Enhancing state of charge and state of energy estimation in Lithium-ion batteries based on a TimesNet model with Gaussian data augmentation and error correction

Accurately estimating the state of charge (SOC) and state of energy (SOE) of lithium-ion batteries is crucial for their safe and stable operation. This study proposes a hybrid deep learning model based on Gaussian data augmentation (GDA), the TimesNet model, error correction (EC), and an improved Ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied energy Jg. 359; S. 122669
Hauptverfasser: Zhang, Chu, Zhang, Yue, Li, Zhengbo, Zhang, Zhao, Nazir, Muhammad Shahzad, Peng, Tian
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.04.2024
Schlagworte:
ISSN:0306-2619, 1872-9118
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Accurately estimating the state of charge (SOC) and state of energy (SOE) of lithium-ion batteries is crucial for their safe and stable operation. This study proposes a hybrid deep learning model based on Gaussian data augmentation (GDA), the TimesNet model, error correction (EC), and an improved Bayesian algorithm called Sequential Model-based Algorithm Configuration (SMAC) for SOC and SOE estimation in lithium-ion batteries. Firstly, we compared the performance of the TimesNet model with other benchmark models. Then, GDA data with different signal-to-noise ratios were used for testing, and the model's performance was improved using GDA data with appropriate signal-to-noise ratios. Finally, an error correction method was employed to further enhance the estimation accuracy. During the experiment, SMAC was used to optimize its hyperparameters. In NN and UDDS drive cycles at temperatures of 0 °C, 10 °C, and 25 °C, the highest RMSE values for SOC and SOE estimation of the proposed model were 0.105%, 0.098%, 0.227%, and 0.213%, respectively. Experimental results demonstrate that the TimesNet model achieves good prediction performance for SOC and SOE estimation. GDA and EC effectively enhance the accuracy of the model. •Using visual networks to analyze the operational data of lithium batteries.•Gaussian data augmentation is applied to optimize the raw data.•Error correction is used to improve the estimation accuracy of SOC and SOE.
AbstractList Accurately estimating the state of charge (SOC) and state of energy (SOE) of lithium-ion batteries is crucial for their safe and stable operation. This study proposes a hybrid deep learning model based on Gaussian data augmentation (GDA), the TimesNet model, error correction (EC), and an improved Bayesian algorithm called Sequential Model-based Algorithm Configuration (SMAC) for SOC and SOE estimation in lithium-ion batteries. Firstly, we compared the performance of the TimesNet model with other benchmark models. Then, GDA data with different signal-to-noise ratios were used for testing, and the model's performance was improved using GDA data with appropriate signal-to-noise ratios. Finally, an error correction method was employed to further enhance the estimation accuracy. During the experiment, SMAC was used to optimize its hyperparameters. In NN and UDDS drive cycles at temperatures of 0 °C, 10 °C, and 25 °C, the highest RMSE values for SOC and SOE estimation of the proposed model were 0.105%, 0.098%, 0.227%, and 0.213%, respectively. Experimental results demonstrate that the TimesNet model achieves good prediction performance for SOC and SOE estimation. GDA and EC effectively enhance the accuracy of the model. •Using visual networks to analyze the operational data of lithium batteries.•Gaussian data augmentation is applied to optimize the raw data.•Error correction is used to improve the estimation accuracy of SOC and SOE.
ArticleNumber 122669
Author Nazir, Muhammad Shahzad
Peng, Tian
Zhang, Yue
Li, Zhengbo
Zhang, Zhao
Zhang, Chu
Author_xml – sequence: 1
  givenname: Chu
  surname: Zhang
  fullname: Zhang, Chu
