Robust active yaw control for offshore wind farms using stochastic predictive control based on online adaptive scenario generation
Subject to the inherent high uncertainty of wind, the prediction for its speed and direction may be insufficiently accurate, the resulting decision actions of active yaw control (AYC) may degrade the power gain. Therefore, this paper proposes a data-driven stochastic model predictive control (SMPC)...
Uloženo v:
| Vydáno v: | Ocean engineering Ročník 286; s. 115578 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
15.10.2023
|
| Témata: | |
| ISSN: | 0029-8018, 1873-5258 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Subject to the inherent high uncertainty of wind, the prediction for its speed and direction may be insufficiently accurate, the resulting decision actions of active yaw control (AYC) may degrade the power gain. Therefore, this paper proposes a data-driven stochastic model predictive control (SMPC) using adaptive scenario generation (ASG) for offshore wind farm AYC. First, to build precise scenarios under the nonstationary variation of wind, an adaptive method based on Gaussian mixture model (GMM) clustering is proposed to allow online scenario identification with a compact construction. Specifically, GMM is constructed offline and two online mechanisms are developed for adaptive learning ability. To immunize the power maximization of AYC against prediction error, a data-driven robust optimization strategy is presented to realize SMPC based on generated scenarios. In order to enable real-time operation for large-scale wind farms, a novel parallel marine predator algorithm (PMPA) introduced population improvement strategy is developed to solve the robust problems with a quite lower computational burden. Finally, the simulation based on realistic wind data demonstrates the adaptive learning capacity of the proposed ASG. The result shows that the SMPC can improve the power gain by an average of 2.64% compared to the baseline predictive control.
[Display omitted]
•Robust active yaw policy is developed through stochastic model predictive control.•For nonstationary uncertainty of wind, adaptive scenario generation is proposed, which not only can fine-tune scenario parameters, but also can identify emerging scenarios online.•Enhanced parallel MPA is developed to enable real-time operation. |
|---|---|
| AbstractList | Subject to the inherent high uncertainty of wind, the prediction for its speed and direction may be insufficiently accurate, the resulting decision actions of active yaw control (AYC) may degrade the power gain. Therefore, this paper proposes a data-driven stochastic model predictive control (SMPC) using adaptive scenario generation (ASG) for offshore wind farm AYC. First, to build precise scenarios under the nonstationary variation of wind, an adaptive method based on Gaussian mixture model (GMM) clustering is proposed to allow online scenario identification with a compact construction. Specifically, GMM is constructed offline and two online mechanisms are developed for adaptive learning ability. To immunize the power maximization of AYC against prediction error, a data-driven robust optimization strategy is presented to realize SMPC based on generated scenarios. In order to enable real-time operation for large-scale wind farms, a novel parallel marine predator algorithm (PMPA) introduced population improvement strategy is developed to solve the robust problems with a quite lower computational burden. Finally, the simulation based on realistic wind data demonstrates the adaptive learning capacity of the proposed ASG. The result shows that the SMPC can improve the power gain by an average of 2.64% compared to the baseline predictive control.
[Display omitted]
•Robust active yaw policy is developed through stochastic model predictive control.•For nonstationary uncertainty of wind, adaptive scenario generation is proposed, which not only can fine-tune scenario parameters, but also can identify emerging scenarios online.•Enhanced parallel MPA is developed to enable real-time operation. |
| ArticleNumber | 115578 |
| Author | Wei, Shanbi Chai, Yi Wang, Yu Yang, Wei |
| Author_xml | – sequence: 1 givenname: Yu surname: Wang fullname: Wang, Yu organization: College of Automation, Chongqing University, Chongqing, 400044, China – sequence: 2 givenname: Shanbi orcidid: 0000-0002-2492-668X surname: Wei fullname: Wei, Shanbi email: weishanbi@cqu.edu.cn organization: College of Automation, Chongqing University, Chongqing, 400044, China – sequence: 3 givenname: Wei surname: Yang fullname: Yang, Wei organization: College of Automation, Chongqing University, Chongqing, 400044, China – sequence: 4 givenname: Yi surname: Chai fullname: Chai, Yi organization: College of Automation, Chongqing University, Chongqing, 400044, China |
| BookMark | eNqFkE1LAzEQhoNUsK3-Bckf2DrZNd0seFCKX1AQRM9hmp20KTUpSdrSq7_cfujFS2HgvczzMvP0WMcHT4xdCxgIEMOb-SAYQk9-OiihrAZCSFmrM9YVqq4KWUrVYV2AsikUCHXBeinNAWA4hKrLvt_DZJUyR5PdmvgWN9wEn2NYcBsiD9amWYjEN8633GL8SnyVnJ_ylIOZYcrO8GWk1h35P3aCiVoe_G4WzhPHFpeHhWTIY3SBT8lTxOyCv2TnFheJrn6zzz6fHj9GL8X47fl19DAuTCXKXNQkFYBqrKS2bRGkklJIRaUCO5GipkbWFVVwWykDiAImtgEyDaE0IGtT9dnw2GtiSCmS1cvovjButQC9N6nn-s-k3pvUR5M78O4faFw-nJ4jusVp_P6I0-65taOok3HkzU5aJJN1G9ypih-885nA |
| CitedBy_id | crossref_primary_10_1016_j_energy_2025_137716 crossref_primary_10_1109_ACCESS_2024_3375115 crossref_primary_10_1109_ACCESS_2024_3420872 crossref_primary_10_1016_j_renene_2025_122988 crossref_primary_10_1016_j_oceaneng_2024_117482 |
| Cites_doi | 10.1016/j.renene.2021.02.059 10.1016/j.apenergy.2021.117691 10.1016/j.automatica.2022.110598 10.1016/j.renene.2015.03.077 10.1016/j.apenergy.2022.119707 10.1016/j.oceaneng.2020.107381 10.1016/j.renene.2019.12.139 10.1016/j.enconman.2015.05.031 10.1016/j.energy.2020.117739 10.1016/j.trc.2021.103406 10.1016/j.renene.2021.09.048 10.1016/j.apenergy.2020.115992 10.1016/j.ijepes.2019.105388 10.1016/j.ijhydene.2022.06.062 10.1016/j.cie.2022.108672 10.1016/j.enconman.2020.112824 10.1016/j.enconman.2021.113911 10.1016/j.rser.2021.110991 10.1016/j.apenergy.2022.118777 10.1016/j.jweia.2021.104840 10.1016/j.enconman.2020.113491 10.1109/TSP.2012.2196696 10.1016/j.epsr.2021.107722 10.1016/j.renene.2021.01.065 10.1016/j.eswa.2022.117568 10.1016/j.apenergy.2021.116641 10.1109/TNNLS.2011.2179669 10.1016/j.apenergy.2022.118821 10.1016/j.energy.2021.120069 10.1016/j.apenergy.2022.118773 10.1016/j.enconman.2021.113944 10.1016/j.jprocont.2020.07.009 10.1016/j.energy.2017.01.051 10.1016/j.renene.2022.01.046 10.1016/j.enconman.2020.112759 10.1016/j.renene.2015.02.009 10.1016/j.conengprac.2021.104925 10.1016/j.jweia.2018.04.010 10.1109/MCI.2014.2350953 10.1016/j.eswa.2020.113377 10.1016/j.renene.2022.09.036 10.3390/en11030665 10.1063/5.0006480 10.1016/j.scitotenv.2022.159544 10.1016/j.scs.2021.103430 10.1016/j.jprocont.2018.12.013 10.1016/j.renene.2021.12.110 10.1016/j.compchemeng.2017.07.004 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.oceaneng.2023.115578 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Oceanography |
| EISSN | 1873-5258 |
| ExternalDocumentID | 10_1016_j_oceaneng_2023_115578 S0029801823019625 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KCYFY KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SEW SPC SPCBC SSJ SST SSZ T5K TAE TN5 XPP ZMT ~02 ~G- 29N 6TJ 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACKIV ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SET WUQ ~HD |
| ID | FETCH-LOGICAL-c312t-7e580089f5eddda05855158e280fb517e9573e30438c0aa10bf90ec9ea5c057c3 |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001065496300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0029-8018 |
| IngestDate | Tue Nov 18 22:11:29 EST 2025 Sat Nov 29 07:26:13 EST 2025 Fri Feb 23 02:34:03 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Adaptive scenario generation Parallel algorithm Offshore wind farm Wind uncertainty Stochastic predictive control Active yaw control |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c312t-7e580089f5eddda05855158e280fb517e9573e30438c0aa10bf90ec9ea5c057c3 |
| ORCID | 0000-0002-2492-668X |
| ParticipantIDs | crossref_primary_10_1016_j_oceaneng_2023_115578 crossref_citationtrail_10_1016_j_oceaneng_2023_115578 elsevier_sciencedirect_doi_10_1016_j_oceaneng_2023_115578 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-10-15 |
| PublicationDateYYYYMMDD | 2023-10-15 |
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Ocean engineering |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Shang, You (b38) 2019; 75 Ma, Ge, Wu, Du, Liu (b28) 2021; 303 Wu, Zheng, Guo, Liu (b45) 2022; 199 Zhu, Wang, Li, Duo, Sun (b55) 2022; 47 Zhang, Zhao (b51) 2021; 288 Siniscalchi-Minna, Bianchi, Ocampo-Martinez, Domínguez-García, De Schutter (b39) 2020; 150 Liu, Chen, Liang, Du, Harris (b26) 2020; 93 van Dijk, van Wingerden, Ashuri, Li (b44) 2017; 121 Song, Li, Wang, Jin, Huang, Xia, Rizk-Allah, Yang, Su, Joo (b41) 2022; 312 Djerf, Mattsson (b9) 2000 Jia, Wang, Meng, Chen, Liu, Jia, Bao, Liu (b19) 2021; 169 Hersenius, Möller (b15) 2011 Ansari, Du, Naghdy, Stirling (b4) 2022; 203 Jaseena, Kovoor (b18) 2021; 234 Faramarzi, Heidarinejad, Mirjalili, Gandomi (b11) 2020; 152 Song, Li, Wang, Jin, Huang, Xia, Rizk-Allah, Yang, Su, Joo (b40) 2022; 312 Abdel-Basset, El-Shahat, Chakrabortty, Ryan (b1) 2021; 227 Yan, Lu, Wang, Chen, Wang, Yang, Huang (b47) 2021; 233 Lopes, Vicente, Sánchez, Daus, Koch (b27) 2022; 220 Zhang, Chai, Li, Yang (b50) 2012; 23 Zhang, Ai, Xiao, Hao, Lu (b49) 2020; 114 Serrano González, Burgos Payán, Riquelme Santos, González Rodríguez (b34) 2015; 80 Khosravi, Koury, Machado, Pabon (b21) 2018; 25 Chen, Lin, Qiu, Liu, Song (b6) 2021; 116 Archer, Vasel-Be-Hagh (b5) 2019; 33 Pang, Shoemaker (b30) 2023; 857 Song, Wang (b43) 2005 Díaz, Guedes Soares (b8) 2020; 209 Qian, Ishihar (b32) 2018; 11 Shang, Huang, You (b37) 2017; 106 Amirteimoori, Mahdavi, Solimanpur, Ali, Tirkolaee (b3) 2022; 173 Gros, Zanon (b13) 2022; 146 Xu, Hu, Cao, Huang, Liu, Liu, Chen, Lund (b46) 2020; 211 Memarzadeh, Keynia (b29) 2020; 213 Kong, Ma, Wang, Guo, Abdelbaky, Liu, Lee (b22) 2022; 181 Yin, Zhao, Lin, Karcanias (b48) 2020; 202 Dong, Zhang, Sun (b10) 2022; 325 Zhao, Li, Alam, Wang (b52) 2021; 132 Hu, Li (b16) 2022; 185 Li, Sedzro, Fang, Hodge, Zhang (b24) 2020; 12 Shahid, Zameer, Muneeb (b35) 2021; 223 Abdel-Basset, Eldrandaly, Shawky, Elhoseny, AbdelAziz (b2) 2022; 76 Zhou, Chawla, Jin, Williams (b54) 2014; 9 Rathmann, Frandsen, Barthelmie (b33) 2007 Zhao, Ren (b53) 2015; 81 Ishihara, Qian (b17) 2018; 177 Han, Mi, Shen, Cai, Liu, Li, Xu (b14) 2022; 312 Li, Zhou, Chen (b25) 2020; 280 Song, Tu, Wang, Jin, Li, Huang, Xia, Rizk-Allah, Yang, Su, Hoon Joo (b42) 2022; 312 Del Pozo González, Domínguez-García (b7) 2022; 187 Shahid, Zameer, Muneeb (b36) 2021; 223 Kaldellis, Triantafyllou, Stinis (b20) 2021; 144 Li, Ren, Fan, Li, Xu, Jiang, Xia (b23) 2022; 205 Forero, Kekatos, Giannakis (b12) 2012; 60 Park, Law (b31) 2015; 101 Zong, Porté-Agel (b56) 2021; 170 Siniscalchi-Minna (10.1016/j.oceaneng.2023.115578_b39) 2020; 150 van Dijk (10.1016/j.oceaneng.2023.115578_b44) 2017; 121 Zhao (10.1016/j.oceaneng.2023.115578_b53) 2015; 81 Zhao (10.1016/j.oceaneng.2023.115578_b52) 2021; 132 Dong (10.1016/j.oceaneng.2023.115578_b10) 2022; 325 Song (10.1016/j.oceaneng.2023.115578_b40) 2022; 312 Zhang (10.1016/j.oceaneng.2023.115578_b49) 2020; 114 Kong (10.1016/j.oceaneng.2023.115578_b22) 2022; 181 Hu (10.1016/j.oceaneng.2023.115578_b16) 2022; 185 Kaldellis (10.1016/j.oceaneng.2023.115578_b20) 2021; 144 Park (10.1016/j.oceaneng.2023.115578_b31) 2015; 101 Shang (10.1016/j.oceaneng.2023.115578_b38) 2019; 75 Shang (10.1016/j.oceaneng.2023.115578_b37) 2017; 106 Amirteimoori (10.1016/j.oceaneng.2023.115578_b3) 2022; 173 Xu (10.1016/j.oceaneng.2023.115578_b46) 2020; 211 Li (10.1016/j.oceaneng.2023.115578_b23) 2022; 205 Han (10.1016/j.oceaneng.2023.115578_b14) 2022; 312 Yin (10.1016/j.oceaneng.2023.115578_b48) 2020; 202 Faramarzi (10.1016/j.oceaneng.2023.115578_b11) 2020; 152 Lopes (10.1016/j.oceaneng.2023.115578_b27) 2022; 220 Djerf (10.1016/j.oceaneng.2023.115578_b9) 2000 Qian (10.1016/j.oceaneng.2023.115578_b32) 2018; 11 Forero (10.1016/j.oceaneng.2023.115578_b12) 2012; 60 Li (10.1016/j.oceaneng.2023.115578_b25) 2020; 280 Song (10.1016/j.oceaneng.2023.115578_b41) 2022; 312 Ansari (10.1016/j.oceaneng.2023.115578_b4) 2022; 203 Wu (10.1016/j.oceaneng.2023.115578_b45) 2022; 199 Song (10.1016/j.oceaneng.2023.115578_b43) 2005 Khosravi (10.1016/j.oceaneng.2023.115578_b21) 2018; 25 Jia (10.1016/j.oceaneng.2023.115578_b19) 2021; 169 Memarzadeh (10.1016/j.oceaneng.2023.115578_b29) 2020; 213 Rathmann (10.1016/j.oceaneng.2023.115578_b33) 2007 Ma (10.1016/j.oceaneng.2023.115578_b28) 2021; 303 Chen (10.1016/j.oceaneng.2023.115578_b6) 2021; 116 Zhu (10.1016/j.oceaneng.2023.115578_b55) 2022; 47 Jaseena (10.1016/j.oceaneng.2023.115578_b18) 2021; 234 Yan (10.1016/j.oceaneng.2023.115578_b47) 2021; 233 Ishihara (10.1016/j.oceaneng.2023.115578_b17) 2018; 177 Zong (10.1016/j.oceaneng.2023.115578_b56) 2021; 170 Abdel-Basset (10.1016/j.oceaneng.2023.115578_b2) 2022; 76 Song (10.1016/j.oceaneng.2023.115578_b42) 2022; 312 Zhou (10.1016/j.oceaneng.2023.115578_b54) 2014; 9 Díaz (10.1016/j.oceaneng.2023.115578_b8) 2020; 209 Liu (10.1016/j.oceaneng.2023.115578_b26) 2020; 93 Zhang (10.1016/j.oceaneng.2023.115578_b50) 2012; 23 Pang (10.1016/j.oceaneng.2023.115578_b30) 2023; 857 Zhang (10.1016/j.oceaneng.2023.115578_b51) 2021; 288 Archer (10.1016/j.oceaneng.2023.115578_b5) 2019; 33 Shahid (10.1016/j.oceaneng.2023.115578_b36) 2021; 223 Gros (10.1016/j.oceaneng.2023.115578_b13) 2022; 146 Li (10.1016/j.oceaneng.2023.115578_b24) 2020; 12 Serrano González (10.1016/j.oceaneng.2023.115578_b34) 2015; 80 Hersenius (10.1016/j.oceaneng.2023.115578_b15) 2011 Shahid (10.1016/j.oceaneng.2023.115578_b35) 2021; 223 Del Pozo González (10.1016/j.oceaneng.2023.115578_b7) 2022; 187 Abdel-Basset (10.1016/j.oceaneng.2023.115578_b1) 2021; 227 |
| References_xml | – volume: 114 year: 2020 ident: b49 article-title: Typical wind power scenario generation for multiple wind farms using conditional improved Wasserstein generative adversarial network publication-title: Int. J. Electr. Power Energy Syst. – volume: 33 start-page: 34 year: 2019 end-page: 43 ident: b5 article-title: Wake steering via yaw control in multi-turbine wind farms: Recommendations based on large-eddy simulation publication-title: Sustain. Energy Technol. Assess. – volume: 146 year: 2022 ident: b13 article-title: Learning for MPC with stability & safety guarantees publication-title: Automatica – volume: 23 start-page: 277 year: 2012 end-page: 284 ident: b50 article-title: Modeling and monitoring of dynamic processes publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 132 year: 2021 ident: b52 article-title: An incremental clustering method for anomaly detection in flight data publication-title: Transp. Res. C – volume: 312 year: 2022 ident: b40 article-title: Energy capture efficiency enhancement of wind turbines via stochastic model predictive yaw control based on intelligent scenarios generation publication-title: Appl. Energy – volume: 325 year: 2022 ident: b10 article-title: Optimization strategy based on robust model predictive control for RES-CCHP system under multiple uncertainties publication-title: Appl. Energy – volume: 280 year: 2020 ident: b25 article-title: Review of wind power scenario generation methods for optimal operation of renewable energy systems publication-title: Appl. Energy – volume: 101 start-page: 295 year: 2015 end-page: 316 ident: b31 article-title: Cooperative wind turbine control for maximizing wind farm power using sequential convex programming publication-title: Energy Convers. Manage. – volume: 223 year: 2021 ident: b36 article-title: A novel genetic LSTM model for wind power forecast publication-title: Energy – volume: 9 start-page: 62 year: 2014 end-page: 74 ident: b54 article-title: Big data opportunities and challenges: Discussions from data analytics perspectives [discussion forum] publication-title: IEEE Comput. Intell. Mag. – volume: 93 start-page: 53 year: 2020 end-page: 65 ident: b26 article-title: Fast tunable gradient RBF networks for online modeling of nonlinear and nonstationary dynamic processes publication-title: J. Process Control – volume: 220 year: 2022 ident: b27 article-title: Operation assessment of analytical wind turbine wake models publication-title: J. Wind Eng. Ind. Aerodyn. – volume: 209 year: 2020 ident: b8 article-title: Review of the current status, technology and future trends of offshore wind farms publication-title: Ocean Eng. – volume: 60 start-page: 4163 year: 2012 end-page: 4177 ident: b12 article-title: Robust clustering using outlier-sparsity regularization publication-title: IEEE Trans. Signal Process. – volume: 312 year: 2022 ident: b14 article-title: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting publication-title: Appl. Energy – volume: 857 year: 2023 ident: b30 article-title: Comparison of parallel optimization algorithms on computationally expensive groundwater remediation designs publication-title: Sci. Total Environ. – volume: 181 start-page: 581 year: 2022 end-page: 591 ident: b22 article-title: Large-scale wind farm control using distributed economic model predictive scheme publication-title: Renew. Energy – volume: 11 start-page: 665 year: 2018 end-page: 688 ident: b32 article-title: A new analytical wake model for yawed wind turbines publication-title: Energies – volume: 116 year: 2021 ident: b6 article-title: Deep learning-aided model predictive control of wind farms for AGC considering the dynamic wake effect publication-title: Control Eng. Pract. – volume: 177 start-page: 275 year: 2018 end-page: 292 ident: b17 article-title: A new Gaussian-based analytical wake model for wind turbines considering ambient turbulence intensities and thrust coefficient effects publication-title: J. Wind Eng. Ind. Aerodyn. – year: 2000 ident: b9 article-title: Evaluation of the software program windfarm and comparisons with measured data from alsvik – volume: 234 year: 2021 ident: b18 article-title: Decomposition-based hybrid wind speed forecasting model using deep bidirectional LSTM networks publication-title: Energy Convers. Manage. – volume: 205 year: 2022 ident: b23 article-title: A review of scenario analysis methods in planning and operation of modern power systems: Methodologies, applications, and challenges publication-title: Electr. Power Syst. Res. – volume: 12 year: 2020 ident: b24 article-title: A clutering-based scenario generation framework for power market simulation with wind integration publication-title: J. Renew. Sustain. Energy – volume: 75 start-page: 24 year: 2019 end-page: 39 ident: b38 article-title: A data-driven robust optimization approach to scenario-based stochastic model predictive control publication-title: J. Process Control – volume: 144 year: 2021 ident: b20 article-title: Critical evaluation of Wind Turbines’ analytical wake models publication-title: Renew. Sustain. Energy Rev. – volume: 223 year: 2021 ident: b35 article-title: A novel genetic LSTM model for wind power forecast publication-title: Energy – year: 2007 ident: b33 article-title: Wake modelling for intermediate and large wind farms publication-title: 2007 European Wind Energy Conference and Exhibition – volume: 80 start-page: 219 year: 2015 end-page: 229 ident: b34 article-title: Maximizing the overall production of wind farms by setting the individual operating point of wind turbines publication-title: Renew. Energy – volume: 169 start-page: 1091 year: 2021 end-page: 1105 ident: b19 article-title: Combining LIDAR and LADRC for intelligent pitch control of wind turbines publication-title: Renew. Energy – volume: 81 start-page: 644 year: 2015 end-page: 657 ident: b53 article-title: Focus on the development of offshore wind power in China: Has the golden period come? publication-title: Renew. Energy – volume: 213 year: 2020 ident: b29 article-title: A new short-term wind speed forecasting method based on fine-tuned LSTM neural network and optimal input sets publication-title: Energy Convers. Manage. – year: 2011 ident: b15 article-title: Operation and Maintenance of offshore wind farms – volume: 185 start-page: 1139 year: 2022 end-page: 1151 ident: b16 article-title: A transfer learning-based scenario generation method for stochastic optimal scheduling of microgrid with newly-built wind farm publication-title: Renew. Energy – volume: 312 year: 2022 ident: b41 article-title: Energy capture efficiency enhancement of wind turbines via stochastic model predictive yaw control based on intelligent scenarios generation publication-title: Appl. Energy – volume: 173 year: 2022 ident: b3 article-title: A parallel hybrid PSO-GA algorithm for the flexible flow-shop scheduling with transportation publication-title: Comput. Ind. Eng. – volume: 170 start-page: 1228 year: 2021 end-page: 1244 ident: b56 article-title: Experimental investigation and analytical modelling of active yaw control for wind farm power optimization publication-title: Renew. Energy – volume: 227 year: 2021 ident: b1 article-title: Parameter estimation of photovoltaic models using an improved marine predators algorithm publication-title: Energy Convers. Manage. – volume: 203 year: 2022 ident: b4 article-title: Automatic driver cognitive fatigue detection based on upper body posture variations publication-title: Expert Syst. Appl. – volume: 152 year: 2020 ident: b11 article-title: Marine Predators Algorithm: A nature-inspired metaheuristic publication-title: Expert Syst. Appl. – volume: 199 start-page: 977 year: 2022 end-page: 992 ident: b45 article-title: Promoting wind energy for sustainable development by precise wind speed prediction based on graph neural networks publication-title: Renew. Energy – volume: 211 year: 2020 ident: b46 article-title: Designing a standalone wind-diesel-CAES hybrid energy system by using a scenario-based bi-level programming method publication-title: Energy Convers. Manage. – volume: 106 start-page: 464 year: 2017 end-page: 479 ident: b37 article-title: Data-driven robust optimization based on kernel learning publication-title: Comput. Chem. Eng. – volume: 312 year: 2022 ident: b42 article-title: Coordinated optimization on energy capture and torque fluctuation of wind turbines via variable weight NMPC with fuzzy regulator publication-title: Appl. Energy – volume: 288 year: 2021 ident: b51 article-title: Spatiotemporal wind field prediction based on physics-informed deep learning and LIDAR measurements publication-title: Appl. Energy – volume: 202 year: 2020 ident: b48 article-title: Reliability aware multi-objective predictive control for wind farm based on machine learning and heuristic optimizations publication-title: Energy – volume: 47 start-page: 27038 year: 2022 end-page: 27048 ident: b55 article-title: Optimization of hydrogen liquefaction process based on parallel genetic algorithm publication-title: Int. J. Hydrogen Energy – volume: 233 year: 2021 ident: b47 article-title: Stochastic multi-scenario optimization for a hybrid combined cooling, heating and power system considering multi-criteria publication-title: Energy Convers. Manage. – volume: 76 year: 2022 ident: b2 article-title: Hybrid computational intelligence algorithm for autonomous handling of COVID-19 pandemic emergency in smart cities publication-title: Sustainable Cities Soc. – volume: 25 start-page: 146 year: 2018 end-page: 160 ident: b21 article-title: Prediction of wind speed and wind direction using artificial neural network, support vector regression and adaptive neuro-fuzzy inference system publication-title: Sustain. Energy Technol. Assess. – volume: 187 start-page: 248 year: 2022 end-page: 256 ident: b7 article-title: Non-centralized hierarchical model predictive control strategy of floating offshore wind farms for fatigue load reduction publication-title: Renew. Energy – volume: 303 year: 2021 ident: b28 article-title: Formulas of the optimized yaw angles for cooperative control of wind farms with aligned turbines to maximize the power production publication-title: Appl. Energy – year: 2005 ident: b43 article-title: Robust clustering using outlier-sparsity regularization publication-title: Highly efficient incremental estimation of Gaussian mixture models for online data stream clustering – volume: 150 start-page: 656 year: 2020 end-page: 669 ident: b39 article-title: A non-centralized predictive control strategy for wind farm active power control: A wake-based partitioning approach publication-title: Renew. Energy – volume: 121 start-page: 561 year: 2017 end-page: 569 ident: b44 article-title: Wind farm multi-objective wake redirection for optimizing power production and loads publication-title: Energy – volume: 170 start-page: 1228 year: 2021 ident: 10.1016/j.oceaneng.2023.115578_b56 article-title: Experimental investigation and analytical modelling of active yaw control for wind farm power optimization publication-title: Renew. Energy doi: 10.1016/j.renene.2021.02.059 – volume: 303 year: 2021 ident: 10.1016/j.oceaneng.2023.115578_b28 article-title: Formulas of the optimized yaw angles for cooperative control of wind farms with aligned turbines to maximize the power production publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.117691 – volume: 25 start-page: 146 year: 2018 ident: 10.1016/j.oceaneng.2023.115578_b21 article-title: Prediction of wind speed and wind direction using artificial neural network, support vector regression and adaptive neuro-fuzzy inference system publication-title: Sustain. Energy Technol. Assess. – volume: 146 year: 2022 ident: 10.1016/j.oceaneng.2023.115578_b13 article-title: Learning for MPC with stability & safety guarantees publication-title: Automatica doi: 10.1016/j.automatica.2022.110598 – volume: 81 start-page: 644 year: 2015 ident: 10.1016/j.oceaneng.2023.115578_b53 article-title: Focus on the development of offshore wind power in China: Has the golden period come? publication-title: Renew. Energy doi: 10.1016/j.renene.2015.03.077 – volume: 325 year: 2022 ident: 10.1016/j.oceaneng.2023.115578_b10 article-title: Optimization strategy based on robust model predictive control for RES-CCHP system under multiple uncertainties publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.119707 – volume: 209 year: 2020 ident: 10.1016/j.oceaneng.2023.115578_b8 article-title: Review of the current status, technology and future trends of offshore wind farms publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.107381 – volume: 150 start-page: 656 year: 2020 ident: 10.1016/j.oceaneng.2023.115578_b39 article-title: A non-centralized predictive control strategy for wind farm active power control: A wake-based partitioning approach publication-title: Renew. Energy doi: 10.1016/j.renene.2019.12.139 – volume: 101 start-page: 295 year: 2015 ident: 10.1016/j.oceaneng.2023.115578_b31 article-title: Cooperative wind turbine control for maximizing wind farm power using sequential convex programming publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2015.05.031 – volume: 202 year: 2020 ident: 10.1016/j.oceaneng.2023.115578_b48 article-title: Reliability aware multi-objective predictive control for wind farm based on machine learning and heuristic optimizations publication-title: Energy doi: 10.1016/j.energy.2020.117739 – volume: 132 year: 2021 ident: 10.1016/j.oceaneng.2023.115578_b52 article-title: An incremental clustering method for anomaly detection in flight data publication-title: Transp. Res. C doi: 10.1016/j.trc.2021.103406 – volume: 181 start-page: 581 year: 2022 ident: 10.1016/j.oceaneng.2023.115578_b22 article-title: Large-scale wind farm control using distributed economic model predictive scheme publication-title: Renew. Energy doi: 10.1016/j.renene.2021.09.048 – volume: 280 year: 2020 ident: 10.1016/j.oceaneng.2023.115578_b25 article-title: Review of wind power scenario generation methods for optimal operation of renewable energy systems publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.115992 – volume: 114 year: 2020 ident: 10.1016/j.oceaneng.2023.115578_b49 article-title: Typical wind power scenario generation for multiple wind farms using conditional improved Wasserstein generative adversarial network publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2019.105388 – volume: 47 start-page: 27038 issue: 63 year: 2022 ident: 10.1016/j.oceaneng.2023.115578_b55 article-title: Optimization of hydrogen liquefaction process based on parallel genetic algorithm publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2022.06.062 – volume: 173 year: 2022 ident: 10.1016/j.oceaneng.2023.115578_b3 article-title: A parallel hybrid PSO-GA algorithm for the flexible flow-shop scheduling with transportation publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2022.108672 – volume: 213 year: 2020 ident: 10.1016/j.oceaneng.2023.115578_b29 article-title: A new short-term wind speed forecasting method based on fine-tuned LSTM neural network and optimal input sets publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2020.112824 – volume: 233 year: 2021 ident: 10.1016/j.oceaneng.2023.115578_b47 article-title: Stochastic multi-scenario optimization for a hybrid combined cooling, heating and power system considering multi-criteria publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2021.113911 – volume: 144 year: 2021 ident: 10.1016/j.oceaneng.2023.115578_b20 article-title: Critical evaluation of Wind Turbines’ analytical wake models publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2021.110991 – volume: 312 year: 2022 ident: 10.1016/j.oceaneng.2023.115578_b14 article-title: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.118777 – volume: 220 year: 2022 ident: 10.1016/j.oceaneng.2023.115578_b27 article-title: Operation assessment of analytical wind turbine wake models publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2021.104840 – volume: 227 year: 2021 ident: 10.1016/j.oceaneng.2023.115578_b1 article-title: Parameter estimation of photovoltaic models using an improved marine predators algorithm publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2020.113491 – volume: 60 start-page: 4163 issue: 8 year: 2012 ident: 10.1016/j.oceaneng.2023.115578_b12 article-title: Robust clustering using outlier-sparsity regularization publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2012.2196696 – volume: 205 year: 2022 ident: 10.1016/j.oceaneng.2023.115578_b23 article-title: A review of scenario analysis methods in planning and operation of modern power systems: Methodologies, applications, and challenges publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2021.107722 – volume: 169 start-page: 1091 year: 2021 ident: 10.1016/j.oceaneng.2023.115578_b19 article-title: Combining LIDAR and LADRC for intelligent pitch control of wind turbines publication-title: Renew. Energy doi: 10.1016/j.renene.2021.01.065 – volume: 203 year: 2022 ident: 10.1016/j.oceaneng.2023.115578_b4 article-title: Automatic driver cognitive fatigue detection based on upper body posture variations publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.117568 – year: 2011 ident: 10.1016/j.oceaneng.2023.115578_b15 – volume: 288 year: 2021 ident: 10.1016/j.oceaneng.2023.115578_b51 article-title: Spatiotemporal wind field prediction based on physics-informed deep learning and LIDAR measurements publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.116641 – year: 2007 ident: 10.1016/j.oceaneng.2023.115578_b33 article-title: Wake modelling for intermediate and large wind farms – year: 2000 ident: 10.1016/j.oceaneng.2023.115578_b9 – year: 2005 ident: 10.1016/j.oceaneng.2023.115578_b43 article-title: Robust clustering using outlier-sparsity regularization – volume: 23 start-page: 277 issue: 2 year: 2012 ident: 10.1016/j.oceaneng.2023.115578_b50 article-title: Modeling and monitoring of dynamic processes publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2011.2179669 – volume: 312 year: 2022 ident: 10.1016/j.oceaneng.2023.115578_b42 article-title: Coordinated optimization on energy capture and torque fluctuation of wind turbines via variable weight NMPC with fuzzy regulator publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.118821 – volume: 223 year: 2021 ident: 10.1016/j.oceaneng.2023.115578_b35 article-title: A novel genetic LSTM model for wind power forecast publication-title: Energy doi: 10.1016/j.energy.2021.120069 – volume: 312 year: 2022 ident: 10.1016/j.oceaneng.2023.115578_b40 article-title: Energy capture efficiency enhancement of wind turbines via stochastic model predictive yaw control based on intelligent scenarios generation publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.118773 – volume: 33 start-page: 34 year: 2019 ident: 10.1016/j.oceaneng.2023.115578_b5 article-title: Wake steering via yaw control in multi-turbine wind farms: Recommendations based on large-eddy simulation publication-title: Sustain. Energy Technol. Assess. – volume: 234 year: 2021 ident: 10.1016/j.oceaneng.2023.115578_b18 article-title: Decomposition-based hybrid wind speed forecasting model using deep bidirectional LSTM networks publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2021.113944 – volume: 93 start-page: 53 year: 2020 ident: 10.1016/j.oceaneng.2023.115578_b26 article-title: Fast tunable gradient RBF networks for online modeling of nonlinear and nonstationary dynamic processes publication-title: J. Process Control doi: 10.1016/j.jprocont.2020.07.009 – volume: 121 start-page: 561 year: 2017 ident: 10.1016/j.oceaneng.2023.115578_b44 article-title: Wind farm multi-objective wake redirection for optimizing power production and loads publication-title: Energy doi: 10.1016/j.energy.2017.01.051 – volume: 187 start-page: 248 year: 2022 ident: 10.1016/j.oceaneng.2023.115578_b7 article-title: Non-centralized hierarchical model predictive control strategy of floating offshore wind farms for fatigue load reduction publication-title: Renew. Energy doi: 10.1016/j.renene.2022.01.046 – volume: 211 year: 2020 ident: 10.1016/j.oceaneng.2023.115578_b46 article-title: Designing a standalone wind-diesel-CAES hybrid energy system by using a scenario-based bi-level programming method publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2020.112759 – volume: 80 start-page: 219 year: 2015 ident: 10.1016/j.oceaneng.2023.115578_b34 article-title: Maximizing the overall production of wind farms by setting the individual operating point of wind turbines publication-title: Renew. Energy doi: 10.1016/j.renene.2015.02.009 – volume: 116 year: 2021 ident: 10.1016/j.oceaneng.2023.115578_b6 article-title: Deep learning-aided model predictive control of wind farms for AGC considering the dynamic wake effect publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2021.104925 – volume: 177 start-page: 275 year: 2018 ident: 10.1016/j.oceaneng.2023.115578_b17 article-title: A new Gaussian-based analytical wake model for wind turbines considering ambient turbulence intensities and thrust coefficient effects publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2018.04.010 – volume: 9 start-page: 62 issue: 4 year: 2014 ident: 10.1016/j.oceaneng.2023.115578_b54 article-title: Big data opportunities and challenges: Discussions from data analytics perspectives [discussion forum] publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2014.2350953 – volume: 152 year: 2020 ident: 10.1016/j.oceaneng.2023.115578_b11 article-title: Marine Predators Algorithm: A nature-inspired metaheuristic publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113377 – volume: 199 start-page: 977 year: 2022 ident: 10.1016/j.oceaneng.2023.115578_b45 article-title: Promoting wind energy for sustainable development by precise wind speed prediction based on graph neural networks publication-title: Renew. Energy doi: 10.1016/j.renene.2022.09.036 – volume: 11 start-page: 665 year: 2018 ident: 10.1016/j.oceaneng.2023.115578_b32 article-title: A new analytical wake model for yawed wind turbines publication-title: Energies doi: 10.3390/en11030665 – volume: 12 year: 2020 ident: 10.1016/j.oceaneng.2023.115578_b24 article-title: A clutering-based scenario generation framework for power market simulation with wind integration publication-title: J. Renew. Sustain. Energy doi: 10.1063/5.0006480 – volume: 857 year: 2023 ident: 10.1016/j.oceaneng.2023.115578_b30 article-title: Comparison of parallel optimization algorithms on computationally expensive groundwater remediation designs publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.159544 – volume: 76 year: 2022 ident: 10.1016/j.oceaneng.2023.115578_b2 article-title: Hybrid computational intelligence algorithm for autonomous handling of COVID-19 pandemic emergency in smart cities publication-title: Sustainable Cities Soc. doi: 10.1016/j.scs.2021.103430 – volume: 75 start-page: 24 year: 2019 ident: 10.1016/j.oceaneng.2023.115578_b38 article-title: A data-driven robust optimization approach to scenario-based stochastic model predictive control publication-title: J. Process Control doi: 10.1016/j.jprocont.2018.12.013 – volume: 312 year: 2022 ident: 10.1016/j.oceaneng.2023.115578_b41 article-title: Energy capture efficiency enhancement of wind turbines via stochastic model predictive yaw control based on intelligent scenarios generation publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.118773 – volume: 223 year: 2021 ident: 10.1016/j.oceaneng.2023.115578_b36 article-title: A novel genetic LSTM model for wind power forecast publication-title: Energy doi: 10.1016/j.energy.2021.120069 – volume: 185 start-page: 1139 year: 2022 ident: 10.1016/j.oceaneng.2023.115578_b16 article-title: A transfer learning-based scenario generation method for stochastic optimal scheduling of microgrid with newly-built wind farm publication-title: Renew. Energy doi: 10.1016/j.renene.2021.12.110 – volume: 106 start-page: 464 year: 2017 ident: 10.1016/j.oceaneng.2023.115578_b37 article-title: Data-driven robust optimization based on kernel learning publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2017.07.004 |
| SSID | ssj0006603 |
| Score | 2.428806 |
| Snippet | Subject to the inherent high uncertainty of wind, the prediction for its speed and direction may be insufficiently accurate, the resulting decision actions of... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 115578 |
| SubjectTerms | Active yaw control Adaptive scenario generation Offshore wind farm Parallel algorithm Stochastic predictive control Wind uncertainty |
| Title | Robust active yaw control for offshore wind farms using stochastic predictive control based on online adaptive scenario generation |
| URI | https://dx.doi.org/10.1016/j.oceaneng.2023.115578 |
| Volume | 286 |
| WOSCitedRecordID | wos001065496300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1873-5258 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006603 issn: 0029-8018 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbKxgNDQjBAG7_kB96iDDfBdfw4oSHgYSA2pO4pcp2L2mlLqqTtxiv845ztOI7EpIEQL1GV-mql9-V8d777TMhrnRRFIXkWA3Adv4VCxzJl-LqDksABUcMKe9iEOD7OplP5ZTT66XthNheiqrLra7n8r6rGe6hs0zr7F-rufxRv4GdUOl5R7Xj9I8V_rWfrdmVJMjYQfVdXfTm6qSisy7Kd1w1EVxiMR6VqLtto3bqkQq3nytA2G-KAYuHkvaxZ7Qqzs-CoNSJVqKUdYNigMN6uzVnM0AQ9dw7vZ21S_RBYD0MG31mZs3XYHLKVBSdzVc0WvTXqhuGXg0oEO_BsMUxZJLb4zTVtujya76UJhUuur0Ca9dJZY3DmOBMphsqO3N3b68RxZ_9m-10a4vygNg-Gz3VgpsYlgXORhdWur0E8sezzOB8GYWiGEn6HbCeCSzSN24cfj6af-gV9MmGprxQyAoNG85tnu9nHGfgtpw_Jgy7goIcOKI_ICKpdsjOgodwl962SOu7yx-SHQxB1CKKIINqhgCKCqEcQNQiiFkHUIogGBNGAoF7WIojWFXUIoh5B1COIBgQ9Id_eH52--xB3R3XEOh0nq1gAx8gjkyUHfPcVwyAUHeUMkoyVMz4WILlIITXbzpopNWazUjLQEhTXGDHo9CnZquoK9ggVhVJoI4ABBssl4yopU1wk9KRUQnKm9wn3f26uOx57c5zKRe4LFs9zr5TcKCV3Stknb3q5pWNyuVVCet3lnT_q_MwcIXeL7LN_kH1O7oW35gXZWjVreEnu6s1q0TavOnT-AukguYU |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+active+yaw+control+for+offshore+wind+farms+using+stochastic+predictive+control+based+on+online+adaptive+scenario+generation&rft.jtitle=Ocean+engineering&rft.au=Wang%2C+Yu&rft.au=Wei%2C+Shanbi&rft.au=Yang%2C+Wei&rft.au=Chai%2C+Yi&rft.date=2023-10-15&rft.pub=Elsevier+Ltd&rft.issn=0029-8018&rft.eissn=1873-5258&rft.volume=286&rft_id=info:doi/10.1016%2Fj.oceaneng.2023.115578&rft.externalDocID=S0029801823019625 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon |