State-of-charge sequence estimation of lithium-ion battery based on bidirectional long short-term memory encoder-decoder architecture

State-of-charge (SOC) estimation of lithium-ion batteries based on deep learning techniques has been receiving considerable attention. However, most deep-learning-based methods focus on SOC estimation at fixed ambient temperatures and cannot provide useful indications for battery state in real-world...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of power sources Ročník 449; s. 227558
Hlavní autori: Bian, Chong, He, Huoliang, Yang, Shunkun, Huang, Tingting
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 15.02.2020
Predmet:
ISSN:0378-7753, 1873-2755
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract State-of-charge (SOC) estimation of lithium-ion batteries based on deep learning techniques has been receiving considerable attention. However, most deep-learning-based methods focus on SOC estimation at fixed ambient temperatures and cannot provide useful indications for battery state in real-world scenarios because batteries usually experience varying temperatures during operation. In this study, an encoder-decoder with bidirectional long short-term memory (LSTM) is proposed for estimating the SOC at different temperature conditions. This end-to-end model can learn sequential information from the measurement sequences to characterize battery dynamics for sequence estimation. Introducing the bidirectional LSTMs into the encoder-decoder enables the model to capture the long-term dependencies of the measurement sequences from both past and future directions to increase the estimation accuracy. The proposed method is evaluated on public battery datasets under dynamic loading profiles. Validation with an experimental dataset shows that this method of considering the sequential contexts and bidirectional dependencies of battery measurement data can accurately estimate the SOC at different ambient temperatures. In particular, the mean absolute errors are as low as 1.07% at varying temperatures. The proposed method can improve the reliability and availability of battery management systems for monitoring the battery state under varying ambient conditions. •State-of-charge sequence estimation based on encoder-decoder architecture.•Comprehensively learns sequential contexts from battery measured data.•Bidirectional long short-term memory captures temporal dependencies of battery.•Estimate state-of-charge sequences at different ambient temperatures.
AbstractList State-of-charge (SOC) estimation of lithium-ion batteries based on deep learning techniques has been receiving considerable attention. However, most deep-learning-based methods focus on SOC estimation at fixed ambient temperatures and cannot provide useful indications for battery state in real-world scenarios because batteries usually experience varying temperatures during operation. In this study, an encoder-decoder with bidirectional long short-term memory (LSTM) is proposed for estimating the SOC at different temperature conditions. This end-to-end model can learn sequential information from the measurement sequences to characterize battery dynamics for sequence estimation. Introducing the bidirectional LSTMs into the encoder-decoder enables the model to capture the long-term dependencies of the measurement sequences from both past and future directions to increase the estimation accuracy. The proposed method is evaluated on public battery datasets under dynamic loading profiles. Validation with an experimental dataset shows that this method of considering the sequential contexts and bidirectional dependencies of battery measurement data can accurately estimate the SOC at different ambient temperatures. In particular, the mean absolute errors are as low as 1.07% at varying temperatures. The proposed method can improve the reliability and availability of battery management systems for monitoring the battery state under varying ambient conditions. •State-of-charge sequence estimation based on encoder-decoder architecture.•Comprehensively learns sequential contexts from battery measured data.•Bidirectional long short-term memory captures temporal dependencies of battery.•Estimate state-of-charge sequences at different ambient temperatures.
ArticleNumber 227558
Author Bian, Chong
Yang, Shunkun
Huang, Tingting
He, Huoliang
Author_xml – sequence: 1
  givenname: Chong
  surname: Bian
  fullname: Bian, Chong
  organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing, 100191, China
– sequence: 2
  givenname: Huoliang
  surname: He
  fullname: He, Huoliang
  organization: School of Reliability and Systems Engineering, Beihang University, Beijing, 100191, China
– sequence: 3
  givenname: Shunkun
  surname: Yang
  fullname: Yang, Shunkun
  email: ysk@buaa.edu.cn
  organization: School of Reliability and Systems Engineering, Beihang University, Beijing, 100191, China
– sequence: 4
  givenname: Tingting
  surname: Huang
  fullname: Huang, Tingting
  organization: School of Reliability and Systems Engineering, Beihang University, Beijing, 100191, China
BookMark eNqFkE1OwzAUhC0EEm3hCsgXcLCTOk4kFqCKP6kSC2BtOc5L4yiJi-2CegDuTdLAhk1Xo3maGel9c3Ta2x4QumI0YpSl103UbO2XtzsXxZTlURwLzrMTNGOZSMhoTtGMJiIjQvDkHM29byiljAk6Q9-vQQUgtiK6Vm4D2MPHDnoNGHwwnQrG9thWuDWhNruOjLZQIYDbD-qhxOPBlMaBHrOqxa3tN9jX1gUyxDrcQWeH9DBqS3CkhINi5XRtwtDaObhAZ5VqPVz-6gK9P9y_rZ7I-uXxeXW3JjphcSCiFDSDKhdLzinnKY8hZRnQZZLElc60SjlUKitUzHSeF6JIc5FRWDIBacFSkSxQOu1qZ713UMmtG550e8moHGHKRv7BlCNMOcEcijf_itqEA5zglGmP12-nOgzPfRpw0mszUp64ydKaYxM_DIObhQ
CitedBy_id crossref_primary_10_1016_j_est_2022_105820
crossref_primary_10_3390_mi13091397
crossref_primary_10_1016_j_est_2023_106836
crossref_primary_10_2166_nh_2020_100
crossref_primary_10_1007_s11269_023_03525_w
crossref_primary_10_1016_j_asoc_2023_110281
crossref_primary_10_1016_j_jobe_2025_113723
crossref_primary_10_3390_en18051035
crossref_primary_10_1109_TTE_2023_3317449
crossref_primary_10_1007_s12145_024_01616_9
crossref_primary_10_1016_j_jpowsour_2021_230132
crossref_primary_10_1016_j_apenergy_2024_122666
crossref_primary_10_1016_j_est_2023_108774
crossref_primary_10_1016_j_est_2023_108333
crossref_primary_10_1016_j_ecolind_2023_110478
crossref_primary_10_1016_j_apenergy_2022_119120
crossref_primary_10_1016_j_est_2022_104664
crossref_primary_10_1016_j_energy_2024_131856
crossref_primary_10_1016_j_rser_2023_113645
crossref_primary_10_1007_s11581_025_06330_0
crossref_primary_10_1039_D4EE03063J
crossref_primary_10_3390_en17205029
crossref_primary_10_1109_ACCESS_2024_3408220
crossref_primary_10_1016_j_jclepro_2021_126044
crossref_primary_10_1038_s41598_022_16942_5
crossref_primary_10_1016_j_renene_2022_08_123
crossref_primary_10_1016_j_enconman_2023_117707
crossref_primary_10_1016_j_energy_2021_121360
crossref_primary_10_1007_s00521_024_10210_5
crossref_primary_10_1016_j_jpowsour_2024_235534
crossref_primary_10_1016_j_egyr_2021_08_113
crossref_primary_10_1038_s41598_023_43858_5
crossref_primary_10_1002_er_7548
crossref_primary_10_1016_j_etran_2024_100372
crossref_primary_10_1016_j_measurement_2025_117994
crossref_primary_10_3390_batteries9050266
crossref_primary_10_3390_en16042008
crossref_primary_10_1016_j_energy_2023_129801
crossref_primary_10_1016_j_est_2020_101678
crossref_primary_10_1016_j_est_2023_107557
crossref_primary_10_3390_en16073002
crossref_primary_10_1016_j_jpowsour_2020_228691
crossref_primary_10_1063_5_0272494
crossref_primary_10_3390_en15041537
crossref_primary_10_1016_j_est_2021_102891
crossref_primary_10_1016_j_jechem_2023_02_019
crossref_primary_10_1109_TIE_2023_3292865
crossref_primary_10_1016_j_apenergy_2025_126040
crossref_primary_10_1016_j_jpowsour_2020_228753
crossref_primary_10_1109_ACCESS_2021_3057371
crossref_primary_10_1016_j_energy_2024_131602
crossref_primary_10_1016_j_energy_2024_130834
crossref_primary_10_1016_j_est_2024_113623
crossref_primary_10_1016_j_est_2024_113986
crossref_primary_10_1109_TTE_2021_3128018
crossref_primary_10_1016_j_apenergy_2024_123534
crossref_primary_10_1016_j_energy_2022_123178
crossref_primary_10_1109_TPEL_2024_3523583
crossref_primary_10_3390_forecast5030032
crossref_primary_10_3390_wevj15120562
crossref_primary_10_1016_j_est_2023_108038
crossref_primary_10_3390_en16052155
crossref_primary_10_1016_j_energy_2021_120348
crossref_primary_10_3390_su142315912
crossref_primary_10_1016_j_energy_2021_122406
crossref_primary_10_1016_j_jhydrol_2023_129105
crossref_primary_10_1016_j_energy_2025_134722
crossref_primary_10_1016_j_engappai_2023_105984
crossref_primary_10_1016_j_jhydrol_2023_130498
crossref_primary_10_1002_er_7408
crossref_primary_10_1016_j_compag_2022_107121
crossref_primary_10_1016_j_jhydrol_2023_129269
crossref_primary_10_1016_j_est_2025_116430
crossref_primary_10_3390_en16196974
crossref_primary_10_1016_j_seta_2024_103989
crossref_primary_10_3389_fenrg_2021_717722
crossref_primary_10_1016_j_engappai_2024_107946
crossref_primary_10_1080_15435075_2024_2439924
crossref_primary_10_3390_math11234865
crossref_primary_10_1109_TIA_2022_3170842
crossref_primary_10_1016_j_apenergy_2023_121761
crossref_primary_10_1016_j_energy_2021_120451
crossref_primary_10_1016_j_est_2023_108420
crossref_primary_10_1016_j_jpowsour_2024_235312
crossref_primary_10_1109_TTE_2024_3391938
crossref_primary_10_1016_j_energy_2025_138214
crossref_primary_10_1016_j_jhydrol_2021_126831
crossref_primary_10_1016_j_energy_2023_129504
crossref_primary_10_1016_j_est_2022_104209
crossref_primary_10_1080_01430750_2022_2049872
crossref_primary_10_1109_TIA_2021_3065194
crossref_primary_10_1016_j_ress_2022_108481
crossref_primary_10_1016_j_est_2022_104007
Cites_doi 10.1016/j.jpowsour.2013.04.040
10.1016/j.ymssp.2018.05.050
10.1016/j.apenergy.2018.12.004
10.1109/MIE.2013.2250351
10.3390/en12091592
10.1109/TIA.2018.2874588
10.1016/j.ijepes.2014.04.059
10.1016/j.jpowsour.2015.01.145
10.1109/TPEL.2013.2243918
10.1162/neco.1997.9.8.1735
10.3390/s17020273
10.1109/TIE.2017.2787586
10.1109/78.650093
10.1016/j.apenergy.2014.01.066
10.1109/ACCESS.2017.2780258
10.1016/j.rser.2017.05.001
10.1016/j.jpowsour.2005.04.039
10.1016/j.energy.2019.03.059
10.1016/j.jpowsour.2018.06.104
10.1016/j.rser.2015.11.042
10.1016/j.ress.2017.10.019
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.jpowsour.2019.227558
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2755
ExternalDocumentID 10_1016_j_jpowsour_2019_227558
S0378775319315514
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LX7
LY6
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
XPP
ZMT
~G-
29L
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
NDZJH
R2-
SAC
SCB
SCE
SEW
T9H
VH1
VOH
WUQ
~HD
ID FETCH-LOGICAL-c312t-7d708ef97455055652e618e04332fc8ca65efa8ba21c99b7b69780e417e6b1673
ISICitedReferencesCount 119
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000510947000083&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-7753
IngestDate Tue Nov 18 21:26:59 EST 2025
Sat Nov 29 07:11:52 EST 2025
Fri Feb 23 02:48:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Lithium-ion battery
State-of-charge sequence estimation
Encoder-decoder
Bidirectional long short-term memory
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-7d708ef97455055652e618e04332fc8ca65efa8ba21c99b7b69780e417e6b1673
ParticipantIDs crossref_primary_10_1016_j_jpowsour_2019_227558
crossref_citationtrail_10_1016_j_jpowsour_2019_227558
elsevier_sciencedirect_doi_10_1016_j_jpowsour_2019_227558
PublicationCentury 2000
PublicationDate 2020-02-15
PublicationDateYYYYMMDD 2020-02-15
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-15
  day: 15
PublicationDecade 2020
PublicationTitle Journal of power sources
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References C. Fan, J. Wang, W. Gang, S. Li, Assessment of deep recurrent neural network-based strategies for short-term building energy predictions, Appl. Energy, 236, 700–710.
Zaremba, Sutskever, Vinyals (bib29) 2014
Singh, Vinjamuri, Wang, Reisner (bib8) 2006; 162
Loyola, Liu, Hirate (bib23) 2017
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov, Kollmeyer (bib30) 2014; 15
Xiong, Cao, Yu, He, Sun (bib3) 2017; 6
Cui, Ke, Wang (bib17) 2018
Yang, Li, Li, Miao (bib15) 2019; 175
Wang, Zhang (bib21) 2018; 170
Hochreiter, Schmidhuber (bib25) 1997; 9
Zhao, Kollmeyer, Lorenz, Jahns (bib14) 2019; 55
Abbas, Nawaz, Kamran (bib13) 2019
Schuster, Paliwal (bib26) 1997; 45
Kang, Zhao, Ma (bib6) 2014; 121
Zhao, Yan, Chen, Mao, Wang, Gao (bib10) 2019; 115
Berecibar, Gandiaga, Villarreal, Omar, Van Mierlo, van den Bossche (bib1) 2016; 56
Hannan, Lipu, Hussain, Mohamed (bib2) 2017; 78
Anton, Nieto, Viejo, Vilán (bib5) 2013; 28
V. Nair, G.E. Hinton, Rectified linear units improve restricted Boltzmann machines, Proceedings of the 27th International Conference on Machine Learning (ICML-10), Haifa, Israel, 21-24 June 2010, 807-814.
He, Williard, Chen, Pecht (bib7) 2014; 62
Kurata, Xiang, Zhou (bib19) 2016
Li, Xiao, Fan (bib16) 2019; 12
Chemali, Kollmeyer, Preindl, Ahmed, Emadi (bib12) 2017; 65
Zhao, Yan, Wang, Mao (bib18) 2017; 17
Kollmeyer (bib32) 2015
Sheng, Xiao (bib4) 2015; 281
Rahimi-Eichi, Ojha, Baronti, Chow (bib24) 2013; 7
Park, Kim, Kang, Chung, Choi (bib20) 2018
Chemali, Kollmeyer, Preindl, Emadi (bib11) 2018; 400
Hametner, Jakubek (bib9) 2013; 238
Kingma, Ba, Adam (bib28) 2014
Anton (10.1016/j.jpowsour.2019.227558_bib5) 2013; 28
Zhao (10.1016/j.jpowsour.2019.227558_bib10) 2019; 115
Berecibar (10.1016/j.jpowsour.2019.227558_bib1) 2016; 56
Yang (10.1016/j.jpowsour.2019.227558_bib15) 2019; 175
Singh (10.1016/j.jpowsour.2019.227558_bib8) 2006; 162
Xiong (10.1016/j.jpowsour.2019.227558_bib3) 2017; 6
He (10.1016/j.jpowsour.2019.227558_bib7) 2014; 62
Chemali (10.1016/j.jpowsour.2019.227558_bib12) 2017; 65
Li (10.1016/j.jpowsour.2019.227558_bib16) 2019; 12
Park (10.1016/j.jpowsour.2019.227558_bib20) 2018
Abbas (10.1016/j.jpowsour.2019.227558_bib13) 2019
Cui (10.1016/j.jpowsour.2019.227558_bib17) 2018
Zhao (10.1016/j.jpowsour.2019.227558_bib18) 2017; 17
Hochreiter (10.1016/j.jpowsour.2019.227558_bib25) 1997; 9
10.1016/j.jpowsour.2019.227558_bib22
Kingma (10.1016/j.jpowsour.2019.227558_bib28) 2014
Zaremba (10.1016/j.jpowsour.2019.227558_bib29) 2014
Hannan (10.1016/j.jpowsour.2019.227558_bib2) 2017; 78
Kollmeyer (10.1016/j.jpowsour.2019.227558_bib32) 2015
10.1016/j.jpowsour.2019.227558_bib27
Chemali (10.1016/j.jpowsour.2019.227558_bib11) 2018; 400
Kurata (10.1016/j.jpowsour.2019.227558_bib19) 2016
Rahimi-Eichi (10.1016/j.jpowsour.2019.227558_bib24) 2013; 7
Zhao (10.1016/j.jpowsour.2019.227558_bib14) 2019; 55
Srivastava (10.1016/j.jpowsour.2019.227558_sref30) 2014; 15
Kollmeyer (10.1016/j.jpowsour.2019.227558_bib31) 2018; vol 1
Sheng (10.1016/j.jpowsour.2019.227558_bib4) 2015; 281
Schuster (10.1016/j.jpowsour.2019.227558_bib26) 1997; 45
Hametner (10.1016/j.jpowsour.2019.227558_bib9) 2013; 238
Kang (10.1016/j.jpowsour.2019.227558_bib6) 2014; 121
Wang (10.1016/j.jpowsour.2019.227558_bib21) 2018; 170
Loyola (10.1016/j.jpowsour.2019.227558_bib23) 2017
References_xml – year: 2018
  ident: bib17
  article-title: Deep Bidirectional and Unidirectional LSTM Recurrent Neural Network for Network-wide Traffic Speed Prediction
– start-page: 1672
  year: 2018
  end-page: 1678
  ident: bib20
  article-title: Sequence-to-sequence prediction of vehicle trajectory via LSTM encoder-decoder architecture
  publication-title: 2018 IEEE Intelligent Vehicles Symposium (IV), IEEE, Changshu, China, June 26–30
– volume: 6
  start-page: 1832
  year: 2017
  end-page: 1843
  ident: bib3
  article-title: Critical review on the battery state of charge estimation methods for electric vehicles
  publication-title: IEEE Access
– volume: 62
  start-page: 783
  year: 2014
  end-page: 791
  ident: bib7
  article-title: State of charge estimation for Li-ion batteries using neural network modeling and unscented Kalman filter-based error cancellation
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 170
  start-page: 73
  year: 2018
  end-page: 82
  ident: bib21
  article-title: Software reliability prediction using a deep learning model based on the RNN encoder–decoder
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 78
  start-page: 834
  year: 2017
  end-page: 854
  ident: bib2
  article-title: A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: challenges and recommendations
  publication-title: Renew. Sustain. Energy Rev.
– volume: 17
  start-page: 273
  year: 2017
  ident: bib18
  article-title: Learning to monitor machine health with convolutional bi-directional LSTM networks
  publication-title: Sensors
– volume: 400
  start-page: 242
  year: 2018
  end-page: 255
  ident: bib11
  article-title: State-of-charge estimation of Li-ion batteries using deep neural networks: a machine learning approach
  publication-title: J. Power Sources
– volume: 238
  start-page: 413
  year: 2013
  end-page: 421
  ident: bib9
  article-title: State of charge estimation for Lithium Ion cells: design of experiments, nonlinear identification and fuzzy observer design
  publication-title: J. Power Sources
– volume: 12
  start-page: 1592
  year: 2019
  ident: bib16
  article-title: An approach to state of charge estimation of lithium-ion batteries based on recurrent neural networks with gated recurrent unit
  publication-title: Energies
– volume: 162
  start-page: 829
  year: 2006
  end-page: 836
  ident: bib8
  article-title: Design and implementation of a fuzzy logic-based state-of-charge meter for Li-ion batteries used in portable defibrillators
  publication-title: J. Power Sources
– volume: 56
  start-page: 572
  year: 2016
  end-page: 587
  ident: bib1
  article-title: Critical review of state of health estimation methods of Li-ion batteries for real applications
  publication-title: Renew. Sustain. Energy Rev.
– year: 2014
  ident: bib29
  article-title: Recurrent Neural Network Regularization
– start-page: 725
  year: 2016
  end-page: 729
  ident: bib19
  article-title: Labeled data generation with encoder-decoder LSTM for semantic slot filling
  publication-title: Interspeech, San Francisco, CA, USA
– volume: 65
  start-page: 6730
  year: 2017
  end-page: 6739
  ident: bib12
  article-title: Long short-term memory networks for accurate state-of-charge estimation of Li-ion batteries
  publication-title: IEEE Trans. Ind. Electron.
– year: 2014
  ident: bib28
  article-title: A method for stochastic optimization
  publication-title: Proceedings of the 3rd International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7-9 May 2015
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: bib30
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– start-page: 463
  year: 2019
  end-page: 468
  ident: bib13
  article-title: Performance comparison of NARX & RNN-LSTM neural networks for LiFePO4 battery state of charge estimation
  publication-title: 2019 16
– volume: 121
  start-page: 20
  year: 2014
  end-page: 27
  ident: bib6
  article-title: A new neural network model for the state-of-charge estimation in the battery degradation process
  publication-title: Appl. Energy
– volume: 7
  start-page: 4
  year: 2013
  end-page: 16
  ident: bib24
  article-title: Battery management system: an overview of its application in the smart grid and electric vehicles
  publication-title: IEEE Indust. Electron. Mag.
– volume: 115
  start-page: 213
  year: 2019
  end-page: 237
  ident: bib10
  article-title: Deep learning and its applications to machine health monitoring
  publication-title: Mech. Syst. Signal Process.
– volume: 55
  start-page: 1922
  year: 2019
  end-page: 1931
  ident: bib14
  article-title: A compact methodology via a recurrent neural network for accurate equivalent circuit type modeling of lithium-ion batteries
  publication-title: IEEE Trans. Ind. Appl.
– year: 2015
  ident: bib32
  article-title: Development and Implementation of a Battery-Electric Light-Duty Class 2a Truck Including Hybrid Energy Storage
– volume: 281
  start-page: 131
  year: 2015
  end-page: 137
  ident: bib4
  article-title: Electric vehicle state of charge estimation: nonlinear correlation and fuzzy support vector machine
  publication-title: J. Power Sources
– start-page: 147
  year: 2017
  end-page: 151
  ident: bib23
  article-title: Modeling user session and intent with an attention-based encoder-decoder architecture
  publication-title: Proceedings of the Eleventh ACM Conference on Recommender Systems, ACM, Como, Italy, August 27–31
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: bib25
  article-title: Long short-term memory
  publication-title: Neural Comput.
– reference: V. Nair, G.E. Hinton, Rectified linear units improve restricted Boltzmann machines, Proceedings of the 27th International Conference on Machine Learning (ICML-10), Haifa, Israel, 21-24 June 2010, 807-814.
– reference: C. Fan, J. Wang, W. Gang, S. Li, Assessment of deep recurrent neural network-based strategies for short-term building energy predictions, Appl. Energy, 236, 700–710.
– volume: 45
  start-page: 2673
  year: 1997
  end-page: 2681
  ident: bib26
  article-title: Bidirectional recurrent neural networks
  publication-title: IEEE Trans. Signal Process.
– volume: 175
  start-page: 66
  year: 2019
  end-page: 75
  ident: bib15
  article-title: State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network
  publication-title: Energy
– volume: 28
  start-page: 5919
  year: 2013
  end-page: 5926
  ident: bib5
  article-title: Support vector machines used to estimate the battery state of charge
  publication-title: IEEE Trans. Power Electron.
– year: 2014
  ident: 10.1016/j.jpowsour.2019.227558_bib29
– volume: 238
  start-page: 413
  year: 2013
  ident: 10.1016/j.jpowsour.2019.227558_bib9
  article-title: State of charge estimation for Lithium Ion cells: design of experiments, nonlinear identification and fuzzy observer design
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.04.040
– start-page: 1672
  year: 2018
  ident: 10.1016/j.jpowsour.2019.227558_bib20
  article-title: Sequence-to-sequence prediction of vehicle trajectory via LSTM encoder-decoder architecture
– year: 2015
  ident: 10.1016/j.jpowsour.2019.227558_bib32
– volume: 115
  start-page: 213
  year: 2019
  ident: 10.1016/j.jpowsour.2019.227558_bib10
  article-title: Deep learning and its applications to machine health monitoring
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.05.050
– ident: 10.1016/j.jpowsour.2019.227558_bib22
  doi: 10.1016/j.apenergy.2018.12.004
– ident: 10.1016/j.jpowsour.2019.227558_bib27
– volume: vol 1
  year: 2018
  ident: 10.1016/j.jpowsour.2019.227558_bib31
– start-page: 147
  year: 2017
  ident: 10.1016/j.jpowsour.2019.227558_bib23
  article-title: Modeling user session and intent with an attention-based encoder-decoder architecture
– volume: 7
  start-page: 4
  year: 2013
  ident: 10.1016/j.jpowsour.2019.227558_bib24
  article-title: Battery management system: an overview of its application in the smart grid and electric vehicles
  publication-title: IEEE Indust. Electron. Mag.
  doi: 10.1109/MIE.2013.2250351
– year: 2018
  ident: 10.1016/j.jpowsour.2019.227558_bib17
– volume: 12
  start-page: 1592
  year: 2019
  ident: 10.1016/j.jpowsour.2019.227558_bib16
  article-title: An approach to state of charge estimation of lithium-ion batteries based on recurrent neural networks with gated recurrent unit
  publication-title: Energies
  doi: 10.3390/en12091592
– volume: 55
  start-page: 1922
  year: 2019
  ident: 10.1016/j.jpowsour.2019.227558_bib14
  article-title: A compact methodology via a recurrent neural network for accurate equivalent circuit type modeling of lithium-ion batteries
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2018.2874588
– volume: 62
  start-page: 783
  year: 2014
  ident: 10.1016/j.jpowsour.2019.227558_bib7
  article-title: State of charge estimation for Li-ion batteries using neural network modeling and unscented Kalman filter-based error cancellation
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2014.04.059
– start-page: 725
  year: 2016
  ident: 10.1016/j.jpowsour.2019.227558_bib19
  article-title: Labeled data generation with encoder-decoder LSTM for semantic slot filling
– volume: 281
  start-page: 131
  year: 2015
  ident: 10.1016/j.jpowsour.2019.227558_bib4
  article-title: Electric vehicle state of charge estimation: nonlinear correlation and fuzzy support vector machine
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.01.145
– volume: 28
  start-page: 5919
  year: 2013
  ident: 10.1016/j.jpowsour.2019.227558_bib5
  article-title: Support vector machines used to estimate the battery state of charge
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2013.2243918
– volume: 9
  start-page: 1735
  year: 1997
  ident: 10.1016/j.jpowsour.2019.227558_bib25
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 17
  start-page: 273
  year: 2017
  ident: 10.1016/j.jpowsour.2019.227558_bib18
  article-title: Learning to monitor machine health with convolutional bi-directional LSTM networks
  publication-title: Sensors
  doi: 10.3390/s17020273
– volume: 65
  start-page: 6730
  year: 2017
  ident: 10.1016/j.jpowsour.2019.227558_bib12
  article-title: Long short-term memory networks for accurate state-of-charge estimation of Li-ion batteries
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2787586
– volume: 45
  start-page: 2673
  year: 1997
  ident: 10.1016/j.jpowsour.2019.227558_bib26
  article-title: Bidirectional recurrent neural networks
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.650093
– volume: 121
  start-page: 20
  year: 2014
  ident: 10.1016/j.jpowsour.2019.227558_bib6
  article-title: A new neural network model for the state-of-charge estimation in the battery degradation process
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.01.066
– volume: 6
  start-page: 1832
  year: 2017
  ident: 10.1016/j.jpowsour.2019.227558_bib3
  article-title: Critical review on the battery state of charge estimation methods for electric vehicles
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2780258
– start-page: 463
  year: 2019
  ident: 10.1016/j.jpowsour.2019.227558_bib13
  article-title: Performance comparison of NARX & RNN-LSTM neural networks for LiFePO4 battery state of charge estimation
– year: 2014
  ident: 10.1016/j.jpowsour.2019.227558_bib28
  article-title: A method for stochastic optimization
– volume: 78
  start-page: 834
  year: 2017
  ident: 10.1016/j.jpowsour.2019.227558_bib2
  article-title: A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: challenges and recommendations
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.05.001
– volume: 15
  start-page: 1929
  year: 2014
  ident: 10.1016/j.jpowsour.2019.227558_sref30
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 162
  start-page: 829
  year: 2006
  ident: 10.1016/j.jpowsour.2019.227558_bib8
  article-title: Design and implementation of a fuzzy logic-based state-of-charge meter for Li-ion batteries used in portable defibrillators
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2005.04.039
– volume: 175
  start-page: 66
  year: 2019
  ident: 10.1016/j.jpowsour.2019.227558_bib15
  article-title: State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network
  publication-title: Energy
  doi: 10.1016/j.energy.2019.03.059
– volume: 400
  start-page: 242
  year: 2018
  ident: 10.1016/j.jpowsour.2019.227558_bib11
  article-title: State-of-charge estimation of Li-ion batteries using deep neural networks: a machine learning approach
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.06.104
– volume: 56
  start-page: 572
  year: 2016
  ident: 10.1016/j.jpowsour.2019.227558_bib1
  article-title: Critical review of state of health estimation methods of Li-ion batteries for real applications
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.11.042
– volume: 170
  start-page: 73
  year: 2018
  ident: 10.1016/j.jpowsour.2019.227558_bib21
  article-title: Software reliability prediction using a deep learning model based on the RNN encoder–decoder
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2017.10.019
SSID ssj0001170
Score 2.6135564
Snippet State-of-charge (SOC) estimation of lithium-ion batteries based on deep learning techniques has been receiving considerable attention. However, most...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 227558
SubjectTerms Bidirectional long short-term memory
Encoder-decoder
Lithium-ion battery
State-of-charge sequence estimation
Title State-of-charge sequence estimation of lithium-ion battery based on bidirectional long short-term memory encoder-decoder architecture
URI https://dx.doi.org/10.1016/j.jpowsour.2019.227558
Volume 449
WOSCitedRecordID wos000510947000083&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2755
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001170
  issn: 0378-7753
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LjtMwFLVKhwUsEE8xvOQFu8iFPBrbyxEaBCxGSBSprCLbcdSWNqk6zWjmA_gLPhZfP5JoZtCAEJu0teqkyTn1vb72PReh13kaZxUXKcmYyEkmYkZEHEsiykylpTCcyZQtNkFPTth8zj-PRj9DLszZmtY1Oz_n2_8KtWkzYEPq7F_A3Z3UNJj3BnRzNLCb4x8Bb91H0lTEiiDpKGyWjkBPY9N5iMb9XizbDYGP0opsXkRg0kpYPpBLZ-pcnHAN9YhOF8ZRJzCQRxvYnXsRgQRmqXek1PY1Gq5J_Mbn3UJNtsgtGAzi88Kv_DfejNrYrDWKbQNhmK71W4huL9r6e1v3nPTtM8gHCMbYxzLMxBUqq0z7ANuVJBuX2GUmupQ6TeGJduM0oylJqFP4DQN55sRPrxgFF59YTVbmJuEOYUMfnyTQnfVmsNuc-AUuCNczvq11KG-hA_Ndzsbo4Ojj8fxTZ-mhao9dpfI_cJCBfv3Vrnd-Bg7N7D6651HBR45BD9BI1w_R3YE-5SP04xKXcOAS7rmEmwoPuIQ9l7DlEoaGIZcwcAn3XMKOS_gSl_CQS4_R1_fHs3cfiK_bQVQaJ3tCS_qW6crMVGH6a2YMic5jpq1UXqWYEvlUV4JJkcSKc0llDjJYOoupzmWc0_QJGtdNrZ8iLFmZyFSBIlOSccaF4qpUZQWiQUnO0kM0DQ-0UF7UHmqrrIuwe3FVBCAKAKJwQByiN12_rZN1ubEHD3gV3jl1T68wNLuh77N_6Psc3en_KS_QeL9r9Ut0W53tl6e7V56RvwBFTL-c
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State-of-charge+sequence+estimation+of+lithium-ion+battery+based+on+bidirectional+long+short-term+memory+encoder-decoder+architecture&rft.jtitle=Journal+of+power+sources&rft.au=Bian%2C+Chong&rft.au=He%2C+Huoliang&rft.au=Yang%2C+Shunkun&rft.au=Huang%2C+Tingting&rft.date=2020-02-15&rft.pub=Elsevier+B.V&rft.issn=0378-7753&rft.eissn=1873-2755&rft.volume=449&rft_id=info:doi/10.1016%2Fj.jpowsour.2019.227558&rft.externalDocID=S0378775319315514
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon