Aging prediction in single based propellants using hybrid strategy of machine learning and genetic algorithm

This study proposes novel approach that combines optimization and machine learning to predict the aging of single-base propellants in alignment with the high-performance liquid chromatography (HPLC). To obtain aging and reduce HPLC experimentation, the proposed algorithm provides an efficient proced...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemometrics and intelligent laboratory systems Jg. 245; S. 105058
Hauptverfasser: Khalid, Faizan, Aslam, Muhammad Nouman, Ghani, Muhammad Abdaal, Ahmad, Nouman, Abdullah, Sattar, Khurram
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 15.02.2024
Schlagworte:
ISSN:0169-7439, 1873-3239
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This study proposes novel approach that combines optimization and machine learning to predict the aging of single-base propellants in alignment with the high-performance liquid chromatography (HPLC). To obtain aging and reduce HPLC experimentation, the proposed algorithm provides an efficient procedure. A hybrid strategy of genetic algorithm and ML models including support vector machine, ensemble trees, Gaussian process, and regression tree is combined to optimize SBPs aging. The correlation map provides an interdependence table of aging with initial composition, caliber, and environmental factors. The coefficient of determination and RMSE will determine predictive capabilities of ML models. ET-GA is an optimum-performing ML model with a 0.89 coefficient of determination. Partial dependence plots give an overview of the impact on aging by several variables with maximum impact by temperature, humidity, and diphenylamine. ET-GA shows 95% agreement with experimental data. This results in an economically viable interface that reduces experimentation and provides real-time aging prediction. [Display omitted] •Prediction of Enhanced Aging of Single Base Propellants using ML models.•Utilization of Genetic Algorithm for feature selection and hyperparameters tuning.•Understand features importance and their interaction effects on Enhanced Aging.
AbstractList This study proposes novel approach that combines optimization and machine learning to predict the aging of single-base propellants in alignment with the high-performance liquid chromatography (HPLC). To obtain aging and reduce HPLC experimentation, the proposed algorithm provides an efficient procedure. A hybrid strategy of genetic algorithm and ML models including support vector machine, ensemble trees, Gaussian process, and regression tree is combined to optimize SBPs aging. The correlation map provides an interdependence table of aging with initial composition, caliber, and environmental factors. The coefficient of determination and RMSE will determine predictive capabilities of ML models. ET-GA is an optimum-performing ML model with a 0.89 coefficient of determination. Partial dependence plots give an overview of the impact on aging by several variables with maximum impact by temperature, humidity, and diphenylamine. ET-GA shows 95% agreement with experimental data. This results in an economically viable interface that reduces experimentation and provides real-time aging prediction. [Display omitted] •Prediction of Enhanced Aging of Single Base Propellants using ML models.•Utilization of Genetic Algorithm for feature selection and hyperparameters tuning.•Understand features importance and their interaction effects on Enhanced Aging.
ArticleNumber 105058
Author Sattar, Khurram
Khalid, Faizan
Ahmad, Nouman
Ghani, Muhammad Abdaal
Abdullah
Aslam, Muhammad Nouman
Author_xml – sequence: 1
  givenname: Faizan
  surname: Khalid
  fullname: Khalid, Faizan
  organization: School of Chemical and Materials Engineering, National University of Science and Technology, Islamabad, Pakistan
– sequence: 2
  givenname: Muhammad Nouman
  orcidid: 0000-0002-5201-221X
  surname: Aslam
  fullname: Aslam, Muhammad Nouman
  email: mnouman@scme.nust.edu.pk
  organization: School of Chemical and Materials Engineering, National University of Science and Technology, Islamabad, Pakistan
– sequence: 3
  givenname: Muhammad Abdaal
  surname: Ghani
  fullname: Ghani, Muhammad Abdaal
  organization: School of Chemical and Materials Engineering, National University of Science and Technology, Islamabad, Pakistan
– sequence: 4
  givenname: Nouman
  surname: Ahmad
  fullname: Ahmad, Nouman
  organization: School of Chemical and Materials Engineering, National University of Science and Technology, Islamabad, Pakistan
– sequence: 5
  surname: Abdullah
  fullname: Abdullah
  organization: Queen’s University Belfast, Belfast, United Kingdom
– sequence: 6
  givenname: Khurram
  surname: Sattar
  fullname: Sattar, Khurram
  organization: School of Chemical and Materials Engineering, National University of Science and Technology, Islamabad, Pakistan
BookMark eNqFkMtqwzAQRUVJoWnaXyj6AaeSZfkBXTSEviDQTbsWsjSyFWQ5SGohf1-btJtushpm7tzLzLlGCz96QOiOkjUltLzfr1UPw-hku85JzqYhJ7y-QEtaVyxjOWsWaDktNllVsOYKXce4J3Nf0CVym876Dh8CaKuSHT22Hsdp5AC3MoKepPEAzkmfIv6aFdwf22A1jinIBN0RjwYPUvXWA3Ygg593pNe4Aw_JKixdNwab-uEGXRrpItz-1hX6fH762L5mu_eXt-1mlylG85RVRssGDC9opQ0tGDeUVqbRlVR50Ta8KXnFeV4QpaFhOdRtqQxpa17pOqdFwVbo4ZSrwhhjACOUTXL-bjrZOkGJmMmJvfgjJ2Zy4kRuspf_7IdgBxmO542PJyNMz31bCCIqC15NbAOoJPRoz0X8AFblkKg
CitedBy_id crossref_primary_10_1002_prep_12065
crossref_primary_10_3390_polym17050660
crossref_primary_10_1002_prep_70012
crossref_primary_10_1002_pat_6638
crossref_primary_10_1016_j_pmatsci_2024_101392
crossref_primary_10_1088_1742_6596_2849_1_012025
Cites_doi 10.1007/s11750-021-00594-1
10.3390/app9153019
10.5897/AJPAC2020.0859
10.1007/s10973-020-09304-8
10.1016/j.ijpe.2020.107776
10.1002/prep.201500196
10.1016/j.eng.2022.01.008
10.1007/s10853-017-1474-y
10.1007/s11042-020-10139-6
10.1016/j.physleta.2020.126500
10.1016/j.csda.2007.11.008
10.1016/j.physc.2022.1354062
10.1063/1.4946894
10.1016/j.jaap.2023.105879
10.3390/molecules28010322
10.1002/prep.201500040
10.1080/07370652.2020.1859646
10.1002/prep.202200267
10.1038/s41562-018-0297-4
10.1016/j.talanta.2012.10.035
10.1016/j.saa.2022.121906
10.1002/prep.202100210
10.1016/j.cherd.2022.06.020
10.3390/s23115064
10.1016/0141-3910(93)90211-Z
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.chemolab.2023.105058
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3239
ExternalDocumentID 10_1016_j_chemolab_2023_105058
S0169743923003088
GrantInformation_xml – fundername: Gaussian
  funderid: https://doi.org/10.13039/100014230
GroupedDBID ---
--K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABAOU
ABFRF
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCH
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSK
SSW
SSZ
T5K
UNMZH
YK3
~02
~G-
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
M36
M41
R2-
SCB
WUQ
XPP
~HD
ID FETCH-LOGICAL-c312t-7fda9ef5417df1435f117f9d7ac24b95965755240cde932e8b6cf0b857d821443
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001154296900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0169-7439
IngestDate Tue Nov 18 22:04:20 EST 2025
Sat Nov 29 07:22:24 EST 2025
Sat Mar 02 16:01:12 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Propellants
Genetic algorithm
Energetic material
Machine learning
Nitro cellulose
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-7fda9ef5417df1435f117f9d7ac24b95965755240cde932e8b6cf0b857d821443
ORCID 0000-0002-5201-221X
ParticipantIDs crossref_citationtrail_10_1016_j_chemolab_2023_105058
crossref_primary_10_1016_j_chemolab_2023_105058
elsevier_sciencedirect_doi_10_1016_j_chemolab_2023_105058
PublicationCentury 2000
PublicationDate 2024-02-15
PublicationDateYYYYMMDD 2024-02-15
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-15
  day: 15
PublicationDecade 2020
PublicationTitle Chemometrics and intelligent laboratory systems
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ali, Hafeez, Hussainn, Nazir (bib19) 2020
Zhang, Xu (bib34) 2022; 597
Kuhn, Johnson, Kuhn, Johnson (bib35) 2013
Lambora, Gupta, Chopra (bib36) 2019
Fuchs, Niehues (bib12) 2016; 41
AOP (bib13) 2008
Cieślak, Gańczyk-Specjalska, Drożdżewska-Szymańska, Uszyński (bib7) 2021; 143
Bohn (bib3) 2007
Zhang, Xu (bib24) 2020; 384
Aria, Gnasso, Iorio, Pandolfo (bib30) 2023
Agrawal, Choudhary (bib20) 2016; 4
Song, Wang, Chen, Yan, Zhang (bib21) 2022; 10
Wang (bib32) 2020
Halilović, Bašić-Halilović, Hadžić, Malešević, Starčević, Jurčević (bib11) 2019; 3
Batistić, Sušanj, Pinčić, Ljubic (bib27) 2023; 23
Trache, Tarchoun (bib8) 2018; 53
Xie, Deng, Wang, Wang, Liang, Deng (bib9) 2023; 285
Carrizosa, Molero-Río, Romero Morales (bib33) 2021; 29
Namir, Mojca, Zahida, Azra, Rasim (bib5) 2021; 15
Hubert, Vandervieren (bib25) 2008; 52
Zang, Zhou, Bian, Jin, Pan, Jiang (bib22) 2022; 28
Klinger, Casey, Manship, Son, Strachan (bib23) 2023; 48
de Klerk (bib6) 2015; 40
Katoch, Chauhan, Kumar (bib38) 2021; 80
López-López, Bravo, García-Ruiz, Torre (bib10) 2013; 103
Bai, Dallasega, Orzes, Sarkis (bib18) 2020; 229
Sundberg (bib4) 2017
Ullah, Haq, Naqvi, Khan, Ahsan, Wang (bib40) 2023
Rodrigues, Gomes Buitrago, Nakano, Peixoto, Lemos, França (bib15) 2022; 40
Hande, Baran Samui (bib16) 2021; 46
Mirjalili, Mirjalili (bib37) 2019
Glaze, Filipowicz, Kable, Balasubramanian, Gold (bib42) 2018; 2
Sharma (bib39) 2013; 2
Beckers (bib31) 2021
Skoog, Holler, Crouch (bib43) 2017
Schubert (bib1) 2000
Virmani, Pandey (bib28) 2022; vol. 3
Bunyan, Cunliffe, Davis, Kirby (bib2) 1993; 40
Du, Zheng, Peng, Zhang (bib14) 2015
Haq, Ullah, Khan, Naqvi, Ahsan (bib41) 2022; 184
Zheng, Wu (bib26) 2019; 9
Halilović, Kaučič-Škufca, Ademović (bib17) 2020; 23
Sharma, Kumar, Tyagi (bib29) 2023
Ullah (10.1016/j.chemolab.2023.105058_bib40) 2023
Zhang (10.1016/j.chemolab.2023.105058_bib34) 2022; 597
Kuhn (10.1016/j.chemolab.2023.105058_bib35) 2013
Wang (10.1016/j.chemolab.2023.105058_bib32) 2020
Lambora (10.1016/j.chemolab.2023.105058_bib36) 2019
Glaze (10.1016/j.chemolab.2023.105058_bib42) 2018; 2
Zhang (10.1016/j.chemolab.2023.105058_bib24) 2020; 384
Beckers (10.1016/j.chemolab.2023.105058_bib31) 2021
AOP (10.1016/j.chemolab.2023.105058_bib13) 2008
Skoog (10.1016/j.chemolab.2023.105058_bib43) 2017
Klinger (10.1016/j.chemolab.2023.105058_bib23) 2023; 48
de Klerk (10.1016/j.chemolab.2023.105058_bib6) 2015; 40
Virmani (10.1016/j.chemolab.2023.105058_bib28) 2022; vol. 3
Bai (10.1016/j.chemolab.2023.105058_bib18) 2020; 229
Hubert (10.1016/j.chemolab.2023.105058_bib25) 2008; 52
Katoch (10.1016/j.chemolab.2023.105058_bib38) 2021; 80
Trache (10.1016/j.chemolab.2023.105058_bib8) 2018; 53
Aria (10.1016/j.chemolab.2023.105058_bib30) 2023
Haq (10.1016/j.chemolab.2023.105058_bib41) 2022; 184
Agrawal (10.1016/j.chemolab.2023.105058_bib20) 2016; 4
Song (10.1016/j.chemolab.2023.105058_bib21) 2022; 10
Carrizosa (10.1016/j.chemolab.2023.105058_bib33) 2021; 29
Du (10.1016/j.chemolab.2023.105058_bib14) 2015
Sharma (10.1016/j.chemolab.2023.105058_bib29) 2023
Cieślak (10.1016/j.chemolab.2023.105058_bib7) 2021; 143
Ali (10.1016/j.chemolab.2023.105058_bib19) 2020
Bohn (10.1016/j.chemolab.2023.105058_bib3) 2007
Schubert (10.1016/j.chemolab.2023.105058_bib1) 2000
Sharma (10.1016/j.chemolab.2023.105058_bib39) 2013; 2
Bunyan (10.1016/j.chemolab.2023.105058_bib2) 1993; 40
Fuchs (10.1016/j.chemolab.2023.105058_bib12) 2016; 41
Batistić (10.1016/j.chemolab.2023.105058_bib27) 2023; 23
Zheng (10.1016/j.chemolab.2023.105058_bib26) 2019; 9
Mirjalili (10.1016/j.chemolab.2023.105058_bib37) 2019
Rodrigues (10.1016/j.chemolab.2023.105058_bib15) 2022; 40
Halilović (10.1016/j.chemolab.2023.105058_bib17) 2020; 23
Sundberg (10.1016/j.chemolab.2023.105058_bib4) 2017
Xie (10.1016/j.chemolab.2023.105058_bib9) 2023; 285
Zang (10.1016/j.chemolab.2023.105058_bib22) 2022; 28
Namir (10.1016/j.chemolab.2023.105058_bib5) 2021; 15
López-López (10.1016/j.chemolab.2023.105058_bib10) 2013; 103
Halilović (10.1016/j.chemolab.2023.105058_bib11) 2019; 3
Hande (10.1016/j.chemolab.2023.105058_bib16) 2021; 46
References_xml – volume: 3
  start-page: 292
  year: 2019
  end-page: 300
  ident: bib11
  article-title: Qualitative and quantitative analysis of diphenylamine and N-nitrosodiphenylamine using high performance thin layer chromatography method
  publication-title: World J. Med. Sci.
– volume: 4
  year: 2016
  ident: bib20
  article-title: Perspective: materials informatics and big data: realization of the “fourth paradigm” of science in materials science
  publication-title: Apl. Mater.
– volume: vol. 3
  start-page: 657
  year: 2022
  end-page: 670
  ident: bib28
  article-title: Comparative analysis on effect of different SVM kernel functions for classification
  publication-title: International Conference on Innovative Computing and Communications: Proceedings of ICICC 2022
– year: 2021
  ident: bib31
  article-title: An Introduction to Gaussian Process Models
– year: 2017
  ident: bib43
  article-title: Principles of Instrumental Analysis
– volume: 229
  year: 2020
  ident: bib18
  article-title: Industry 4.0 technologies assessment: a sustainability perspective
  publication-title: Int. J. Prod. Econ.
– volume: 53
  start-page: 100
  year: 2018
  end-page: 123
  ident: bib8
  article-title: Stabilizers for nitrate ester-based energetic materials and their mechanism of action: a state-of-the-art review
  publication-title: J. Mater. Sci.
– volume: 10
  start-page: 99
  year: 2022
  end-page: 109
  ident: bib21
  article-title: Machine learning-assisted high-throughput virtual screening for on-demand customization of advanced energetic materials
  publication-title: Engineering
– year: 2017
  ident: bib4
  article-title: The Chemical Century: Molecular Manipulation and its Impact on the 20th Century
– volume: 80
  start-page: 8091
  year: 2021
  end-page: 8126
  ident: bib38
  article-title: A review on genetic algorithm: past, present, and future
  publication-title: Multimed. Tool. Appl.
– volume: 184
  start-page: 614
  year: 2022
  end-page: 626
  ident: bib41
  article-title: Hydrogen production optimization from sewage sludge supercritical gasification process using machine learning methods integrated with genetic algorithm
  publication-title: Chem. Eng. Res. Des.
– year: 2020
  ident: bib32
  article-title: An Intuitive Tutorial to Gaussian Processes Regression
– volume: 40
  start-page: 239
  year: 1993
  end-page: 250
  ident: bib2
  article-title: The degradation and stabilisation of solid rocket propellants
  publication-title: Polym. Degrad. Stabil.
– year: 2007
  ident: bib3
  article-title: NC-based energetic materials-stability, decomposition, and ageing
  publication-title: Presentation on the Meeting Nitrocellulose Supply, Ageing and Characterization, Aldermaston, England
– start-page: 162
  year: 2015
  end-page: 165
  ident: bib14
  article-title: Hydrothermal aging life model of composite solid propellant based on modified Arrhenius method
  publication-title: 2015 International Symposium on Material, Energy and Environment Engineering
– year: 2023
  ident: bib40
  article-title: Optimization based comparative study of machine learning methods for the prediction of bio-oil produced from microalgae via pyrolysis
  publication-title: J. Anal. Appl. Pyrol.
– volume: 143
  start-page: 3459
  year: 2021
  end-page: 3470
  ident: bib7
  article-title: Effect of stabilizers and nitrogen content on thermal properties of nitrocellulose granules
  publication-title: J. Therm. Anal. Calorim.
– volume: 285
  year: 2023
  ident: bib9
  article-title: An approach to detecting diphenylamine content and assessing chemical stability of single-base propellants by near-infrared reflectance spectroscopy
  publication-title: Spectrochim. Acta Mol. Biomol. Spectrosc.
– start-page: 1
  year: 2020
  end-page: 6
  ident: bib19
  article-title: Bio-inspired communication: a review on solution of complex problems for highly configurable systems
  publication-title: 2020 3rd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET),
– start-page: 43
  year: 2019
  end-page: 55
  ident: bib37
  article-title: Genetic algorithm
  publication-title: Evolutionary Algorithms and Neural Networks: Theory and Applications
– volume: 15
  start-page: 1
  year: 2021
  end-page: 7
  ident: bib5
  article-title: Analysis of stability of naturally aged single base propellants
  publication-title: Afr. J. Pure Appl. Chem.
– volume: 103
  start-page: 214
  year: 2013
  end-page: 220
  ident: bib10
  article-title: Diphenylamine and derivatives as predictors of gunpowder age by means of HPLC and statistical models
  publication-title: Talanta
– volume: 48
  year: 2023
  ident: bib23
  article-title: Prediction of solid propellant burning rate characteristics using machine learning techniques
  publication-title: Propellants, Explos. Pyrotech.
– year: 2008
  ident: bib13
  article-title: 48, Explosives, Nitrocellulosebased Propellants, Stability Test Procedures and Requirements Using Stabilizer Depletion
– volume: 384
  year: 2020
  ident: bib24
  article-title: Predicting the thermal conductivity enhancement of nanofluids using computational intelligence
  publication-title: Phys. Lett. A
– start-page: 419
  year: 2023
  end-page: 442
  ident: bib29
  article-title: A study on existing EHR models used for validating the clinical records
  publication-title: International Conference on Innovative Computing and Communication
– volume: 23
  start-page: 5064
  year: 2023
  ident: bib27
  article-title: Motor imagery classification based on EEG sensing with visual and vibrotactile guidance
  publication-title: Sensors
– volume: 29
  start-page: 5
  year: 2021
  end-page: 33
  ident: bib33
  article-title: Mathematical optimization in classification and regression trees
  publication-title: Top
– volume: 40
  start-page: 218
  year: 2022
  end-page: 241
  ident: bib15
  article-title: Can green nitrocellulose-based propellants be made through the replacement of diphenylamine by the natural product curcumin?
  publication-title: J. Energetic Mater.
– volume: 9
  start-page: 3019
  year: 2019
  ident: bib26
  article-title: A xgboost model with weather similarity analysis and feature engineering for short-term wind power forecasting
  publication-title: Appl. Sci.
– year: 2000
  ident: bib1
  article-title: Propellants
– volume: 40
  start-page: 388
  year: 2015
  end-page: 393
  ident: bib6
  article-title: Assessment of stability of propellants and safe lifetimes
  publication-title: Propellants, Explos. Pyrotech.
– volume: 28
  start-page: 322
  year: 2022
  ident: bib22
  article-title: Prediction and construction of energetic materials based on machine learning methods
  publication-title: Molecules
– volume: 52
  start-page: 5186
  year: 2008
  end-page: 5201
  ident: bib25
  article-title: An adjusted boxplot for skewed distributions
  publication-title: Comput. Stat. Data Anal.
– volume: 2
  start-page: 213
  year: 2018
  end-page: 224
  ident: bib42
  article-title: A bias–variance trade-off governs individual differences in on-line learning in an unpredictable environment
  publication-title: Nat. Human Behav.
– volume: 41
  start-page: 688
  year: 2016
  end-page: 699
  ident: bib12
  article-title: Stabilizer depletion in single base propellant from unexploded ordnance
  publication-title: Propellants, Explos. Pyrotech.
– volume: 23
  start-page: 446
  year: 2020
  end-page: 453
  ident: bib17
  article-title: Determination of stabilizer content in naturally aged single base propellants
  publication-title: New Trends Res. Energ. Mater., Czech Republic
– volume: 46
  start-page: 1638
  year: 2021
  end-page: 1644
  ident: bib16
  article-title: Determination of diphenyl amine (DPA) stabilizer in propellants–a minireview
  publication-title: Propellants, Explos. Pyrotech.
– start-page: 380
  year: 2019
  end-page: 384
  ident: bib36
  article-title: Genetic algorithm-A literature review
  publication-title: 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon)
– start-page: 173
  year: 2013
  end-page: 220
  ident: bib35
  article-title: Regression trees and rule-based models
  publication-title: Applied Predictive Modeling
– volume: 2
  start-page: 27
  year: 2013
  end-page: 32
  ident: bib39
  article-title: Role and working of genetic algorithm in computer science
  publication-title: Int. J. Comput. Appl. Inf. Technol. (IJCAIT)
– start-page: 1
  year: 2023
  end-page: 17
  ident: bib30
  article-title: Explainable ensemble trees
  publication-title: Computational Statistics
– volume: 597
  year: 2022
  ident: bib34
  article-title: Disordered MgB2 superconductor critical temperature modeling through regression trees
  publication-title: Phys. C: Superconduct. Appl.
– volume: 29
  start-page: 5
  year: 2021
  ident: 10.1016/j.chemolab.2023.105058_bib33
  article-title: Mathematical optimization in classification and regression trees
  publication-title: Top
  doi: 10.1007/s11750-021-00594-1
– volume: 9
  start-page: 3019
  year: 2019
  ident: 10.1016/j.chemolab.2023.105058_bib26
  article-title: A xgboost model with weather similarity analysis and feature engineering for short-term wind power forecasting
  publication-title: Appl. Sci.
  doi: 10.3390/app9153019
– start-page: 173
  year: 2013
  ident: 10.1016/j.chemolab.2023.105058_bib35
  article-title: Regression trees and rule-based models
– volume: 15
  start-page: 1
  year: 2021
  ident: 10.1016/j.chemolab.2023.105058_bib5
  article-title: Analysis of stability of naturally aged single base propellants
  publication-title: Afr. J. Pure Appl. Chem.
  doi: 10.5897/AJPAC2020.0859
– volume: 143
  start-page: 3459
  year: 2021
  ident: 10.1016/j.chemolab.2023.105058_bib7
  article-title: Effect of stabilizers and nitrogen content on thermal properties of nitrocellulose granules
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-020-09304-8
– year: 2020
  ident: 10.1016/j.chemolab.2023.105058_bib32
– year: 2021
  ident: 10.1016/j.chemolab.2023.105058_bib31
– volume: 229
  year: 2020
  ident: 10.1016/j.chemolab.2023.105058_bib18
  article-title: Industry 4.0 technologies assessment: a sustainability perspective
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2020.107776
– start-page: 43
  year: 2019
  ident: 10.1016/j.chemolab.2023.105058_bib37
  article-title: Genetic algorithm
– volume: 41
  start-page: 688
  year: 2016
  ident: 10.1016/j.chemolab.2023.105058_bib12
  article-title: Stabilizer depletion in single base propellant from unexploded ordnance
  publication-title: Propellants, Explos. Pyrotech.
  doi: 10.1002/prep.201500196
– volume: 10
  start-page: 99
  year: 2022
  ident: 10.1016/j.chemolab.2023.105058_bib21
  article-title: Machine learning-assisted high-throughput virtual screening for on-demand customization of advanced energetic materials
  publication-title: Engineering
  doi: 10.1016/j.eng.2022.01.008
– year: 2017
  ident: 10.1016/j.chemolab.2023.105058_bib43
– volume: 53
  start-page: 100
  year: 2018
  ident: 10.1016/j.chemolab.2023.105058_bib8
  article-title: Stabilizers for nitrate ester-based energetic materials and their mechanism of action: a state-of-the-art review
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-017-1474-y
– volume: 80
  start-page: 8091
  year: 2021
  ident: 10.1016/j.chemolab.2023.105058_bib38
  article-title: A review on genetic algorithm: past, present, and future
  publication-title: Multimed. Tool. Appl.
  doi: 10.1007/s11042-020-10139-6
– year: 2000
  ident: 10.1016/j.chemolab.2023.105058_bib1
– start-page: 1
  year: 2023
  ident: 10.1016/j.chemolab.2023.105058_bib30
  article-title: Explainable ensemble trees
– volume: 384
  year: 2020
  ident: 10.1016/j.chemolab.2023.105058_bib24
  article-title: Predicting the thermal conductivity enhancement of nanofluids using computational intelligence
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2020.126500
– volume: 52
  start-page: 5186
  year: 2008
  ident: 10.1016/j.chemolab.2023.105058_bib25
  article-title: An adjusted boxplot for skewed distributions
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2007.11.008
– volume: 597
  year: 2022
  ident: 10.1016/j.chemolab.2023.105058_bib34
  article-title: Disordered MgB2 superconductor critical temperature modeling through regression trees
  publication-title: Phys. C: Superconduct. Appl.
  doi: 10.1016/j.physc.2022.1354062
– start-page: 419
  year: 2023
  ident: 10.1016/j.chemolab.2023.105058_bib29
  article-title: A study on existing EHR models used for validating the clinical records
– volume: 4
  year: 2016
  ident: 10.1016/j.chemolab.2023.105058_bib20
  article-title: Perspective: materials informatics and big data: realization of the “fourth paradigm” of science in materials science
  publication-title: Apl. Mater.
  doi: 10.1063/1.4946894
– year: 2023
  ident: 10.1016/j.chemolab.2023.105058_bib40
  article-title: Optimization based comparative study of machine learning methods for the prediction of bio-oil produced from microalgae via pyrolysis
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/j.jaap.2023.105879
– year: 2008
  ident: 10.1016/j.chemolab.2023.105058_bib13
– volume: 28
  start-page: 322
  year: 2022
  ident: 10.1016/j.chemolab.2023.105058_bib22
  article-title: Prediction and construction of energetic materials based on machine learning methods
  publication-title: Molecules
  doi: 10.3390/molecules28010322
– volume: 40
  start-page: 388
  year: 2015
  ident: 10.1016/j.chemolab.2023.105058_bib6
  article-title: Assessment of stability of propellants and safe lifetimes
  publication-title: Propellants, Explos. Pyrotech.
  doi: 10.1002/prep.201500040
– volume: vol. 3
  start-page: 657
  year: 2022
  ident: 10.1016/j.chemolab.2023.105058_bib28
  article-title: Comparative analysis on effect of different SVM kernel functions for classification
– volume: 3
  start-page: 292
  year: 2019
  ident: 10.1016/j.chemolab.2023.105058_bib11
  article-title: Qualitative and quantitative analysis of diphenylamine and N-nitrosodiphenylamine using high performance thin layer chromatography method
  publication-title: World J. Med. Sci.
– volume: 40
  start-page: 218
  year: 2022
  ident: 10.1016/j.chemolab.2023.105058_bib15
  article-title: Can green nitrocellulose-based propellants be made through the replacement of diphenylamine by the natural product curcumin?
  publication-title: J. Energetic Mater.
  doi: 10.1080/07370652.2020.1859646
– volume: 23
  start-page: 446
  year: 2020
  ident: 10.1016/j.chemolab.2023.105058_bib17
  article-title: Determination of stabilizer content in naturally aged single base propellants
  publication-title: New Trends Res. Energ. Mater., Czech Republic
– volume: 48
  year: 2023
  ident: 10.1016/j.chemolab.2023.105058_bib23
  article-title: Prediction of solid propellant burning rate characteristics using machine learning techniques
  publication-title: Propellants, Explos. Pyrotech.
  doi: 10.1002/prep.202200267
– volume: 2
  start-page: 213
  year: 2018
  ident: 10.1016/j.chemolab.2023.105058_bib42
  article-title: A bias–variance trade-off governs individual differences in on-line learning in an unpredictable environment
  publication-title: Nat. Human Behav.
  doi: 10.1038/s41562-018-0297-4
– volume: 103
  start-page: 214
  year: 2013
  ident: 10.1016/j.chemolab.2023.105058_bib10
  article-title: Diphenylamine and derivatives as predictors of gunpowder age by means of HPLC and statistical models
  publication-title: Talanta
  doi: 10.1016/j.talanta.2012.10.035
– start-page: 380
  year: 2019
  ident: 10.1016/j.chemolab.2023.105058_bib36
  article-title: Genetic algorithm-A literature review
– volume: 285
  year: 2023
  ident: 10.1016/j.chemolab.2023.105058_bib9
  article-title: An approach to detecting diphenylamine content and assessing chemical stability of single-base propellants by near-infrared reflectance spectroscopy
  publication-title: Spectrochim. Acta Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2022.121906
– volume: 46
  start-page: 1638
  year: 2021
  ident: 10.1016/j.chemolab.2023.105058_bib16
  article-title: Determination of diphenyl amine (DPA) stabilizer in propellants–a minireview
  publication-title: Propellants, Explos. Pyrotech.
  doi: 10.1002/prep.202100210
– volume: 2
  start-page: 27
  year: 2013
  ident: 10.1016/j.chemolab.2023.105058_bib39
  article-title: Role and working of genetic algorithm in computer science
  publication-title: Int. J. Comput. Appl. Inf. Technol. (IJCAIT)
– year: 2017
  ident: 10.1016/j.chemolab.2023.105058_bib4
– year: 2007
  ident: 10.1016/j.chemolab.2023.105058_bib3
  article-title: NC-based energetic materials-stability, decomposition, and ageing
– volume: 184
  start-page: 614
  year: 2022
  ident: 10.1016/j.chemolab.2023.105058_bib41
  article-title: Hydrogen production optimization from sewage sludge supercritical gasification process using machine learning methods integrated with genetic algorithm
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2022.06.020
– start-page: 1
  year: 2020
  ident: 10.1016/j.chemolab.2023.105058_bib19
  article-title: Bio-inspired communication: a review on solution of complex problems for highly configurable systems
– volume: 23
  start-page: 5064
  year: 2023
  ident: 10.1016/j.chemolab.2023.105058_bib27
  article-title: Motor imagery classification based on EEG sensing with visual and vibrotactile guidance
  publication-title: Sensors
  doi: 10.3390/s23115064
– start-page: 162
  year: 2015
  ident: 10.1016/j.chemolab.2023.105058_bib14
  article-title: Hydrothermal aging life model of composite solid propellant based on modified Arrhenius method
– volume: 40
  start-page: 239
  year: 1993
  ident: 10.1016/j.chemolab.2023.105058_bib2
  article-title: The degradation and stabilisation of solid rocket propellants
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/0141-3910(93)90211-Z
SSID ssj0016941
Score 2.4426036
Snippet This study proposes novel approach that combines optimization and machine learning to predict the aging of single-base propellants in alignment with the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105058
SubjectTerms Energetic material
Genetic algorithm
Machine learning
Nitro cellulose
Propellants
Title Aging prediction in single based propellants using hybrid strategy of machine learning and genetic algorithm
URI https://dx.doi.org/10.1016/j.chemolab.2023.105058
Volume 245
WOSCitedRecordID wos001154296900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-3239
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016941
  issn: 0169-7439
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb5swFLeydNJ2mfapdV_yYbeILBAM9hFVrbZJi3bopNwQGFOoAlQJqbr9afvr9h62gU3Ruh52QZEjm8D7xX6fv0fIe5EzP5AJc_zM8x2fwT4IakjmLHwZiBQQI6RuNhGuVny9Fl8nk5-2FuZ6E9Y1v7kRV_9V1DAGwsbS2TuIu18UBuAzCB2uIHa4_pPgowtdYI4RGJvJiA6BjZrhkYW0AE2X84QJMPvOVVB8x7qt2U4z1eqYe5dkqWxXCV3ICPdUHcHr5qLZlm1RjVVbpB5oKmzQZXify57ts50ZrGFAfzfiSMedvgBLoIPZWVL-GLAaWax-2RdJVSXZbNVgwKFPGCp0N6rh-yjNkqRPGImKSqN3NM14NwAu2GuFjR2egXDQaBrv2J7PRnuui834-MHjQHsmLucS3wA86Rybxc-HCb_zb_9xLvbZijYR7jK268S4TqzXuUeOvJAJPiVH0afT9ec-hoUlwppZXj_BqD798C86rBqN1J3zx-SRsVNopPH1hExU_ZQ8OLHtAZ-RTYczOuCMljXVOKMdzugIZ7TDGdU4oxZntMmpwRm1OKOAHGpwRnucPSffzk7PTz46pnWHI5eu1zphniVCwT7ghlmOKnnuumEusjCRnp8KJjDex0CblJkCC0LxNJD5IuUszDiS-C1fkGnd1OolobmXwOgyZTnnPhjnQmU8WPihQtUXzJNjwuxbi6Xhtcf2Kpv473I7Jh_6eVea2eXWGcIKJTb6qdY7Y8DbLXNf3flur8nD4Q_xhkzb7V69JffldVvutu8M2H4BpvK58Q
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aging+prediction+in+single+based+propellants+using+hybrid+strategy+of+machine+learning+and+genetic+algorithm&rft.jtitle=Chemometrics+and+intelligent+laboratory+systems&rft.au=Khalid%2C+Faizan&rft.au=Aslam%2C+Muhammad+Nouman&rft.au=Ghani%2C+Muhammad+Abdaal&rft.au=Ahmad%2C+Nouman&rft.date=2024-02-15&rft.issn=0169-7439&rft.volume=245&rft.spage=105058&rft_id=info:doi/10.1016%2Fj.chemolab.2023.105058&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chemolab_2023_105058
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-7439&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-7439&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-7439&client=summon