  organization: Faculty of Automation, Huaiyin Institute of Technology, Huaian 223003, China
– sequence: 2
  givenname: Yue
  surname: Zhang
  fullname: Zhang, Yue
  organization: Faculty of Automation, Huaiyin Institute of Technology, Huaian 223003, China
– sequence: 3
  givenname: Zhengbo
  surname: Li
  fullname: Li, Zhengbo
  organization: Faculty of Automation, Huaiyin Institute of Technology, Huaian 223003, China
– sequence: 4
  givenname: Zhao
  surname: Zhang
  fullname: Zhang, Zhao
  organization: Faculty of Automation, Huaiyin Institute of Technology, Huaian 223003, China
– sequence: 5
  givenname: Muhammad Shahzad
  surname: Nazir
  fullname: Nazir, Muhammad Shahzad
  organization: Faculty of Automation, Huaiyin Institute of Technology, Huaian 223003, China
– sequence: 6
  givenname: Tian
  surname: Peng
  fullname: Peng, Tian
  email: husthydropt@126.com
  organization: Faculty of Automation, Huaiyin Institute of Technology, Huaian 223003, China
BookMark eNqFkN1KAzEQhYMoWH9eQfICW5PsNpsFL5RSf6DoTb0Os8m0TelmS5IqfRsf1V1WEbzp1WQOOWc43wU59a1HQm44G3PG5e1mDDv0GFaHsWCiGHMhpKxOyIirUmQV5-qUjFjOZCYkr87JRYwbxpjggo3I18yvwRvnVzQmSEjbJTVrCCuk4O2fNhygGJNrILnWU-fp3KW12zdZv9aQEgaHsXtFtLSTgC5cg_EVE21ai1v62f2nT7CP0YGnFhJQ2K8a9GmI7C9iCG2gpg0BTS9ekbMlbCNe_8xL8v44W0yfs_nb08v0YZ6ZnIuUqaKsjUIF-SQvC2W4hFoUWFmBhaokCqZsXQLvMExyWU1kztAYu5SsLlQJRX5J5JBrQhtjwKXeha5qOGjOdM9Zb_QvZ91z1gPnznj3z2jc0CcFcNvj9vvBjl25D4dBR-PQG7SuJ6Bt645FfAPBUKOg
CitedBy_id crossref_primary_10_1016_j_electacta_2025_146734
crossref_primary_10_1016_j_jpowsour_2025_237495
crossref_primary_10_1007_s11581_024_05686_z
crossref_primary_10_3390_en18154016
crossref_primary_10_1016_j_est_2025_115676
crossref_primary_10_1007_s11581_025_06341_x
crossref_primary_10_1016_j_enconman_2025_119819
crossref_primary_10_1016_j_renene_2025_123527
crossref_primary_10_1016_j_energy_2024_132161
crossref_primary_10_1016_j_energy_2024_133032
crossref_primary_10_3390_s25030749
crossref_primary_10_1109_JSEN_2025_3585543
crossref_primary_10_1016_j_energy_2024_133434
crossref_primary_10_1007_s11581_024_05716_w
crossref_primary_10_1007_s11581_024_05698_9
crossref_primary_10_1016_j_energy_2025_134722
crossref_primary_10_1016_j_est_2025_116351
crossref_primary_10_1016_j_est_2025_118077
crossref_primary_10_1016_j_est_2025_116276
crossref_primary_10_1016_j_est_2025_117389
crossref_primary_10_1016_j_apenergy_2025_126533
crossref_primary_10_1109_ACCESS_2025_3591970
crossref_primary_10_1007_s11581_025_06415_w
crossref_primary_10_3390_app15095003
crossref_primary_10_1016_j_est_2024_113399
crossref_primary_10_1016_j_jpowsour_2024_234822
crossref_primary_10_1109_TIA_2024_3522506
crossref_primary_10_1016_j_energy_2025_138214
crossref_primary_10_1039_D5EE02217G
crossref_primary_10_2478_amns_2024_2534
crossref_primary_10_1109_TII_2024_3438236
crossref_primary_10_1016_j_measurement_2025_117596
crossref_primary_10_1080_15567036_2025_2505203
crossref_primary_10_1016_j_energy_2025_137020
Cites_doi 10.1016/j.measurement.2020.108679
10.1016/j.est.2023.106930
10.1016/j.oregeorev.2023.105403
10.1007/s10311-022-01499-6
10.1016/j.neucom.2020.07.061
10.1016/j.energy.2023.127526
10.1016/j.sysarc.2019.101635
10.1016/j.jhydrol.2021.126510
10.1016/j.est.2022.104553
10.1109/TPEL.2016.2603229
10.1016/j.egyr.2023.01.108
10.1109/TVT.2021.3051655
10.1016/j.est.2022.106298
10.1016/j.apenergy.2022.120333
10.1016/j.jpowsour.2014.07.107
10.1016/j.resourpol.2022.102962
10.1016/j.energy.2022.126419
10.1023/A:1012771025575
10.1016/j.est.2023.106836
10.1061/(ASCE)EY.1943-7897.0000320
10.1016/j.enconman.2022.116330
10.1016/j.apenergy.2023.120821
10.1016/j.est.2023.108707
10.1016/j.est.2017.04.011
10.1016/j.est.2021.103269
10.1016/j.est.2021.102440
10.1016/j.patcog.2023.109347
10.1109/TCST.2020.2974176
10.1016/j.energy.2023.128956
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.apenergy.2024.122669
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
ExternalDocumentID 10_1016_j_apenergy_2024_122669
S0306261924000527
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
LY6
R2-
SAC
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c312t-847bc8e8a353748c16ab24e9d2e4896e208db7a130653695630eccdf60b487a43
ISICitedReferencesCount 47
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001174956100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Tue Nov 18 21:30:45 EST 2025
Sat Nov 29 07:24:06 EST 2025
Sat Feb 24 15:48:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords State of energy
Gaussian data augmentation
TimesNet
Error correction
State of charge
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-847bc8e8a353748c16ab24e9d2e4896e208db7a130653695630eccdf60b487a43
ParticipantIDs crossref_primary_10_1016_j_apenergy_2024_122669
crossref_citationtrail_10_1016_j_apenergy_2024_122669
elsevier_sciencedirect_doi_10_1016_j_apenergy_2024_122669
PublicationCentury 2000
PublicationDate 2024-04-01
2024-04-00
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Shrivastava, Soon, Idris, Mekhilef, Adnan (bb0060) 2021; 70
Ipek, Eren, Yilmaz (bb0075) 2019
Sun, Zhong, Han (bb0140) 2021; 170
Liu, Wu, Zhang, Chen (bb0080) 2014; 270
Chen, Song, Lopes, Bao, Zhang, Lin (bb0115) 2023
Suo, Peng, Song, Zhang, Wang, Fu (bb0100) 2023; 276
Ren, Du (bb0040) 2023; 9
Hutter, Hoos, Leyton-Brown (bb0155) 2011
Campestrini, Kosch, Jossen (bb0045) 2017; 12
El Bilali, Taleb, Bahlaoui, Brouziyne (bb0170) 2021; 599
Yang, Shami (bb0145) 2020; 415
Tian, Lai, Li, Tian (bb0120) 2023; 62
Arslan, Guzel, Demirci, Ozdemir (bb0175) 2019
Jones (bb0150) 2001; 21
Chen, Wang, Jiang, Fernandez (bb0065) 2023; 62
Giakoumis, Alysandratou (bb0190) 2016; 142
Mittal, Vaishay (bb0090) 2019; 99
Luo, Wang, Cheng, Wu (bb0135) 2022; 79
Tao, Zhang, Xiong, Hu, Ji, Peng (bb0095) 2023; 336
Fan, Liu, Tang, Qu (bb0110) 2022; 50
Wu H., Hu T., Liu Y., Zhou H., Wang J., Long M. Timesnet: Temporal 2d-variation modeling for general time series analysis. arXiv, 2022, 10.48550/arXiv.2210.02186,preprint arXiv:221002186.
Xiong, Peng, Tao, Zhang, Song, Nazir (bb0010) 2023; 266
Ma, Hu, Cheng (bb0105) 2021; 37
Kollmeyer (bb0185) 2018; 1
Yang, Chen, Wang, Msigwa, Osman, Fawzy (bb0020) 2023; 21
Simin Peng, Sun, Liu, Yu, Kan (bb0025) 2023; 282
Ghaeminezhad, Ouyang, Wei, Xue, Wang (bb0030) 2023; 72
Xu, Yoon, Fuentes, Park (bb0130) 2023; 137
Sheng, Fu, Li, Jiang, Guo, Li (bb0035) 2022; 271
Harris, Ayer, Naghizadeh, Smith, Snyder, Behnia (bb0180) 2023
Sharma, Achlerkar, Shrivastava, Garg, Panigrahi (bb0085) 2022
Marelli, Corno (bb0050) 2021; 29
Zhang, Xiong, He, Shen (bb0055) 2017; 32
Zou, Duan, Wang, Pang, Liu, Sheikh (bb0125) 2023; 57
Al-Qizwini, Barjasteh, Al-Qassab, Radha (bb0160) 2017
Qiao, Peng, Sun, Zhang, Liu, Zhang (bb0005) 2023; 120616
Lai, Huang, Han, Gu, Zheng (bb0070) 2021; 43
Zhang, Hu, Ji, Liu, Xia, Nazir (bb0015) 2023; 330
Ghaeminezhad (10.1016/j.apenergy.2024.122669_bb0030) 2023; 72
Sharma (10.1016/j.apenergy.2024.122669_bb0085) 2022
Mittal (10.1016/j.apenergy.2024.122669_bb0090) 2019; 99
Chen (10.1016/j.apenergy.2024.122669_bb0065) 2023; 62
Giakoumis (10.1016/j.apenergy.2024.122669_bb0190) 2016; 142
Marelli (10.1016/j.apenergy.2024.122669_bb0050) 2021; 29
Sheng (10.1016/j.apenergy.2024.122669_bb0035) 2022; 271
Zou (10.1016/j.apenergy.2024.122669_bb0125) 2023; 57
El Bilali (10.1016/j.apenergy.2024.122669_bb0170) 2021; 599
Yang (10.1016/j.apenergy.2024.122669_bb0020) 2023; 21
Lai (10.1016/j.apenergy.2024.122669_bb0070) 2021; 43
Ipek (10.1016/j.apenergy.2024.122669_bb0075) 2019
Arslan (10.1016/j.apenergy.2024.122669_bb0175) 2019
Kollmeyer (10.1016/j.apenergy.2024.122669_bb0185) 2018; 1
Jones (10.1016/j.apenergy.2024.122669_bb0150) 2001; 21
Liu (10.1016/j.apenergy.2024.122669_bb0080) 2014; 270
Campestrini (10.1016/j.apenergy.2024.122669_bb0045) 2017; 12
10.1016/j.apenergy.2024.122669_bb0165
Tao (10.1016/j.apenergy.2024.122669_bb0095) 2023; 336
Yang (10.1016/j.apenergy.2024.122669_bb0145) 2020; 415
Ma (10.1016/j.apenergy.2024.122669_bb0105) 2021; 37
Sun (10.1016/j.apenergy.2024.122669_bb0140) 2021; 170
Ren (10.1016/j.apenergy.2024.122669_bb0040) 2023; 9
Zhang (10.1016/j.apenergy.2024.122669_bb0055) 2017; 32
Chen (10.1016/j.apenergy.2024.122669_bb0115) 2023
Xiong (10.1016/j.apenergy.2024.122669_bb0010) 2023; 266
Luo (10.1016/j.apenergy.2024.122669_bb0135) 2022; 79
Fan (10.1016/j.apenergy.2024.122669_bb0110) 2022; 50
Shrivastava (10.1016/j.apenergy.2024.122669_bb0060) 2021; 70
Qiao (10.1016/j.apenergy.2024.122669_bb0005) 2023; 120616
Simin Peng (10.1016/j.apenergy.2024.122669_bb0025) 2023; 282
Suo (10.1016/j.apenergy.2024.122669_bb0100) 2023; 276
Hutter (10.1016/j.apenergy.2024.122669_bb0155) 2011
Xu (10.1016/j.apenergy.2024.122669_bb0130) 2023; 137
Tian (10.1016/j.apenergy.2024.122669_bb0120) 2023; 62
Zhang (10.1016/j.apenergy.2024.122669_bb0015) 2023; 330
Al-Qizwini (10.1016/j.apenergy.2024.122669_bb0160) 2017
Harris (10.1016/j.apenergy.2024.122669_bb0180) 2023
References_xml – volume: 62
  start-page: 106930
  year: 2023
  ident: bb0065
  article-title: A novel combined estimation method for state of energy and predicted maximum available energy based on fractional-order modeling
  publication-title: J Energy Stor
– volume: 43
  start-page: 103269
  year: 2021
  ident: bb0070
  article-title: A novel method for state of energy estimation of lithium-ion batteries using particle filter and extended Kalman filter
  publication-title: J Energy Stor
– start-page: 89
  year: 2017
  end-page: 96
  ident: bb0160
  article-title: Deep learning algorithm for autonomous driving using googlenet
  publication-title: 2017 IEEE intelligent vehicles symposium (IV)
– start-page: 604
  year: 2019
  end-page: 609
  ident: bb0075
  article-title: State-of-charge estimation of li-ion battery cell using support vector regression and gradient boosting techniques
  publication-title: 2019 International Aegean Conference on Electrical Machines and Power Electronics (ACEMP) & 2019 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM)
– volume: 330
  start-page: 120333
  year: 2023
  ident: bb0015
  article-title: An evolutionary stacked generalization model based on deep learning and improved grasshopper optimization algorithm for predicting the remaining useful life of PEMFC
  publication-title: Appl Energy
– volume: 57
  start-page: 106298
  year: 2023
  ident: bb0125
  article-title: A novel convolutional informer network for deterministic and probabilistic state-of-charge estimation of lithium-ion batteries
  publication-title: J Energy Stor
– reference: Wu H., Hu T., Liu Y., Zhou H., Wang J., Long M. Timesnet: Temporal 2d-variation modeling for general time series analysis. arXiv, 2022, 10.48550/arXiv.2210.02186,preprint arXiv:221002186.
– start-page: 105403
  year: 2023
  ident: bb0180
  article-title: A study of faults in the superior province of Ontario and Quebec using the random forest machine learning algorithm: spatial relationship to gold mines
  publication-title: Ore Geol Rev
– start-page: 1
  year: 2019
  end-page: 5
  ident: bb0175
  article-title: SMOTE and Gaussian Noise based sensor data augmentation
  publication-title: 2019 4th International Conference on Computer Science and Engineering (UBMK)
– volume: 1
  year: 2018
  ident: bb0185
  article-title: Panasonic 18650pf li-ion battery data
  publication-title: Mendeley Data
– volume: 137
  start-page: 109347
  year: 2023
  ident: bb0130
  article-title: A comprehensive survey of image augmentation techniques for deep learning
  publication-title: Patt Recognit
– volume: 415
  start-page: 295
  year: 2020
  end-page: 316
  ident: bb0145
  article-title: On hyperparameter optimization of machine learning algorithms: theory and practice
  publication-title: Neurocomputing.
– volume: 270
  start-page: 151
  year: 2014
  end-page: 157
  ident: bb0080
  article-title: A method for state of energy estimation of lithium-ion batteries at dynamic currents and temperatures
  publication-title: J Power Sources
– volume: 37
  start-page: 102440
  year: 2021
  ident: bb0105
  article-title: State of charge and state of energy estimation for Lithium-ion batteries based on a long short-term memory neural network
  publication-title: J Energy Stor
– volume: 9
  start-page: 2993
  year: 2023
  end-page: 3021
  ident: bb0040
  article-title: A review of machine learning state-of-charge and state-of-health estimation algorithms for lithium-ion batteries
  publication-title: Energy Rep
– volume: 50
  start-page: 104553
  year: 2022
  ident: bb0110
  article-title: Simultaneously estimating two battery states by combining a long short-term memory network with an adaptive unscented Kalman filter
  publication-title: J Energy Stor
– start-page: 507
  year: 2011
  end-page: 523
  ident: bb0155
  article-title: Sequential model-based optimization for general algorithm configuration
  publication-title: Learning and Intelligent Optimization: 5th International Conference, LION 5, Rome, Italy, January 17–21, 2011 Selected Papers 5
– volume: 29
  start-page: 926
  year: 2021
  end-page: 933
  ident: bb0050
  article-title: Model-based estimation of Lithium concentrations and temperature in batteries using soft-constrained dual unscented Kalman filtering
  publication-title: IEEE Trans Control Syst Technol
– volume: 79
  start-page: 102962
  year: 2022
  ident: bb0135
  article-title: Multi-step-ahead copper price forecasting using a two-phase architecture based on an improved LSTM with novel input strategy and error correction
  publication-title: Resourc Pol
– volume: 599
  start-page: 126510
  year: 2021
  ident: bb0170
  article-title: An integrated approach based on Gaussian noises-based data augmentation method and AdaBoost model to predict faecal coliforms in rivers with small dataset
  publication-title: J Hydrol
– volume: 72
  start-page: 108707
  year: 2023
  ident: bb0030
  article-title: Review on state of charge estimation techniques of lithium-ion batteries: a control-oriented approach
  publication-title: J Energy Stor
– volume: 271
  start-page: 116330
  year: 2022
  ident: bb0035
  article-title: Energy management strategy based on health state for a PEMFC/Lithium-ion batteries hybrid power system
  publication-title: Energ Conver Manage
– volume: 99
  start-page: 101635
  year: 2019
  ident: bb0090
  article-title: A survey of techniques for optimizing deep learning on GPUs
  publication-title: J Syst Architect
– volume: 21
  start-page: 345
  year: 2001
  end-page: 383
  ident: bb0150
  article-title: A taxonomy of global optimization methods based on response surfaces
  publication-title: J Glob Optimiz
– volume: 336
  start-page: 120821
  year: 2023
  ident: bb0095
  article-title: Evolutionary gate recurrent unit coupling convolutional neural network and improved manta ray foraging optimization algorithm for performance degradation prediction of PEMFC
  publication-title: Appl Energy
– volume: 282
  start-page: 128956
  year: 2023
  ident: bb0025
  article-title: Michael Pecht. State of health estimation of lithium-ion batteries based on multi-health features extraction and improved long short-term memory neural network
  publication-title: Energy
– start-page: 1
  year: 2023
  ident: bb0115
  article-title: Joint estimation of state of charge and state of energy of lithium-ion batteries based on optimized bidirectional gated recurrent neural network
  publication-title: IEEE Transactions on Transportation Electrification
– volume: 276
  start-page: 127526
  year: 2023
  ident: bb0100
  article-title: Wind speed prediction by a swarm intelligence based deep learning model via signal decomposition and parameter optimization using improved chimp optimization algorithm
  publication-title: Energy.
– volume: 32
  start-page: 4421
  year: 2017
  end-page: 4431
  ident: bb0055
  article-title: Lithium-ion battery pack state of charge and state of energy estimation algorithms using a hardware-in-the-loop validation
  publication-title: IEEE Trans Power Electron
– volume: 62
  start-page: 106836
  year: 2023
  ident: bb0120
  article-title: State-of-charge estimation for lithium-ion batteries based on attentional sequence-to-sequence architecture
  publication-title: J Energy Stor
– volume: 12
  start-page: 149
  year: 2017
  end-page: 156
  ident: bb0045
  article-title: Influence of change in open circuit voltage on the state of charge estimation with an extended Kalman filter
  publication-title: J Energy Stor
– volume: 266
  start-page: 126419
  year: 2023
  ident: bb0010
  article-title: A dual-scale deep learning model based on ELM-BiLSTM and improved reptile search algorithm for wind power prediction
  publication-title: Energy.
– volume: 142
  year: 2016
  ident: bb0190
  article-title: Performance and emissions of a heavy-duty truck during the UDDS driving cycle: simulation analysis
  publication-title: J Energy Eng
– start-page: 1
  year: 2022
  end-page: 6
  ident: bb0085
  article-title: Combined SoC and SoE estimation of lithium-ion battery using multi-layer feedforward neural network
  publication-title: 2022 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES)
– volume: 120616
  year: 2023
  ident: bb0005
  article-title: Metaheuristic evolutionary deep learning model based on temporal convolutional network, improved aquila optimizer and random forest for rainfall-runoff simulation and multi-step runoff prediction
  publication-title: Exp Syst Appl
– volume: 70
  start-page: 1200
  year: 2021
  end-page: 1215
  ident: bb0060
  article-title: Combined state of charge and state of energy estimation of Lithium-ion battery using dual forgetting factor-based adaptive extended Kalman filter for electric vehicle applications
  publication-title: IEEE Trans Vehicul Technol
– volume: 21
  start-page: 55
  year: 2023
  end-page: 80
  ident: bb0020
  article-title: Circular economy strategies for combating climate change and other environmental issues
  publication-title: Environ Chem Lett
– volume: 170
  start-page: 108679
  year: 2021
  ident: bb0140
  article-title: A hybrid prognostic strategy with unscented particle filter and optimized multiple kernel relevance vector machine for lithium-ion battery
  publication-title: Measurement.
– ident: 10.1016/j.apenergy.2024.122669_bb0165
– start-page: 507
  year: 2011
  ident: 10.1016/j.apenergy.2024.122669_bb0155
  article-title: Sequential model-based optimization for general algorithm configuration
– volume: 170
  start-page: 108679
  year: 2021
  ident: 10.1016/j.apenergy.2024.122669_bb0140
  article-title: A hybrid prognostic strategy with unscented particle filter and optimized multiple kernel relevance vector machine for lithium-ion battery
  publication-title: Measurement.
  doi: 10.1016/j.measurement.2020.108679
– volume: 62
  start-page: 106930
  year: 2023
  ident: 10.1016/j.apenergy.2024.122669_bb0065
  article-title: A novel combined estimation method for state of energy and predicted maximum available energy based on fractional-order modeling
  publication-title: J Energy Stor
  doi: 10.1016/j.est.2023.106930
– start-page: 105403
  year: 2023
  ident: 10.1016/j.apenergy.2024.122669_bb0180
  article-title: A study of faults in the superior province of Ontario and Quebec using the random forest machine learning algorithm: spatial relationship to gold mines
  publication-title: Ore Geol Rev
  doi: 10.1016/j.oregeorev.2023.105403
– volume: 21
  start-page: 55
  year: 2023
  ident: 10.1016/j.apenergy.2024.122669_bb0020
  article-title: Circular economy strategies for combating climate change and other environmental issues
  publication-title: Environ Chem Lett
  doi: 10.1007/s10311-022-01499-6
– volume: 415
  start-page: 295
  year: 2020
  ident: 10.1016/j.apenergy.2024.122669_bb0145
  article-title: On hyperparameter optimization of machine learning algorithms: theory and practice
  publication-title: Neurocomputing.
  doi: 10.1016/j.neucom.2020.07.061
– volume: 276
  start-page: 127526
  year: 2023
  ident: 10.1016/j.apenergy.2024.122669_bb0100
  article-title: Wind speed prediction by a swarm intelligence based deep learning model via signal decomposition and parameter optimization using improved chimp optimization algorithm
  publication-title: Energy.
  doi: 10.1016/j.energy.2023.127526
– start-page: 89
  year: 2017
  ident: 10.1016/j.apenergy.2024.122669_bb0160
  article-title: Deep learning algorithm for autonomous driving using googlenet
– volume: 99
  start-page: 101635
  year: 2019
  ident: 10.1016/j.apenergy.2024.122669_bb0090
  article-title: A survey of techniques for optimizing deep learning on GPUs
  publication-title: J Syst Architect
  doi: 10.1016/j.sysarc.2019.101635
– volume: 599
  start-page: 126510
  year: 2021
  ident: 10.1016/j.apenergy.2024.122669_bb0170
  article-title: An integrated approach based on Gaussian noises-based data augmentation method and AdaBoost model to predict faecal coliforms in rivers with small dataset
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2021.126510
– volume: 50
  start-page: 104553
  year: 2022
  ident: 10.1016/j.apenergy.2024.122669_bb0110
  article-title: Simultaneously estimating two battery states by combining a long short-term memory network with an adaptive unscented Kalman filter
  publication-title: J Energy Stor
  doi: 10.1016/j.est.2022.104553
– volume: 32
  start-page: 4421
  year: 2017
  ident: 10.1016/j.apenergy.2024.122669_bb0055
  article-title: Lithium-ion battery pack state of charge and state of energy estimation algorithms using a hardware-in-the-loop validation
  publication-title: IEEE Trans Power Electron
  doi: 10.1109/TPEL.2016.2603229
– volume: 9
  start-page: 2993
  year: 2023
  ident: 10.1016/j.apenergy.2024.122669_bb0040
  article-title: A review of machine learning state-of-charge and state-of-health estimation algorithms for lithium-ion batteries
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2023.01.108
– volume: 70
  start-page: 1200
  year: 2021
  ident: 10.1016/j.apenergy.2024.122669_bb0060
  article-title: Combined state of charge and state of energy estimation of Lithium-ion battery using dual forgetting factor-based adaptive extended Kalman filter for electric vehicle applications
  publication-title: IEEE Trans Vehicul Technol
  doi: 10.1109/TVT.2021.3051655
– volume: 57
  start-page: 106298
  year: 2023
  ident: 10.1016/j.apenergy.2024.122669_bb0125
  article-title: A novel convolutional informer network for deterministic and probabilistic state-of-charge estimation of lithium-ion batteries
  publication-title: J Energy Stor
  doi: 10.1016/j.est.2022.106298
– volume: 330
  start-page: 120333
  year: 2023
  ident: 10.1016/j.apenergy.2024.122669_bb0015
  article-title: An evolutionary stacked generalization model based on deep learning and improved grasshopper optimization algorithm for predicting the remaining useful life of PEMFC
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.120333
– volume: 270
  start-page: 151
  year: 2014
  ident: 10.1016/j.apenergy.2024.122669_bb0080
  article-title: A method for state of energy estimation of lithium-ion batteries at dynamic currents and temperatures
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2014.07.107
– volume: 79
  start-page: 102962
  year: 2022
  ident: 10.1016/j.apenergy.2024.122669_bb0135
  article-title: Multi-step-ahead copper price forecasting using a two-phase architecture based on an improved LSTM with novel input strategy and error correction
  publication-title: Resourc Pol
  doi: 10.1016/j.resourpol.2022.102962
– volume: 266
  start-page: 126419
  year: 2023
  ident: 10.1016/j.apenergy.2024.122669_bb0010
  article-title: A dual-scale deep learning model based on ELM-BiLSTM and improved reptile search algorithm for wind power prediction
  publication-title: Energy.
  doi: 10.1016/j.energy.2022.126419
– start-page: 1
  year: 2019
  ident: 10.1016/j.apenergy.2024.122669_bb0175
  article-title: SMOTE and Gaussian Noise based sensor data augmentation
– volume: 21
  start-page: 345
  year: 2001
  ident: 10.1016/j.apenergy.2024.122669_bb0150
  article-title: A taxonomy of global optimization methods based on response surfaces
  publication-title: J Glob Optimiz
  doi: 10.1023/A:1012771025575
– volume: 62
  start-page: 106836
  year: 2023
  ident: 10.1016/j.apenergy.2024.122669_bb0120
  article-title: State-of-charge estimation for lithium-ion batteries based on attentional sequence-to-sequence architecture
  publication-title: J Energy Stor
  doi: 10.1016/j.est.2023.106836
– volume: 142
  year: 2016
  ident: 10.1016/j.apenergy.2024.122669_bb0190
  article-title: Performance and emissions of a heavy-duty truck during the UDDS driving cycle: simulation analysis
  publication-title: J Energy Eng
  doi: 10.1061/(ASCE)EY.1943-7897.0000320
– volume: 271
  start-page: 116330
  year: 2022
  ident: 10.1016/j.apenergy.2024.122669_bb0035
  article-title: Energy management strategy based on health state for a PEMFC/Lithium-ion batteries hybrid power system
  publication-title: Energ Conver Manage
  doi: 10.1016/j.enconman.2022.116330
– start-page: 604
  year: 2019
  ident: 10.1016/j.apenergy.2024.122669_bb0075
  article-title: State-of-charge estimation of li-ion battery cell using support vector regression and gradient boosting techniques
– start-page: 1
  year: 2023
  ident: 10.1016/j.apenergy.2024.122669_bb0115
  article-title: Joint estimation of state of charge and state of energy of lithium-ion batteries based on optimized bidirectional gated recurrent neural network
– volume: 120616
  year: 2023
  ident: 10.1016/j.apenergy.2024.122669_bb0005
  article-title: Metaheuristic evolutionary deep learning model based on temporal convolutional network, improved aquila optimizer and random forest for rainfall-runoff simulation and multi-step runoff prediction
  publication-title: Exp Syst Appl
– volume: 336
  start-page: 120821
  year: 2023
  ident: 10.1016/j.apenergy.2024.122669_bb0095
  article-title: Evolutionary gate recurrent unit coupling convolutional neural network and improved manta ray foraging optimization algorithm for performance degradation prediction of PEMFC
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2023.120821
– volume: 72
  start-page: 108707
  year: 2023
  ident: 10.1016/j.apenergy.2024.122669_bb0030
  article-title: Review on state of charge estimation techniques of lithium-ion batteries: a control-oriented approach
  publication-title: J Energy Stor
  doi: 10.1016/j.est.2023.108707
– volume: 12
  start-page: 149
  year: 2017
