Highly active and stable IrO2 and IrO2–Ta2O5 catalysts for oxygen evolution reaction

The oxygen evolution reaction (OER) performance of nanosized iridium oxide-nanosheet-like based electrocatalysts synthesized by a modified Adams method is reported in this work. Cysteamine hydrochloride was introduced during the synthesis of IrO2 to induce the evolution of nanosheet-like morphology...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of hydrogen energy Ročník 48; číslo 67; s. 26021 - 26031
Hlavní autoři: Li, Huibin, Pan, Yinzhi, Wu, Lei, He, Rui, Qin, Zirong, Luo, Shasha, Yang, Lijun, Zeng, Jianhuang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 05.08.2023
Témata:
ISSN:0360-3199, 1879-3487
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The oxygen evolution reaction (OER) performance of nanosized iridium oxide-nanosheet-like based electrocatalysts synthesized by a modified Adams method is reported in this work. Cysteamine hydrochloride was introduced during the synthesis of IrO2 to induce the evolution of nanosheet-like morphology from spherical particles. The IrO2 crystallinity prepared by the modified Adams method was greatly affected by calcination temperature. When the temperature increases to 400 °C, the resulted iridium oxide transitions from pseudo-amorphous to crystal rutile type. Electrochemical evaluation results show that the IrO2 synthesized at 400 °C performs the best in terms of enhanced mass activity (1.104 A mg−1@1.6 V) and lower overpotential (315 mV@10 mA cm−2) as compared with the counterparts prepared at other temperatures. Ta2O5 with different molar ratios of Ir/Ta was incorporated to further improve the stability of iridium oxide and to reduce its usage as anode catalyst. Ultrathin IrO2–Ta2O5 nanosheets with optimized Ir/Ta = 7: 3 M ratio outperform the commercial IrO2 benchmark in terms of OER activity and stability. The overpotential of IrO2–Ta2O5(7: 3) is at 326 mV@10 mA cm−2, and its mass activity is as high as 0.9 A mg−1@1.6 V. Chronopotentiometry and chronoamperometry tests verify its excellent durability. •Amorphous IrO2 and IrO2–Ta2O5 were synthesized by modified Adams method.•IrO2–Ta2O5(7: 3) shows OER activity of 0.9 A mg−1 and overpotential of 326 mV@10 mA cm−2.•IrO2–Ta2O5(7: 3) also exhibits excellent stability.
AbstractList The oxygen evolution reaction (OER) performance of nanosized iridium oxide-nanosheet-like based electrocatalysts synthesized by a modified Adams method is reported in this work. Cysteamine hydrochloride was introduced during the synthesis of IrO2 to induce the evolution of nanosheet-like morphology from spherical particles. The IrO2 crystallinity prepared by the modified Adams method was greatly affected by calcination temperature. When the temperature increases to 400 °C, the resulted iridium oxide transitions from pseudo-amorphous to crystal rutile type. Electrochemical evaluation results show that the IrO2 synthesized at 400 °C performs the best in terms of enhanced mass activity (1.104 A mg−1@1.6 V) and lower overpotential (315 mV@10 mA cm−2) as compared with the counterparts prepared at other temperatures. Ta2O5 with different molar ratios of Ir/Ta was incorporated to further improve the stability of iridium oxide and to reduce its usage as anode catalyst. Ultrathin IrO2–Ta2O5 nanosheets with optimized Ir/Ta = 7: 3 M ratio outperform the commercial IrO2 benchmark in terms of OER activity and stability. The overpotential of IrO2–Ta2O5(7: 3) is at 326 mV@10 mA cm−2, and its mass activity is as high as 0.9 A mg−1@1.6 V. Chronopotentiometry and chronoamperometry tests verify its excellent durability. •Amorphous IrO2 and IrO2–Ta2O5 were synthesized by modified Adams method.•IrO2–Ta2O5(7: 3) shows OER activity of 0.9 A mg−1 and overpotential of 326 mV@10 mA cm−2.•IrO2–Ta2O5(7: 3) also exhibits excellent stability.
Author He, Rui
Li, Huibin
Yang, Lijun
Zeng, Jianhuang
Pan, Yinzhi
Luo, Shasha
Wu, Lei
Qin, Zirong
Author_xml – sequence: 1
  givenname: Huibin
  orcidid: 0000-0003-2762-6006
  surname: Li
  fullname: Li, Huibin
  organization: School of Chemistry and Chemical Engineering, South China University of Technology; Guangdong Key Lab for Fuel Cell Technology, Guangzhou 510641, China
– sequence: 2
  givenname: Yinzhi
  surname: Pan
  fullname: Pan, Yinzhi
  organization: School of Chemistry and Chemical Engineering, South China University of Technology; Guangdong Key Lab for Fuel Cell Technology, Guangzhou 510641, China
– sequence: 3
  givenname: Lei
  surname: Wu
  fullname: Wu, Lei
  organization: School of Chemistry and Chemical Engineering, South China University of Technology; Guangdong Key Lab for Fuel Cell Technology, Guangzhou 510641, China
– sequence: 4
  givenname: Rui
  surname: He
  fullname: He, Rui
  organization: School of Chemistry and Chemical Engineering, South China University of Technology; Guangdong Key Lab for Fuel Cell Technology, Guangzhou 510641, China
– sequence: 5
  givenname: Zirong
  surname: Qin
  fullname: Qin, Zirong
  organization: School of Chemistry and Chemical Engineering, South China University of Technology; Guangdong Key Lab for Fuel Cell Technology, Guangzhou 510641, China
– sequence: 6
  givenname: Shasha
  surname: Luo
  fullname: Luo, Shasha
  organization: Sino-Science Hydrogen Co. Ltd., No. 25 Huanshi Road, Guangzhou 511458, China
– sequence: 7
  givenname: Lijun
  surname: Yang
  fullname: Yang, Lijun
  organization: Sino-Science Hydrogen Co. Ltd., No. 25 Huanshi Road, Guangzhou 511458, China
– sequence: 8
  givenname: Jianhuang
  surname: Zeng
  fullname: Zeng, Jianhuang
  email: cejhzeng@scut.edu.cn
  organization: School of Chemistry and Chemical Engineering, South China University of Technology; Guangdong Key Lab for Fuel Cell Technology, Guangzhou 510641, China
BookMark eNqFkEtOwzAQhi0EEuVxBeQLJIztNnEkFiAEtBJSN4Wt5diT1lWIkW0qsuMO3JCTkPDYsGE1D-n7NfMdkf3Od0jIGYOcASvOt7nbbnqLHeYcuMhB5KKAPTJhsqwyMZXlPpnAsMoEq6pDchTjFoCVMK0m5HHu1pu2p9okt0OqO0tj0nWLdBGW_Gsem4-395Xmyxk1Oum2jynSxgfqX_s1dhR3vn1Jznc04BjkuxNy0Og24ulPPSYPtzer63l2v7xbXF_dZ0YwnjLJhGlqUWlr5YzrhtkCAcFaXlspQVYCasmGNRZVbbDW03IKnBdclKDlrBDH5OI71wQfY8BGGZf0eEEK2rWKgRodqa36daRGRwqEGoQMePEHfw7uSYf-f_DyG8ThuZ3DoKJx2Bm0LqBJynr3X8QnA8qI3g
CitedBy_id crossref_primary_10_1016_j_electacta_2024_144773
crossref_primary_10_1016_j_jtice_2024_105941
crossref_primary_10_1039_D4QI00742E
crossref_primary_10_1016_j_jssc_2025_125209
crossref_primary_10_1016_j_ijhydene_2023_11_294
crossref_primary_10_1002_smll_202412083
crossref_primary_10_1016_j_colsurfa_2023_133136
crossref_primary_10_1016_j_electacta_2024_144392
crossref_primary_10_1016_j_electacta_2024_145528
crossref_primary_10_1016_j_apsusc_2025_163765
crossref_primary_10_1016_j_cej_2024_152040
crossref_primary_10_1016_j_jpbao_2025_100065
crossref_primary_10_3390_coatings13111957
crossref_primary_10_1016_j_ijhydene_2024_12_398
crossref_primary_10_1039_D3NR06211B
crossref_primary_10_1016_j_ijhydene_2024_06_175
crossref_primary_10_1016_j_ces_2024_120508
crossref_primary_10_1016_j_ijhydene_2025_151523
crossref_primary_10_1016_j_apcato_2024_207025
crossref_primary_10_1016_j_ijoes_2025_101078
crossref_primary_10_1016_j_jelechem_2024_118650
crossref_primary_10_1016_j_jpowsour_2025_237812
Cites_doi 10.1016/j.ijhydene.2010.03.102
10.1021/jacs.8b05206
10.1021/acs.chemmater.6b02796
10.1016/j.electacta.2021.138885
10.1039/C4CY00669K
10.1039/C7NR02899G
10.1021/acs.jpcc.1c09775
10.1002/aenm.201601275
10.1021/ja01662a022
10.1016/j.ijhydene.2011.05.139
10.1016/j.coelec.2018.11.014
10.1002/adma.201903616
10.1021/acscatal.6b03246
10.1093/nsr/nwaa058
10.3390/catal9040318
10.1016/j.ijhydene.2019.10.179
10.1038/s41467-019-12859-2
10.1002/adfm.201700886
10.1016/j.actamat.2003.10.009
10.1021/ja510442p
10.1016/j.ijhydene.2013.04.100
10.1016/j.ijhydene.2013.12.085
10.1016/j.jpowsour.2020.229335
10.1016/j.ijhydene.2013.01.151
10.1007/s11859-013-0930-z
10.1039/c2cp44496h
10.1016/j.jechem.2019.10.026
10.1016/S0360-3199(02)00074-5
10.1039/C9EE01018A
10.1109/JPROC.2011.2156750
10.1002/sia.5895
10.1016/j.jallcom.2008.09.173
10.1149/2.0061710jes
10.1016/j.apsusc.2020.145943
10.1007/s12678-016-0321-2
10.1016/j.cattod.2015.08.014
10.1021/ja1069272
10.1016/j.ijhydene.2018.08.196
10.1016/j.ijhydene.2008.06.039
10.1002/adfm.201704796
10.1016/j.ceramint.2019.06.255
10.1021/acscatal.1c01973
10.1016/j.cej.2021.130946
10.1021/acsaem.9b00266
10.1021/jz501061n
10.1016/j.cej.2021.133719
10.1002/adma.201806296
10.1039/C5SC00518C
10.1016/j.nanoen.2017.05.022
10.1016/j.electacta.2016.06.122
10.1016/j.electacta.2006.11.005
10.1021/acscatal.6b00621
10.1021/acs.chemmater.6b02625
10.1021/acs.accounts.8b00002
ContentType Journal Article
Copyright 2023 Hydrogen Energy Publications LLC
Copyright_xml – notice: 2023 Hydrogen Energy Publications LLC
DBID AAYXX
CITATION
DOI 10.1016/j.ijhydene.2023.03.360
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3487
EndPage 26031
ExternalDocumentID 10_1016_j_ijhydene_2023_03_360
S0360319923015288
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SES
SEW
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
TN5
XPP
ZMT
~G-
29J
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
R2-
SAC
SCB
T9H
WUQ
~HD
ID FETCH-LOGICAL-c312t-813cfb39add852af1d6e0e0dd2bd8808930b81f1de69bceba47402262370a8563
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001048666300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-3199
IngestDate Tue Nov 18 22:14:50 EST 2025
Sat Nov 29 07:21:41 EST 2025
Fri Feb 23 02:34:36 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 67
Keywords Iridium oxide
Oxygen evolution reaction
Modified adams method
IrO2–Ta2O5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-813cfb39add852af1d6e0e0dd2bd8808930b81f1de69bceba47402262370a8563
ORCID 0000-0003-2762-6006
PageCount 11
ParticipantIDs crossref_citationtrail_10_1016_j_ijhydene_2023_03_360
crossref_primary_10_1016_j_ijhydene_2023_03_360
elsevier_sciencedirect_doi_10_1016_j_ijhydene_2023_03_360
PublicationCentury 2000
PublicationDate 2023-08-05
PublicationDateYYYYMMDD 2023-08-05
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-05
  day: 05
PublicationDecade 2020
PublicationTitle International journal of hydrogen energy
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Jiang, Guo, Kim, Whitten, Wood, Kani, Rowan, Henzie, Yamauchi (bib54) 2018; 140
Li, Sun, Qin, Zhang, Wang, Luo, Yang, Guo (bib2) 2020; 10
Chandra, Takama, Masaki, Sato, Abe, Togashi, Kurihara, Saito, Yui, Yagi (bib55) 2016; 6
Hu, Chen (bib50) 2013; 18
Felix, Bladergroen, Linkov, Pollet, Pasupathi (bib28) 2019; 9
Oakton, Lebedev, Povia, Abbott, Fabbri, Fedorov, Nachtegaal, Copéret, Schmidt (bib19) 2017; 7
Lv, Wang, Li, Shao, Zhou, Shen, Xue, Zhang (bib47) 2020; 514
Pi, Shao, Wang, Guo, Huang (bib21) 2017; 27
Li, Yu, Wang, Sun, Li, Shao, Yi (bib18) 2013; 15
P–Co
Jang, Lee (bib41) 2020; 46
Meng, Sun, Mon, Wu, Xia, Han, Wang, Zhuang, Liu, Wang, Li (bib25) 2019; 31
Slavcheva, Radev, Bliznakov, Topalov, Andreev, Budevski (bib38) 2007; 52
Xu, Haarberg, Sunde, Seland, Ratvik, Zimmerman, Shimamune, Gustavsson, Åkre (bib17) 2017; 164
Polonský, Mazúr, Paidar, Christensen, Bouzek (bib13) 2014; 39
Abbott, Lebedev, Waltar, Povia, Nachtegaal, Fabbri, Copéret, Schmidt (bib43) 2016; 28
Tahir, Pan, Idrees, Zhang, Wang, Zou, Wang (bib11) 2017; 37
Puthiyapura, Pasupathi, Basu, Wu, Su, Varagunapandiyan, Pollet, Scott (bib23) 2013; 38
Liu, Wang, Lei, Liu, Tian, Wang (bib30) 2018; 43
Wang, Huang, Pan, Kang, Ma, Shen, Zhu (bib22) 2022; 428
Nguyen, Nguyen, Dai, Wang, Scherer (bib33) 2020; 45
Zhu, Jiang, Wang, Pan, Xu, Ma, Kang Shen, Pan, Eguchi, Nanjundan, Shapter, Yamauchi (bib9) 2022; 427
Reier, Nong, Teschner, Schlögl, Strasser (bib12) 2017; 7
Wu, Zheng, Cui, Jiang, Wang, Qu, Chen, Lin, Li, Han, Hu, Liu, Zhang, Ge, Yao, Sun, Wu, Gu, Hong, Li (bib49) 2019; 10
Song, Zhang, Ma, Shao, Baker, Yi (bib35) 2008; 33
Li, Li, Xiao, Ge, Liu, Xing (bib44) 2017; 9
Stevens, Enman, Batchellor, Cosby, Vise, Trang, Boettcher (bib45) 2016; 29
Baik, Lee, Pak (bib29) 2021; 390
Wei, Rao, Peng, Huang, Stephens, Risch, Xu, Shao-Horn (bib46) 2019; 31
Siracusano, Baglio, Di Blasi, Briguglio, Stassi, Ornelas, Trifoni, Antonucci, Aricò (bib40) 2010; 35
Danilovic, Subbaraman, Chang, Chang, Kang, Snyder, Paulikas, Strmcnik, Kim, Myers, Stamenkovic, Markovic (bib7) 2014; 5
Carmo, Fritz, Mergel, Stolten (bib4) 2013; 38
Fang, Liu (bib56) 2010; 132
Jiang, Li, Li, Ali, Wang, Ma, Kang Shen, Zhu (bib8) 2022; 431
Mayousse, Maillard, Fouda-Onana, Sicardy, Guillet (bib48) 2011; 36
Pittkowski, Krtil, Rossmeisl (bib14) 2018; 12
O
Chen, Chen, Huang, Tsai, Liao, Tiong (bib39) 2009; 480
Oh, Nong, Reier, Gliech, Strasser (bib5) 2015; 6
Over (bib26) 2021; 11
Mehdipour, Tabaian, Firoozi (bib15) 2019; 45
You, Sun (bib6) 2018; 51
Adams, Shriner (bib42) 1923; 45
Wu, Tariq, Zaman, Sun, Zhou, Yang (bib37) 2019; 2
McCrory, Jung, Ferrer, Chatman, Peters, Jaramillo (bib57) 2015; 137
Cherevko, Geiger, Kasian, Kulyk, Grote, Savan, Shrestha, Merzlikin, Breitbach, Ludwig, Mayrhofer (bib27) 2016; 262
nanoparticles within a porous carbon network for deciphering superior water splitting, small structures, n/a 2200235.
Ursua, Gandia, Sanchis (bib3) 2012; 100
G. Huang, M. Hu, X. Xu, A.A. Alothman, M.S.S. Mushab, S. Ma, P.K. Shen, J. Zhu, Y. Yamauchi, Optimizing heterointerface of Co
Fabbri, Habereder, Waltar, Kötz, Schmidt (bib51) 2014; 4
Lim, Park, Jeon, Roh, Choi, Yoon, Park, Jung, Lee (bib32) 2018; 28
Ahmed, Mao (bib31) 2016; 212
Amano, Furusho, Yamazoe, Yamamoto (bib16) 2022; 126
Pfeifer, Jones, Velasco Vélez, Massué, Arrigo, Teschner, Girgsdies, Scherzer, Greiner, Allan, Hashagen, Weinberg, Piccinin, Hävecker, Knop-Gericke, Schlögl (bib24) 2016; 48
Barreto, Riahia (bib1) 2003; 28
Pan, Wang (bib10) 2021; 485
Liu, Li, Li (bib36) 2004; 52
Cheng, Huang, Pi, Li, Shao, Huang (bib53) 2020; 7
Nguyen, Scherer, Xu (bib34) 2016; 7
Povia, Abbott, Herranz, Heinritz, Lebedev, Kim, Fabbri, Patru, Kohlbrecher, Schäublin, Nachtegaal, Copéret, Schmidt (bib52) 2019; 12
Povia (10.1016/j.ijhydene.2023.03.360_bib52) 2019; 12
Siracusano (10.1016/j.ijhydene.2023.03.360_bib40) 2010; 35
Jang (10.1016/j.ijhydene.2023.03.360_bib41) 2020; 46
Polonský (10.1016/j.ijhydene.2023.03.360_bib13) 2014; 39
Wang (10.1016/j.ijhydene.2023.03.360_bib22) 2022; 428
Adams (10.1016/j.ijhydene.2023.03.360_bib42) 1923; 45
You (10.1016/j.ijhydene.2023.03.360_bib6) 2018; 51
Tahir (10.1016/j.ijhydene.2023.03.360_bib11) 2017; 37
Pi (10.1016/j.ijhydene.2023.03.360_bib21) 2017; 27
Amano (10.1016/j.ijhydene.2023.03.360_bib16) 2022; 126
Meng (10.1016/j.ijhydene.2023.03.360_bib25) 2019; 31
Carmo (10.1016/j.ijhydene.2023.03.360_bib4) 2013; 38
Mehdipour (10.1016/j.ijhydene.2023.03.360_bib15) 2019; 45
Barreto (10.1016/j.ijhydene.2023.03.360_bib1) 2003; 28
Abbott (10.1016/j.ijhydene.2023.03.360_bib43) 2016; 28
Chandra (10.1016/j.ijhydene.2023.03.360_bib55) 2016; 6
10.1016/j.ijhydene.2023.03.360_bib20
Cherevko (10.1016/j.ijhydene.2023.03.360_bib27) 2016; 262
Wu (10.1016/j.ijhydene.2023.03.360_bib37) 2019; 2
Jiang (10.1016/j.ijhydene.2023.03.360_bib54) 2018; 140
Li (10.1016/j.ijhydene.2023.03.360_bib44) 2017; 9
Wu (10.1016/j.ijhydene.2023.03.360_bib49) 2019; 10
Lim (10.1016/j.ijhydene.2023.03.360_bib32) 2018; 28
Stevens (10.1016/j.ijhydene.2023.03.360_bib45) 2016; 29
Ursua (10.1016/j.ijhydene.2023.03.360_bib3) 2012; 100
Pfeifer (10.1016/j.ijhydene.2023.03.360_bib24) 2016; 48
Nguyen (10.1016/j.ijhydene.2023.03.360_bib34) 2016; 7
Slavcheva (10.1016/j.ijhydene.2023.03.360_bib38) 2007; 52
Lv (10.1016/j.ijhydene.2023.03.360_bib47) 2020; 514
Over (10.1016/j.ijhydene.2023.03.360_bib26) 2021; 11
Oakton (10.1016/j.ijhydene.2023.03.360_bib19) 2017; 7
McCrory (10.1016/j.ijhydene.2023.03.360_bib57) 2015; 137
Felix (10.1016/j.ijhydene.2023.03.360_bib28) 2019; 9
Danilovic (10.1016/j.ijhydene.2023.03.360_bib7) 2014; 5
Reier (10.1016/j.ijhydene.2023.03.360_bib12) 2017; 7
Li (10.1016/j.ijhydene.2023.03.360_bib2) 2020; 10
Jiang (10.1016/j.ijhydene.2023.03.360_bib8) 2022; 431
Fabbri (10.1016/j.ijhydene.2023.03.360_bib51) 2014; 4
Xu (10.1016/j.ijhydene.2023.03.360_bib17) 2017; 164
Mayousse (10.1016/j.ijhydene.2023.03.360_bib48) 2011; 36
Pittkowski (10.1016/j.ijhydene.2023.03.360_bib14) 2018; 12
Liu (10.1016/j.ijhydene.2023.03.360_bib36) 2004; 52
Chen (10.1016/j.ijhydene.2023.03.360_bib39) 2009; 480
Li (10.1016/j.ijhydene.2023.03.360_bib18) 2013; 15
Wei (10.1016/j.ijhydene.2023.03.360_bib46) 2019; 31
Pan (10.1016/j.ijhydene.2023.03.360_bib10) 2021; 485
Cheng (10.1016/j.ijhydene.2023.03.360_bib53) 2020; 7
Ahmed (10.1016/j.ijhydene.2023.03.360_bib31) 2016; 212
Song (10.1016/j.ijhydene.2023.03.360_bib35) 2008; 33
Puthiyapura (10.1016/j.ijhydene.2023.03.360_bib23) 2013; 38
Fang (10.1016/j.ijhydene.2023.03.360_bib56) 2010; 132
Liu (10.1016/j.ijhydene.2023.03.360_bib30) 2018; 43
Baik (10.1016/j.ijhydene.2023.03.360_bib29) 2021; 390
Nguyen (10.1016/j.ijhydene.2023.03.360_bib33) 2020; 45
Oh (10.1016/j.ijhydene.2023.03.360_bib5) 2015; 6
Zhu (10.1016/j.ijhydene.2023.03.360_bib9) 2022; 427
Hu (10.1016/j.ijhydene.2023.03.360_bib50) 2013; 18
References_xml – volume: 43
  start-page: 19460
  year: 2018
  end-page: 19467
  ident: bib30
  article-title: Investigation of high-performance IrO
  publication-title: Int J Hydrogen Energy
– volume: 52
  start-page: 721
  year: 2004
  end-page: 727
  ident: bib36
  article-title: IrO
  publication-title: Acta Mater
– volume: 132
  start-page: 18214
  year: 2010
  end-page: 18222
  ident: bib56
  article-title: Mechanism and Tafel lines of electro-oxidation of water to oxygen on RuO
  publication-title: J Am Chem Soc
– volume: 12
  start-page: 218
  year: 2018
  end-page: 224
  ident: bib14
  article-title: Rationality in the new oxygen evolution catalyst development
  publication-title: Curr Opin Electrochem
– volume: 212
  start-page: 686
  year: 2016
  end-page: 693
  ident: bib31
  article-title: Ultrafine iridium oxide nanorods synthesized by molten salt method toward electrocatalytic oxygen and hydrogen evolution reactions
  publication-title: Electrochim Acta
– volume: 2
  start-page: 4105
  year: 2019
  end-page: 4110
  ident: bib37
  article-title: Ni–Co codoped RuO
  publication-title: ACS Appl Energy Mater
– volume: 51
  start-page: 1571
  year: 2018
  end-page: 1580
  ident: bib6
  article-title: Innovative strategies for electrocatalytic water splitting
  publication-title: Acc Chem Res
– volume: 100
  start-page: 410
  year: 2012
  end-page: 426
  ident: bib3
  article-title: Hydrogen production from water electrolysis: current status and future trends
  publication-title: Proc IEEE
– volume: 12
  start-page: 3038
  year: 2019
  end-page: 3052
  ident: bib52
  article-title: Operando X-ray characterization of high surface area iridium oxides to decouple their activity losses for the oxygen evolution reaction
  publication-title: Energy Environ Sci
– volume: 7
  start-page: 420
  year: 2016
  end-page: 427
  ident: bib34
  article-title: A facile synthesis of size-controllable IrO
  publication-title: Electrocatalysis
– volume: 15
  start-page: 2858
  year: 2013
  end-page: 2866
  ident: bib18
  article-title: Highly effective Ir
  publication-title: Phys Chem Chem Phys
– reference: nanoparticles within a porous carbon network for deciphering superior water splitting, small structures, n/a 2200235.
– volume: 45
  start-page: 2171
  year: 1923
  end-page: 2179
  ident: bib42
  article-title: Platinum oxide as a catalyst in the reduction of organic compounds III. Preparation and properties of the oxide of platinum obtained by the fusion of chloroplatinic acid with sodium nitrate
  publication-title: J Am Chem Soc
– volume: 9
  start-page: 9291
  year: 2017
  end-page: 9298
  ident: bib44
  article-title: Nanoporous IrO
  publication-title: Nanoscale
– volume: 164
  start-page: F895
  year: 2017
  end-page: F900
  ident: bib17
  article-title: Calcination temperature dependent catalytic activity and stability of IrO
  publication-title: J Electrochem Soc
– volume: 6
  start-page: 3321
  year: 2015
  end-page: 3328
  ident: bib5
  article-title: Oxide-supported Ir nanodendrites with high activity and durability for the oxygen evolution reaction in acid PEM water electrolyzers
  publication-title: Chem Sci
– volume: 6
  start-page: 3946
  year: 2016
  end-page: 3954
  ident: bib55
  article-title: Highly efficient electrocatalysis and mechanistic investigation of intermediate IrO
  publication-title: ACS Catal
– volume: 262
  start-page: 170
  year: 2016
  end-page: 180
  ident: bib27
  article-title: Oxygen and hydrogen evolution reactions on Ru, RuO
  publication-title: Catal Today
– volume: 485
  year: 2021
  ident: bib10
  article-title: Recent perspectives on the structure and oxygen evolution activity for non-noble metal-based catalysts
  publication-title: J Power Sources
– volume: 390
  year: 2021
  ident: bib29
  article-title: Glycine-induced ultrahigh-surface-area IrO
  publication-title: Electrochim Acta
– volume: 45
  start-page: 19971
  year: 2019
  end-page: 19980
  ident: bib15
  article-title: Effect of IrO
  publication-title: Ceram Int
– volume: 52
  start-page: 3889
  year: 2007
  end-page: 3894
  ident: bib38
  article-title: Sputtered iridium oxide films as electrocatalysts for water splitting via PEM electrolysis
  publication-title: Electrochim Acta
– reference: O
– volume: 38
  start-page: 4901
  year: 2013
  end-page: 4934
  ident: bib4
  article-title: A comprehensive review on PEM water electrolysis
  publication-title: J Hydrogen Energy
– volume: 480
  start-page: 107
  year: 2009
  end-page: 110
  ident: bib39
  article-title: Synthesis and structural characterization of twinned V-shaped IrO
  publication-title: J Alloys Compd
– volume: 28
  year: 2018
  ident: bib32
  article-title: Ultrathin IrO
  publication-title: Adv Funct Mater
– volume: 27
  year: 2017
  ident: bib21
  article-title: General Formation of monodisperse IrM (M = Ni, Co, Fe) bimetallic nanoclusters as bifunctional electrocatalysts for acidic overall water splitting
  publication-title: Adv Funct Mater
– volume: 36
  start-page: 10474
  year: 2011
  end-page: 10481
  ident: bib48
  article-title: Synthesis and characterization of electrocatalysts for the oxygen evolution in PEM water electrolysis
  publication-title: Int J Hydrogen Energy
– volume: 10
  year: 2020
  ident: bib2
  article-title: Recent advances on water-splitting electrocatalysis mediated by noble-metal-based nanostructured materials
  publication-title: Adv Energy Mater
– volume: 45
  start-page: 46
  year: 2020
  end-page: 55
  ident: bib33
  article-title: Activity and stability optimization of Ru
  publication-title: Int J Hydrogen Energy
– volume: 39
  start-page: 3072
  year: 2014
  end-page: 3078
  ident: bib13
  article-title: Performance of a PEM water electrolyser using a TaC-supported iridium oxide electrocatalyst
  publication-title: Int J Hydrogen Energy
– volume: 38
  start-page: 8605
  year: 2013
  end-page: 8616
  ident: bib23
  article-title: Ru
  publication-title: Int J Hydrogen Energy
– volume: 35
  start-page: 5558
  year: 2010
  end-page: 5568
  ident: bib40
  article-title: Electrochemical characterization of single cell and short stack PEM electrolyzers based on a nanosized IrO
  publication-title: Int J Hydrogen Energy
– volume: 514
  year: 2020
  ident: bib47
  article-title: Self-assembled RuO
  publication-title: Appl Surf Sci
– volume: 7
  year: 2017
  ident: bib12
  article-title: Electrocatalytic oxygen evolution reaction in acidic environments – reaction mechanisms and catalysts
  publication-title: Adv Energy Mater
– volume: 5
  start-page: 2474
  year: 2014
  end-page: 2478
  ident: bib7
  article-title: Activity-stability trends for the oxygen evolution reaction on monometallic oxides in acidic environments
  publication-title: J Phys Chem Lett
– volume: 29
  start-page: 120
  year: 2016
  end-page: 140
  ident: bib45
  article-title: Measurement techniques for the study of thin film heterogeneous water oxidation electrocatalysts
  publication-title: Chem Mater
– volume: 31
  year: 2019
  ident: bib46
  article-title: Recommended practices and benchmark activity for hydrogen and oxygen electrocatalysis in water splitting and fuel cells
  publication-title: Adv Mater
– volume: 28
  start-page: 267
  year: 2003
  end-page: 284
  ident: bib1
  article-title: The hydrogen economy in the 21st century a sustainable development scenario
  publication-title: Int J Hydrogen Energy
– volume: 7
  start-page: 1340
  year: 2020
  end-page: 1348
  ident: bib53
  article-title: Partially hydroxylated ultrathin iridium nanosheets as efficient electrocatalysts for water splitting
  publication-title: Natl Sci Rev
– volume: 10
  start-page: 4855
  year: 2019
  ident: bib49
  article-title: A general synthesis approach for amorphous noble metal nanosheets
  publication-title: Nat Commun
– volume: 46
  start-page: 152
  year: 2020
  end-page: 172
  ident: bib41
  article-title: Iridium oxide fabrication and application: a review
  publication-title: J Energy Chem
– volume: 18
  start-page: 289
  year: 2013
  end-page: 294
  ident: bib50
  article-title: Grain size effect of IrO
  publication-title: Wuhan Univ J Nat Sci
– volume: 140
  start-page: 12434
  year: 2018
  end-page: 12441
  ident: bib54
  article-title: Mesoporous metallic iridium nanosheets
  publication-title: J Am Chem Soc
– volume: 48
  start-page: 261
  year: 2016
  end-page: 273
  ident: bib24
  article-title: The electronic structure of iridium and its oxides
  publication-title: Surf Interface Anal
– volume: 11
  start-page: 8848
  year: 2021
  end-page: 8871
  ident: bib26
  article-title: Fundamental studies of planar single-crystalline oxide model electrodes (RuO
  publication-title: ACS Catal
– volume: 126
  start-page: 1817
  year: 2022
  end-page: 1827
  ident: bib16
  article-title: Structure–stability relationship of amorphous IrO
  publication-title: J Phys Chem C
– volume: 4
  start-page: 3800
  year: 2014
  end-page: 3821
  ident: bib51
  article-title: Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction
  publication-title: Catal Sci Technol
– volume: 427
  year: 2022
  ident: bib9
  article-title: Gram-Scale production of Cu
  publication-title: Chem Eng J
– reference: G. Huang, M. Hu, X. Xu, A.A. Alothman, M.S.S. Mushab, S. Ma, P.K. Shen, J. Zhu, Y. Yamauchi, Optimizing heterointerface of Co
– volume: 428
  year: 2022
  ident: bib22
  article-title: One-pot synthesis of Mn
  publication-title: Chem Eng J
– reference: P–Co
– volume: 37
  start-page: 136
  year: 2017
  end-page: 157
  ident: bib11
  article-title: Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review
  publication-title: Nano Energy
– volume: 137
  start-page: 4347
  year: 2015
  end-page: 4357
  ident: bib57
  article-title: Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices
  publication-title: J Am Chem Soc
– volume: 7
  start-page: 2346
  year: 2017
  end-page: 2352
  ident: bib19
  article-title: IrO
  publication-title: ACS Catal
– volume: 31
  year: 2019
  ident: bib25
  article-title: Strain regulation to optimize the acidic water oxidation performance of atomic-layer IrO
  publication-title: Adv Mater
– volume: 431
  year: 2022
  ident: bib8
  article-title: MoP-Mo
  publication-title: Chem Eng J
– volume: 33
  start-page: 4955
  year: 2008
  end-page: 4961
  ident: bib35
  article-title: Electrochemical investigation of electrocatalysts for the oxygen evolution reaction in PEM water electrolyzers
  publication-title: Int J Hydrogen Energy
– volume: 28
  start-page: 6591
  year: 2016
  end-page: 6604
  ident: bib43
  article-title: Iridium oxide for the oxygen evolution reaction: correlation between particle size, morphology, and the surface hydroxo layer from operando XAS
  publication-title: Chem Mater
– volume: 9
  year: 2019
  ident: bib28
  article-title: Ex-situ electrochemical characterization of IrO
  publication-title: Catalyst
– volume: 35
  start-page: 5558
  year: 2010
  ident: 10.1016/j.ijhydene.2023.03.360_bib40
  article-title: Electrochemical characterization of single cell and short stack PEM electrolyzers based on a nanosized IrO2 anode electrocatalyst
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.03.102
– volume: 140
  start-page: 12434
  year: 2018
  ident: 10.1016/j.ijhydene.2023.03.360_bib54
  article-title: Mesoporous metallic iridium nanosheets
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.8b05206
– volume: 29
  start-page: 120
  year: 2016
  ident: 10.1016/j.ijhydene.2023.03.360_bib45
  article-title: Measurement techniques for the study of thin film heterogeneous water oxidation electrocatalysts
  publication-title: Chem Mater
  doi: 10.1021/acs.chemmater.6b02796
– volume: 390
  year: 2021
  ident: 10.1016/j.ijhydene.2023.03.360_bib29
  article-title: Glycine-induced ultrahigh-surface-area IrO2@IrOx catalyst with balanced activity and stability for efficient water splitting
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2021.138885
– volume: 4
  start-page: 3800
  year: 2014
  ident: 10.1016/j.ijhydene.2023.03.360_bib51
  article-title: Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction
  publication-title: Catal Sci Technol
  doi: 10.1039/C4CY00669K
– volume: 9
  start-page: 9291
  year: 2017
  ident: 10.1016/j.ijhydene.2023.03.360_bib44
  article-title: Nanoporous IrO2 catalyst with enhanced activity and durability for water oxidation owing to its micro/mesoporous structure
  publication-title: Nanoscale
  doi: 10.1039/C7NR02899G
– volume: 126
  start-page: 1817
  year: 2022
  ident: 10.1016/j.ijhydene.2023.03.360_bib16
  article-title: Structure–stability relationship of amorphous IrO2–Ta2O5 electrocatalysts on Ti felt for oxygen evolution in sulfuric acid
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.1c09775
– volume: 7
  year: 2017
  ident: 10.1016/j.ijhydene.2023.03.360_bib12
  article-title: Electrocatalytic oxygen evolution reaction in acidic environments – reaction mechanisms and catalysts
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201601275
– volume: 45
  start-page: 2171
  year: 1923
  ident: 10.1016/j.ijhydene.2023.03.360_bib42
  article-title: Platinum oxide as a catalyst in the reduction of organic compounds III. Preparation and properties of the oxide of platinum obtained by the fusion of chloroplatinic acid with sodium nitrate
  publication-title: J Am Chem Soc
  doi: 10.1021/ja01662a022
– volume: 36
  start-page: 10474
  year: 2011
  ident: 10.1016/j.ijhydene.2023.03.360_bib48
  article-title: Synthesis and characterization of electrocatalysts for the oxygen evolution in PEM water electrolysis
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.05.139
– volume: 12
  start-page: 218
  year: 2018
  ident: 10.1016/j.ijhydene.2023.03.360_bib14
  article-title: Rationality in the new oxygen evolution catalyst development
  publication-title: Curr Opin Electrochem
  doi: 10.1016/j.coelec.2018.11.014
– volume: 31
  year: 2019
  ident: 10.1016/j.ijhydene.2023.03.360_bib25
  article-title: Strain regulation to optimize the acidic water oxidation performance of atomic-layer IrOx
  publication-title: Adv Mater
  doi: 10.1002/adma.201903616
– volume: 7
  start-page: 2346
  year: 2017
  ident: 10.1016/j.ijhydene.2023.03.360_bib19
  article-title: IrO2-TiO2: a high-surface-area, active, and stable electrocatalyst for the oxygen evolution reaction
  publication-title: ACS Catal
  doi: 10.1021/acscatal.6b03246
– volume: 7
  start-page: 1340
  year: 2020
  ident: 10.1016/j.ijhydene.2023.03.360_bib53
  article-title: Partially hydroxylated ultrathin iridium nanosheets as efficient electrocatalysts for water splitting
  publication-title: Natl Sci Rev
  doi: 10.1093/nsr/nwaa058
– volume: 9
  year: 2019
  ident: 10.1016/j.ijhydene.2023.03.360_bib28
  article-title: Ex-situ electrochemical characterization of IrO2 synthesized by a modified Adams fusion method for the oxygen evolution reaction
  publication-title: Catalyst
  doi: 10.3390/catal9040318
– volume: 45
  start-page: 46
  year: 2020
  ident: 10.1016/j.ijhydene.2023.03.360_bib33
  article-title: Activity and stability optimization of RuxIr1-xO2 nanocatalyst for the oxygen evolution reaction by tuning the synthetic process
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.10.179
– volume: 10
  start-page: 4855
  year: 2019
  ident: 10.1016/j.ijhydene.2023.03.360_bib49
  article-title: A general synthesis approach for amorphous noble metal nanosheets
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-12859-2
– volume: 27
  year: 2017
  ident: 10.1016/j.ijhydene.2023.03.360_bib21
  article-title: General Formation of monodisperse IrM (M = Ni, Co, Fe) bimetallic nanoclusters as bifunctional electrocatalysts for acidic overall water splitting
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201700886
– volume: 52
  start-page: 721
  year: 2004
  ident: 10.1016/j.ijhydene.2023.03.360_bib36
  article-title: IrO2/SnO2 electrodes: prepared by sol–gel process and their electrocatalytic for pyrocatechol
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2003.10.009
– volume: 137
  start-page: 4347
  year: 2015
  ident: 10.1016/j.ijhydene.2023.03.360_bib57
  article-title: Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices
  publication-title: J Am Chem Soc
  doi: 10.1021/ja510442p
– volume: 38
  start-page: 8605
  year: 2013
  ident: 10.1016/j.ijhydene.2023.03.360_bib23
  article-title: RuxNb1−xO2 catalyst for the oxygen evolution reaction in proton exchange membrane water electrolysers
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.04.100
– volume: 39
  start-page: 3072
  year: 2014
  ident: 10.1016/j.ijhydene.2023.03.360_bib13
  article-title: Performance of a PEM water electrolyser using a TaC-supported iridium oxide electrocatalyst
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.12.085
– volume: 485
  year: 2021
  ident: 10.1016/j.ijhydene.2023.03.360_bib10
  article-title: Recent perspectives on the structure and oxygen evolution activity for non-noble metal-based catalysts
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2020.229335
– volume: 38
  start-page: 4901
  year: 2013
  ident: 10.1016/j.ijhydene.2023.03.360_bib4
  article-title: A comprehensive review on PEM water electrolysis
  publication-title: J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.01.151
– volume: 18
  start-page: 289
  year: 2013
  ident: 10.1016/j.ijhydene.2023.03.360_bib50
  article-title: Grain size effect of IrO2 nanocatalysts for the oxygen evolution reaction
  publication-title: Wuhan Univ J Nat Sci
  doi: 10.1007/s11859-013-0930-z
– volume: 15
  start-page: 2858
  year: 2013
  ident: 10.1016/j.ijhydene.2023.03.360_bib18
  article-title: Highly effective IrxSn1-xO2 electrocatalysts for oxygen evolution reaction in the solid polymer electrolyte water electrolyser
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/c2cp44496h
– volume: 46
  start-page: 152
  year: 2020
  ident: 10.1016/j.ijhydene.2023.03.360_bib41
  article-title: Iridium oxide fabrication and application: a review
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2019.10.026
– volume: 28
  start-page: 267
  year: 2003
  ident: 10.1016/j.ijhydene.2023.03.360_bib1
  article-title: The hydrogen economy in the 21st century a sustainable development scenario
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/S0360-3199(02)00074-5
– volume: 12
  start-page: 3038
  year: 2019
  ident: 10.1016/j.ijhydene.2023.03.360_bib52
  article-title: Operando X-ray characterization of high surface area iridium oxides to decouple their activity losses for the oxygen evolution reaction
  publication-title: Energy Environ Sci
  doi: 10.1039/C9EE01018A
– volume: 100
  start-page: 410
  year: 2012
  ident: 10.1016/j.ijhydene.2023.03.360_bib3
  article-title: Hydrogen production from water electrolysis: current status and future trends
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2011.2156750
– volume: 48
  start-page: 261
  year: 2016
  ident: 10.1016/j.ijhydene.2023.03.360_bib24
  article-title: The electronic structure of iridium and its oxides
  publication-title: Surf Interface Anal
  doi: 10.1002/sia.5895
– volume: 480
  start-page: 107
  year: 2009
  ident: 10.1016/j.ijhydene.2023.03.360_bib39
  article-title: Synthesis and structural characterization of twinned V-shaped IrO2 nanowedges on TiO2 nanorods via MOCVD
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2008.09.173
– volume: 164
  start-page: F895
  year: 2017
  ident: 10.1016/j.ijhydene.2023.03.360_bib17
  article-title: Calcination temperature dependent catalytic activity and stability of IrO2–Ta2O5 anodes for oxygen evolution reaction in aqueous sulfate electrolytes
  publication-title: J Electrochem Soc
  doi: 10.1149/2.0061710jes
– volume: 428
  year: 2022
  ident: 10.1016/j.ijhydene.2023.03.360_bib22
  article-title: One-pot synthesis of Mn2P-Mn2O3 heterogeneous nanoparticles in a P, N -doped three-dimensional porous carbon framework as a highly efficient bifunctional electrocatalyst for overall water splitting
  publication-title: Chem Eng J
– volume: 514
  year: 2020
  ident: 10.1016/j.ijhydene.2023.03.360_bib47
  article-title: Self-assembled RuO2@IrOx core-shell nanocomposite as high efficient anode catalyst for PEM water electrolyzer
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2020.145943
– volume: 7
  start-page: 420
  year: 2016
  ident: 10.1016/j.ijhydene.2023.03.360_bib34
  article-title: A facile synthesis of size-controllable IrO2 and RuO2 nanoparticles for the oxygen evolution reaction
  publication-title: Electrocatalysis
  doi: 10.1007/s12678-016-0321-2
– volume: 262
  start-page: 170
  year: 2016
  ident: 10.1016/j.ijhydene.2023.03.360_bib27
  article-title: Oxygen and hydrogen evolution reactions on Ru, RuO2 , Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: a comparative study on activity and stability
  publication-title: Catal Today
  doi: 10.1016/j.cattod.2015.08.014
– volume: 132
  start-page: 18214
  year: 2010
  ident: 10.1016/j.ijhydene.2023.03.360_bib56
  article-title: Mechanism and Tafel lines of electro-oxidation of water to oxygen on RuO2(110)
  publication-title: J Am Chem Soc
  doi: 10.1021/ja1069272
– volume: 43
  start-page: 19460
  year: 2018
  ident: 10.1016/j.ijhydene.2023.03.360_bib30
  article-title: Investigation of high-performance IrO2 electrocatalysts prepared by Adams method
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.08.196
– volume: 33
  start-page: 4955
  year: 2008
  ident: 10.1016/j.ijhydene.2023.03.360_bib35
  article-title: Electrochemical investigation of electrocatalysts for the oxygen evolution reaction in PEM water electrolyzers
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.06.039
– volume: 28
  year: 2018
  ident: 10.1016/j.ijhydene.2023.03.360_bib32
  article-title: Ultrathin IrO2 nanoneedles for electrochemical water oxidation
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201704796
– volume: 45
  start-page: 19971
  year: 2019
  ident: 10.1016/j.ijhydene.2023.03.360_bib15
  article-title: Effect of IrO2 crystallinity on electrocatalytic behavior of IrO2–Ta2O5/MWCNT composite as anodes in chlor-alkali membrane cell
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2019.06.255
– volume: 11
  start-page: 8848
  year: 2021
  ident: 10.1016/j.ijhydene.2023.03.360_bib26
  article-title: Fundamental studies of planar single-crystalline oxide model electrodes (RuO2, IrO2) for acidic water splitting
  publication-title: ACS Catal
  doi: 10.1021/acscatal.1c01973
– volume: 427
  year: 2022
  ident: 10.1016/j.ijhydene.2023.03.360_bib9
  article-title: Gram-Scale production of Cu3P-Cu2O Janus nanoparticles into nitrogen and phosphorous doped porous carbon framework as bifunctional electrocatalysts for overall water splitting
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2021.130946
– volume: 2
  start-page: 4105
  year: 2019
  ident: 10.1016/j.ijhydene.2023.03.360_bib37
  article-title: Ni–Co codoped RuO2 with outstanding oxygen evolution reaction performance
  publication-title: ACS Appl Energy Mater
  doi: 10.1021/acsaem.9b00266
– volume: 5
  start-page: 2474
  year: 2014
  ident: 10.1016/j.ijhydene.2023.03.360_bib7
  article-title: Activity-stability trends for the oxygen evolution reaction on monometallic oxides in acidic environments
  publication-title: J Phys Chem Lett
  doi: 10.1021/jz501061n
– volume: 431
  year: 2022
  ident: 10.1016/j.ijhydene.2023.03.360_bib8
  article-title: MoP-Mo2C quantum dot heterostructures uniformly hosted on a heteroatom-doped 3D porous carbon sheet network as an efficient bifunctional electrocatalyst for overall water splitting
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2021.133719
– volume: 31
  year: 2019
  ident: 10.1016/j.ijhydene.2023.03.360_bib46
  article-title: Recommended practices and benchmark activity for hydrogen and oxygen electrocatalysis in water splitting and fuel cells
  publication-title: Adv Mater
  doi: 10.1002/adma.201806296
– volume: 6
  start-page: 3321
  year: 2015
  ident: 10.1016/j.ijhydene.2023.03.360_bib5
  article-title: Oxide-supported Ir nanodendrites with high activity and durability for the oxygen evolution reaction in acid PEM water electrolyzers
  publication-title: Chem Sci
  doi: 10.1039/C5SC00518C
– volume: 37
  start-page: 136
  year: 2017
  ident: 10.1016/j.ijhydene.2023.03.360_bib11
  article-title: Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.05.022
– ident: 10.1016/j.ijhydene.2023.03.360_bib20
– volume: 10
  year: 2020
  ident: 10.1016/j.ijhydene.2023.03.360_bib2
  article-title: Recent advances on water-splitting electrocatalysis mediated by noble-metal-based nanostructured materials
  publication-title: Adv Energy Mater
– volume: 212
  start-page: 686
  year: 2016
  ident: 10.1016/j.ijhydene.2023.03.360_bib31
  article-title: Ultrafine iridium oxide nanorods synthesized by molten salt method toward electrocatalytic oxygen and hydrogen evolution reactions
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2016.06.122
– volume: 52
  start-page: 3889
  year: 2007
  ident: 10.1016/j.ijhydene.2023.03.360_bib38
  article-title: Sputtered iridium oxide films as electrocatalysts for water splitting via PEM electrolysis
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2006.11.005
– volume: 6
  start-page: 3946
  year: 2016
  ident: 10.1016/j.ijhydene.2023.03.360_bib55
  article-title: Highly efficient electrocatalysis and mechanistic investigation of intermediate IrOx(OH)y nanoparticle films for water oxidation
  publication-title: ACS Catal
  doi: 10.1021/acscatal.6b00621
– volume: 28
  start-page: 6591
  year: 2016
  ident: 10.1016/j.ijhydene.2023.03.360_bib43
  article-title: Iridium oxide for the oxygen evolution reaction: correlation between particle size, morphology, and the surface hydroxo layer from operando XAS
  publication-title: Chem Mater
  doi: 10.1021/acs.chemmater.6b02625
– volume: 51
  start-page: 1571
  year: 2018
  ident: 10.1016/j.ijhydene.2023.03.360_bib6
  article-title: Innovative strategies for electrocatalytic water splitting
  publication-title: Acc Chem Res
  doi: 10.1021/acs.accounts.8b00002
SSID ssj0017049
Score 2.5460641
Snippet The oxygen evolution reaction (OER) performance of nanosized iridium oxide-nanosheet-like based electrocatalysts synthesized by a modified Adams method is...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 26021
SubjectTerms Iridium oxide
IrO2–Ta2O5
Modified adams method
Oxygen evolution reaction
Title Highly active and stable IrO2 and IrO2–Ta2O5 catalysts for oxygen evolution reaction
URI https://dx.doi.org/10.1016/j.ijhydene.2023.03.360
Volume 48
WOSCitedRecordID wos001048666300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-3487
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017049
  issn: 0360-3199
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKxgEOiE9tsCEfuFUZjp0P5zihTRtC24QKKqcodhyWqkqnrq1aTvwP3Pjz-Ev2bMduQBVjBy5RaslOnPfre7-8vA-E3nBdIQXsWJCAsINIhCIQRJQBlymrJFikiptE4Q_p2RkfDrOLXu-ny4VZjNOm4ctldvVfRQ1jIGydOnsHcftFYQDOQehwBLHD8Z8EryM3xitTJGNhvw0AAdT5UafTc2rDf-HEBTmwQUHP477x4qyuZ6Y6Q3-yXH3V1f8X7Y32gVlKL8HROvh97UvsVKC4XJXTiZlv8gp9yI_tjz2vRe0BeWHdr1_q5ttl7e3D3DgLlB84MU7Xj_O666KgzATIxR1NxhKt7G0nJKd2I96Bl23J4ZRoQmzWdGuRqe6EvVHdW8_D6KAewdZgUwf66rpoLbNNCn6vr_2H3fPRiC7QbZS7dXK9Tk5YDuvcQ9s0jTPQmNuHp0fD9_4bVdq-XLnNdfLPN9_RZurToTODx-hR-x6CDy1-nqCeap6ih53qlM_QZ4skbJGEATnYIglrAJnf-uTX9x8GQ9hjCAOGsMUQ9hjCDkPP0afjo8G7k6BtwxFIFtJZwEMmK8EysIQ8pkUVlokiipQlFSVofyC8RPAQhlWSCalEEaURMEPg1SkpeJywF2irmTRqB2FaKWDwRVLJSEak0DWRSZUmshScVkCUdlHsnlAu2xr1ulXKOP-7jHbRWz_vylZpuXVG5gSQt1zTcsgcsHXL3Jd3vtor9GD9v9hDW7PpXO2j-3Ixq6-nr1tg3QAaA6M8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+active+and+stable+IrO2+and+IrO2%E2%80%93Ta2O5+catalysts+for+oxygen+evolution+reaction&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Li%2C+Huibin&rft.au=Pan%2C+Yinzhi&rft.au=Wu%2C+Lei&rft.au=He%2C+Rui&rft.date=2023-08-05&rft.issn=0360-3199&rft.volume=48&rft.issue=67&rft.spage=26021&rft.epage=26031&rft_id=info:doi/10.1016%2Fj.ijhydene.2023.03.360&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijhydene_2023_03_360
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon