Magneto-viscoelastic rod model for hard-magnetic soft rods under 3D large deformation: Theory and numerical implementation
•A magneto-viscoelastic rod theory of the HMS curved rod under 3D large deformation is presented.•The generalized Maxwell model under finite deformation is rationally incorporated into the geometrically exact rod theory.•The finite element formulation and corresponding implementation of the problem...
Uložené v:
| Vydané v: | International journal of solids and structures Ročník 305; s. 113101 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.12.2024
|
| Predmet: | |
| ISSN: | 0020-7683 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •A magneto-viscoelastic rod theory of the HMS curved rod under 3D large deformation is presented.•The generalized Maxwell model under finite deformation is rationally incorporated into the geometrically exact rod theory.•The finite element formulation and corresponding implementation of the problem are obtained.•An extension of generalized-α method to the rotation group are presented.•five numerical examples including the 2D dynamic buckling and 3D dynamic problems are considered.
The main purpose of this work is to develop a three-dimensional (3D) viscoelastic rod model for hard-magnetic soft (HMS) rods under large deformation which are widely used active structures in soft robotics. To do so, the Simo’s viscoelasticity theory has been rationally incorporated into the geometrically exact 3D curved rod model. The proposed model includes the deformation modes of axial tension, shear, bending, and torsion, which is applicable to the HMS rods with arbitrarily initial curved and twisted geometries under 3D large deformation. The viscoelastic constitutive equations of the HMS rod in the present formulation are formulated, which include the general relaxation functions. To obtain the expression for the magnetic load, the rotation-based magnetic free energy density is introduced, and the governing equations of the HMS rod with magnetic load and body force are presented. To obtain the numerical implementation, an implicit time integration algorithm that simply extends the generalized-α method for the rotation group, and the corresponding variational formulation and its linearization of the rod model are derived. To validate the model, five numerical examples, including 2D dynamic buckling, 3D static, and 3D dynamic problem are presented. The dynamic problems include the dynamic snap-through behavior of a bistable HMS arch and damped oscillation of a quarter arc cantilever under 3D deformation. The simulation results show good agreement with the results reported in the literature. |
|---|---|
| AbstractList | •A magneto-viscoelastic rod theory of the HMS curved rod under 3D large deformation is presented.•The generalized Maxwell model under finite deformation is rationally incorporated into the geometrically exact rod theory.•The finite element formulation and corresponding implementation of the problem are obtained.•An extension of generalized-α method to the rotation group are presented.•five numerical examples including the 2D dynamic buckling and 3D dynamic problems are considered.
The main purpose of this work is to develop a three-dimensional (3D) viscoelastic rod model for hard-magnetic soft (HMS) rods under large deformation which are widely used active structures in soft robotics. To do so, the Simo’s viscoelasticity theory has been rationally incorporated into the geometrically exact 3D curved rod model. The proposed model includes the deformation modes of axial tension, shear, bending, and torsion, which is applicable to the HMS rods with arbitrarily initial curved and twisted geometries under 3D large deformation. The viscoelastic constitutive equations of the HMS rod in the present formulation are formulated, which include the general relaxation functions. To obtain the expression for the magnetic load, the rotation-based magnetic free energy density is introduced, and the governing equations of the HMS rod with magnetic load and body force are presented. To obtain the numerical implementation, an implicit time integration algorithm that simply extends the generalized-α method for the rotation group, and the corresponding variational formulation and its linearization of the rod model are derived. To validate the model, five numerical examples, including 2D dynamic buckling, 3D static, and 3D dynamic problem are presented. The dynamic problems include the dynamic snap-through behavior of a bistable HMS arch and damped oscillation of a quarter arc cantilever under 3D deformation. The simulation results show good agreement with the results reported in the literature. |
| ArticleNumber | 113101 |
| Author | Guan, Jiashen Liu, Ju Zhang, Dingcong Li, Xin Yuan, Hongyan |
| Author_xml | – sequence: 1 givenname: Xin orcidid: 0000-0002-2115-5031 surname: Li fullname: Li, Xin – sequence: 2 givenname: Dingcong orcidid: 0009-0000-6662-3460 surname: Zhang fullname: Zhang, Dingcong – sequence: 3 givenname: Jiashen orcidid: 0000-0002-4936-7650 surname: Guan fullname: Guan, Jiashen – sequence: 4 givenname: Ju orcidid: 0000-0002-8518-2928 surname: Liu fullname: Liu, Ju – sequence: 5 givenname: Hongyan orcidid: 0000-0001-8225-0211 surname: Yuan fullname: Yuan, Hongyan email: yuanhy3@sustech.edu.cn |
| BookMark | eNqFkM1OAjEUhbvAREBfwfQFBm-n84dxocHfBOMG102nvQMlMy1pCwk-vQPoxg2rk9z7nZN7z4gMrLNIyA2DCQNW3K4nZh1cG6KfpJBmE8Z4Px-QIUAKSVlU_JKMQlgDQManMCTfH3JpMbpkZ4Jy2MoQjaLeado5jS1tnKcr6XXSHbl-F1wTD0CgW6vRU_5EW-mXSDX2cCejcfaOLlbo_J5Kq6ndduiNki013abFDm08QlfkopFtwOtfHZOvl-fF7C2Zf76-zx7nieIsjUlZ6qKsm6xJK6iqMi97BZBQs6xgdV6DLhuEXCmeKqanueZ1niquM1YBy1nJx6Q45SrvQvDYiI03nfR7wUAcWhNr8deaOLQmTq31xvt_RmVOp0cvTXve_nCyY__czqAXQRm0CrXxqKLQzpyL-AEIcJOz |
| CitedBy_id | crossref_primary_10_1002_adrr_202500071 crossref_primary_10_1016_j_mechmachtheory_2025_106091 crossref_primary_10_1016_j_ijmecsci_2025_110722 crossref_primary_10_1016_j_euromechsol_2025_105816 crossref_primary_10_1007_s11433_025_2729_4 crossref_primary_10_1016_j_jmps_2025_106346 crossref_primary_10_1016_j_ymssp_2025_113069 |
| Cites_doi | 10.1016/j.jmps.2018.10.008 10.1016/j.eml.2023.101967 10.1016/j.ijmecsci.2023.108566 10.1016/j.jmps.2024.105742 10.1016/j.ijengsci.2024.104102 10.1016/j.ijengsci.2022.103792 10.1016/j.ijengsci.2014.03.001 10.1039/C9SM02529D 10.1115/1.2900803 10.1115/1.4063816 10.1016/j.ijmecsci.2022.107523 10.1016/j.jmmm.2023.171237 10.1016/j.jmps.2021.104739 10.1016/j.ijsolstr.2022.111747 10.1016/j.jmps.2022.104916 10.1016/j.apm.2024.05.044 10.1016/j.ijmecsci.2024.109129 10.1016/j.ijsolstr.2020.10.028 10.1016/j.ymssp.2022.110016 10.1016/j.cma.2021.114500 10.1016/j.ijsolstr.2023.112344 10.1016/j.mechmat.2023.104722 10.1115/1.4064789 10.1016/0045-7825(87)90107-1 10.1016/j.jmps.2020.104045 10.1115/1.4045716 10.1016/j.eml.2021.101382 10.1016/j.compositesb.2024.111501 10.1039/D0SM01662D 10.1002/mame.202300294 10.1016/j.ijnonlinmec.2024.104801 10.1016/j.ijmecsci.2023.108262 10.3389/frobt.2020.588391 10.1016/j.ijengsci.2020.103391 10.1016/j.ijmecsci.2023.108686 10.1016/j.ijnonlinmec.2016.12.008 10.1016/j.ijnonlinmec.2021.103746 10.1088/1361-665X/ab2b05 10.1016/j.ijsolstr.2022.111513 10.1016/j.eml.2022.101604 10.1016/0045-7825(85)90050-7 10.1016/j.jmps.2022.105095 10.1126/scirobotics.aax7329 10.1016/j.mechmat.2021.104207 10.1016/j.ijsolstr.2022.111981 10.1016/j.jmps.2021.104361 10.1016/j.tws.2020.106748 10.1016/j.eml.2022.101773 10.1016/j.eml.2021.101594 10.1016/j.ijsolstr.2024.112662 10.1016/j.jmps.2023.105366 10.1016/j.compstruct.2021.113822 10.1016/j.eml.2023.101977 10.1115/1.4047291 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ijsolstr.2024.113101 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_ijsolstr_2024_113101 S0020768324004608 |
| GroupedDBID | --K --M -~X .~1 0R~ 0SF 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFNM ABFRF ABJNI ABMAC ABVKL ACBEA ACDAQ ACGFO ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEKER AENEX AFJKZ AFKWA AFTJW AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DU5 E3Z EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IXB J1W JJJVA KOM LY7 M24 M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SST SSZ T5K TN5 TR2 XPP ZMT ~02 ~G- 29J 6TJ 9DU AAFWJ AAQXK AATTM AAYWO AAYXX ABEFU ABWVN ABXDB ACKIV ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO ADVLN AEIPS AEUPX AEXQZ AFPUW AGHFR AGQPQ AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- SET SMS VH1 WUQ ZY4 ~HD |
| ID | FETCH-LOGICAL-c312t-77d67bf4f2808875728000a0b1461b5b0d7fe05cc32c1d95d3b52c3d418015173 |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001333188100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-7683 |
| IngestDate | Tue Nov 18 21:19:00 EST 2025 Sat Nov 29 02:34:58 EST 2025 Sat Dec 14 16:14:48 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Viscoelasticity 3D large deformation Hard-magnetic soft (HMS) material Generalized-α method Generalized Maxwell Model Geometrically exact curved rod |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c312t-77d67bf4f2808875728000a0b1461b5b0d7fe05cc32c1d95d3b52c3d418015173 |
| ORCID | 0009-0000-6662-3460 0000-0002-2115-5031 0000-0002-8518-2928 0000-0002-4936-7650 0000-0001-8225-0211 |
| ParticipantIDs | crossref_primary_10_1016_j_ijsolstr_2024_113101 crossref_citationtrail_10_1016_j_ijsolstr_2024_113101 elsevier_sciencedirect_doi_10_1016_j_ijsolstr_2024_113101 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 2024-12-00 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of solids and structures |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – sequence: 0 name: Elsevier Ltd |
| References | J.C. Simo On a fully three-dimensional finite-strain viscoelastic damage model: Formulation and computational aspects Comput. Methods Appl. Mech. Eng. 60 1987 153 173 10/bkb5bs. Pezzulla, Yan, Reis (b0195) 2022; 166 Dehrouyeh-Semnani (b0070) 2023; 188 Chung, Hulbert (b0040) 1993; 60 Wang, Qin, Luo, Tian, Hu (b0255) 2024; 202 Chen, Wang (b0015) 2020; 87 Mukherjee, Danas (b0170) 2022; 257 Dadgar-Rad, Hossain (b0050) 2022; 251 Li, Yu, Baghaee, Cao, Chen, Liu, Yuan (b0130) 2022 Chen, Wang, Yan, Luo (b0030) 2021; 266 Dehrouyeh-Semnani (b0065) 2021; 134 Liu, Yang, Li, Xu (b0145) 2023; 258 Lu, Wu, Zhao (b0150) 2024; 190 Bira, Dhagat, Davidson (b0010) 2020; 7 Yang, Li, Xu (b0270) 2024; 271 Li, Yu, Zhu, Liu, Yuan (b0140) 2024; 134 Huang, Liu, Hsia (b0090) 2023; 59 Zhang, Wu, Ze, Zhao (b0280) 2020; 87 Dadgar-Rad, Hossain (b0055) 2022; 54 Moezi, Sedaghati, Rakheja (b0165) 2024; 280 Makushko, Oliveros Mata, Cañón Bermúdez, Hassan, Laureti, Rinaldi, Fagiani, Barucca, Schmidt, Zabila, Kosub, Illing, Volkov, Vladymyrskyi, Fassbender, Albrecht, Varvaro, Makarov (b0160) 2021; 31 Chen, Wang, Yan (b0035) 2023; 183 Costi, Georgopoulou, Mondal, Iida, Clemens (b0045) 2024; 309 Zhao, Cao, Li, Xia, Xue, Yuan (b0285) 2022; 51 Garcia-Gonzalez, Hossain (b0085) 2021; 208–209 Alam, Padmanabhan, Sharma (b0005) 2023; 249 Ye, Li, Zhang (b0275) 2021; 17 Li, Yu, Liu, Zhu, Wang, Sun, Liu, Yuan (b0135) 2023; 279 Wang, Guo, Zhao (b0250) 2022; 51 Yan, Aymon, Reis (b0265) 2023; 170 Kumar Patra, Kumar Sharma, Joglekar, Joglekar (b0115) 2024; 91 Sim, Zhao (b0220) 2024; 91 Chen, Yan, Wang (b0025) 2020; 16 Lucarini, Moreno-Mateos, Danas, Garcia-Gonzalez (b0155) 2022; 256 Mukherjee, Rambausek, Danas (b0175) 2021; 151 Li, Ma (b0120) 2020; 152 J.C. Simo A finite strain beam formulation. The three-dimensional dynamic problem. Part I Comput. Methods Appl. Mech. Eng. 49 1985 55 70 10/cvb8rf. Kim, Parada, Liu, Zhao (b0110) 2019; 4 Chen, Yan, Wang (b0020) 2020; 157 Garcia-Gonzalez (b0075) 2019; 28 Sano, Pezzulla, Reis (b0210) 2022; 160 Tan, Chen, Yang, Deng (b0240) 2022; 230 Rajan, Arockiarajan (b0200) 2021; 90 Khajehsaeid, Arghavani, Naghdabadi, Sohrabpour (b0105) 2014; 79 Huang, Liu, Hsia (b0095) 2023; 59 Garcia-Gonzalez, Hossain (b0080) 2021; 48 Stewart, Anand (b0235) 2023; 179 Wang, Kim, Guo, Zhao (b0245) 2020; 142 Li, Ma, Gao (b0125) 2017; 89 Nandan, Sharma, Sharma (b0180) 2023; 587 Sharma, Sharma (b0215) 2024; 165 Dadgar-Rad, Hemmati, Hossain (b0060) 2024; 290 Yan, Abbasi, Reis (b0260) 2021 Zhao, Kim, Chester, Sharma, Zhao (b0290) 2019; 124 Kadapa, Hossain (b0100) 2022; 166 Narayanan, Pramanik, Arockiarajan (b0185) 2023; 184 Padmanabhan, Alam, Sharma (b0190) 2024; 261 Rambausek, Mukherjee, Danas (b0205) 2022; 391 Padmanabhan (10.1016/j.ijsolstr.2024.113101_b0190) 2024; 261 Wang (10.1016/j.ijsolstr.2024.113101_b0250) 2022; 51 Chen (10.1016/j.ijsolstr.2024.113101_b0035) 2023; 183 10.1016/j.ijsolstr.2024.113101_b0225 Garcia-Gonzalez (10.1016/j.ijsolstr.2024.113101_b0080) 2021; 48 Mukherjee (10.1016/j.ijsolstr.2024.113101_b0170) 2022; 257 Lucarini (10.1016/j.ijsolstr.2024.113101_b0155) 2022; 256 Dadgar-Rad (10.1016/j.ijsolstr.2024.113101_b0055) 2022; 54 Sano (10.1016/j.ijsolstr.2024.113101_b0210) 2022; 160 Chen (10.1016/j.ijsolstr.2024.113101_b0025) 2020; 16 Kumar Patra (10.1016/j.ijsolstr.2024.113101_b0115) 2024; 91 Huang (10.1016/j.ijsolstr.2024.113101_b0095) 2023; 59 Makushko (10.1016/j.ijsolstr.2024.113101_b0160) 2021; 31 Pezzulla (10.1016/j.ijsolstr.2024.113101_b0195) 2022; 166 Rajan (10.1016/j.ijsolstr.2024.113101_b0200) 2021; 90 Li (10.1016/j.ijsolstr.2024.113101_b0135) 2023; 279 Khajehsaeid (10.1016/j.ijsolstr.2024.113101_b0105) 2014; 79 Moezi (10.1016/j.ijsolstr.2024.113101_b0165) 2024; 280 Rambausek (10.1016/j.ijsolstr.2024.113101_b0205) 2022; 391 Garcia-Gonzalez (10.1016/j.ijsolstr.2024.113101_b0075) 2019; 28 Alam (10.1016/j.ijsolstr.2024.113101_b0005) 2023; 249 Chen (10.1016/j.ijsolstr.2024.113101_b0030) 2021; 266 Dadgar-Rad (10.1016/j.ijsolstr.2024.113101_b0060) 2024; 290 10.1016/j.ijsolstr.2024.113101_b0230 Zhao (10.1016/j.ijsolstr.2024.113101_b0285) 2022; 51 Bira (10.1016/j.ijsolstr.2024.113101_b0010) 2020; 7 Chung (10.1016/j.ijsolstr.2024.113101_b0040) 1993; 60 Sharma (10.1016/j.ijsolstr.2024.113101_b0215) 2024; 165 Yan (10.1016/j.ijsolstr.2024.113101_b0265) 2023; 170 Li (10.1016/j.ijsolstr.2024.113101_b0125) 2017; 89 Chen (10.1016/j.ijsolstr.2024.113101_b0015) 2020; 87 Narayanan (10.1016/j.ijsolstr.2024.113101_b0185) 2023; 184 Mukherjee (10.1016/j.ijsolstr.2024.113101_b0175) 2021; 151 Sim (10.1016/j.ijsolstr.2024.113101_b0220) 2024; 91 Li (10.1016/j.ijsolstr.2024.113101_b0130) 2022 Garcia-Gonzalez (10.1016/j.ijsolstr.2024.113101_b0085) 2021; 208–209 Zhang (10.1016/j.ijsolstr.2024.113101_b0280) 2020; 87 Wang (10.1016/j.ijsolstr.2024.113101_b0255) 2024; 202 Li (10.1016/j.ijsolstr.2024.113101_b0120) 2020; 152 Stewart (10.1016/j.ijsolstr.2024.113101_b0235) 2023; 179 Huang (10.1016/j.ijsolstr.2024.113101_b0090) 2023; 59 Kadapa (10.1016/j.ijsolstr.2024.113101_b0100) 2022; 166 Yang (10.1016/j.ijsolstr.2024.113101_b0270) 2024; 271 Lu (10.1016/j.ijsolstr.2024.113101_b0150) 2024; 190 Costi (10.1016/j.ijsolstr.2024.113101_b0045) 2024; 309 Liu (10.1016/j.ijsolstr.2024.113101_b0145) 2023; 258 Dadgar-Rad (10.1016/j.ijsolstr.2024.113101_b0050) 2022; 251 Tan (10.1016/j.ijsolstr.2024.113101_b0240) 2022; 230 Dehrouyeh-Semnani (10.1016/j.ijsolstr.2024.113101_b0070) 2023; 188 Kim (10.1016/j.ijsolstr.2024.113101_b0110) 2019; 4 Ye (10.1016/j.ijsolstr.2024.113101_b0275) 2021; 17 Nandan (10.1016/j.ijsolstr.2024.113101_b0180) 2023; 587 Zhao (10.1016/j.ijsolstr.2024.113101_b0290) 2019; 124 Chen (10.1016/j.ijsolstr.2024.113101_b0020) 2020; 157 Yan (10.1016/j.ijsolstr.2024.113101_b0260) 2021 Li (10.1016/j.ijsolstr.2024.113101_b0140) 2024; 134 Dehrouyeh-Semnani (10.1016/j.ijsolstr.2024.113101_b0065) 2021; 134 Wang (10.1016/j.ijsolstr.2024.113101_b0245) 2020; 142 |
| References_xml | – volume: 54 year: 2022 ident: b0055 article-title: Large viscoelastic deformation of hard-magnetic soft beams publication-title: Extreme Mech. Lett. – volume: 152 year: 2020 ident: b0120 article-title: A nonlinear cross-section deformable thin-walled beam finite element model with high-order interpolation of warping displacement publication-title: Thin-Walled Struct. – year: 2022 ident: b0130 article-title: Geometrically Exact Finite Element Formulation for Tendon-Driven Continuum Robots publication-title: Acta Mech. Solida Sin. – volume: 271 year: 2024 ident: b0270 article-title: A solid-shell model of hard-magnetic soft materials publication-title: Int. J. Mech. Sci. – volume: 124 start-page: 244 year: 2019 end-page: 263 ident: b0290 article-title: Mechanics of hard-magnetic soft materials publication-title: J. Mech. Phys. Solids – volume: 391 year: 2022 ident: b0205 article-title: A computational framework for magnetically hard and soft viscoelastic magnetorheological elastomers publication-title: Comput. Methods Appl. Mech. Eng. – volume: 266 year: 2021 ident: b0030 article-title: Three-dimensional large-deformation model of hard-magnetic soft beams publication-title: Compos. Struct. – volume: 166 year: 2022 ident: b0195 article-title: A geometrically exact model for thin magneto-elastic shells publication-title: J. Mech. Phys. Solids – volume: 17 start-page: 3560 year: 2021 end-page: 3568 ident: b0275 article-title: Magttice: a lattice model for hard-magnetic soft materials publication-title: Soft Matter – volume: 51 year: 2022 ident: b0285 article-title: A network-based visco-hyperelastic constitutive model for optically clear adhesives publication-title: Extreme Mech. Lett. – volume: 4 year: 2019 ident: b0110 article-title: Ferromagnetic soft continuum robots publication-title: Sci. Robot. – year: 2021 ident: b0260 article-title: A comprehensive framework for hard-magnetic beams: Reduced-order theory, 3D simulations, and experiments publication-title: Int. J. Solids Struct. – volume: 279 year: 2023 ident: b0135 article-title: A mechanics model of hard-magnetic soft rod with deformable cross-section under three-dimensional large deformation publication-title: Int. J. Solids Struct. – volume: 157 year: 2020 ident: b0020 article-title: On mechanics of functionally graded hard-magnetic soft beams publication-title: Int. J. Eng. Sci. – volume: 48 year: 2021 ident: b0080 article-title: Microstructural modelling of hard-magnetic soft materials: Dipole–dipole interactions versus Zeeman effect publication-title: Extreme Mech. Lett. – volume: 91 year: 2024 ident: b0220 article-title: Magneto-Mechanical Metamaterials: A Perspective publication-title: J. Appl. Mech. – volume: 89 start-page: 116 year: 2017 end-page: 126 ident: b0125 article-title: Geometrically exact curved beam element using internal force field defined in deformed configuration publication-title: Int. J. Non-Linear Mech. – volume: 134 start-page: 71 year: 2024 end-page: 96 ident: b0140 article-title: Geometrically exact 3D arbitrarily curved rod theory for dynamic analysis: Application to predicting the motion of hard-magnetic soft robotic arm publication-title: Appl. Math. Model. – volume: 190 year: 2024 ident: b0150 article-title: Mechanics of magnetic-shape memory polymers publication-title: J. Mech. Phys. Solids – volume: 261 year: 2024 ident: b0190 article-title: Tunable anti-plane wave bandgaps in 2D periodic hard-magnetic soft composites publication-title: Int. J. Mech. Sci. – volume: 249 year: 2023 ident: b0005 article-title: Magnetically tunable longitudinal wave band gaps in hard-magnetic soft laminates publication-title: Int. J. Mech. Sci. – volume: 28 year: 2019 ident: b0075 article-title: Magneto-visco-hyperelasticity for hard-magnetic soft materials: theory and numerical applications publication-title: Smart Mater. Struct. – volume: 280 year: 2024 ident: b0165 article-title: Development of a novel fractional magneto-viscoelastic dynamic model for an adaptive beam featuring functional composite magnetoactive elastomers: Simulations and experimental studies publication-title: Compos. Part B Eng. – volume: 309 year: 2024 ident: b0045 article-title: 3D Printable Self-Sensing Magnetorheological Elastomer publication-title: Macromol. Mater. Eng. – volume: 91 year: 2024 ident: b0115 article-title: Propagation of the Fundamental Lamb Modes in Strain Stiffened Hard-Magnetic Soft Plates publication-title: J. Appl. Mech. – volume: 184 year: 2023 ident: b0185 article-title: Micromechanics-based constitutive modeling of hard-magnetic soft materials publication-title: Mech. Mater. – volume: 208–209 start-page: 119 year: 2021 end-page: 132 ident: b0085 article-title: A microstructural-based approach to model magneto-viscoelastic materials at finite strains publication-title: Int. J. Solids Struct. – volume: 87 year: 2020 ident: b0015 article-title: Theoretical Modeling and Exact Solution for Extreme Bending Deformation of Hard-Magnetic Soft Beams publication-title: J. Appl. Mech. – volume: 151 year: 2021 ident: b0175 article-title: An explicit dissipative model for isotropic hard magnetorheological elastomers publication-title: J. Mech. Phys. Solids – volume: 7 year: 2020 ident: b0010 article-title: A Review of Magnetic Elastomers and Their Role in Soft Robotics publication-title: Front. Robot. AI – volume: 16 start-page: 6379 year: 2020 end-page: 6388 ident: b0025 article-title: Complex transformations of hard-magnetic soft beams by designing residual magnetic flux density publication-title: Soft Matter – volume: 179 year: 2023 ident: b0235 article-title: Magneto-viscoelasticity of hard-magnetic soft-elastomers: Application to modeling the dynamic snap-through behavior of a bistable arch publication-title: J. Mech. Phys. Solids – volume: 90 year: 2021 ident: b0200 article-title: Bending of hard-magnetic soft beams: A finite elasticity approach with anticlastic bending publication-title: Eur. J. Mech. - ASolids – volume: 258 year: 2023 ident: b0145 article-title: A meshfree model of hard-magnetic soft materials publication-title: Int. J. Mech. Sci. – volume: 170 year: 2023 ident: b0265 article-title: A reduced-order, rotation-based model for thin hard-magnetic plates publication-title: J. Mech. Phys. Solids – volume: 160 year: 2022 ident: b0210 article-title: A Kirchhoff-like theory for hard magnetic rods under geometrically nonlinear deformation in three dimensions publication-title: J. Mech. Phys. Solids – volume: 79 start-page: 44 year: 2014 end-page: 58 ident: b0105 article-title: A visco-hyperelastic constitutive model for rubber-like materials: A rate-dependent relaxation time scheme publication-title: Int. J. Eng. Sci. – volume: 290 year: 2024 ident: b0060 article-title: A three-dimensional micropolar beam model with application to the finite deformation analysis of hard-magnetic soft beams publication-title: Int. J. Solids Struct. – volume: 188 year: 2023 ident: b0070 article-title: Nonlinear geometrically exact dynamics of fluid-conveying cantilevered hard magnetic soft pipe with uniform and nonuniform magnetizations publication-title: Mech. Syst. Signal Process. – volume: 230 year: 2022 ident: b0240 article-title: Dynamic snap-through instability and damped oscillation of a flat arch of hard magneto-active elastomers publication-title: Int. J. Mech. Sci. – volume: 587 year: 2023 ident: b0180 article-title: Dynamic modeling of hard-magnetic soft actuators: Unraveling the role of polymer chain entanglements, crosslinks, and finite extensibility publication-title: J. Magn. Magn. Mater. – volume: 134 year: 2021 ident: b0065 article-title: On bifurcation behavior of hard magnetic soft cantilevers publication-title: Int. J. Non-Linear Mech. – volume: 166 year: 2022 ident: b0100 article-title: A unified numerical approach for soft to hard magneto-viscoelastically coupled polymers publication-title: Mech. Mater. – reference: J.C. Simo A finite strain beam formulation. The three-dimensional dynamic problem. Part I Comput. Methods Appl. Mech. Eng. 49 1985 55 70 10/cvb8rf. – volume: 60 start-page: 371 year: 1993 end-page: 375 ident: b0040 article-title: A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method publication-title: J. Appl. Mech. – volume: 256 year: 2022 ident: b0155 article-title: Insights into the viscohyperelastic response of soft magnetorheological elastomers: Competition of macrostructural versus microstructural players publication-title: Int. J. Solids Struct. – volume: 251 year: 2022 ident: b0050 article-title: Finite deformation analysis of hard-magnetic soft materials based on micropolar continuum theory publication-title: Int. J. Solids Struct. – volume: 165 year: 2024 ident: b0215 article-title: Dynamic modeling and analysis of viscoelastic hard-magnetic soft actuators with thermal effects publication-title: Int. J. Non-Linear Mech. – volume: 87 year: 2020 ident: b0280 article-title: Micromechanics Study on Actuation Efficiency of Hard-Magnetic Soft Active Materials publication-title: J. Appl. Mech. – volume: 59 year: 2023 ident: b0090 article-title: Modeling of magnetic cilia carpet robots using discrete differential geometry formulation publication-title: Extreme Mech. Lett. – volume: 257 year: 2022 ident: b0170 article-title: A unified dual modeling framework for soft and hard magnetorheological elastomers publication-title: Int. J. Solids Struct. – reference: J.C. Simo On a fully three-dimensional finite-strain viscoelastic damage model: Formulation and computational aspects Comput. Methods Appl. Mech. Eng. 60 1987 153 173 10/bkb5bs. – volume: 51 year: 2022 ident: b0250 article-title: Magnetic soft continuum robots with contact forces publication-title: Extreme Mech. Lett. – volume: 183 year: 2023 ident: b0035 article-title: On the dynamics of curved magnetoactive soft beams publication-title: Int. J. Eng. Sci. – volume: 142 year: 2020 ident: b0245 article-title: Hard-magnetic elastica publication-title: J. Mech. Phys. Solids – volume: 31 year: 2021 ident: b0160 article-title: Flexible Magnetoreceptor with Tunable Intrinsic Logic for On-Skin Touchless Human-Machine Interfaces publication-title: Adv. Funct. Mater. – volume: 59 year: 2023 ident: b0095 article-title: A discrete model for the geometrically nonlinear mechanics of hard-magnetic slender structures publication-title: Extreme Mech. Lett. – volume: 202 year: 2024 ident: b0255 article-title: Dynamic modeling and simulation of hard-magnetic soft beams interacting with environment via high-order finite elements of ANCF publication-title: Int. J. Eng. Sci. – volume: 124 start-page: 244 year: 2019 ident: 10.1016/j.ijsolstr.2024.113101_b0290 article-title: Mechanics of hard-magnetic soft materials publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2018.10.008 – volume: 59 year: 2023 ident: 10.1016/j.ijsolstr.2024.113101_b0090 article-title: Modeling of magnetic cilia carpet robots using discrete differential geometry formulation publication-title: Extreme Mech. Lett. doi: 10.1016/j.eml.2023.101967 – volume: 258 year: 2023 ident: 10.1016/j.ijsolstr.2024.113101_b0145 article-title: A meshfree model of hard-magnetic soft materials publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2023.108566 – volume: 190 year: 2024 ident: 10.1016/j.ijsolstr.2024.113101_b0150 article-title: Mechanics of magnetic-shape memory polymers publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2024.105742 – volume: 202 year: 2024 ident: 10.1016/j.ijsolstr.2024.113101_b0255 article-title: Dynamic modeling and simulation of hard-magnetic soft beams interacting with environment via high-order finite elements of ANCF publication-title: Int. J. Eng. Sci. doi: 10.1016/j.ijengsci.2024.104102 – volume: 183 year: 2023 ident: 10.1016/j.ijsolstr.2024.113101_b0035 article-title: On the dynamics of curved magnetoactive soft beams publication-title: Int. J. Eng. Sci. doi: 10.1016/j.ijengsci.2022.103792 – volume: 79 start-page: 44 year: 2014 ident: 10.1016/j.ijsolstr.2024.113101_b0105 article-title: A visco-hyperelastic constitutive model for rubber-like materials: A rate-dependent relaxation time scheme publication-title: Int. J. Eng. Sci. doi: 10.1016/j.ijengsci.2014.03.001 – volume: 16 start-page: 6379 year: 2020 ident: 10.1016/j.ijsolstr.2024.113101_b0025 article-title: Complex transformations of hard-magnetic soft beams by designing residual magnetic flux density publication-title: Soft Matter doi: 10.1039/C9SM02529D – volume: 60 start-page: 371 year: 1993 ident: 10.1016/j.ijsolstr.2024.113101_b0040 article-title: A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method publication-title: J. Appl. Mech. doi: 10.1115/1.2900803 – volume: 91 year: 2024 ident: 10.1016/j.ijsolstr.2024.113101_b0220 article-title: Magneto-Mechanical Metamaterials: A Perspective publication-title: J. Appl. Mech. doi: 10.1115/1.4063816 – volume: 230 year: 2022 ident: 10.1016/j.ijsolstr.2024.113101_b0240 article-title: Dynamic snap-through instability and damped oscillation of a flat arch of hard magneto-active elastomers publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2022.107523 – volume: 587 year: 2023 ident: 10.1016/j.ijsolstr.2024.113101_b0180 article-title: Dynamic modeling of hard-magnetic soft actuators: Unraveling the role of polymer chain entanglements, crosslinks, and finite extensibility publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2023.171237 – volume: 160 year: 2022 ident: 10.1016/j.ijsolstr.2024.113101_b0210 article-title: A Kirchhoff-like theory for hard magnetic rods under geometrically nonlinear deformation in three dimensions publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2021.104739 – volume: 251 year: 2022 ident: 10.1016/j.ijsolstr.2024.113101_b0050 article-title: Finite deformation analysis of hard-magnetic soft materials based on micropolar continuum theory publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2022.111747 – volume: 166 year: 2022 ident: 10.1016/j.ijsolstr.2024.113101_b0195 article-title: A geometrically exact model for thin magneto-elastic shells publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2022.104916 – volume: 134 start-page: 71 year: 2024 ident: 10.1016/j.ijsolstr.2024.113101_b0140 article-title: Geometrically exact 3D arbitrarily curved rod theory for dynamic analysis: Application to predicting the motion of hard-magnetic soft robotic arm publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2024.05.044 – volume: 271 year: 2024 ident: 10.1016/j.ijsolstr.2024.113101_b0270 article-title: A solid-shell model of hard-magnetic soft materials publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2024.109129 – volume: 208–209 start-page: 119 year: 2021 ident: 10.1016/j.ijsolstr.2024.113101_b0085 article-title: A microstructural-based approach to model magneto-viscoelastic materials at finite strains publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2020.10.028 – volume: 188 year: 2023 ident: 10.1016/j.ijsolstr.2024.113101_b0070 article-title: Nonlinear geometrically exact dynamics of fluid-conveying cantilevered hard magnetic soft pipe with uniform and nonuniform magnetizations publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2022.110016 – volume: 391 year: 2022 ident: 10.1016/j.ijsolstr.2024.113101_b0205 article-title: A computational framework for magnetically hard and soft viscoelastic magnetorheological elastomers publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2021.114500 – volume: 279 year: 2023 ident: 10.1016/j.ijsolstr.2024.113101_b0135 article-title: A mechanics model of hard-magnetic soft rod with deformable cross-section under three-dimensional large deformation publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2023.112344 – volume: 184 year: 2023 ident: 10.1016/j.ijsolstr.2024.113101_b0185 article-title: Micromechanics-based constitutive modeling of hard-magnetic soft materials publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2023.104722 – volume: 31 year: 2021 ident: 10.1016/j.ijsolstr.2024.113101_b0160 article-title: Flexible Magnetoreceptor with Tunable Intrinsic Logic for On-Skin Touchless Human-Machine Interfaces publication-title: Adv. Funct. Mater. – volume: 90 year: 2021 ident: 10.1016/j.ijsolstr.2024.113101_b0200 article-title: Bending of hard-magnetic soft beams: A finite elasticity approach with anticlastic bending publication-title: Eur. J. Mech. - ASolids – volume: 91 year: 2024 ident: 10.1016/j.ijsolstr.2024.113101_b0115 article-title: Propagation of the Fundamental Lamb Modes in Strain Stiffened Hard-Magnetic Soft Plates publication-title: J. Appl. Mech. doi: 10.1115/1.4064789 – year: 2022 ident: 10.1016/j.ijsolstr.2024.113101_b0130 article-title: Geometrically Exact Finite Element Formulation for Tendon-Driven Continuum Robots publication-title: Acta Mech. Solida Sin. – ident: 10.1016/j.ijsolstr.2024.113101_b0230 doi: 10.1016/0045-7825(87)90107-1 – volume: 142 year: 2020 ident: 10.1016/j.ijsolstr.2024.113101_b0245 article-title: Hard-magnetic elastica publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2020.104045 – volume: 87 year: 2020 ident: 10.1016/j.ijsolstr.2024.113101_b0015 article-title: Theoretical Modeling and Exact Solution for Extreme Bending Deformation of Hard-Magnetic Soft Beams publication-title: J. Appl. Mech. doi: 10.1115/1.4045716 – volume: 48 year: 2021 ident: 10.1016/j.ijsolstr.2024.113101_b0080 article-title: Microstructural modelling of hard-magnetic soft materials: Dipole–dipole interactions versus Zeeman effect publication-title: Extreme Mech. Lett. doi: 10.1016/j.eml.2021.101382 – volume: 280 year: 2024 ident: 10.1016/j.ijsolstr.2024.113101_b0165 article-title: Development of a novel fractional magneto-viscoelastic dynamic model for an adaptive beam featuring functional composite magnetoactive elastomers: Simulations and experimental studies publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2024.111501 – volume: 17 start-page: 3560 year: 2021 ident: 10.1016/j.ijsolstr.2024.113101_b0275 article-title: Magttice: a lattice model for hard-magnetic soft materials publication-title: Soft Matter doi: 10.1039/D0SM01662D – volume: 309 year: 2024 ident: 10.1016/j.ijsolstr.2024.113101_b0045 article-title: 3D Printable Self-Sensing Magnetorheological Elastomer publication-title: Macromol. Mater. Eng. doi: 10.1002/mame.202300294 – volume: 165 year: 2024 ident: 10.1016/j.ijsolstr.2024.113101_b0215 article-title: Dynamic modeling and analysis of viscoelastic hard-magnetic soft actuators with thermal effects publication-title: Int. J. Non-Linear Mech. doi: 10.1016/j.ijnonlinmec.2024.104801 – year: 2021 ident: 10.1016/j.ijsolstr.2024.113101_b0260 article-title: A comprehensive framework for hard-magnetic beams: Reduced-order theory, 3D simulations, and experiments publication-title: Int. J. Solids Struct. – volume: 249 year: 2023 ident: 10.1016/j.ijsolstr.2024.113101_b0005 article-title: Magnetically tunable longitudinal wave band gaps in hard-magnetic soft laminates publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2023.108262 – volume: 7 year: 2020 ident: 10.1016/j.ijsolstr.2024.113101_b0010 article-title: A Review of Magnetic Elastomers and Their Role in Soft Robotics publication-title: Front. Robot. AI doi: 10.3389/frobt.2020.588391 – volume: 157 year: 2020 ident: 10.1016/j.ijsolstr.2024.113101_b0020 article-title: On mechanics of functionally graded hard-magnetic soft beams publication-title: Int. J. Eng. Sci. doi: 10.1016/j.ijengsci.2020.103391 – volume: 261 year: 2024 ident: 10.1016/j.ijsolstr.2024.113101_b0190 article-title: Tunable anti-plane wave bandgaps in 2D periodic hard-magnetic soft composites publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2023.108686 – volume: 89 start-page: 116 year: 2017 ident: 10.1016/j.ijsolstr.2024.113101_b0125 article-title: Geometrically exact curved beam element using internal force field defined in deformed configuration publication-title: Int. J. Non-Linear Mech. doi: 10.1016/j.ijnonlinmec.2016.12.008 – volume: 134 year: 2021 ident: 10.1016/j.ijsolstr.2024.113101_b0065 article-title: On bifurcation behavior of hard magnetic soft cantilevers publication-title: Int. J. Non-Linear Mech. doi: 10.1016/j.ijnonlinmec.2021.103746 – volume: 28 year: 2019 ident: 10.1016/j.ijsolstr.2024.113101_b0075 article-title: Magneto-visco-hyperelasticity for hard-magnetic soft materials: theory and numerical applications publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/ab2b05 – volume: 257 year: 2022 ident: 10.1016/j.ijsolstr.2024.113101_b0170 article-title: A unified dual modeling framework for soft and hard magnetorheological elastomers publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2022.111513 – volume: 51 year: 2022 ident: 10.1016/j.ijsolstr.2024.113101_b0250 article-title: Magnetic soft continuum robots with contact forces publication-title: Extreme Mech. Lett. doi: 10.1016/j.eml.2022.101604 – ident: 10.1016/j.ijsolstr.2024.113101_b0225 doi: 10.1016/0045-7825(85)90050-7 – volume: 170 year: 2023 ident: 10.1016/j.ijsolstr.2024.113101_b0265 article-title: A reduced-order, rotation-based model for thin hard-magnetic plates publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2022.105095 – volume: 4 year: 2019 ident: 10.1016/j.ijsolstr.2024.113101_b0110 article-title: Ferromagnetic soft continuum robots publication-title: Sci. Robot. doi: 10.1126/scirobotics.aax7329 – volume: 166 year: 2022 ident: 10.1016/j.ijsolstr.2024.113101_b0100 article-title: A unified numerical approach for soft to hard magneto-viscoelastically coupled polymers publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2021.104207 – volume: 256 year: 2022 ident: 10.1016/j.ijsolstr.2024.113101_b0155 article-title: Insights into the viscohyperelastic response of soft magnetorheological elastomers: Competition of macrostructural versus microstructural players publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2022.111981 – volume: 151 year: 2021 ident: 10.1016/j.ijsolstr.2024.113101_b0175 article-title: An explicit dissipative model for isotropic hard magnetorheological elastomers publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2021.104361 – volume: 152 year: 2020 ident: 10.1016/j.ijsolstr.2024.113101_b0120 article-title: A nonlinear cross-section deformable thin-walled beam finite element model with high-order interpolation of warping displacement publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2020.106748 – volume: 54 year: 2022 ident: 10.1016/j.ijsolstr.2024.113101_b0055 article-title: Large viscoelastic deformation of hard-magnetic soft beams publication-title: Extreme Mech. Lett. doi: 10.1016/j.eml.2022.101773 – volume: 51 year: 2022 ident: 10.1016/j.ijsolstr.2024.113101_b0285 article-title: A network-based visco-hyperelastic constitutive model for optically clear adhesives publication-title: Extreme Mech. Lett. doi: 10.1016/j.eml.2021.101594 – volume: 290 year: 2024 ident: 10.1016/j.ijsolstr.2024.113101_b0060 article-title: A three-dimensional micropolar beam model with application to the finite deformation analysis of hard-magnetic soft beams publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2024.112662 – volume: 179 year: 2023 ident: 10.1016/j.ijsolstr.2024.113101_b0235 article-title: Magneto-viscoelasticity of hard-magnetic soft-elastomers: Application to modeling the dynamic snap-through behavior of a bistable arch publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2023.105366 – volume: 266 year: 2021 ident: 10.1016/j.ijsolstr.2024.113101_b0030 article-title: Three-dimensional large-deformation model of hard-magnetic soft beams publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2021.113822 – volume: 59 year: 2023 ident: 10.1016/j.ijsolstr.2024.113101_b0095 article-title: A discrete model for the geometrically nonlinear mechanics of hard-magnetic slender structures publication-title: Extreme Mech. Lett. doi: 10.1016/j.eml.2023.101977 – volume: 87 year: 2020 ident: 10.1016/j.ijsolstr.2024.113101_b0280 article-title: Micromechanics Study on Actuation Efficiency of Hard-Magnetic Soft Active Materials publication-title: J. Appl. Mech. doi: 10.1115/1.4047291 |
| SSID | ssj0004390 |
| Score | 2.4812927 |
| Snippet | •A magneto-viscoelastic rod theory of the HMS curved rod under 3D large deformation is presented.•The generalized Maxwell model under finite deformation is... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 113101 |
| SubjectTerms | 3D large deformation Generalized Maxwell Model Generalized-α method Geometrically exact curved rod Hard-magnetic soft (HMS) material Viscoelasticity |
| Title | Magneto-viscoelastic rod model for hard-magnetic soft rods under 3D large deformation: Theory and numerical implementation |
| URI | https://dx.doi.org/10.1016/j.ijsolstr.2024.113101 |
| Volume | 305 |
| WOSCitedRecordID | wos001333188100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0020-7683 databaseCode: AIEXJ dateStart: 20200201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0004390 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9swDBaydof1MOyJtXtAh90Cd5ZlR_ZuxdKiK7pihw7IzbAe7hxkThEnQdHf0B89UvIrW4BuGHYxAkeKIvGzRVL8SELey0DmXIvIG2kJBooWwpNS4IErbHaKj9jIZLbYhLi4iCeT5OtgcNdwYdYzUZbxzU1y_V9FDfdA2Eid_Qtxtz8KN-AzCB2uIHa4_pHgv2RXpVnOvXVRqbkB5dhmaZ5rV_TGhhUi08r7YdvBdxW8ibFBZWviLoZ8PJxhfPhQm5baWAdn4IE8etrLlTvomSHLsg5AbyU87YLjO19jL0MFTL_QLjW0y167WnSBjOc2umBStJhtPdpj2GTBeL9qI4ZWznd7VmTV947Qdl6sHNuk788Iwl9iQ1qiTRfV5EgHvgeWEe-_uLklbP--CTh_xPSwmMKEYCKHOAwWr2H1OJsJtvG8Gs8jMTUhHhPHD8huIKIE3pG7R5-PJ2cdz5Y7n13zZ3qM8-2jbVd2egrM5RPyuLY86JFDzFMyMOUzstfLR_mc3G7DDgVoUIsdCnCgG9ihiB1sUFGLHcrH1GKH9rDzkTrkUJA4bZFDN5Hzgnw7Ob78dOrVxTk8xVmwBKtMj4TMwzyIcaOKsMyZ72e-xELxMpK-FrnxI6V4oJhOIs1lFCiuQwY6UcQEf0l2ynlpXhEqBEtMEkumchkmJo9DFSrFcjDFdSZVvk-iZhVTVWeuxwIqs7QJUZymzeqnuPqpW_198qHtd-1yt9zbI2mElNYaqNMsU8DWPX0P_qHva_KoexTekB14-Mxb8lCtl0W1eFfD8CcbTrVD |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magneto-viscoelastic+rod+model+for+hard-magnetic+soft+rods+under+3D+large+deformation%3A+Theory+and+numerical+implementation&rft.jtitle=International+journal+of+solids+and+structures&rft.au=Li%2C+Xin&rft.au=Zhang%2C+Dingcong&rft.au=Guan%2C+Jiashen&rft.au=Liu%2C+Ju&rft.date=2024-12-01&rft.pub=Elsevier+Ltd&rft.issn=0020-7683&rft.volume=305&rft_id=info:doi/10.1016%2Fj.ijsolstr.2024.113101&rft.externalDocID=S0020768324004608 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7683&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7683&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7683&client=summon |