  ident: 10.1016/j.apenergy.2024.122669_bb0045
  article-title: Influence of change in open circuit voltage on the state of charge estimation with an extended Kalman filter
  publication-title: J Energy Stor
  doi: 10.1016/j.est.2017.04.011
– volume: 43
  start-page: 103269
  year: 2021
  ident: 10.1016/j.apenergy.2024.122669_bb0070
  article-title: A novel method for state of energy estimation of lithium-ion batteries using particle filter and extended Kalman filter
  publication-title: J Energy Stor
  doi: 10.1016/j.est.2021.103269
– volume: 37
  start-page: 102440
  year: 2021
  ident: 10.1016/j.apenergy.2024.122669_bb0105
  article-title: State of charge and state of energy estimation for Lithium-ion batteries based on a long short-term memory neural network
  publication-title: J Energy Stor
  doi: 10.1016/j.est.2021.102440
– start-page: 1
  year: 2022
  ident: 10.1016/j.apenergy.2024.122669_bb0085
  article-title: Combined SoC and SoE estimation of lithium-ion battery using multi-layer feedforward neural network
– volume: 137
  start-page: 109347
  year: 2023
  ident: 10.1016/j.apenergy.2024.122669_bb0130
  article-title: A comprehensive survey of image augmentation techniques for deep learning
  publication-title: Patt Recognit
  doi: 10.1016/j.patcog.2023.109347
– volume: 1
  year: 2018
  ident: 10.1016/j.apenergy.2024.122669_bb0185
  article-title: Panasonic 18650pf li-ion battery data
  publication-title: Mendeley Data
– volume: 29
  start-page: 926
  year: 2021
  ident: 10.1016/j.apenergy.2024.122669_bb0050
  article-title: Model-based estimation of Lithium concentrations and temperature in batteries using soft-constrained dual unscented Kalman filtering
  publication-title: IEEE Trans Control Syst Technol
  doi: 10.1109/TCST.2020.2974176
– volume: 282
  start-page: 128956
  year: 2023
  ident: 10.1016/j.apenergy.2024.122669_bb0025
  article-title: Michael Pecht. State of health estimation of lithium-ion batteries based on multi-health features extraction and improved long short-term memory neural network
  publication-title: Energy
  doi: 10.1016/j.energy.2023.128956
SSID ssj0002120
Score 2.5921593
Snippet Accurately estimating the state of charge (SOC) and state of energy (SOE) of lithium-ion batteries is crucial for their safe and stable operation. This study...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 122669
SubjectTerms Error correction
Gaussian data augmentation
State of charge
State of energy
TimesNet
Title Enhancing state of charge and state of energy estimation in Lithium-ion batteries based on a TimesNet model with Gaussian data augmentation and error correction
URI https://dx.doi.org/10.1016/j.apenergy.2024.122669
Volume 359
WOSCitedRecordID wos001174956100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Ja9tAFB7cpIf2UNq0oenGHHozcqXRMtIxBHcjmEJTcHsRM6NR7JBIRpZCfk4P_aF9M08bOJCW0ouQHxqPzPv8tnkLIW897iY6C6WTMZ07Zry2IwKWO7nwI6k4KK1Q2WETfLGIl8vky2Tyq6uFub7kRRHf3CSb_8pqoAGzTensX7C7_1IgwD0wHa7Adrj-EePnxcr00MAwASYB2HZIeE7Q0zQW_ZkmG1i9aCIfp-t6tW6uHPNR2s6b4EhPjabLzKmCwIqRha5xgg5GcT-IZmtLMU226VQ051dtPRPmOeuqKqupMlNAVI-Cru9tawPjy-wEsU9WzQ7te9ND8dRmIvxY6eJcljsPwk05jmmwcSqMDbR1xTZDZpMt8HIjxzh8qLpQXsecGXkdjwW6jz3Gd5QDxikuZmKDv2pmtp55YIBGyaAO-yTFr2ZD9FDtgSi_R_YZDxOQnfvHn-bLz73GZ237z-4FR5Xot-92uxE0MmzOHpNHrUdCjxFJT8hEFwfk4ahP5QE5nA_lkPBoqw-2T8nPHmzUAouWOUWwUWD9QMN3owPY6LqgI7DRHmzUgo0CSdAObNSCjRqw0Q5s1ICNjsFmd7RgowPYnpFv7-dnJx-dduaHo3yP1Q4YS1LFOhZ-aBojKS8SkgU6AVESxEmkmRtnkguwvKLQjxLT3Q6EUJZHrgTXWwT-IdkrykI_JzSS4P1KpVSuGPj1Qnpgens-44HQrhD8iIQdE1LVNsQ3c1ku0y7z8SLtmJca5qXIvCPyrl-3wZYwd65IOh6nrWGLBmsK0Lxj7Yt_WPuSPBj-Xa_IXl01-jW5r67r9bZ606L4N9pD0pI
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+state+of+charge+and+state+of+energy+estimation+in+Lithium-ion+batteries+based+on+a+TimesNet+model+with+Gaussian+data+augmentation+and+error+correction&rft.jtitle=Applied+energy&rft.au=Zhang%2C+Chu&rft.au=Zhang%2C+Yue&rft.au=Li%2C+Zhengbo&rft.au=Zhang%2C+Zhao&rft.date=2024-04-01&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=359&rft_id=info:doi/10.1016%2Fj.apenergy.2024.122669&rft.externalDocID=S0306261924000527
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon