1109/IS3C.2018.00077 10.3390/jimaging2040028 10.1007/978-3-642-21762-3 10.5194/isprsarchives-XXXIX-B3-285-2012 10.1007/s11071-013-1099-x 10.1007/978-3-642-38466-0_1 10.1177/1729881418808711 10.1007/s12369-017-0431-x 10.3390/s151026430 10.1080/01431161.2017.1280624 10.1108/SR-11-2017-0237 10.1016/j.isatra.2013.09.020 10.1016/j.simpat.2012.04.001 10.1109/IAC.2016.7905690 10.3788/CJL202047.1110001 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. |
| Copyright_xml | – notice: 2021 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.infrared.2021.103776 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1879-0275 |
| ExternalDocumentID | 10_1016_j_infrared_2021_103776 S1350449521001481 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABNEU ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HMV HVGLF HZ~ IHE J1W KOM M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SPD SPG SSQ SSZ T5K VH1 VOH WUQ ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c312t-8a5be882598e46334401398ffc8c6b153c59b5f77a948c8f24dd2bb24c6b8e563 |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000674612500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1350-4495 |
| IngestDate | Tue Nov 18 21:57:12 EST 2025 Sat Nov 29 07:02:23 EST 2025 Fri Feb 23 02:43:50 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Data fusion algorithm Differential evolutionary nonlinear tracking PID Color camera 2D LiDAR |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c312t-8a5be882598e46334401398ffc8c6b153c59b5f77a948c8f24dd2bb24c6b8e563 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_infrared_2021_103776 crossref_primary_10_1016_j_infrared_2021_103776 elsevier_sciencedirect_doi_10_1016_j_infrared_2021_103776 |
| PublicationCentury | 2000 |
| PublicationDate | August 2021 2021-08-00 |
| PublicationDateYYYYMMDD | 2021-08-01 |
| PublicationDate_xml | – month: 08 year: 2021 text: August 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Infrared physics & technology |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Hu, Chen, Zhang (b0040) 2012; 39 Alismail, Browning (b0110) 2015; 32 E. Kwak, M. Al-Durgham, A. Habib, Automatic 3D building model generation from LIDAR and image data using sequential minimum bounding rectangle, ISPRS – Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XXXIX-B3 (2012). Ni, Burks, Lee (b0065) 2016; 2 Savran, Kahraman (b0130) 2014; 53 Paulius, Sun (b0005) 2019; 118 Wang, Liu, Cheng (b0050) 2018; 18 N.B. Jing, X.M. Ma, W. Guo, 3D reconstruction of underground tunnel using kinect camera, in: Proc. – 2018 Int. Symp. Comput. Consum. Control. IS3C 2018, 2019. Olivka, Krumnikl, Moravec, Seidl (b0125) 2016; 2016 Gao, Huang, Yang, An (b0100) 2019; 39 Sun, Liu (b0015) 2019; 41 Kurnianggoro, Hoang, Jo (b0115) 2015; 12 Yang, Sheng, Wang (b0055) 2016; 127 Zeng, Yu, Dai, Song, Lin, Sun, Jiang, Meng (b0085) 2018; 18 D. Christie, C. Jiang, D. Paudel, C. Demonceaux, 3D reconstruction of dynamic vehicles using sparse 3D-laser-scanner and 2D image fusion, in: 2016 Int. Conf. Informatics Comput. ICIC 2016, 2017. Zhang, Cao (b0075) 2013 Chiou, Tsai, Liu (b0135) 2012; 26 Chen, Luo, Jiang, Abdelaziz (b0035) 2018; 15 Maly, Sedlacek, Leitao (b0030) 2016 Fu, Chen, Zhou, Zheng, Wei, Dai, Pan (b0025) 2018; 106 Janis Arents, Cacurs (b0020) 2018; 52 . Sazara, Nezafat, Cetin (b0080) 2017 Zhu, Pang, Sun, Gao, Sun, Chen (b0165) 2014; 75 Pahlavani, Amini Amirkolaee, Bigdeli (b0060) 2017; 38 Ma, Qin, Jiang, Wang (b0045) 2011 L. Pfotzer, J. Oberlaender, A. Roennau, R. Dillmann, Development and calibration of KaRoLa, a compact, high-resolution 3D laser scanner, in: 12th IEEE Int. Symp. Safety, Secur. Rescue Robot. SSRR 2014 – Symp. Proc., 2014. Zhao, Xu, Yang, Pan (b0145) 2020; 10 Zhang Zijian, Cheng Xiaojun, Cao Yujie, Wang Feng, Yu Yue, Application of 3D Reconstruction of Relic Sites Combined with Laser and Vision Point Cloud, Chinese J. Lasers. 47 (2020). Cai, Wang, Song, Wang, Yang, Zhao (b0090) 2017; 10 Baraka, Veloso (b0010) 2018; 10 E. Menegatti, F. Basso, E. Wai Yan So, Calibration of a rorating 2D laser range - finder using point - plane coistraints, J. Autom. Mob. Robot. Intell. Syst. 7 (2013). Jung, Yoon, Ju, Heo (b0095) 2015; 15 Chen, Liu, Ge, Lin (b0140) 2012; 20 Pahlavani (10.1016/j.infrared.2021.103776_b0060) 2017; 38 10.1016/j.infrared.2021.103776_b0155 Hu (10.1016/j.infrared.2021.103776_b0040) 2012; 39 Gao (10.1016/j.infrared.2021.103776_b0100) 2019; 39 Janis Arents (10.1016/j.infrared.2021.103776_b0020) 2018; 52 Zhang (10.1016/j.infrared.2021.103776_b0075) 2013 10.1016/j.infrared.2021.103776_b0150 Ma (10.1016/j.infrared.2021.103776_b0045) 2011 Alismail (10.1016/j.infrared.2021.103776_b0110) 2015; 32 10.1016/j.infrared.2021.103776_b0070 Cai (10.1016/j.infrared.2021.103776_b0090) 2017; 10 Fu (10.1016/j.infrared.2021.103776_b0025) 2018; 106 Olivka (10.1016/j.infrared.2021.103776_b0125) 2016; 2016 Zeng (10.1016/j.infrared.2021.103776_b0085) 2018; 18 Kurnianggoro (10.1016/j.infrared.2021.103776_b0115) 2015; 12 10.1016/j.infrared.2021.103776_b0105 Jung (10.1016/j.infrared.2021.103776_b0095) 2015; 15 Chen (10.1016/j.infrared.2021.103776_b0035) 2018; 15 Paulius (10.1016/j.infrared.2021.103776_b0005) 2019; 118 10.1016/j.infrared.2021.103776_b0120 Zhu (10.1016/j.infrared.2021.103776_b0165) 2014; 75 Wang (10.1016/j.infrared.2021.103776_b0050) 2018; 18 Savran (10.1016/j.infrared.2021.103776_b0130) 2014; 53 10.1016/j.infrared.2021.103776_b0160 Sun (10.1016/j.infrared.2021.103776_b0015) 2019; 41 Sazara (10.1016/j.infrared.2021.103776_b0080) 2017 Yang (10.1016/j.infrared.2021.103776_b0055) 2016; 127 Zhao (10.1016/j.infrared.2021.103776_b0145) 2020; 10 Chiou (10.1016/j.infrared.2021.103776_b0135) 2012; 26 Baraka (10.1016/j.infrared.2021.103776_b0010) 2018; 10 Ni (10.1016/j.infrared.2021.103776_b0065) 2016; 2 Chen (10.1016/j.infrared.2021.103776_b0140) 2012; 20 Maly (10.1016/j.infrared.2021.103776_b0030) 2016 |
| References_xml | – volume: 10 year: 2020 ident: b0145 article-title: Design of a predictive RBF compensation fuzzy PID controller for 3D laser scanning system publication-title: Appl. Sci. – reference: D. Christie, C. Jiang, D. Paudel, C. Demonceaux, 3D reconstruction of dynamic vehicles using sparse 3D-laser-scanner and 2D image fusion, in: 2016 Int. Conf. Informatics Comput. ICIC 2016, 2017. – volume: 15 year: 2015 ident: b0095 article-title: Development of kinematic 3D laser scanning system for indoor mapping and as-built BIM using constrained SLAM publication-title: Sensors (Switzerland) – volume: 12 year: 2015 ident: b0115 article-title: Calibration of a 2D laser scanner system and rotating platform using a point-plane constraint publication-title: Comput. Sci. Inf. Syst. – volume: 18 year: 2018 ident: b0050 article-title: A miniature binocular endoscope with local feature matching and stereo matching for 3d measurement and 3d reconstruction publication-title: Sensors (Switzerland) – volume: 127 year: 2016 ident: b0055 article-title: 3D reconstruction of building facade with fused data of terrestrial LiDAR data and optical image publication-title: Optik (Stuttg) – year: 2011 ident: b0045 article-title: Depth extraction by simplified binocular vision publication-title: Lect. Notes Electr. Eng. – volume: 20 year: 2012 ident: b0140 article-title: Adaptive fuzzy control of a class of nonlinear systems by fuzzy approximation approach publication-title: IEEE Trans. Fuzzy Syst. – year: 2016 ident: b0030 article-title: Augmented reality experiments with industrial robot in industry 4.0 environment, in publication-title: IEEE Int. Conf. Ind. Inf. – reference: E. Kwak, M. Al-Durgham, A. Habib, Automatic 3D building model generation from LIDAR and image data using sequential minimum bounding rectangle, ISPRS – Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XXXIX-B3 (2012). – volume: 39 year: 2012 ident: b0040 article-title: Application of SLAM in vehicle-borne mobile mapping system publication-title: Zhongguo Jiguang/Chin. J. Lasers – volume: 75 year: 2014 ident: b0165 article-title: Airship horizontal trajectory tracking control based on Active Disturbance Rejection Control (ADRC) publication-title: Nonlinear Dyn. – volume: 39 year: 2019 ident: b0100 article-title: Calibration of rotating 2D LIDAR based on simple plane measurement publication-title: Sens. Rev. – volume: 41 year: 2019 ident: b0015 article-title: RGB-D Sensor Based Human Comfortable Following Behavior for Service Robots in Indoor Environments publication-title: Jiqiren/Robot. – volume: 10 year: 2018 ident: b0010 article-title: Mobile Service Robot State Revealing Through Expressive Lights: Formalism, Design, and Evaluation publication-title: Int. J. Soc. Robot. – year: 2013 ident: b0075 article-title: 3D point cloud based hybrid maps reconstruction for indoor environments publication-title: Lect. Notes Electr. Eng. – volume: 18 year: 2018 ident: b0085 article-title: An improved calibration method for a rotating 2D LIDAR system publication-title: Sensors (Switzerland) – volume: 118 year: 2019 ident: b0005 article-title: A Survey of Knowledge Representation in Service Robotics publication-title: Rob. Auton. Syst. – volume: 10 year: 2017 ident: b0090 article-title: Development of real-time laser-scanning system to detect tree canopy characteristics for variable-rate pesticide application publication-title: Int. J. Agric. Biol. Eng. – reference: L. Pfotzer, J. Oberlaender, A. Roennau, R. Dillmann, Development and calibration of KaRoLa, a compact, high-resolution 3D laser scanner, in: 12th IEEE Int. Symp. Safety, Secur. Rescue Robot. SSRR 2014 – Symp. Proc., 2014. – volume: 32 year: 2015 ident: b0110 article-title: Automatic Calibration of Spinning Actuated Lidar Internal Parameters publication-title: J. F. Robot. – volume: 53 year: 2014 ident: b0130 article-title: A fuzzy model based adaptive PID controller design for nonlinear and uncertain processes publication-title: ISA Trans. – volume: 2 year: 2016 ident: b0065 article-title: 3D reconstruction of plant/tree canopy using monocular and binocular vision publication-title: J. Imaging – year: 2017 ident: b0080 article-title: Offline reconstruction of missing vehicle trajectory data from 3D LIDAR publication-title: IEEE Intell. Veh. Symp. Proc. – volume: 26 year: 2012 ident: b0135 article-title: A PSO-based adaptive fuzzy PID-controllers publication-title: Simul. Model. Pract. Theory – volume: 52 year: 2018 ident: b0020 article-title: Integration of Computervision and Artificial Intelligence Subsystems with Robot Operating System Based Motion Planning for Industrial Robots publication-title: Autom. Control Comput. Sci. – reference: N.B. Jing, X.M. Ma, W. Guo, 3D reconstruction of underground tunnel using kinect camera, in: Proc. – 2018 Int. Symp. Comput. Consum. Control. IS3C 2018, 2019. – reference: E. Menegatti, F. Basso, E. Wai Yan So, Calibration of a rorating 2D laser range - finder using point - plane coistraints, J. Autom. Mob. Robot. Intell. Syst. 7 (2013). – reference: Zhang Zijian, Cheng Xiaojun, Cao Yujie, Wang Feng, Yu Yue, Application of 3D Reconstruction of Relic Sites Combined with Laser and Vision Point Cloud, Chinese J. Lasers. 47 (2020). – reference: . – volume: 106 year: 2018 ident: b0025 article-title: An improved A* algorithm for the industrial robot path planning with high success rate and short length publication-title: Rob. Auton. Syst. – volume: 2016 year: 2016 ident: b0125 article-title: Calibration of Short Range 2D Laser Range Finder for 3D SLAM Usage publication-title: J. Sens. – volume: 15 year: 2018 ident: b0035 article-title: Collaborative robot zero moment control for direct teaching based on self-measured gravity and friction publication-title: Int. J. Adv. Robot. Syst. – volume: 38 year: 2017 ident: b0060 article-title: 3D reconstruction of buildings from LiDAR data considering various types of roof structures publication-title: Int. J. Remote Sens. – volume: 2016 year: 2016 ident: 10.1016/j.infrared.2021.103776_b0125 article-title: Calibration of Short Range 2D Laser Range Finder for 3D SLAM Usage publication-title: J. Sens. doi: 10.1155/2016/3715129 – volume: 10 year: 2017 ident: 10.1016/j.infrared.2021.103776_b0090 article-title: Development of real-time laser-scanning system to detect tree canopy characteristics for variable-rate pesticide application publication-title: Int. J. Agric. Biol. Eng. – volume: 32 year: 2015 ident: 10.1016/j.infrared.2021.103776_b0110 article-title: Automatic Calibration of Spinning Actuated Lidar Internal Parameters publication-title: J. F. Robot. – volume: 18 year: 2018 ident: 10.1016/j.infrared.2021.103776_b0085 article-title: An improved calibration method for a rotating 2D LIDAR system publication-title: Sensors (Switzerland) doi: 10.3390/s18020497 – volume: 118 year: 2019 ident: 10.1016/j.infrared.2021.103776_b0005 article-title: A Survey of Knowledge Representation in Service Robotics publication-title: Rob. Auton. Syst. doi: 10.1016/j.robot.2019.03.005 – volume: 106 year: 2018 ident: 10.1016/j.infrared.2021.103776_b0025 article-title: An improved A* algorithm for the industrial robot path planning with high success rate and short length publication-title: Rob. Auton. Syst. doi: 10.1016/j.robot.2018.04.007 – ident: 10.1016/j.infrared.2021.103776_b0105 doi: 10.1109/SSRR.2014.7017677 – volume: 12 year: 2015 ident: 10.1016/j.infrared.2021.103776_b0115 article-title: Calibration of a 2D laser scanner system and rotating platform using a point-plane constraint publication-title: Comput. Sci. Inf. Syst. doi: 10.2298/CSIS141020093K – volume: 20 year: 2012 ident: 10.1016/j.infrared.2021.103776_b0140 article-title: Adaptive fuzzy control of a class of nonlinear systems by fuzzy approximation approach publication-title: IEEE Trans. Fuzzy Syst. – volume: 18 year: 2018 ident: 10.1016/j.infrared.2021.103776_b0050 article-title: A miniature binocular endoscope with local feature matching and stereo matching for 3d measurement and 3d reconstruction publication-title: Sensors (Switzerland) – volume: 52 year: 2018 ident: 10.1016/j.infrared.2021.103776_b0020 article-title: Integration of Computervision and Artificial Intelligence Subsystems with Robot Operating System Based Motion Planning for Industrial Robots publication-title: Autom. Control Comput. Sci. – volume: 127 year: 2016 ident: 10.1016/j.infrared.2021.103776_b0055 article-title: 3D reconstruction of building facade with fused data of terrestrial LiDAR data and optical image publication-title: Optik (Stuttg) – ident: 10.1016/j.infrared.2021.103776_b0070 doi: 10.1109/IS3C.2018.00077 – volume: 2 year: 2016 ident: 10.1016/j.infrared.2021.103776_b0065 article-title: 3D reconstruction of plant/tree canopy using monocular and binocular vision publication-title: J. Imaging doi: 10.3390/jimaging2040028 – year: 2011 ident: 10.1016/j.infrared.2021.103776_b0045 article-title: Depth extraction by simplified binocular vision publication-title: Lect. Notes Electr. Eng. doi: 10.1007/978-3-642-21762-3 – ident: 10.1016/j.infrared.2021.103776_b0155 doi: 10.5194/isprsarchives-XXXIX-B3-285-2012 – year: 2016 ident: 10.1016/j.infrared.2021.103776_b0030 article-title: Augmented reality experiments with industrial robot in industry 4.0 environment, in publication-title: IEEE Int. Conf. Ind. Inf. – volume: 10 year: 2020 ident: 10.1016/j.infrared.2021.103776_b0145 article-title: Design of a predictive RBF compensation fuzzy PID controller for 3D laser scanning system publication-title: Appl. Sci. – volume: 75 year: 2014 ident: 10.1016/j.infrared.2021.103776_b0165 article-title: Airship horizontal trajectory tracking control based on Active Disturbance Rejection Control (ADRC) publication-title: Nonlinear Dyn. doi: 10.1007/s11071-013-1099-x – year: 2013 ident: 10.1016/j.infrared.2021.103776_b0075 article-title: 3D point cloud based hybrid maps reconstruction for indoor environments publication-title: Lect. Notes Electr. Eng. doi: 10.1007/978-3-642-38466-0_1 – volume: 15 year: 2018 ident: 10.1016/j.infrared.2021.103776_b0035 article-title: Collaborative robot zero moment control for direct teaching based on self-measured gravity and friction publication-title: Int. J. Adv. Robot. Syst. doi: 10.1177/1729881418808711 – year: 2017 ident: 10.1016/j.infrared.2021.103776_b0080 article-title: Offline reconstruction of missing vehicle trajectory data from 3D LIDAR publication-title: IEEE Intell. Veh. Symp. Proc. – ident: 10.1016/j.infrared.2021.103776_b0120 – volume: 10 year: 2018 ident: 10.1016/j.infrared.2021.103776_b0010 article-title: Mobile Service Robot State Revealing Through Expressive Lights: Formalism, Design, and Evaluation publication-title: Int. J. Soc. Robot. doi: 10.1007/s12369-017-0431-x – volume: 15 year: 2015 ident: 10.1016/j.infrared.2021.103776_b0095 article-title: Development of kinematic 3D laser scanning system for indoor mapping and as-built BIM using constrained SLAM publication-title: Sensors (Switzerland) doi: 10.3390/s151026430 – volume: 41 year: 2019 ident: 10.1016/j.infrared.2021.103776_b0015 article-title: RGB-D Sensor Based Human Comfortable Following Behavior for Service Robots in Indoor Environments publication-title: Jiqiren/Robot. – volume: 38 year: 2017 ident: 10.1016/j.infrared.2021.103776_b0060 article-title: 3D reconstruction of buildings from LiDAR data considering various types of roof structures publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2017.1280624 – volume: 39 year: 2019 ident: 10.1016/j.infrared.2021.103776_b0100 article-title: Calibration of rotating 2D LIDAR based on simple plane measurement publication-title: Sens. Rev. doi: 10.1108/SR-11-2017-0237 – volume: 53 year: 2014 ident: 10.1016/j.infrared.2021.103776_b0130 article-title: A fuzzy model based adaptive PID controller design for nonlinear and uncertain processes publication-title: ISA Trans. doi: 10.1016/j.isatra.2013.09.020 – volume: 26 year: 2012 ident: 10.1016/j.infrared.2021.103776_b0135 article-title: A PSO-based adaptive fuzzy PID-controllers publication-title: Simul. Model. Pract. Theory doi: 10.1016/j.simpat.2012.04.001 – volume: 39 year: 2012 ident: 10.1016/j.infrared.2021.103776_b0040 article-title: Application of SLAM in vehicle-borne mobile mapping system publication-title: Zhongguo Jiguang/Chin. J. Lasers – ident: 10.1016/j.infrared.2021.103776_b0160 doi: 10.1109/IAC.2016.7905690 – ident: 10.1016/j.infrared.2021.103776_b0150 doi: 10.3788/CJL202047.1110001 |
| SSID | ssj0016406 |
| Score | 2.3082132 |
| Snippet | •A differential evolutionary PID with nonlinear tracking compensator is proposed to accurately control the lidar pitching motion.•The quadratic polynomial... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 103776 |
| SubjectTerms | 2D LiDAR Color camera Data fusion algorithm Differential evolutionary nonlinear tracking PID |
| Title | Design of 2D LiDAR and camera fusion system improved by differential evolutionary PID with nonlinear tracking compensator |
| URI | https://dx.doi.org/10.1016/j.infrared.2021.103776 |
| Volume | 116 |
| WOSCitedRecordID | wos000674612500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0275 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016406 issn: 1350-4495 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKBxIviKsYN_mBN5TROE5iP1ZkiCI0VdOQsqfIdmLomNIqS6v13-yn7jiOvcAmxh54iSontpN8X-xzTs8FofehkcsrBaufIGVAw1IEEqAP0pIpLQkoFKJLmf8tPThgec7no9GFi4XZnKZ1zc7P-eq_Qg1tALYJnb0D3H5QaIDfADocAXY4_hPwWeeTYYRAkoHKnU0PbeyaMOanD3ptzGN9AmcTI9ksN1YIdaVSWmNDrzb9PRqnuvkss_ba2ubVEI2pLKF-9fG6K9CEhU1a7OXcWa2bzrXdWk7OOoa118z4-dpAnC-EiUIb2LCX1qO__vFzvfAuQ921x0vT6PeSQ2u_PYZLt24T7m0YJPQedG7ZjeJJQKktt-nX5XC4spp4Rlsp5tqib-0PJ0ZT6R5tz0yxd9Xh9yzbf-x-3ifRubudFG6cwoxT2HHuoR2SxpyN0c50tp9_9f9UJbSr3-qfYBCFfvMd3SwADYSao8foUa-N4Kll0RM0quqn6MHcYvYMbS2X8FJjkuGOSxi4hC2XsOUStlzCjktYbvGQS3jIJQxcwoZL2HMJOy7hAZeeo--f948-fQn6Wh2BikLSwqceywq0NXhFFU2iiBq9nTOtFVOJhG1VxVzGOk0Fp0wxTWhZEikJhbOsipPoBRrDxNVLhJmWiZrQMmWaUx5GMhIEBNmJSFSSpJLvoti9wEL1iexNPZXT4u8Q7qKPvt_KpnK5tQd3-BS9QGoFzQKod0vfV3ee7TV6ePVtvEHjtllXb9F9tWkXZ827nneXMEGzEQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+2D+LiDAR+and+camera+fusion+system+improved+by+differential+evolutionary+PID+with+nonlinear+tracking+compensator&rft.jtitle=Infrared+physics+%26+technology&rft.au=Xu%2C+Xiaobin&rft.au=Zhao%2C+Minghui&rft.au=Lu%2C+Yonghua&rft.au=Ran%2C+Yingying&rft.date=2021-08-01&rft.issn=1350-4495&rft.volume=116&rft.spage=103776&rft_id=info:doi/10.1016%2Fj.infrared.2021.103776&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_infrared_2021_103776 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-4495&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-4495&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-4495&client=summon |