Highly active and stable IrO2 and IrO2–Ta2O5 catalysts for oxygen evolution reaction
The oxygen evolution reaction (OER) performance of nanosized iridium oxide-nanosheet-like based electrocatalysts synthesized by a modified Adams method is reported in this work. Cysteamine hydrochloride was introduced during the synthesis of IrO2 to induce the evolution of nanosheet-like morphology...
Uloženo v:
| Vydáno v: | International journal of hydrogen energy Ročník 48; číslo 67; s. 26021 - 26031 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
05.08.2023
|
| Témata: | |
| ISSN: | 0360-3199, 1879-3487 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The oxygen evolution reaction (OER) performance of nanosized iridium oxide-nanosheet-like based electrocatalysts synthesized by a modified Adams method is reported in this work. Cysteamine hydrochloride was introduced during the synthesis of IrO2 to induce the evolution of nanosheet-like morphology from spherical particles. The IrO2 crystallinity prepared by the modified Adams method was greatly affected by calcination temperature. When the temperature increases to 400 °C, the resulted iridium oxide transitions from pseudo-amorphous to crystal rutile type. Electrochemical evaluation results show that the IrO2 synthesized at 400 °C performs the best in terms of enhanced mass activity (1.104 A mg−1@1.6 V) and lower overpotential (315 mV@10 mA cm−2) as compared with the counterparts prepared at other temperatures. Ta2O5 with different molar ratios of Ir/Ta was incorporated to further improve the stability of iridium oxide and to reduce its usage as anode catalyst. Ultrathin IrO2–Ta2O5 nanosheets with optimized Ir/Ta = 7: 3 M ratio outperform the commercial IrO2 benchmark in terms of OER activity and stability. The overpotential of IrO2–Ta2O5(7: 3) is at 326 mV@10 mA cm−2, and its mass activity is as high as 0.9 A mg−1@1.6 V. Chronopotentiometry and chronoamperometry tests verify its excellent durability.
•Amorphous IrO2 and IrO2–Ta2O5 were synthesized by modified Adams method.•IrO2–Ta2O5(7: 3) shows OER activity of 0.9 A mg−1 and overpotential of 326 mV@10 mA cm−2.•IrO2–Ta2O5(7: 3) also exhibits excellent stability. |
|---|---|
| AbstractList | The oxygen evolution reaction (OER) performance of nanosized iridium oxide-nanosheet-like based electrocatalysts synthesized by a modified Adams method is reported in this work. Cysteamine hydrochloride was introduced during the synthesis of IrO2 to induce the evolution of nanosheet-like morphology from spherical particles. The IrO2 crystallinity prepared by the modified Adams method was greatly affected by calcination temperature. When the temperature increases to 400 °C, the resulted iridium oxide transitions from pseudo-amorphous to crystal rutile type. Electrochemical evaluation results show that the IrO2 synthesized at 400 °C performs the best in terms of enhanced mass activity (1.104 A mg−1@1.6 V) and lower overpotential (315 mV@10 mA cm−2) as compared with the counterparts prepared at other temperatures. Ta2O5 with different molar ratios of Ir/Ta was incorporated to further improve the stability of iridium oxide and to reduce its usage as anode catalyst. Ultrathin IrO2–Ta2O5 nanosheets with optimized Ir/Ta = 7: 3 M ratio outperform the commercial IrO2 benchmark in terms of OER activity and stability. The overpotential of IrO2–Ta2O5(7: 3) is at 326 mV@10 mA cm−2, and its mass activity is as high as 0.9 A mg−1@1.6 V. Chronopotentiometry and chronoamperometry tests verify its excellent durability.
•Amorphous IrO2 and IrO2–Ta2O5 were synthesized by modified Adams method.•IrO2–Ta2O5(7: 3) shows OER activity of 0.9 A mg−1 and overpotential of 326 mV@10 mA cm−2.•IrO2–Ta2O5(7: 3) also exhibits excellent stability. |
| Author | He, Rui Li, Huibin Yang, Lijun Zeng, Jianhuang Pan, Yinzhi Luo, Shasha Wu, Lei Qin, Zirong |
| Author_xml | – sequence: 1 givenname: Huibin orcidid: 0000-0003-2762-6006 surname: Li fullname: Li, Huibin organization: School of Chemistry and Chemical Engineering, South China University of Technology; Guangdong Key Lab for Fuel Cell Technology, Guangzhou 510641, China – sequence: 2 givenname: Yinzhi surname: Pan fullname: Pan, Yinzhi organization: School of Chemistry and Chemical Engineering, South China University of Technology; Guangdong Key Lab for Fuel Cell Technology, Guangzhou 510641, China – sequence: 3 givenname: Lei surname: Wu fullname: Wu, Lei organization: School of Chemistry and Chemical Engineering, South China University of Technology; Guangdong Key Lab for Fuel Cell Technology, Guangzhou 510641, China – sequence: 4 givenname: Rui surname: He fullname: He, Rui organization: School of Chemistry and Chemical Engineering, South China University of Technology; Guangdong Key Lab for Fuel Cell Technology, Guangzhou 510641, China – sequence: 5 givenname: Zirong surname: Qin fullname: Qin, Zirong organization: School of Chemistry and Chemical Engineering, South China University of Technology; Guangdong Key Lab for Fuel Cell Technology, Guangzhou 510641, China – sequence: 6 givenname: Shasha surname: Luo fullname: Luo, Shasha organization: Sino-Science Hydrogen Co. Ltd., No. 25 Huanshi Road, Guangzhou 511458, China – sequence: 7 givenname: Lijun surname: Yang fullname: Yang, Lijun organization: Sino-Science Hydrogen Co. Ltd., No. 25 Huanshi Road, Guangzhou 511458, China – sequence: 8 givenname: Jianhuang surname: Zeng fullname: Zeng, Jianhuang email: cejhzeng@scut.edu.cn organization: School of Chemistry and Chemical Engineering, South China University of Technology; Guangdong Key Lab for Fuel Cell Technology, Guangzhou 510641, China |
| BookMark | eNqFkEtOwzAQhi0EEuVxBeQLJIztNnEkFiAEtBJSN4Wt5diT1lWIkW0qsuMO3JCTkPDYsGE1D-n7NfMdkf3Od0jIGYOcASvOt7nbbnqLHeYcuMhB5KKAPTJhsqwyMZXlPpnAsMoEq6pDchTjFoCVMK0m5HHu1pu2p9okt0OqO0tj0nWLdBGW_Gsem4-395Xmyxk1Oum2jynSxgfqX_s1dhR3vn1Jznc04BjkuxNy0Og24ulPPSYPtzer63l2v7xbXF_dZ0YwnjLJhGlqUWlr5YzrhtkCAcFaXlspQVYCasmGNRZVbbDW03IKnBdclKDlrBDH5OI71wQfY8BGGZf0eEEK2rWKgRodqa36daRGRwqEGoQMePEHfw7uSYf-f_DyG8ThuZ3DoKJx2Bm0LqBJynr3X8QnA8qI3g |
| CitedBy_id | crossref_primary_10_1016_j_electacta_2024_144773 crossref_primary_10_1016_j_jtice_2024_105941 crossref_primary_10_1039_D4QI00742E crossref_primary_10_1016_j_jssc_2025_125209 crossref_primary_10_1016_j_ijhydene_2023_11_294 crossref_primary_10_1002_smll_202412083 crossref_primary_10_1016_j_colsurfa_2023_133136 crossref_primary_10_1016_j_electacta_2024_144392 crossref_primary_10_1016_j_electacta_2024_145528 crossref_primary_10_1016_j_apsusc_2025_163765 crossref_primary_10_1016_j_cej_2024_152040 crossref_primary_10_1016_j_jpbao_2025_100065 crossref_primary_10_3390_coatings13111957 crossref_primary_10_1016_j_ijhydene_2024_12_398 crossref_primary_10_1039_D3NR06211B crossref_primary_10_1016_j_ijhydene_2024_06_175 crossref_primary_10_1016_j_ces_2024_120508 crossref_primary_10_1016_j_ijhydene_2025_151523 crossref_primary_10_1016_j_apcato_2024_207025 crossref_primary_10_1016_j_ijoes_2025_101078 crossref_primary_10_1016_j_jelechem_2024_118650 crossref_primary_10_1016_j_jpowsour_2025_237812 |
| Cites_doi | 10.1016/j.ijhydene.2010.03.102 10.1021/jacs.8b05206 10.1021/acs.chemmater.6b02796 10.1016/j.electacta.2021.138885 10.1039/C4CY00669K 10.1039/C7NR02899G 10.1021/acs.jpcc.1c09775 10.1002/aenm.201601275 10.1021/ja01662a022 10.1016/j.ijhydene.2011.05.139 10.1016/j.coelec.2018.11.014 10.1002/adma.201903616 10.1021/acscatal.6b03246 10.1093/nsr/nwaa058 10.3390/catal9040318 10.1016/j.ijhydene.2019.10.179 10.1038/s41467-019-12859-2 10.1002/adfm.201700886 10.1016/j.actamat.2003.10.009 10.1021/ja510442p 10.1016/j.ijhydene.2013.04.100 10.1016/j.ijhydene.2013.12.085 10.1016/j.jpowsour.2020.229335 10.1016/j.ijhydene.2013.01.151 10.1007/s11859-013-0930-z 10.1039/c2cp44496h 10.1016/j.jechem.2019.10.026 10.1016/S0360-3199(02)00074-5 10.1039/C9EE01018A 10.1109/JPROC.2011.2156750 10.1002/sia.5895 10.1016/j.jallcom.2008.09.173 10.1149/2.0061710jes 10.1016/j.apsusc.2020.145943 10.1007/s12678-016-0321-2 10.1016/j.cattod.2015.08.014 10.1021/ja1069272 10.1016/j.ijhydene.2018.08.196 10.1016/j.ijhydene.2008.06.039 10.1002/adfm.201704796 10.1016/j.ceramint.2019.06.255 10.1021/acscatal.1c01973 10.1016/j.cej.2021.130946 10.1021/acsaem.9b00266 10.1021/jz501061n 10.1016/j.cej.2021.133719 10.1002/adma.201806296 10.1039/C5SC00518C 10.1016/j.nanoen.2017.05.022 10.1016/j.electacta.2016.06.122 10.1016/j.electacta.2006.11.005 10.1021/acscatal.6b00621 10.1021/acs.chemmater.6b02625 10.1021/acs.accounts.8b00002 |
| ContentType | Journal Article |
| Copyright | 2023 Hydrogen Energy Publications LLC |
| Copyright_xml | – notice: 2023 Hydrogen Energy Publications LLC |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ijhydene.2023.03.360 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-3487 |
| EndPage | 26031 |
| ExternalDocumentID | 10_1016_j_ijhydene_2023_03_360 S0360319923015288 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SES SEW SPC SPCBC SSK SSM SSR SSZ T5K TN5 XPP ZMT ~G- 29J 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF R2- SAC SCB T9H WUQ ~HD |
| ID | FETCH-LOGICAL-c312t-813cfb39add852af1d6e0e0dd2bd8808930b81f1de69bceba47402262370a8563 |
| ISICitedReferencesCount | 30 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001048666300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-3199 |
| IngestDate | Tue Nov 18 22:14:50 EST 2025 Sat Nov 29 07:21:41 EST 2025 Fri Feb 23 02:34:36 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 67 |
| Keywords | Iridium oxide Oxygen evolution reaction Modified adams method IrO2–Ta2O5 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c312t-813cfb39add852af1d6e0e0dd2bd8808930b81f1de69bceba47402262370a8563 |
| ORCID | 0000-0003-2762-6006 |
| PageCount | 11 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_ijhydene_2023_03_360 crossref_primary_10_1016_j_ijhydene_2023_03_360 elsevier_sciencedirect_doi_10_1016_j_ijhydene_2023_03_360 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-08-05 |
| PublicationDateYYYYMMDD | 2023-08-05 |
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-05 day: 05 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of hydrogen energy |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Jiang, Guo, Kim, Whitten, Wood, Kani, Rowan, Henzie, Yamauchi (bib54) 2018; 140 Li, Sun, Qin, Zhang, Wang, Luo, Yang, Guo (bib2) 2020; 10 Chandra, Takama, Masaki, Sato, Abe, Togashi, Kurihara, Saito, Yui, Yagi (bib55) 2016; 6 Hu, Chen (bib50) 2013; 18 Felix, Bladergroen, Linkov, Pollet, Pasupathi (bib28) 2019; 9 Oakton, Lebedev, Povia, Abbott, Fabbri, Fedorov, Nachtegaal, Copéret, Schmidt (bib19) 2017; 7 Lv, Wang, Li, Shao, Zhou, Shen, Xue, Zhang (bib47) 2020; 514 Pi, Shao, Wang, Guo, Huang (bib21) 2017; 27 Li, Yu, Wang, Sun, Li, Shao, Yi (bib18) 2013; 15 P–Co Jang, Lee (bib41) 2020; 46 Meng, Sun, Mon, Wu, Xia, Han, Wang, Zhuang, Liu, Wang, Li (bib25) 2019; 31 Slavcheva, Radev, Bliznakov, Topalov, Andreev, Budevski (bib38) 2007; 52 Xu, Haarberg, Sunde, Seland, Ratvik, Zimmerman, Shimamune, Gustavsson, Åkre (bib17) 2017; 164 Polonský, Mazúr, Paidar, Christensen, Bouzek (bib13) 2014; 39 Abbott, Lebedev, Waltar, Povia, Nachtegaal, Fabbri, Copéret, Schmidt (bib43) 2016; 28 Tahir, Pan, Idrees, Zhang, Wang, Zou, Wang (bib11) 2017; 37 Puthiyapura, Pasupathi, Basu, Wu, Su, Varagunapandiyan, Pollet, Scott (bib23) 2013; 38 Liu, Wang, Lei, Liu, Tian, Wang (bib30) 2018; 43 Wang, Huang, Pan, Kang, Ma, Shen, Zhu (bib22) 2022; 428 Nguyen, Nguyen, Dai, Wang, Scherer (bib33) 2020; 45 Zhu, Jiang, Wang, Pan, Xu, Ma, Kang Shen, Pan, Eguchi, Nanjundan, Shapter, Yamauchi (bib9) 2022; 427 Reier, Nong, Teschner, Schlögl, Strasser (bib12) 2017; 7 Wu, Zheng, Cui, Jiang, Wang, Qu, Chen, Lin, Li, Han, Hu, Liu, Zhang, Ge, Yao, Sun, Wu, Gu, Hong, Li (bib49) 2019; 10 Song, Zhang, Ma, Shao, Baker, Yi (bib35) 2008; 33 Li, Li, Xiao, Ge, Liu, Xing (bib44) 2017; 9 Stevens, Enman, Batchellor, Cosby, Vise, Trang, Boettcher (bib45) 2016; 29 Baik, Lee, Pak (bib29) 2021; 390 Wei, Rao, Peng, Huang, Stephens, Risch, Xu, Shao-Horn (bib46) 2019; 31 Siracusano, Baglio, Di Blasi, Briguglio, Stassi, Ornelas, Trifoni, Antonucci, Aricò (bib40) 2010; 35 Danilovic, Subbaraman, Chang, Chang, Kang, Snyder, Paulikas, Strmcnik, Kim, Myers, Stamenkovic, Markovic (bib7) 2014; 5 Carmo, Fritz, Mergel, Stolten (bib4) 2013; 38 Fang, Liu (bib56) 2010; 132 Jiang, Li, Li, Ali, Wang, Ma, Kang Shen, Zhu (bib8) 2022; 431 Mayousse, Maillard, Fouda-Onana, Sicardy, Guillet (bib48) 2011; 36 Pittkowski, Krtil, Rossmeisl (bib14) 2018; 12 O Chen, Chen, Huang, Tsai, Liao, Tiong (bib39) 2009; 480 Oh, Nong, Reier, Gliech, Strasser (bib5) 2015; 6 Over (bib26) 2021; 11 Mehdipour, Tabaian, Firoozi (bib15) 2019; 45 You, Sun (bib6) 2018; 51 Adams, Shriner (bib42) 1923; 45 Wu, Tariq, Zaman, Sun, Zhou, Yang (bib37) 2019; 2 McCrory, Jung, Ferrer, Chatman, Peters, Jaramillo (bib57) 2015; 137 Cherevko, Geiger, Kasian, Kulyk, Grote, Savan, Shrestha, Merzlikin, Breitbach, Ludwig, Mayrhofer (bib27) 2016; 262 nanoparticles within a porous carbon network for deciphering superior water splitting, small structures, n/a 2200235. Ursua, Gandia, Sanchis (bib3) 2012; 100 G. Huang, M. Hu, X. Xu, A.A. Alothman, M.S.S. Mushab, S. Ma, P.K. Shen, J. Zhu, Y. Yamauchi, Optimizing heterointerface of Co Fabbri, Habereder, Waltar, Kötz, Schmidt (bib51) 2014; 4 Lim, Park, Jeon, Roh, Choi, Yoon, Park, Jung, Lee (bib32) 2018; 28 Ahmed, Mao (bib31) 2016; 212 Amano, Furusho, Yamazoe, Yamamoto (bib16) 2022; 126 Pfeifer, Jones, Velasco Vélez, Massué, Arrigo, Teschner, Girgsdies, Scherzer, Greiner, Allan, Hashagen, Weinberg, Piccinin, Hävecker, Knop-Gericke, Schlögl (bib24) 2016; 48 Barreto, Riahia (bib1) 2003; 28 Pan, Wang (bib10) 2021; 485 Liu, Li, Li (bib36) 2004; 52 Cheng, Huang, Pi, Li, Shao, Huang (bib53) 2020; 7 Nguyen, Scherer, Xu (bib34) 2016; 7 Povia, Abbott, Herranz, Heinritz, Lebedev, Kim, Fabbri, Patru, Kohlbrecher, Schäublin, Nachtegaal, Copéret, Schmidt (bib52) 2019; 12 Povia (10.1016/j.ijhydene.2023.03.360_bib52) 2019; 12 Siracusano (10.1016/j.ijhydene.2023.03.360_bib40) 2010; 35 Jang (10.1016/j.ijhydene.2023.03.360_bib41) 2020; 46 Polonský (10.1016/j.ijhydene.2023.03.360_bib13) 2014; 39 Wang (10.1016/j.ijhydene.2023.03.360_bib22) 2022; 428 Adams (10.1016/j.ijhydene.2023.03.360_bib42) 1923; 45 You (10.1016/j.ijhydene.2023.03.360_bib6) 2018; 51 Tahir (10.1016/j.ijhydene.2023.03.360_bib11) 2017; 37 Pi (10.1016/j.ijhydene.2023.03.360_bib21) 2017; 27 Amano (10.1016/j.ijhydene.2023.03.360_bib16) 2022; 126 Meng (10.1016/j.ijhydene.2023.03.360_bib25) 2019; 31 Carmo (10.1016/j.ijhydene.2023.03.360_bib4) 2013; 38 Mehdipour (10.1016/j.ijhydene.2023.03.360_bib15) 2019; 45 Barreto (10.1016/j.ijhydene.2023.03.360_bib1) 2003; 28 Abbott (10.1016/j.ijhydene.2023.03.360_bib43) 2016; 28 Chandra (10.1016/j.ijhydene.2023.03.360_bib55) 2016; 6 10.1016/j.ijhydene.2023.03.360_bib20 Cherevko (10.1016/j.ijhydene.2023.03.360_bib27) 2016; 262 Wu (10.1016/j.ijhydene.2023.03.360_bib37) 2019; 2 Jiang (10.1016/j.ijhydene.2023.03.360_bib54) 2018; 140 Li (10.1016/j.ijhydene.2023.03.360_bib44) 2017; 9 Wu (10.1016/j.ijhydene.2023.03.360_bib49) 2019; 10 Lim (10.1016/j.ijhydene.2023.03.360_bib32) 2018; 28 Stevens (10.1016/j.ijhydene.2023.03.360_bib45) 2016; 29 Ursua (10.1016/j.ijhydene.2023.03.360_bib3) 2012; 100 Pfeifer (10.1016/j.ijhydene.2023.03.360_bib24) 2016; 48 Nguyen (10.1016/j.ijhydene.2023.03.360_bib34) 2016; 7 Slavcheva (10.1016/j.ijhydene.2023.03.360_bib38) 2007; 52 Lv (10.1016/j.ijhydene.2023.03.360_bib47) 2020; 514 Over (10.1016/j.ijhydene.2023.03.360_bib26) 2021; 11 Oakton (10.1016/j.ijhydene.2023.03.360_bib19) 2017; 7 McCrory (10.1016/j.ijhydene.2023.03.360_bib57) 2015; 137 Felix (10.1016/j.ijhydene.2023.03.360_bib28) 2019; 9 Danilovic (10.1016/j.ijhydene.2023.03.360_bib7) 2014; 5 Reier (10.1016/j.ijhydene.2023.03.360_bib12) 2017; 7 Li (10.1016/j.ijhydene.2023.03.360_bib2) 2020; 10 Jiang (10.1016/j.ijhydene.2023.03.360_bib8) 2022; 431 Fabbri (10.1016/j.ijhydene.2023.03.360_bib51) 2014; 4 Xu (10.1016/j.ijhydene.2023.03.360_bib17) 2017; 164 Mayousse (10.1016/j.ijhydene.2023.03.360_bib48) 2011; 36 Pittkowski (10.1016/j.ijhydene.2023.03.360_bib14) 2018; 12 Liu (10.1016/j.ijhydene.2023.03.360_bib36) 2004; 52 Chen (10.1016/j.ijhydene.2023.03.360_bib39) 2009; 480 Li (10.1016/j.ijhydene.2023.03.360_bib18) 2013; 15 Wei (10.1016/j.ijhydene.2023.03.360_bib46) 2019; 31 Pan (10.1016/j.ijhydene.2023.03.360_bib10) 2021; 485 Cheng (10.1016/j.ijhydene.2023.03.360_bib53) 2020; 7 Ahmed (10.1016/j.ijhydene.2023.03.360_bib31) 2016; 212 Song (10.1016/j.ijhydene.2023.03.360_bib35) 2008; 33 Puthiyapura (10.1016/j.ijhydene.2023.03.360_bib23) 2013; 38 Fang (10.1016/j.ijhydene.2023.03.360_bib56) 2010; 132 Liu (10.1016/j.ijhydene.2023.03.360_bib30) 2018; 43 Baik (10.1016/j.ijhydene.2023.03.360_bib29) 2021; 390 Nguyen (10.1016/j.ijhydene.2023.03.360_bib33) 2020; 45 Oh (10.1016/j.ijhydene.2023.03.360_bib5) 2015; 6 Zhu (10.1016/j.ijhydene.2023.03.360_bib9) 2022; 427 Hu (10.1016/j.ijhydene.2023.03.360_bib50) 2013; 18 |
| References_xml | – volume: 43 start-page: 19460 year: 2018 end-page: 19467 ident: bib30 article-title: Investigation of high-performance IrO publication-title: Int J Hydrogen Energy – volume: 52 start-page: 721 year: 2004 end-page: 727 ident: bib36 article-title: IrO publication-title: Acta Mater – volume: 132 start-page: 18214 year: 2010 end-page: 18222 ident: bib56 article-title: Mechanism and Tafel lines of electro-oxidation of water to oxygen on RuO publication-title: J Am Chem Soc – volume: 12 start-page: 218 year: 2018 end-page: 224 ident: bib14 article-title: Rationality in the new oxygen evolution catalyst development publication-title: Curr Opin Electrochem – volume: 212 start-page: 686 year: 2016 end-page: 693 ident: bib31 article-title: Ultrafine iridium oxide nanorods synthesized by molten salt method toward electrocatalytic oxygen and hydrogen evolution reactions publication-title: Electrochim Acta – volume: 2 start-page: 4105 year: 2019 end-page: 4110 ident: bib37 article-title: Ni–Co codoped RuO publication-title: ACS Appl Energy Mater – volume: 51 start-page: 1571 year: 2018 end-page: 1580 ident: bib6 article-title: Innovative strategies for electrocatalytic water splitting publication-title: Acc Chem Res – volume: 100 start-page: 410 year: 2012 end-page: 426 ident: bib3 article-title: Hydrogen production from water electrolysis: current status and future trends publication-title: Proc IEEE – volume: 12 start-page: 3038 year: 2019 end-page: 3052 ident: bib52 article-title: Operando X-ray characterization of high surface area iridium oxides to decouple their activity losses for the oxygen evolution reaction publication-title: Energy Environ Sci – volume: 7 start-page: 420 year: 2016 end-page: 427 ident: bib34 article-title: A facile synthesis of size-controllable IrO publication-title: Electrocatalysis – volume: 15 start-page: 2858 year: 2013 end-page: 2866 ident: bib18 article-title: Highly effective Ir publication-title: Phys Chem Chem Phys – reference: nanoparticles within a porous carbon network for deciphering superior water splitting, small structures, n/a 2200235. – volume: 45 start-page: 2171 year: 1923 end-page: 2179 ident: bib42 article-title: Platinum oxide as a catalyst in the reduction of organic compounds III. Preparation and properties of the oxide of platinum obtained by the fusion of chloroplatinic acid with sodium nitrate publication-title: J Am Chem Soc – volume: 9 start-page: 9291 year: 2017 end-page: 9298 ident: bib44 article-title: Nanoporous IrO publication-title: Nanoscale – volume: 164 start-page: F895 year: 2017 end-page: F900 ident: bib17 article-title: Calcination temperature dependent catalytic activity and stability of IrO publication-title: J Electrochem Soc – volume: 6 start-page: 3321 year: 2015 end-page: 3328 ident: bib5 article-title: Oxide-supported Ir nanodendrites with high activity and durability for the oxygen evolution reaction in acid PEM water electrolyzers publication-title: Chem Sci – volume: 6 start-page: 3946 year: 2016 end-page: 3954 ident: bib55 article-title: Highly efficient electrocatalysis and mechanistic investigation of intermediate IrO publication-title: ACS Catal – volume: 262 start-page: 170 year: 2016 end-page: 180 ident: bib27 article-title: Oxygen and hydrogen evolution reactions on Ru, RuO publication-title: Catal Today – volume: 485 year: 2021 ident: bib10 article-title: Recent perspectives on the structure and oxygen evolution activity for non-noble metal-based catalysts publication-title: J Power Sources – volume: 390 year: 2021 ident: bib29 article-title: Glycine-induced ultrahigh-surface-area IrO publication-title: Electrochim Acta – volume: 45 start-page: 19971 year: 2019 end-page: 19980 ident: bib15 article-title: Effect of IrO publication-title: Ceram Int – volume: 52 start-page: 3889 year: 2007 end-page: 3894 ident: bib38 article-title: Sputtered iridium oxide films as electrocatalysts for water splitting via PEM electrolysis publication-title: Electrochim Acta – reference: O – volume: 38 start-page: 4901 year: 2013 end-page: 4934 ident: bib4 article-title: A comprehensive review on PEM water electrolysis publication-title: J Hydrogen Energy – volume: 480 start-page: 107 year: 2009 end-page: 110 ident: bib39 article-title: Synthesis and structural characterization of twinned V-shaped IrO publication-title: J Alloys Compd – volume: 28 year: 2018 ident: bib32 article-title: Ultrathin IrO publication-title: Adv Funct Mater – volume: 27 year: 2017 ident: bib21 article-title: General Formation of monodisperse IrM (M = Ni, Co, Fe) bimetallic nanoclusters as bifunctional electrocatalysts for acidic overall water splitting publication-title: Adv Funct Mater – volume: 36 start-page: 10474 year: 2011 end-page: 10481 ident: bib48 article-title: Synthesis and characterization of electrocatalysts for the oxygen evolution in PEM water electrolysis publication-title: Int J Hydrogen Energy – volume: 10 year: 2020 ident: bib2 article-title: Recent advances on water-splitting electrocatalysis mediated by noble-metal-based nanostructured materials publication-title: Adv Energy Mater – volume: 45 start-page: 46 year: 2020 end-page: 55 ident: bib33 article-title: Activity and stability optimization of Ru publication-title: Int J Hydrogen Energy – volume: 39 start-page: 3072 year: 2014 end-page: 3078 ident: bib13 article-title: Performance of a PEM water electrolyser using a TaC-supported iridium oxide electrocatalyst publication-title: Int J Hydrogen Energy – volume: 38 start-page: 8605 year: 2013 end-page: 8616 ident: bib23 article-title: Ru publication-title: Int J Hydrogen Energy – volume: 35 start-page: 5558 year: 2010 end-page: 5568 ident: bib40 article-title: Electrochemical characterization of single cell and short stack PEM electrolyzers based on a nanosized IrO publication-title: Int J Hydrogen Energy – volume: 514 year: 2020 ident: bib47 article-title: Self-assembled RuO publication-title: Appl Surf Sci – volume: 7 year: 2017 ident: bib12 article-title: Electrocatalytic oxygen evolution reaction in acidic environments – reaction mechanisms and catalysts publication-title: Adv Energy Mater – volume: 5 start-page: 2474 year: 2014 end-page: 2478 ident: bib7 article-title: Activity-stability trends for the oxygen evolution reaction on monometallic oxides in acidic environments publication-title: J Phys Chem Lett – volume: 29 start-page: 120 year: 2016 end-page: 140 ident: bib45 article-title: Measurement techniques for the study of thin film heterogeneous water oxidation electrocatalysts publication-title: Chem Mater – volume: 31 year: 2019 ident: bib46 article-title: Recommended practices and benchmark activity for hydrogen and oxygen electrocatalysis in water splitting and fuel cells publication-title: Adv Mater – volume: 28 start-page: 267 year: 2003 end-page: 284 ident: bib1 article-title: The hydrogen economy in the 21st century a sustainable development scenario publication-title: Int J Hydrogen Energy – volume: 7 start-page: 1340 year: 2020 end-page: 1348 ident: bib53 article-title: Partially hydroxylated ultrathin iridium nanosheets as efficient electrocatalysts for water splitting publication-title: Natl Sci Rev – volume: 10 start-page: 4855 year: 2019 ident: bib49 article-title: A general synthesis approach for amorphous noble metal nanosheets publication-title: Nat Commun – volume: 46 start-page: 152 year: 2020 end-page: 172 ident: bib41 article-title: Iridium oxide fabrication and application: a review publication-title: J Energy Chem – volume: 18 start-page: 289 year: 2013 end-page: 294 ident: bib50 article-title: Grain size effect of IrO publication-title: Wuhan Univ J Nat Sci – volume: 140 start-page: 12434 year: 2018 end-page: 12441 ident: bib54 article-title: Mesoporous metallic iridium nanosheets publication-title: J Am Chem Soc – volume: 48 start-page: 261 year: 2016 end-page: 273 ident: bib24 article-title: The electronic structure of iridium and its oxides publication-title: Surf Interface Anal – volume: 11 start-page: 8848 year: 2021 end-page: 8871 ident: bib26 article-title: Fundamental studies of planar single-crystalline oxide model electrodes (RuO publication-title: ACS Catal – volume: 126 start-page: 1817 year: 2022 end-page: 1827 ident: bib16 article-title: Structure–stability relationship of amorphous IrO publication-title: J Phys Chem C – volume: 4 start-page: 3800 year: 2014 end-page: 3821 ident: bib51 article-title: Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction publication-title: Catal Sci Technol – volume: 427 year: 2022 ident: bib9 article-title: Gram-Scale production of Cu publication-title: Chem Eng J – reference: G. Huang, M. Hu, X. Xu, A.A. Alothman, M.S.S. Mushab, S. Ma, P.K. Shen, J. Zhu, Y. Yamauchi, Optimizing heterointerface of Co – volume: 428 year: 2022 ident: bib22 article-title: One-pot synthesis of Mn publication-title: Chem Eng J – reference: P–Co – volume: 37 start-page: 136 year: 2017 end-page: 157 ident: bib11 article-title: Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review publication-title: Nano Energy – volume: 137 start-page: 4347 year: 2015 end-page: 4357 ident: bib57 article-title: Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices publication-title: J Am Chem Soc – volume: 7 start-page: 2346 year: 2017 end-page: 2352 ident: bib19 article-title: IrO publication-title: ACS Catal – volume: 31 year: 2019 ident: bib25 article-title: Strain regulation to optimize the acidic water oxidation performance of atomic-layer IrO publication-title: Adv Mater – volume: 431 year: 2022 ident: bib8 article-title: MoP-Mo publication-title: Chem Eng J – volume: 33 start-page: 4955 year: 2008 end-page: 4961 ident: bib35 article-title: Electrochemical investigation of electrocatalysts for the oxygen evolution reaction in PEM water electrolyzers publication-title: Int J Hydrogen Energy – volume: 28 start-page: 6591 year: 2016 end-page: 6604 ident: bib43 article-title: Iridium oxide for the oxygen evolution reaction: correlation between particle size, morphology, and the surface hydroxo layer from operando XAS publication-title: Chem Mater – volume: 9 year: 2019 ident: bib28 article-title: Ex-situ electrochemical characterization of IrO publication-title: Catalyst – volume: 35 start-page: 5558 year: 2010 ident: 10.1016/j.ijhydene.2023.03.360_bib40 article-title: Electrochemical characterization of single cell and short stack PEM electrolyzers based on a nanosized IrO2 anode electrocatalyst publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2010.03.102 – volume: 140 start-page: 12434 year: 2018 ident: 10.1016/j.ijhydene.2023.03.360_bib54 article-title: Mesoporous metallic iridium nanosheets publication-title: J Am Chem Soc doi: 10.1021/jacs.8b05206 – volume: 29 start-page: 120 year: 2016 ident: 10.1016/j.ijhydene.2023.03.360_bib45 article-title: Measurement techniques for the study of thin film heterogeneous water oxidation electrocatalysts publication-title: Chem Mater doi: 10.1021/acs.chemmater.6b02796 – volume: 390 year: 2021 ident: 10.1016/j.ijhydene.2023.03.360_bib29 article-title: Glycine-induced ultrahigh-surface-area IrO2@IrOx catalyst with balanced activity and stability for efficient water splitting publication-title: Electrochim Acta doi: 10.1016/j.electacta.2021.138885 – volume: 4 start-page: 3800 year: 2014 ident: 10.1016/j.ijhydene.2023.03.360_bib51 article-title: Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction publication-title: Catal Sci Technol doi: 10.1039/C4CY00669K – volume: 9 start-page: 9291 year: 2017 ident: 10.1016/j.ijhydene.2023.03.360_bib44 article-title: Nanoporous IrO2 catalyst with enhanced activity and durability for water oxidation owing to its micro/mesoporous structure publication-title: Nanoscale doi: 10.1039/C7NR02899G – volume: 126 start-page: 1817 year: 2022 ident: 10.1016/j.ijhydene.2023.03.360_bib16 article-title: Structure–stability relationship of amorphous IrO2–Ta2O5 electrocatalysts on Ti felt for oxygen evolution in sulfuric acid publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.1c09775 – volume: 7 year: 2017 ident: 10.1016/j.ijhydene.2023.03.360_bib12 article-title: Electrocatalytic oxygen evolution reaction in acidic environments – reaction mechanisms and catalysts publication-title: Adv Energy Mater doi: 10.1002/aenm.201601275 – volume: 45 start-page: 2171 year: 1923 ident: 10.1016/j.ijhydene.2023.03.360_bib42 article-title: Platinum oxide as a catalyst in the reduction of organic compounds III. Preparation and properties of the oxide of platinum obtained by the fusion of chloroplatinic acid with sodium nitrate publication-title: J Am Chem Soc doi: 10.1021/ja01662a022 – volume: 36 start-page: 10474 year: 2011 ident: 10.1016/j.ijhydene.2023.03.360_bib48 article-title: Synthesis and characterization of electrocatalysts for the oxygen evolution in PEM water electrolysis publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2011.05.139 – volume: 12 start-page: 218 year: 2018 ident: 10.1016/j.ijhydene.2023.03.360_bib14 article-title: Rationality in the new oxygen evolution catalyst development publication-title: Curr Opin Electrochem doi: 10.1016/j.coelec.2018.11.014 – volume: 31 year: 2019 ident: 10.1016/j.ijhydene.2023.03.360_bib25 article-title: Strain regulation to optimize the acidic water oxidation performance of atomic-layer IrOx publication-title: Adv Mater doi: 10.1002/adma.201903616 – volume: 7 start-page: 2346 year: 2017 ident: 10.1016/j.ijhydene.2023.03.360_bib19 article-title: IrO2-TiO2: a high-surface-area, active, and stable electrocatalyst for the oxygen evolution reaction publication-title: ACS Catal doi: 10.1021/acscatal.6b03246 – volume: 7 start-page: 1340 year: 2020 ident: 10.1016/j.ijhydene.2023.03.360_bib53 article-title: Partially hydroxylated ultrathin iridium nanosheets as efficient electrocatalysts for water splitting publication-title: Natl Sci Rev doi: 10.1093/nsr/nwaa058 – volume: 9 year: 2019 ident: 10.1016/j.ijhydene.2023.03.360_bib28 article-title: Ex-situ electrochemical characterization of IrO2 synthesized by a modified Adams fusion method for the oxygen evolution reaction publication-title: Catalyst doi: 10.3390/catal9040318 – volume: 45 start-page: 46 year: 2020 ident: 10.1016/j.ijhydene.2023.03.360_bib33 article-title: Activity and stability optimization of RuxIr1-xO2 nanocatalyst for the oxygen evolution reaction by tuning the synthetic process publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2019.10.179 – volume: 10 start-page: 4855 year: 2019 ident: 10.1016/j.ijhydene.2023.03.360_bib49 article-title: A general synthesis approach for amorphous noble metal nanosheets publication-title: Nat Commun doi: 10.1038/s41467-019-12859-2 – volume: 27 year: 2017 ident: 10.1016/j.ijhydene.2023.03.360_bib21 article-title: General Formation of monodisperse IrM (M = Ni, Co, Fe) bimetallic nanoclusters as bifunctional electrocatalysts for acidic overall water splitting publication-title: Adv Funct Mater doi: 10.1002/adfm.201700886 – volume: 52 start-page: 721 year: 2004 ident: 10.1016/j.ijhydene.2023.03.360_bib36 article-title: IrO2/SnO2 electrodes: prepared by sol–gel process and their electrocatalytic for pyrocatechol publication-title: Acta Mater doi: 10.1016/j.actamat.2003.10.009 – volume: 137 start-page: 4347 year: 2015 ident: 10.1016/j.ijhydene.2023.03.360_bib57 article-title: Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices publication-title: J Am Chem Soc doi: 10.1021/ja510442p – volume: 38 start-page: 8605 year: 2013 ident: 10.1016/j.ijhydene.2023.03.360_bib23 article-title: RuxNb1−xO2 catalyst for the oxygen evolution reaction in proton exchange membrane water electrolysers publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2013.04.100 – volume: 39 start-page: 3072 year: 2014 ident: 10.1016/j.ijhydene.2023.03.360_bib13 article-title: Performance of a PEM water electrolyser using a TaC-supported iridium oxide electrocatalyst publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2013.12.085 – volume: 485 year: 2021 ident: 10.1016/j.ijhydene.2023.03.360_bib10 article-title: Recent perspectives on the structure and oxygen evolution activity for non-noble metal-based catalysts publication-title: J Power Sources doi: 10.1016/j.jpowsour.2020.229335 – volume: 38 start-page: 4901 year: 2013 ident: 10.1016/j.ijhydene.2023.03.360_bib4 article-title: A comprehensive review on PEM water electrolysis publication-title: J Hydrogen Energy doi: 10.1016/j.ijhydene.2013.01.151 – volume: 18 start-page: 289 year: 2013 ident: 10.1016/j.ijhydene.2023.03.360_bib50 article-title: Grain size effect of IrO2 nanocatalysts for the oxygen evolution reaction publication-title: Wuhan Univ J Nat Sci doi: 10.1007/s11859-013-0930-z – volume: 15 start-page: 2858 year: 2013 ident: 10.1016/j.ijhydene.2023.03.360_bib18 article-title: Highly effective IrxSn1-xO2 electrocatalysts for oxygen evolution reaction in the solid polymer electrolyte water electrolyser publication-title: Phys Chem Chem Phys doi: 10.1039/c2cp44496h – volume: 46 start-page: 152 year: 2020 ident: 10.1016/j.ijhydene.2023.03.360_bib41 article-title: Iridium oxide fabrication and application: a review publication-title: J Energy Chem doi: 10.1016/j.jechem.2019.10.026 – volume: 28 start-page: 267 year: 2003 ident: 10.1016/j.ijhydene.2023.03.360_bib1 article-title: The hydrogen economy in the 21st century a sustainable development scenario publication-title: Int J Hydrogen Energy doi: 10.1016/S0360-3199(02)00074-5 – volume: 12 start-page: 3038 year: 2019 ident: 10.1016/j.ijhydene.2023.03.360_bib52 article-title: Operando X-ray characterization of high surface area iridium oxides to decouple their activity losses for the oxygen evolution reaction publication-title: Energy Environ Sci doi: 10.1039/C9EE01018A – volume: 100 start-page: 410 year: 2012 ident: 10.1016/j.ijhydene.2023.03.360_bib3 article-title: Hydrogen production from water electrolysis: current status and future trends publication-title: Proc IEEE doi: 10.1109/JPROC.2011.2156750 – volume: 48 start-page: 261 year: 2016 ident: 10.1016/j.ijhydene.2023.03.360_bib24 article-title: The electronic structure of iridium and its oxides publication-title: Surf Interface Anal doi: 10.1002/sia.5895 – volume: 480 start-page: 107 year: 2009 ident: 10.1016/j.ijhydene.2023.03.360_bib39 article-title: Synthesis and structural characterization of twinned V-shaped IrO2 nanowedges on TiO2 nanorods via MOCVD publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2008.09.173 – volume: 164 start-page: F895 year: 2017 ident: 10.1016/j.ijhydene.2023.03.360_bib17 article-title: Calcination temperature dependent catalytic activity and stability of IrO2–Ta2O5 anodes for oxygen evolution reaction in aqueous sulfate electrolytes publication-title: J Electrochem Soc doi: 10.1149/2.0061710jes – volume: 428 year: 2022 ident: 10.1016/j.ijhydene.2023.03.360_bib22 article-title: One-pot synthesis of Mn2P-Mn2O3 heterogeneous nanoparticles in a P, N -doped three-dimensional porous carbon framework as a highly efficient bifunctional electrocatalyst for overall water splitting publication-title: Chem Eng J – volume: 514 year: 2020 ident: 10.1016/j.ijhydene.2023.03.360_bib47 article-title: Self-assembled RuO2@IrOx core-shell nanocomposite as high efficient anode catalyst for PEM water electrolyzer publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2020.145943 – volume: 7 start-page: 420 year: 2016 ident: 10.1016/j.ijhydene.2023.03.360_bib34 article-title: A facile synthesis of size-controllable IrO2 and RuO2 nanoparticles for the oxygen evolution reaction publication-title: Electrocatalysis doi: 10.1007/s12678-016-0321-2 – volume: 262 start-page: 170 year: 2016 ident: 10.1016/j.ijhydene.2023.03.360_bib27 article-title: Oxygen and hydrogen evolution reactions on Ru, RuO2 , Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: a comparative study on activity and stability publication-title: Catal Today doi: 10.1016/j.cattod.2015.08.014 – volume: 132 start-page: 18214 year: 2010 ident: 10.1016/j.ijhydene.2023.03.360_bib56 article-title: Mechanism and Tafel lines of electro-oxidation of water to oxygen on RuO2(110) publication-title: J Am Chem Soc doi: 10.1021/ja1069272 – volume: 43 start-page: 19460 year: 2018 ident: 10.1016/j.ijhydene.2023.03.360_bib30 article-title: Investigation of high-performance IrO2 electrocatalysts prepared by Adams method publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2018.08.196 – volume: 33 start-page: 4955 year: 2008 ident: 10.1016/j.ijhydene.2023.03.360_bib35 article-title: Electrochemical investigation of electrocatalysts for the oxygen evolution reaction in PEM water electrolyzers publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2008.06.039 – volume: 28 year: 2018 ident: 10.1016/j.ijhydene.2023.03.360_bib32 article-title: Ultrathin IrO2 nanoneedles for electrochemical water oxidation publication-title: Adv Funct Mater doi: 10.1002/adfm.201704796 – volume: 45 start-page: 19971 year: 2019 ident: 10.1016/j.ijhydene.2023.03.360_bib15 article-title: Effect of IrO2 crystallinity on electrocatalytic behavior of IrO2–Ta2O5/MWCNT composite as anodes in chlor-alkali membrane cell publication-title: Ceram Int doi: 10.1016/j.ceramint.2019.06.255 – volume: 11 start-page: 8848 year: 2021 ident: 10.1016/j.ijhydene.2023.03.360_bib26 article-title: Fundamental studies of planar single-crystalline oxide model electrodes (RuO2, IrO2) for acidic water splitting publication-title: ACS Catal doi: 10.1021/acscatal.1c01973 – volume: 427 year: 2022 ident: 10.1016/j.ijhydene.2023.03.360_bib9 article-title: Gram-Scale production of Cu3P-Cu2O Janus nanoparticles into nitrogen and phosphorous doped porous carbon framework as bifunctional electrocatalysts for overall water splitting publication-title: Chem Eng J doi: 10.1016/j.cej.2021.130946 – volume: 2 start-page: 4105 year: 2019 ident: 10.1016/j.ijhydene.2023.03.360_bib37 article-title: Ni–Co codoped RuO2 with outstanding oxygen evolution reaction performance publication-title: ACS Appl Energy Mater doi: 10.1021/acsaem.9b00266 – volume: 5 start-page: 2474 year: 2014 ident: 10.1016/j.ijhydene.2023.03.360_bib7 article-title: Activity-stability trends for the oxygen evolution reaction on monometallic oxides in acidic environments publication-title: J Phys Chem Lett doi: 10.1021/jz501061n – volume: 431 year: 2022 ident: 10.1016/j.ijhydene.2023.03.360_bib8 article-title: MoP-Mo2C quantum dot heterostructures uniformly hosted on a heteroatom-doped 3D porous carbon sheet network as an efficient bifunctional electrocatalyst for overall water splitting publication-title: Chem Eng J doi: 10.1016/j.cej.2021.133719 – volume: 31 year: 2019 ident: 10.1016/j.ijhydene.2023.03.360_bib46 article-title: Recommended practices and benchmark activity for hydrogen and oxygen electrocatalysis in water splitting and fuel cells publication-title: Adv Mater doi: 10.1002/adma.201806296 – volume: 6 start-page: 3321 year: 2015 ident: 10.1016/j.ijhydene.2023.03.360_bib5 article-title: Oxide-supported Ir nanodendrites with high activity and durability for the oxygen evolution reaction in acid PEM water electrolyzers publication-title: Chem Sci doi: 10.1039/C5SC00518C – volume: 37 start-page: 136 year: 2017 ident: 10.1016/j.ijhydene.2023.03.360_bib11 article-title: Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.05.022 – ident: 10.1016/j.ijhydene.2023.03.360_bib20 – volume: 10 year: 2020 ident: 10.1016/j.ijhydene.2023.03.360_bib2 article-title: Recent advances on water-splitting electrocatalysis mediated by noble-metal-based nanostructured materials publication-title: Adv Energy Mater – volume: 212 start-page: 686 year: 2016 ident: 10.1016/j.ijhydene.2023.03.360_bib31 article-title: Ultrafine iridium oxide nanorods synthesized by molten salt method toward electrocatalytic oxygen and hydrogen evolution reactions publication-title: Electrochim Acta doi: 10.1016/j.electacta.2016.06.122 – volume: 52 start-page: 3889 year: 2007 ident: 10.1016/j.ijhydene.2023.03.360_bib38 article-title: Sputtered iridium oxide films as electrocatalysts for water splitting via PEM electrolysis publication-title: Electrochim Acta doi: 10.1016/j.electacta.2006.11.005 – volume: 6 start-page: 3946 year: 2016 ident: 10.1016/j.ijhydene.2023.03.360_bib55 article-title: Highly efficient electrocatalysis and mechanistic investigation of intermediate IrOx(OH)y nanoparticle films for water oxidation publication-title: ACS Catal doi: 10.1021/acscatal.6b00621 – volume: 28 start-page: 6591 year: 2016 ident: 10.1016/j.ijhydene.2023.03.360_bib43 article-title: Iridium oxide for the oxygen evolution reaction: correlation between particle size, morphology, and the surface hydroxo layer from operando XAS publication-title: Chem Mater doi: 10.1021/acs.chemmater.6b02625 – volume: 51 start-page: 1571 year: 2018 ident: 10.1016/j.ijhydene.2023.03.360_bib6 article-title: Innovative strategies for electrocatalytic water splitting publication-title: Acc Chem Res doi: 10.1021/acs.accounts.8b00002 |
| SSID | ssj0017049 |
| Score | 2.5460641 |
| Snippet | The oxygen evolution reaction (OER) performance of nanosized iridium oxide-nanosheet-like based electrocatalysts synthesized by a modified Adams method is... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 26021 |
| SubjectTerms | Iridium oxide IrO2–Ta2O5 Modified adams method Oxygen evolution reaction |
| Title | Highly active and stable IrO2 and IrO2–Ta2O5 catalysts for oxygen evolution reaction |
| URI | https://dx.doi.org/10.1016/j.ijhydene.2023.03.360 |
| Volume | 48 |
| WOSCitedRecordID | wos001048666300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-3487 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017049 issn: 0360-3199 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKxgEOiE9tsCEfuFUZjp0P5zihTRtC24QKKqcodhyWqkqnrq1aTvwP3Pjz-Ev2bMduQBVjBy5RaslOnPfre7-8vA-E3nBdIQXsWJCAsINIhCIQRJQBlymrJFikiptE4Q_p2RkfDrOLXu-ny4VZjNOm4ctldvVfRQ1jIGydOnsHcftFYQDOQehwBLHD8Z8EryM3xitTJGNhvw0AAdT5UafTc2rDf-HEBTmwQUHP477x4qyuZ6Y6Q3-yXH3V1f8X7Y32gVlKL8HROvh97UvsVKC4XJXTiZlv8gp9yI_tjz2vRe0BeWHdr1_q5ttl7e3D3DgLlB84MU7Xj_O666KgzATIxR1NxhKt7G0nJKd2I96Bl23J4ZRoQmzWdGuRqe6EvVHdW8_D6KAewdZgUwf66rpoLbNNCn6vr_2H3fPRiC7QbZS7dXK9Tk5YDuvcQ9s0jTPQmNuHp0fD9_4bVdq-XLnNdfLPN9_RZurToTODx-hR-x6CDy1-nqCeap6ih53qlM_QZ4skbJGEATnYIglrAJnf-uTX9x8GQ9hjCAOGsMUQ9hjCDkPP0afjo8G7k6BtwxFIFtJZwEMmK8EysIQ8pkUVlokiipQlFSVofyC8RPAQhlWSCalEEaURMEPg1SkpeJywF2irmTRqB2FaKWDwRVLJSEak0DWRSZUmshScVkCUdlHsnlAu2xr1ulXKOP-7jHbRWz_vylZpuXVG5gSQt1zTcsgcsHXL3Jd3vtor9GD9v9hDW7PpXO2j-3Ixq6-nr1tg3QAaA6M8 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+active+and+stable+IrO2+and+IrO2%E2%80%93Ta2O5+catalysts+for+oxygen+evolution+reaction&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Li%2C+Huibin&rft.au=Pan%2C+Yinzhi&rft.au=Wu%2C+Lei&rft.au=He%2C+Rui&rft.date=2023-08-05&rft.issn=0360-3199&rft.volume=48&rft.issue=67&rft.spage=26021&rft.epage=26031&rft_id=info:doi/10.1016%2Fj.ijhydene.2023.03.360&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijhydene_2023_03_360 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon |