Robust active yaw control for offshore wind farms using stochastic predictive control based on online adaptive scenario generation

Subject to the inherent high uncertainty of wind, the prediction for its speed and direction may be insufficiently accurate, the resulting decision actions of active yaw control (AYC) may degrade the power gain. Therefore, this paper proposes a data-driven stochastic model predictive control (SMPC)...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Ocean engineering Ročník 286; s. 115578
Hlavní autoři: Wang, Yu, Wei, Shanbi, Yang, Wei, Chai, Yi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 15.10.2023
Témata:
ISSN:0029-8018, 1873-5258
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Subject to the inherent high uncertainty of wind, the prediction for its speed and direction may be insufficiently accurate, the resulting decision actions of active yaw control (AYC) may degrade the power gain. Therefore, this paper proposes a data-driven stochastic model predictive control (SMPC) using adaptive scenario generation (ASG) for offshore wind farm AYC. First, to build precise scenarios under the nonstationary variation of wind, an adaptive method based on Gaussian mixture model (GMM) clustering is proposed to allow online scenario identification with a compact construction. Specifically, GMM is constructed offline and two online mechanisms are developed for adaptive learning ability. To immunize the power maximization of AYC against prediction error, a data-driven robust optimization strategy is presented to realize SMPC based on generated scenarios. In order to enable real-time operation for large-scale wind farms, a novel parallel marine predator algorithm (PMPA) introduced population improvement strategy is developed to solve the robust problems with a quite lower computational burden. Finally, the simulation based on realistic wind data demonstrates the adaptive learning capacity of the proposed ASG. The result shows that the SMPC can improve the power gain by an average of 2.64% compared to the baseline predictive control. [Display omitted] •Robust active yaw policy is developed through stochastic model predictive control.•For nonstationary uncertainty of wind, adaptive scenario generation is proposed, which not only can fine-tune scenario parameters, but also can identify emerging scenarios online.•Enhanced parallel MPA is developed to enable real-time operation.
AbstractList Subject to the inherent high uncertainty of wind, the prediction for its speed and direction may be insufficiently accurate, the resulting decision actions of active yaw control (AYC) may degrade the power gain. Therefore, this paper proposes a data-driven stochastic model predictive control (SMPC) using adaptive scenario generation (ASG) for offshore wind farm AYC. First, to build precise scenarios under the nonstationary variation of wind, an adaptive method based on Gaussian mixture model (GMM) clustering is proposed to allow online scenario identification with a compact construction. Specifically, GMM is constructed offline and two online mechanisms are developed for adaptive learning ability. To immunize the power maximization of AYC against prediction error, a data-driven robust optimization strategy is presented to realize SMPC based on generated scenarios. In order to enable real-time operation for large-scale wind farms, a novel parallel marine predator algorithm (PMPA) introduced population improvement strategy is developed to solve the robust problems with a quite lower computational burden. Finally, the simulation based on realistic wind data demonstrates the adaptive learning capacity of the proposed ASG. The result shows that the SMPC can improve the power gain by an average of 2.64% compared to the baseline predictive control. [Display omitted] •Robust active yaw policy is developed through stochastic model predictive control.•For nonstationary uncertainty of wind, adaptive scenario generation is proposed, which not only can fine-tune scenario parameters, but also can identify emerging scenarios online.•Enhanced parallel MPA is developed to enable real-time operation.
ArticleNumber 115578
Author Wei, Shanbi
Chai, Yi
Wang, Yu
Yang, Wei
Author_xml – sequence: 1
  givenname: Yu
  surname: Wang
  fullname: Wang, Yu
  organization: College of Automation, Chongqing University, Chongqing, 400044, China
– sequence: 2
  givenname: Shanbi
  orcidid: 0000-0002-2492-668X
  surname: Wei
  fullname: Wei, Shanbi
  email: weishanbi@cqu.edu.cn
  organization: College of Automation, Chongqing University, Chongqing, 400044, China
– sequence: 3
  givenname: Wei
  surname: Yang
  fullname: Yang, Wei
  organization: College of Automation, Chongqing University, Chongqing, 400044, China
– sequence: 4
  givenname: Yi
  surname: Chai
  fullname: Chai, Yi
  organization: College of Automation, Chongqing University, Chongqing, 400044, China
BookMark eNqFkE1LAzEQhoNUsK3-Bckf2DrZNd0seFCKX1AQRM9hmp20KTUpSdrSq7_cfujFS2HgvczzMvP0WMcHT4xdCxgIEMOb-SAYQk9-OiihrAZCSFmrM9YVqq4KWUrVYV2AsikUCHXBeinNAWA4hKrLvt_DZJUyR5PdmvgWN9wEn2NYcBsiD9amWYjEN8633GL8SnyVnJ_ylIOZYcrO8GWk1h35P3aCiVoe_G4WzhPHFpeHhWTIY3SBT8lTxOyCv2TnFheJrn6zzz6fHj9GL8X47fl19DAuTCXKXNQkFYBqrKS2bRGkklJIRaUCO5GipkbWFVVwWykDiAImtgEyDaE0IGtT9dnw2GtiSCmS1cvovjButQC9N6nn-s-k3pvUR5M78O4faFw-nJ4jusVp_P6I0-65taOok3HkzU5aJJN1G9ypih-885nA
CitedBy_id crossref_primary_10_1016_j_energy_2025_137716
crossref_primary_10_1109_ACCESS_2024_3375115
crossref_primary_10_1109_ACCESS_2024_3420872
crossref_primary_10_1016_j_renene_2025_122988
crossref_primary_10_1016_j_oceaneng_2024_117482
Cites_doi 10.1016/j.renene.2021.02.059
10.1016/j.apenergy.2021.117691
10.1016/j.automatica.2022.110598
10.1016/j.renene.2015.03.077
10.1016/j.apenergy.2022.119707
10.1016/j.oceaneng.2020.107381
10.1016/j.renene.2019.12.139
10.1016/j.enconman.2015.05.031
10.1016/j.energy.2020.117739
10.1016/j.trc.2021.103406
10.1016/j.renene.2021.09.048
10.1016/j.apenergy.2020.115992
10.1016/j.ijepes.2019.105388
10.1016/j.ijhydene.2022.06.062
10.1016/j.cie.2022.108672
10.1016/j.enconman.2020.112824
10.1016/j.enconman.2021.113911
10.1016/j.rser.2021.110991
10.1016/j.apenergy.2022.118777
10.1016/j.jweia.2021.104840
10.1016/j.enconman.2020.113491
10.1109/TSP.2012.2196696
10.1016/j.epsr.2021.107722
10.1016/j.renene.2021.01.065
10.1016/j.eswa.2022.117568
10.1016/j.apenergy.2021.116641
10.1109/TNNLS.2011.2179669
10.1016/j.apenergy.2022.118821
10.1016/j.energy.2021.120069
10.1016/j.apenergy.2022.118773
10.1016/j.enconman.2021.113944
10.1016/j.jprocont.2020.07.009
10.1016/j.energy.2017.01.051
10.1016/j.renene.2022.01.046
10.1016/j.enconman.2020.112759
10.1016/j.renene.2015.02.009
10.1016/j.conengprac.2021.104925
10.1016/j.jweia.2018.04.010
10.1109/MCI.2014.2350953
10.1016/j.eswa.2020.113377
10.1016/j.renene.2022.09.036
10.3390/en11030665
10.1063/5.0006480
10.1016/j.scitotenv.2022.159544
10.1016/j.scs.2021.103430
10.1016/j.jprocont.2018.12.013
10.1016/j.renene.2021.12.110
10.1016/j.compchemeng.2017.07.004
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.oceaneng.2023.115578
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Oceanography
EISSN 1873-5258
ExternalDocumentID 10_1016_j_oceaneng_2023_115578
S0029801823019625
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KCYFY
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSJ
SST
SSZ
T5K
TAE
TN5
XPP
ZMT
~02
~G-
29N
6TJ
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACKIV
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SET
WUQ
~HD
ID FETCH-LOGICAL-c312t-7e580089f5eddda05855158e280fb517e9573e30438c0aa10bf90ec9ea5c057c3
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001065496300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-8018
IngestDate Tue Nov 18 22:11:29 EST 2025
Sat Nov 29 07:26:13 EST 2025
Fri Feb 23 02:34:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Adaptive scenario generation
Parallel algorithm
Offshore wind farm
Wind uncertainty
Stochastic predictive control
Active yaw control
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-7e580089f5eddda05855158e280fb517e9573e30438c0aa10bf90ec9ea5c057c3
ORCID 0000-0002-2492-668X
ParticipantIDs crossref_primary_10_1016_j_oceaneng_2023_115578
crossref_citationtrail_10_1016_j_oceaneng_2023_115578
elsevier_sciencedirect_doi_10_1016_j_oceaneng_2023_115578
PublicationCentury 2000
PublicationDate 2023-10-15
PublicationDateYYYYMMDD 2023-10-15
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-15
  day: 15
PublicationDecade 2020
PublicationTitle Ocean engineering
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Shang, You (b38) 2019; 75
Ma, Ge, Wu, Du, Liu (b28) 2021; 303
Wu, Zheng, Guo, Liu (b45) 2022; 199
Zhu, Wang, Li, Duo, Sun (b55) 2022; 47
Zhang, Zhao (b51) 2021; 288
Siniscalchi-Minna, Bianchi, Ocampo-Martinez, Domínguez-García, De Schutter (b39) 2020; 150
Liu, Chen, Liang, Du, Harris (b26) 2020; 93
van Dijk, van Wingerden, Ashuri, Li (b44) 2017; 121
Song, Li, Wang, Jin, Huang, Xia, Rizk-Allah, Yang, Su, Joo (b41) 2022; 312
Djerf, Mattsson (b9) 2000
Jia, Wang, Meng, Chen, Liu, Jia, Bao, Liu (b19) 2021; 169
Hersenius, Möller (b15) 2011
Ansari, Du, Naghdy, Stirling (b4) 2022; 203
Jaseena, Kovoor (b18) 2021; 234
Faramarzi, Heidarinejad, Mirjalili, Gandomi (b11) 2020; 152
Song, Li, Wang, Jin, Huang, Xia, Rizk-Allah, Yang, Su, Joo (b40) 2022; 312
Abdel-Basset, El-Shahat, Chakrabortty, Ryan (b1) 2021; 227
Yan, Lu, Wang, Chen, Wang, Yang, Huang (b47) 2021; 233
Lopes, Vicente, Sánchez, Daus, Koch (b27) 2022; 220
Zhang, Chai, Li, Yang (b50) 2012; 23
Zhang, Ai, Xiao, Hao, Lu (b49) 2020; 114
Serrano González, Burgos Payán, Riquelme Santos, González Rodríguez (b34) 2015; 80
Khosravi, Koury, Machado, Pabon (b21) 2018; 25
Chen, Lin, Qiu, Liu, Song (b6) 2021; 116
Archer, Vasel-Be-Hagh (b5) 2019; 33
Pang, Shoemaker (b30) 2023; 857
Song, Wang (b43) 2005
Díaz, Guedes Soares (b8) 2020; 209
Qian, Ishihar (b32) 2018; 11
Shang, Huang, You (b37) 2017; 106
Amirteimoori, Mahdavi, Solimanpur, Ali, Tirkolaee (b3) 2022; 173
Gros, Zanon (b13) 2022; 146
Xu, Hu, Cao, Huang, Liu, Liu, Chen, Lund (b46) 2020; 211
Memarzadeh, Keynia (b29) 2020; 213
Kong, Ma, Wang, Guo, Abdelbaky, Liu, Lee (b22) 2022; 181
Yin, Zhao, Lin, Karcanias (b48) 2020; 202
Dong, Zhang, Sun (b10) 2022; 325
Zhao, Li, Alam, Wang (b52) 2021; 132
Hu, Li (b16) 2022; 185
Li, Sedzro, Fang, Hodge, Zhang (b24) 2020; 12
Shahid, Zameer, Muneeb (b35) 2021; 223
Abdel-Basset, Eldrandaly, Shawky, Elhoseny, AbdelAziz (b2) 2022; 76
Zhou, Chawla, Jin, Williams (b54) 2014; 9
Rathmann, Frandsen, Barthelmie (b33) 2007
Zhao, Ren (b53) 2015; 81
Ishihara, Qian (b17) 2018; 177
Han, Mi, Shen, Cai, Liu, Li, Xu (b14) 2022; 312
Li, Zhou, Chen (b25) 2020; 280
Song, Tu, Wang, Jin, Li, Huang, Xia, Rizk-Allah, Yang, Su, Hoon Joo (b42) 2022; 312
Del Pozo González, Domínguez-García (b7) 2022; 187
Shahid, Zameer, Muneeb (b36) 2021; 223
Kaldellis, Triantafyllou, Stinis (b20) 2021; 144
Li, Ren, Fan, Li, Xu, Jiang, Xia (b23) 2022; 205
Forero, Kekatos, Giannakis (b12) 2012; 60
Park, Law (b31) 2015; 101
Zong, Porté-Agel (b56) 2021; 170
Siniscalchi-Minna (10.1016/j.oceaneng.2023.115578_b39) 2020; 150
van Dijk (10.1016/j.oceaneng.2023.115578_b44) 2017; 121
Zhao (10.1016/j.oceaneng.2023.115578_b53) 2015; 81
Zhao (10.1016/j.oceaneng.2023.115578_b52) 2021; 132
Dong (10.1016/j.oceaneng.2023.115578_b10) 2022; 325
Song (10.1016/j.oceaneng.2023.115578_b40) 2022; 312
Zhang (10.1016/j.oceaneng.2023.115578_b49) 2020; 114
Kong (10.1016/j.oceaneng.2023.115578_b22) 2022; 181
Hu (10.1016/j.oceaneng.2023.115578_b16) 2022; 185
Kaldellis (10.1016/j.oceaneng.2023.115578_b20) 2021; 144
Park (10.1016/j.oceaneng.2023.115578_b31) 2015; 101
Shang (10.1016/j.oceaneng.2023.115578_b38) 2019; 75
Shang (10.1016/j.oceaneng.2023.115578_b37) 2017; 106
Amirteimoori (10.1016/j.oceaneng.2023.115578_b3) 2022; 173
Xu (10.1016/j.oceaneng.2023.115578_b46) 2020; 211
Li (10.1016/j.oceaneng.2023.115578_b23) 2022; 205
Han (10.1016/j.oceaneng.2023.115578_b14) 2022; 312
Yin (10.1016/j.oceaneng.2023.115578_b48) 2020; 202
Faramarzi (10.1016/j.oceaneng.2023.115578_b11) 2020; 152
Lopes (10.1016/j.oceaneng.2023.115578_b27) 2022; 220
Djerf (10.1016/j.oceaneng.2023.115578_b9) 2000
Qian (10.1016/j.oceaneng.2023.115578_b32) 2018; 11
Forero (10.1016/j.oceaneng.2023.115578_b12) 2012; 60
Li (10.1016/j.oceaneng.2023.115578_b25) 2020; 280
Song (10.1016/j.oceaneng.2023.115578_b41) 2022; 312
Ansari (10.1016/j.oceaneng.2023.115578_b4) 2022; 203
Wu (10.1016/j.oceaneng.2023.115578_b45) 2022; 199
Song (10.1016/j.oceaneng.2023.115578_b43) 2005
Khosravi (10.1016/j.oceaneng.2023.115578_b21) 2018; 25
Jia (10.1016/j.oceaneng.2023.115578_b19) 2021; 169
Memarzadeh (10.1016/j.oceaneng.2023.115578_b29) 2020; 213
Rathmann (10.1016/j.oceaneng.2023.115578_b33) 2007
Ma (10.1016/j.oceaneng.2023.115578_b28) 2021; 303
Chen (10.1016/j.oceaneng.2023.115578_b6) 2021; 116
Zhu (10.1016/j.oceaneng.2023.115578_b55) 2022; 47
Jaseena (10.1016/j.oceaneng.2023.115578_b18) 2021; 234
Yan (10.1016/j.oceaneng.2023.115578_b47) 2021; 233
Ishihara (10.1016/j.oceaneng.2023.115578_b17) 2018; 177
Zong (10.1016/j.oceaneng.2023.115578_b56) 2021; 170
Abdel-Basset (10.1016/j.oceaneng.2023.115578_b2) 2022; 76
Song (10.1016/j.oceaneng.2023.115578_b42) 2022; 312
Zhou (10.1016/j.oceaneng.2023.115578_b54) 2014; 9
Díaz (10.1016/j.oceaneng.2023.115578_b8) 2020; 209
Liu (10.1016/j.oceaneng.2023.115578_b26) 2020; 93
Zhang (10.1016/j.oceaneng.2023.115578_b50) 2012; 23
Pang (10.1016/j.oceaneng.2023.115578_b30) 2023; 857
Zhang (10.1016/j.oceaneng.2023.115578_b51) 2021; 288
Archer (10.1016/j.oceaneng.2023.115578_b5) 2019; 33
Shahid (10.1016/j.oceaneng.2023.115578_b36) 2021; 223
Gros (10.1016/j.oceaneng.2023.115578_b13) 2022; 146
Li (10.1016/j.oceaneng.2023.115578_b24) 2020; 12
Serrano González (10.1016/j.oceaneng.2023.115578_b34) 2015; 80
Hersenius (10.1016/j.oceaneng.2023.115578_b15) 2011
Shahid (10.1016/j.oceaneng.2023.115578_b35) 2021; 223
Del Pozo González (10.1016/j.oceaneng.2023.115578_b7) 2022; 187
Abdel-Basset (10.1016/j.oceaneng.2023.115578_b1) 2021; 227
References_xml – volume: 114
  year: 2020
  ident: b49
  article-title: Typical wind power scenario generation for multiple wind farms using conditional improved Wasserstein generative adversarial network
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 33
  start-page: 34
  year: 2019
  end-page: 43
  ident: b5
  article-title: Wake steering via yaw control in multi-turbine wind farms: Recommendations based on large-eddy simulation
  publication-title: Sustain. Energy Technol. Assess.
– volume: 146
  year: 2022
  ident: b13
  article-title: Learning for MPC with stability & safety guarantees
  publication-title: Automatica
– volume: 23
  start-page: 277
  year: 2012
  end-page: 284
  ident: b50
  article-title: Modeling and monitoring of dynamic processes
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 132
  year: 2021
  ident: b52
  article-title: An incremental clustering method for anomaly detection in flight data
  publication-title: Transp. Res. C
– volume: 312
  year: 2022
  ident: b40
  article-title: Energy capture efficiency enhancement of wind turbines via stochastic model predictive yaw control based on intelligent scenarios generation
  publication-title: Appl. Energy
– volume: 325
  year: 2022
  ident: b10
  article-title: Optimization strategy based on robust model predictive control for RES-CCHP system under multiple uncertainties
  publication-title: Appl. Energy
– volume: 280
  year: 2020
  ident: b25
  article-title: Review of wind power scenario generation methods for optimal operation of renewable energy systems
  publication-title: Appl. Energy
– volume: 101
  start-page: 295
  year: 2015
  end-page: 316
  ident: b31
  article-title: Cooperative wind turbine control for maximizing wind farm power using sequential convex programming
  publication-title: Energy Convers. Manage.
– volume: 223
  year: 2021
  ident: b36
  article-title: A novel genetic LSTM model for wind power forecast
  publication-title: Energy
– volume: 9
  start-page: 62
  year: 2014
  end-page: 74
  ident: b54
  article-title: Big data opportunities and challenges: Discussions from data analytics perspectives [discussion forum]
  publication-title: IEEE Comput. Intell. Mag.
– volume: 93
  start-page: 53
  year: 2020
  end-page: 65
  ident: b26
  article-title: Fast tunable gradient RBF networks for online modeling of nonlinear and nonstationary dynamic processes
  publication-title: J. Process Control
– volume: 220
  year: 2022
  ident: b27
  article-title: Operation assessment of analytical wind turbine wake models
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 209
  year: 2020
  ident: b8
  article-title: Review of the current status, technology and future trends of offshore wind farms
  publication-title: Ocean Eng.
– volume: 60
  start-page: 4163
  year: 2012
  end-page: 4177
  ident: b12
  article-title: Robust clustering using outlier-sparsity regularization
  publication-title: IEEE Trans. Signal Process.
– volume: 312
  year: 2022
  ident: b14
  article-title: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting
  publication-title: Appl. Energy
– volume: 857
  year: 2023
  ident: b30
  article-title: Comparison of parallel optimization algorithms on computationally expensive groundwater remediation designs
  publication-title: Sci. Total Environ.
– volume: 181
  start-page: 581
  year: 2022
  end-page: 591
  ident: b22
  article-title: Large-scale wind farm control using distributed economic model predictive scheme
  publication-title: Renew. Energy
– volume: 11
  start-page: 665
  year: 2018
  end-page: 688
  ident: b32
  article-title: A new analytical wake model for yawed wind turbines
  publication-title: Energies
– volume: 116
  year: 2021
  ident: b6
  article-title: Deep learning-aided model predictive control of wind farms for AGC considering the dynamic wake effect
  publication-title: Control Eng. Pract.
– volume: 177
  start-page: 275
  year: 2018
  end-page: 292
  ident: b17
  article-title: A new Gaussian-based analytical wake model for wind turbines considering ambient turbulence intensities and thrust coefficient effects
  publication-title: J. Wind Eng. Ind. Aerodyn.
– year: 2000
  ident: b9
  article-title: Evaluation of the software program windfarm and comparisons with measured data from alsvik
– volume: 234
  year: 2021
  ident: b18
  article-title: Decomposition-based hybrid wind speed forecasting model using deep bidirectional LSTM networks
  publication-title: Energy Convers. Manage.
– volume: 205
  year: 2022
  ident: b23
  article-title: A review of scenario analysis methods in planning and operation of modern power systems: Methodologies, applications, and challenges
  publication-title: Electr. Power Syst. Res.
– volume: 12
  year: 2020
  ident: b24
  article-title: A clutering-based scenario generation framework for power market simulation with wind integration
  publication-title: J. Renew. Sustain. Energy
– volume: 75
  start-page: 24
  year: 2019
  end-page: 39
  ident: b38
  article-title: A data-driven robust optimization approach to scenario-based stochastic model predictive control
  publication-title: J. Process Control
– volume: 144
  year: 2021
  ident: b20
  article-title: Critical evaluation of Wind Turbines’ analytical wake models
  publication-title: Renew. Sustain. Energy Rev.
– volume: 223
  year: 2021
  ident: b35
  article-title: A novel genetic LSTM model for wind power forecast
  publication-title: Energy
– year: 2007
  ident: b33
  article-title: Wake modelling for intermediate and large wind farms
  publication-title: 2007 European Wind Energy Conference and Exhibition
– volume: 80
  start-page: 219
  year: 2015
  end-page: 229
  ident: b34
  article-title: Maximizing the overall production of wind farms by setting the individual operating point of wind turbines
  publication-title: Renew. Energy
– volume: 169
  start-page: 1091
  year: 2021
  end-page: 1105
  ident: b19
  article-title: Combining LIDAR and LADRC for intelligent pitch control of wind turbines
  publication-title: Renew. Energy
– volume: 81
  start-page: 644
  year: 2015
  end-page: 657
  ident: b53
  article-title: Focus on the development of offshore wind power in China: Has the golden period come?
  publication-title: Renew. Energy
– volume: 213
  year: 2020
  ident: b29
  article-title: A new short-term wind speed forecasting method based on fine-tuned LSTM neural network and optimal input sets
  publication-title: Energy Convers. Manage.
– year: 2011
  ident: b15
  article-title: Operation and Maintenance of offshore wind farms
– volume: 185
  start-page: 1139
  year: 2022
  end-page: 1151
  ident: b16
  article-title: A transfer learning-based scenario generation method for stochastic optimal scheduling of microgrid with newly-built wind farm
  publication-title: Renew. Energy
– volume: 312
  year: 2022
  ident: b41
  article-title: Energy capture efficiency enhancement of wind turbines via stochastic model predictive yaw control based on intelligent scenarios generation
  publication-title: Appl. Energy
– volume: 173
  year: 2022
  ident: b3
  article-title: A parallel hybrid PSO-GA algorithm for the flexible flow-shop scheduling with transportation
  publication-title: Comput. Ind. Eng.
– volume: 170
  start-page: 1228
  year: 2021
  end-page: 1244
  ident: b56
  article-title: Experimental investigation and analytical modelling of active yaw control for wind farm power optimization
  publication-title: Renew. Energy
– volume: 227
  year: 2021
  ident: b1
  article-title: Parameter estimation of photovoltaic models using an improved marine predators algorithm
  publication-title: Energy Convers. Manage.
– volume: 203
  year: 2022
  ident: b4
  article-title: Automatic driver cognitive fatigue detection based on upper body posture variations
  publication-title: Expert Syst. Appl.
– volume: 152
  year: 2020
  ident: b11
  article-title: Marine Predators Algorithm: A nature-inspired metaheuristic
  publication-title: Expert Syst. Appl.
– volume: 199
  start-page: 977
  year: 2022
  end-page: 992
  ident: b45
  article-title: Promoting wind energy for sustainable development by precise wind speed prediction based on graph neural networks
  publication-title: Renew. Energy
– volume: 211
  year: 2020
  ident: b46
  article-title: Designing a standalone wind-diesel-CAES hybrid energy system by using a scenario-based bi-level programming method
  publication-title: Energy Convers. Manage.
– volume: 106
  start-page: 464
  year: 2017
  end-page: 479
  ident: b37
  article-title: Data-driven robust optimization based on kernel learning
  publication-title: Comput. Chem. Eng.
– volume: 312
  year: 2022
  ident: b42
  article-title: Coordinated optimization on energy capture and torque fluctuation of wind turbines via variable weight NMPC with fuzzy regulator
  publication-title: Appl. Energy
– volume: 288
  year: 2021
  ident: b51
  article-title: Spatiotemporal wind field prediction based on physics-informed deep learning and LIDAR measurements
  publication-title: Appl. Energy
– volume: 202
  year: 2020
  ident: b48
  article-title: Reliability aware multi-objective predictive control for wind farm based on machine learning and heuristic optimizations
  publication-title: Energy
– volume: 47
  start-page: 27038
  year: 2022
  end-page: 27048
  ident: b55
  article-title: Optimization of hydrogen liquefaction process based on parallel genetic algorithm
  publication-title: Int. J. Hydrogen Energy
– volume: 233
  year: 2021
  ident: b47
  article-title: Stochastic multi-scenario optimization for a hybrid combined cooling, heating and power system considering multi-criteria
  publication-title: Energy Convers. Manage.
– volume: 76
  year: 2022
  ident: b2
  article-title: Hybrid computational intelligence algorithm for autonomous handling of COVID-19 pandemic emergency in smart cities
  publication-title: Sustainable Cities Soc.
– volume: 25
  start-page: 146
  year: 2018
  end-page: 160
  ident: b21
  article-title: Prediction of wind speed and wind direction using artificial neural network, support vector regression and adaptive neuro-fuzzy inference system
  publication-title: Sustain. Energy Technol. Assess.
– volume: 187
  start-page: 248
  year: 2022
  end-page: 256
  ident: b7
  article-title: Non-centralized hierarchical model predictive control strategy of floating offshore wind farms for fatigue load reduction
  publication-title: Renew. Energy
– volume: 303
  year: 2021
  ident: b28
  article-title: Formulas of the optimized yaw angles for cooperative control of wind farms with aligned turbines to maximize the power production
  publication-title: Appl. Energy
– year: 2005
  ident: b43
  article-title: Robust clustering using outlier-sparsity regularization
  publication-title: Highly efficient incremental estimation of Gaussian mixture models for online data stream clustering
– volume: 150
  start-page: 656
  year: 2020
  end-page: 669
  ident: b39
  article-title: A non-centralized predictive control strategy for wind farm active power control: A wake-based partitioning approach
  publication-title: Renew. Energy
– volume: 121
  start-page: 561
  year: 2017
  end-page: 569
  ident: b44
  article-title: Wind farm multi-objective wake redirection for optimizing power production and loads
  publication-title: Energy
– volume: 170
  start-page: 1228
  year: 2021
  ident: 10.1016/j.oceaneng.2023.115578_b56
  article-title: Experimental investigation and analytical modelling of active yaw control for wind farm power optimization
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.02.059
– volume: 303
  year: 2021
  ident: 10.1016/j.oceaneng.2023.115578_b28
  article-title: Formulas of the optimized yaw angles for cooperative control of wind farms with aligned turbines to maximize the power production
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.117691
– volume: 25
  start-page: 146
  year: 2018
  ident: 10.1016/j.oceaneng.2023.115578_b21
  article-title: Prediction of wind speed and wind direction using artificial neural network, support vector regression and adaptive neuro-fuzzy inference system
  publication-title: Sustain. Energy Technol. Assess.
– volume: 146
  year: 2022
  ident: 10.1016/j.oceaneng.2023.115578_b13
  article-title: Learning for MPC with stability & safety guarantees
  publication-title: Automatica
  doi: 10.1016/j.automatica.2022.110598
– volume: 81
  start-page: 644
  year: 2015
  ident: 10.1016/j.oceaneng.2023.115578_b53
  article-title: Focus on the development of offshore wind power in China: Has the golden period come?
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2015.03.077
– volume: 325
  year: 2022
  ident: 10.1016/j.oceaneng.2023.115578_b10
  article-title: Optimization strategy based on robust model predictive control for RES-CCHP system under multiple uncertainties
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.119707
– volume: 209
  year: 2020
  ident: 10.1016/j.oceaneng.2023.115578_b8
  article-title: Review of the current status, technology and future trends of offshore wind farms
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.107381
– volume: 150
  start-page: 656
  year: 2020
  ident: 10.1016/j.oceaneng.2023.115578_b39
  article-title: A non-centralized predictive control strategy for wind farm active power control: A wake-based partitioning approach
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.12.139
– volume: 101
  start-page: 295
  year: 2015
  ident: 10.1016/j.oceaneng.2023.115578_b31
  article-title: Cooperative wind turbine control for maximizing wind farm power using sequential convex programming
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2015.05.031
– volume: 202
  year: 2020
  ident: 10.1016/j.oceaneng.2023.115578_b48
  article-title: Reliability aware multi-objective predictive control for wind farm based on machine learning and heuristic optimizations
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117739
– volume: 132
  year: 2021
  ident: 10.1016/j.oceaneng.2023.115578_b52
  article-title: An incremental clustering method for anomaly detection in flight data
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2021.103406
– volume: 181
  start-page: 581
  year: 2022
  ident: 10.1016/j.oceaneng.2023.115578_b22
  article-title: Large-scale wind farm control using distributed economic model predictive scheme
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.09.048
– volume: 280
  year: 2020
  ident: 10.1016/j.oceaneng.2023.115578_b25
  article-title: Review of wind power scenario generation methods for optimal operation of renewable energy systems
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.115992
– volume: 114
  year: 2020
  ident: 10.1016/j.oceaneng.2023.115578_b49
  article-title: Typical wind power scenario generation for multiple wind farms using conditional improved Wasserstein generative adversarial network
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2019.105388
– volume: 47
  start-page: 27038
  issue: 63
  year: 2022
  ident: 10.1016/j.oceaneng.2023.115578_b55
  article-title: Optimization of hydrogen liquefaction process based on parallel genetic algorithm
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.06.062
– volume: 173
  year: 2022
  ident: 10.1016/j.oceaneng.2023.115578_b3
  article-title: A parallel hybrid PSO-GA algorithm for the flexible flow-shop scheduling with transportation
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2022.108672
– volume: 213
  year: 2020
  ident: 10.1016/j.oceaneng.2023.115578_b29
  article-title: A new short-term wind speed forecasting method based on fine-tuned LSTM neural network and optimal input sets
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2020.112824
– volume: 233
  year: 2021
  ident: 10.1016/j.oceaneng.2023.115578_b47
  article-title: Stochastic multi-scenario optimization for a hybrid combined cooling, heating and power system considering multi-criteria
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2021.113911
– volume: 144
  year: 2021
  ident: 10.1016/j.oceaneng.2023.115578_b20
  article-title: Critical evaluation of Wind Turbines’ analytical wake models
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2021.110991
– volume: 312
  year: 2022
  ident: 10.1016/j.oceaneng.2023.115578_b14
  article-title: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.118777
– volume: 220
  year: 2022
  ident: 10.1016/j.oceaneng.2023.115578_b27
  article-title: Operation assessment of analytical wind turbine wake models
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2021.104840
– volume: 227
  year: 2021
  ident: 10.1016/j.oceaneng.2023.115578_b1
  article-title: Parameter estimation of photovoltaic models using an improved marine predators algorithm
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2020.113491
– volume: 60
  start-page: 4163
  issue: 8
  year: 2012
  ident: 10.1016/j.oceaneng.2023.115578_b12
  article-title: Robust clustering using outlier-sparsity regularization
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2012.2196696
– volume: 205
  year: 2022
  ident: 10.1016/j.oceaneng.2023.115578_b23
  article-title: A review of scenario analysis methods in planning and operation of modern power systems: Methodologies, applications, and challenges
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2021.107722
– volume: 169
  start-page: 1091
  year: 2021
  ident: 10.1016/j.oceaneng.2023.115578_b19
  article-title: Combining LIDAR and LADRC for intelligent pitch control of wind turbines
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.01.065
– volume: 203
  year: 2022
  ident: 10.1016/j.oceaneng.2023.115578_b4
  article-title: Automatic driver cognitive fatigue detection based on upper body posture variations
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.117568
– year: 2011
  ident: 10.1016/j.oceaneng.2023.115578_b15
– volume: 288
  year: 2021
  ident: 10.1016/j.oceaneng.2023.115578_b51
  article-title: Spatiotemporal wind field prediction based on physics-informed deep learning and LIDAR measurements
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.116641
– year: 2007
  ident: 10.1016/j.oceaneng.2023.115578_b33
  article-title: Wake modelling for intermediate and large wind farms
– year: 2000
  ident: 10.1016/j.oceaneng.2023.115578_b9
– year: 2005
  ident: 10.1016/j.oceaneng.2023.115578_b43
  article-title: Robust clustering using outlier-sparsity regularization
– volume: 23
  start-page: 277
  issue: 2
  year: 2012
  ident: 10.1016/j.oceaneng.2023.115578_b50
  article-title: Modeling and monitoring of dynamic processes
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2011.2179669
– volume: 312
  year: 2022
  ident: 10.1016/j.oceaneng.2023.115578_b42
  article-title: Coordinated optimization on energy capture and torque fluctuation of wind turbines via variable weight NMPC with fuzzy regulator
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.118821
– volume: 223
  year: 2021
  ident: 10.1016/j.oceaneng.2023.115578_b35
  article-title: A novel genetic LSTM model for wind power forecast
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120069
– volume: 312
  year: 2022
  ident: 10.1016/j.oceaneng.2023.115578_b40
  article-title: Energy capture efficiency enhancement of wind turbines via stochastic model predictive yaw control based on intelligent scenarios generation
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.118773
– volume: 33
  start-page: 34
  year: 2019
  ident: 10.1016/j.oceaneng.2023.115578_b5
  article-title: Wake steering via yaw control in multi-turbine wind farms: Recommendations based on large-eddy simulation
  publication-title: Sustain. Energy Technol. Assess.
– volume: 234
  year: 2021
  ident: 10.1016/j.oceaneng.2023.115578_b18
  article-title: Decomposition-based hybrid wind speed forecasting model using deep bidirectional LSTM networks
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2021.113944
– volume: 93
  start-page: 53
  year: 2020
  ident: 10.1016/j.oceaneng.2023.115578_b26
  article-title: Fast tunable gradient RBF networks for online modeling of nonlinear and nonstationary dynamic processes
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2020.07.009
– volume: 121
  start-page: 561
  year: 2017
  ident: 10.1016/j.oceaneng.2023.115578_b44
  article-title: Wind farm multi-objective wake redirection for optimizing power production and loads
  publication-title: Energy
  doi: 10.1016/j.energy.2017.01.051
– volume: 187
  start-page: 248
  year: 2022
  ident: 10.1016/j.oceaneng.2023.115578_b7
  article-title: Non-centralized hierarchical model predictive control strategy of floating offshore wind farms for fatigue load reduction
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2022.01.046
– volume: 211
  year: 2020
  ident: 10.1016/j.oceaneng.2023.115578_b46
  article-title: Designing a standalone wind-diesel-CAES hybrid energy system by using a scenario-based bi-level programming method
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2020.112759
– volume: 80
  start-page: 219
  year: 2015
  ident: 10.1016/j.oceaneng.2023.115578_b34
  article-title: Maximizing the overall production of wind farms by setting the individual operating point of wind turbines
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2015.02.009
– volume: 116
  year: 2021
  ident: 10.1016/j.oceaneng.2023.115578_b6
  article-title: Deep learning-aided model predictive control of wind farms for AGC considering the dynamic wake effect
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2021.104925
– volume: 177
  start-page: 275
  year: 2018
  ident: 10.1016/j.oceaneng.2023.115578_b17
  article-title: A new Gaussian-based analytical wake model for wind turbines considering ambient turbulence intensities and thrust coefficient effects
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2018.04.010
– volume: 9
  start-page: 62
  issue: 4
  year: 2014
  ident: 10.1016/j.oceaneng.2023.115578_b54
  article-title: Big data opportunities and challenges: Discussions from data analytics perspectives [discussion forum]
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2014.2350953
– volume: 152
  year: 2020
  ident: 10.1016/j.oceaneng.2023.115578_b11
  article-title: Marine Predators Algorithm: A nature-inspired metaheuristic
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113377
– volume: 199
  start-page: 977
  year: 2022
  ident: 10.1016/j.oceaneng.2023.115578_b45
  article-title: Promoting wind energy for sustainable development by precise wind speed prediction based on graph neural networks
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2022.09.036
– volume: 11
  start-page: 665
  year: 2018
  ident: 10.1016/j.oceaneng.2023.115578_b32
  article-title: A new analytical wake model for yawed wind turbines
  publication-title: Energies
  doi: 10.3390/en11030665
– volume: 12
  year: 2020
  ident: 10.1016/j.oceaneng.2023.115578_b24
  article-title: A clutering-based scenario generation framework for power market simulation with wind integration
  publication-title: J. Renew. Sustain. Energy
  doi: 10.1063/5.0006480
– volume: 857
  year: 2023
  ident: 10.1016/j.oceaneng.2023.115578_b30
  article-title: Comparison of parallel optimization algorithms on computationally expensive groundwater remediation designs
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.159544
– volume: 76
  year: 2022
  ident: 10.1016/j.oceaneng.2023.115578_b2
  article-title: Hybrid computational intelligence algorithm for autonomous handling of COVID-19 pandemic emergency in smart cities
  publication-title: Sustainable Cities Soc.
  doi: 10.1016/j.scs.2021.103430
– volume: 75
  start-page: 24
  year: 2019
  ident: 10.1016/j.oceaneng.2023.115578_b38
  article-title: A data-driven robust optimization approach to scenario-based stochastic model predictive control
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2018.12.013
– volume: 312
  year: 2022
  ident: 10.1016/j.oceaneng.2023.115578_b41
  article-title: Energy capture efficiency enhancement of wind turbines via stochastic model predictive yaw control based on intelligent scenarios generation
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.118773
– volume: 223
  year: 2021
  ident: 10.1016/j.oceaneng.2023.115578_b36
  article-title: A novel genetic LSTM model for wind power forecast
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120069
– volume: 185
  start-page: 1139
  year: 2022
  ident: 10.1016/j.oceaneng.2023.115578_b16
  article-title: A transfer learning-based scenario generation method for stochastic optimal scheduling of microgrid with newly-built wind farm
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.12.110
– volume: 106
  start-page: 464
  year: 2017
  ident: 10.1016/j.oceaneng.2023.115578_b37
  article-title: Data-driven robust optimization based on kernel learning
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2017.07.004
SSID ssj0006603
Score 2.428806
Snippet Subject to the inherent high uncertainty of wind, the prediction for its speed and direction may be insufficiently accurate, the resulting decision actions of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 115578
SubjectTerms Active yaw control
Adaptive scenario generation
Offshore wind farm
Parallel algorithm
Stochastic predictive control
Wind uncertainty
Title Robust active yaw control for offshore wind farms using stochastic predictive control based on online adaptive scenario generation
URI https://dx.doi.org/10.1016/j.oceaneng.2023.115578
Volume 286
WOSCitedRecordID wos001065496300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1873-5258
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006603
  issn: 0029-8018
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbKxgNDQjBAG7_kB96iDDfBdfw4oSHgYSA2pO4pcp2L2mlLqqTtxiv845ztOI7EpIEQL1GV-mql9-V8d777TMhrnRRFIXkWA3Adv4VCxzJl-LqDksABUcMKe9iEOD7OplP5ZTT66XthNheiqrLra7n8r6rGe6hs0zr7F-rufxRv4GdUOl5R7Xj9I8V_rWfrdmVJMjYQfVdXfTm6qSisy7Kd1w1EVxiMR6VqLtto3bqkQq3nytA2G-KAYuHkvaxZ7Qqzs-CoNSJVqKUdYNigMN6uzVnM0AQ9dw7vZ21S_RBYD0MG31mZs3XYHLKVBSdzVc0WvTXqhuGXg0oEO_BsMUxZJLb4zTVtujya76UJhUuur0Ca9dJZY3DmOBMphsqO3N3b68RxZ_9m-10a4vygNg-Gz3VgpsYlgXORhdWur0E8sezzOB8GYWiGEn6HbCeCSzSN24cfj6af-gV9MmGprxQyAoNG85tnu9nHGfgtpw_Jgy7goIcOKI_ICKpdsjOgodwl962SOu7yx-SHQxB1CKKIINqhgCKCqEcQNQiiFkHUIogGBNGAoF7WIojWFXUIoh5B1COIBgQ9Id_eH52--xB3R3XEOh0nq1gAx8gjkyUHfPcVwyAUHeUMkoyVMz4WILlIITXbzpopNWazUjLQEhTXGDHo9CnZquoK9ggVhVJoI4ABBssl4yopU1wk9KRUQnKm9wn3f26uOx57c5zKRe4LFs9zr5TcKCV3Stknb3q5pWNyuVVCet3lnT_q_MwcIXeL7LN_kH1O7oW35gXZWjVreEnu6s1q0TavOnT-AukguYU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+active+yaw+control+for+offshore+wind+farms+using+stochastic+predictive+control+based+on+online+adaptive+scenario+generation&rft.jtitle=Ocean+engineering&rft.au=Wang%2C+Yu&rft.au=Wei%2C+Shanbi&rft.au=Yang%2C+Wei&rft.au=Chai%2C+Yi&rft.date=2023-10-15&rft.pub=Elsevier+Ltd&rft.issn=0029-8018&rft.eissn=1873-5258&rft.volume=286&rft_id=info:doi/10.1016%2Fj.oceaneng.2023.115578&rft.externalDocID=S0029801823019625
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon