Magneto-viscoelastic rod model for hard-magnetic soft rods under 3D large deformation: Theory and numerical implementation

•A magneto-viscoelastic rod theory of the HMS curved rod under 3D large deformation is presented.•The generalized Maxwell model under finite deformation is rationally incorporated into the geometrically exact rod theory.•The finite element formulation and corresponding implementation of the problem...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of solids and structures Ročník 305; s. 113101
Hlavní autori: Li, Xin, Zhang, Dingcong, Guan, Jiashen, Liu, Ju, Yuan, Hongyan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.12.2024
Predmet:
ISSN:0020-7683
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •A magneto-viscoelastic rod theory of the HMS curved rod under 3D large deformation is presented.•The generalized Maxwell model under finite deformation is rationally incorporated into the geometrically exact rod theory.•The finite element formulation and corresponding implementation of the problem are obtained.•An extension of generalized-α method to the rotation group are presented.•five numerical examples including the 2D dynamic buckling and 3D dynamic problems are considered. The main purpose of this work is to develop a three-dimensional (3D) viscoelastic rod model for hard-magnetic soft (HMS) rods under large deformation which are widely used active structures in soft robotics. To do so, the Simo’s viscoelasticity theory has been rationally incorporated into the geometrically exact 3D curved rod model. The proposed model includes the deformation modes of axial tension, shear, bending, and torsion, which is applicable to the HMS rods with arbitrarily initial curved and twisted geometries under 3D large deformation. The viscoelastic constitutive equations of the HMS rod in the present formulation are formulated, which include the general relaxation functions. To obtain the expression for the magnetic load, the rotation-based magnetic free energy density is introduced, and the governing equations of the HMS rod with magnetic load and body force are presented. To obtain the numerical implementation, an implicit time integration algorithm that simply extends the generalized-α method for the rotation group, and the corresponding variational formulation and its linearization of the rod model are derived. To validate the model, five numerical examples, including 2D dynamic buckling, 3D static, and 3D dynamic problem are presented. The dynamic problems include the dynamic snap-through behavior of a bistable HMS arch and damped oscillation of a quarter arc cantilever under 3D deformation. The simulation results show good agreement with the results reported in the literature.
AbstractList •A magneto-viscoelastic rod theory of the HMS curved rod under 3D large deformation is presented.•The generalized Maxwell model under finite deformation is rationally incorporated into the geometrically exact rod theory.•The finite element formulation and corresponding implementation of the problem are obtained.•An extension of generalized-α method to the rotation group are presented.•five numerical examples including the 2D dynamic buckling and 3D dynamic problems are considered. The main purpose of this work is to develop a three-dimensional (3D) viscoelastic rod model for hard-magnetic soft (HMS) rods under large deformation which are widely used active structures in soft robotics. To do so, the Simo’s viscoelasticity theory has been rationally incorporated into the geometrically exact 3D curved rod model. The proposed model includes the deformation modes of axial tension, shear, bending, and torsion, which is applicable to the HMS rods with arbitrarily initial curved and twisted geometries under 3D large deformation. The viscoelastic constitutive equations of the HMS rod in the present formulation are formulated, which include the general relaxation functions. To obtain the expression for the magnetic load, the rotation-based magnetic free energy density is introduced, and the governing equations of the HMS rod with magnetic load and body force are presented. To obtain the numerical implementation, an implicit time integration algorithm that simply extends the generalized-α method for the rotation group, and the corresponding variational formulation and its linearization of the rod model are derived. To validate the model, five numerical examples, including 2D dynamic buckling, 3D static, and 3D dynamic problem are presented. The dynamic problems include the dynamic snap-through behavior of a bistable HMS arch and damped oscillation of a quarter arc cantilever under 3D deformation. The simulation results show good agreement with the results reported in the literature.
ArticleNumber 113101
Author Guan, Jiashen
Liu, Ju
Zhang, Dingcong
Li, Xin
Yuan, Hongyan
Author_xml – sequence: 1
  givenname: Xin
  orcidid: 0000-0002-2115-5031
  surname: Li
  fullname: Li, Xin
– sequence: 2
  givenname: Dingcong
  orcidid: 0009-0000-6662-3460
  surname: Zhang
  fullname: Zhang, Dingcong
– sequence: 3
  givenname: Jiashen
  orcidid: 0000-0002-4936-7650
  surname: Guan
  fullname: Guan, Jiashen
– sequence: 4
  givenname: Ju
  orcidid: 0000-0002-8518-2928
  surname: Liu
  fullname: Liu, Ju
– sequence: 5
  givenname: Hongyan
  orcidid: 0000-0001-8225-0211
  surname: Yuan
  fullname: Yuan, Hongyan
  email: yuanhy3@sustech.edu.cn
BookMark eNqFkM1OAjEUhbvAREBfwfQFBm-n84dxocHfBOMG102nvQMlMy1pCwk-vQPoxg2rk9z7nZN7z4gMrLNIyA2DCQNW3K4nZh1cG6KfpJBmE8Z4Px-QIUAKSVlU_JKMQlgDQManMCTfH3JpMbpkZ4Jy2MoQjaLeado5jS1tnKcr6XXSHbl-F1wTD0CgW6vRU_5EW-mXSDX2cCejcfaOLlbo_J5Kq6ndduiNki013abFDm08QlfkopFtwOtfHZOvl-fF7C2Zf76-zx7nieIsjUlZ6qKsm6xJK6iqMi97BZBQs6xgdV6DLhuEXCmeKqanueZ1niquM1YBy1nJx6Q45SrvQvDYiI03nfR7wUAcWhNr8deaOLQmTq31xvt_RmVOp0cvTXve_nCyY__czqAXQRm0CrXxqKLQzpyL-AEIcJOz
CitedBy_id crossref_primary_10_1002_adrr_202500071
crossref_primary_10_1016_j_mechmachtheory_2025_106091
crossref_primary_10_1016_j_ijmecsci_2025_110722
crossref_primary_10_1016_j_euromechsol_2025_105816
crossref_primary_10_1007_s11433_025_2729_4
crossref_primary_10_1016_j_jmps_2025_106346
crossref_primary_10_1016_j_ymssp_2025_113069
Cites_doi 10.1016/j.jmps.2018.10.008
10.1016/j.eml.2023.101967
10.1016/j.ijmecsci.2023.108566
10.1016/j.jmps.2024.105742
10.1016/j.ijengsci.2024.104102
10.1016/j.ijengsci.2022.103792
10.1016/j.ijengsci.2014.03.001
10.1039/C9SM02529D
10.1115/1.2900803
10.1115/1.4063816
10.1016/j.ijmecsci.2022.107523
10.1016/j.jmmm.2023.171237
10.1016/j.jmps.2021.104739
10.1016/j.ijsolstr.2022.111747
10.1016/j.jmps.2022.104916
10.1016/j.apm.2024.05.044
10.1016/j.ijmecsci.2024.109129
10.1016/j.ijsolstr.2020.10.028
10.1016/j.ymssp.2022.110016
10.1016/j.cma.2021.114500
10.1016/j.ijsolstr.2023.112344
10.1016/j.mechmat.2023.104722
10.1115/1.4064789
10.1016/0045-7825(87)90107-1
10.1016/j.jmps.2020.104045
10.1115/1.4045716
10.1016/j.eml.2021.101382
10.1016/j.compositesb.2024.111501
10.1039/D0SM01662D
10.1002/mame.202300294
10.1016/j.ijnonlinmec.2024.104801
10.1016/j.ijmecsci.2023.108262
10.3389/frobt.2020.588391
10.1016/j.ijengsci.2020.103391
10.1016/j.ijmecsci.2023.108686
10.1016/j.ijnonlinmec.2016.12.008
10.1016/j.ijnonlinmec.2021.103746
10.1088/1361-665X/ab2b05
10.1016/j.ijsolstr.2022.111513
10.1016/j.eml.2022.101604
10.1016/0045-7825(85)90050-7
10.1016/j.jmps.2022.105095
10.1126/scirobotics.aax7329
10.1016/j.mechmat.2021.104207
10.1016/j.ijsolstr.2022.111981
10.1016/j.jmps.2021.104361
10.1016/j.tws.2020.106748
10.1016/j.eml.2022.101773
10.1016/j.eml.2021.101594
10.1016/j.ijsolstr.2024.112662
10.1016/j.jmps.2023.105366
10.1016/j.compstruct.2021.113822
10.1016/j.eml.2023.101977
10.1115/1.4047291
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ijsolstr.2024.113101
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_ijsolstr_2024_113101
S0020768324004608
GroupedDBID --K
--M
-~X
.~1
0R~
0SF
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABVKL
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
E3Z
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IXB
J1W
JJJVA
KOM
LY7
M24
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SST
SSZ
T5K
TN5
TR2
XPP
ZMT
~02
~G-
29J
6TJ
9DU
AAFWJ
AAQXK
AATTM
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACKIV
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AEXQZ
AFPUW
AGHFR
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SET
SMS
VH1
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c312t-77d67bf4f2808875728000a0b1461b5b0d7fe05cc32c1d95d3b52c3d418015173
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001333188100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-7683
IngestDate Tue Nov 18 21:19:00 EST 2025
Sat Nov 29 02:34:58 EST 2025
Sat Dec 14 16:14:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Viscoelasticity
3D large deformation
Hard-magnetic soft (HMS) material
Generalized-α method
Generalized Maxwell Model
Geometrically exact curved rod
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-77d67bf4f2808875728000a0b1461b5b0d7fe05cc32c1d95d3b52c3d418015173
ORCID 0009-0000-6662-3460
0000-0002-2115-5031
0000-0002-8518-2928
0000-0002-4936-7650
0000-0001-8225-0211
ParticipantIDs crossref_primary_10_1016_j_ijsolstr_2024_113101
crossref_citationtrail_10_1016_j_ijsolstr_2024_113101
elsevier_sciencedirect_doi_10_1016_j_ijsolstr_2024_113101
PublicationCentury 2000
PublicationDate 2024-12-01
2024-12-00
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationTitle International journal of solids and structures
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – sequence: 0
  name: Elsevier Ltd
References J.C. Simo On a fully three-dimensional finite-strain viscoelastic damage model: Formulation and computational aspects Comput. Methods Appl. Mech. Eng. 60 1987 153 173 10/bkb5bs.
Pezzulla, Yan, Reis (b0195) 2022; 166
Dehrouyeh-Semnani (b0070) 2023; 188
Chung, Hulbert (b0040) 1993; 60
Wang, Qin, Luo, Tian, Hu (b0255) 2024; 202
Chen, Wang (b0015) 2020; 87
Mukherjee, Danas (b0170) 2022; 257
Dadgar-Rad, Hossain (b0050) 2022; 251
Li, Yu, Baghaee, Cao, Chen, Liu, Yuan (b0130) 2022
Chen, Wang, Yan, Luo (b0030) 2021; 266
Dehrouyeh-Semnani (b0065) 2021; 134
Liu, Yang, Li, Xu (b0145) 2023; 258
Lu, Wu, Zhao (b0150) 2024; 190
Bira, Dhagat, Davidson (b0010) 2020; 7
Yang, Li, Xu (b0270) 2024; 271
Li, Yu, Zhu, Liu, Yuan (b0140) 2024; 134
Huang, Liu, Hsia (b0090) 2023; 59
Zhang, Wu, Ze, Zhao (b0280) 2020; 87
Dadgar-Rad, Hossain (b0055) 2022; 54
Moezi, Sedaghati, Rakheja (b0165) 2024; 280
Makushko, Oliveros Mata, Cañón Bermúdez, Hassan, Laureti, Rinaldi, Fagiani, Barucca, Schmidt, Zabila, Kosub, Illing, Volkov, Vladymyrskyi, Fassbender, Albrecht, Varvaro, Makarov (b0160) 2021; 31
Chen, Wang, Yan (b0035) 2023; 183
Costi, Georgopoulou, Mondal, Iida, Clemens (b0045) 2024; 309
Zhao, Cao, Li, Xia, Xue, Yuan (b0285) 2022; 51
Garcia-Gonzalez, Hossain (b0085) 2021; 208–209
Alam, Padmanabhan, Sharma (b0005) 2023; 249
Ye, Li, Zhang (b0275) 2021; 17
Li, Yu, Liu, Zhu, Wang, Sun, Liu, Yuan (b0135) 2023; 279
Wang, Guo, Zhao (b0250) 2022; 51
Yan, Aymon, Reis (b0265) 2023; 170
Kumar Patra, Kumar Sharma, Joglekar, Joglekar (b0115) 2024; 91
Sim, Zhao (b0220) 2024; 91
Chen, Yan, Wang (b0025) 2020; 16
Lucarini, Moreno-Mateos, Danas, Garcia-Gonzalez (b0155) 2022; 256
Mukherjee, Rambausek, Danas (b0175) 2021; 151
Li, Ma (b0120) 2020; 152
J.C. Simo A finite strain beam formulation. The three-dimensional dynamic problem. Part I Comput. Methods Appl. Mech. Eng. 49 1985 55 70 10/cvb8rf.
Kim, Parada, Liu, Zhao (b0110) 2019; 4
Chen, Yan, Wang (b0020) 2020; 157
Garcia-Gonzalez (b0075) 2019; 28
Sano, Pezzulla, Reis (b0210) 2022; 160
Tan, Chen, Yang, Deng (b0240) 2022; 230
Rajan, Arockiarajan (b0200) 2021; 90
Khajehsaeid, Arghavani, Naghdabadi, Sohrabpour (b0105) 2014; 79
Huang, Liu, Hsia (b0095) 2023; 59
Garcia-Gonzalez, Hossain (b0080) 2021; 48
Stewart, Anand (b0235) 2023; 179
Wang, Kim, Guo, Zhao (b0245) 2020; 142
Li, Ma, Gao (b0125) 2017; 89
Nandan, Sharma, Sharma (b0180) 2023; 587
Sharma, Sharma (b0215) 2024; 165
Dadgar-Rad, Hemmati, Hossain (b0060) 2024; 290
Yan, Abbasi, Reis (b0260) 2021
Zhao, Kim, Chester, Sharma, Zhao (b0290) 2019; 124
Kadapa, Hossain (b0100) 2022; 166
Narayanan, Pramanik, Arockiarajan (b0185) 2023; 184
Padmanabhan, Alam, Sharma (b0190) 2024; 261
Rambausek, Mukherjee, Danas (b0205) 2022; 391
Padmanabhan (10.1016/j.ijsolstr.2024.113101_b0190) 2024; 261
Wang (10.1016/j.ijsolstr.2024.113101_b0250) 2022; 51
Chen (10.1016/j.ijsolstr.2024.113101_b0035) 2023; 183
10.1016/j.ijsolstr.2024.113101_b0225
Garcia-Gonzalez (10.1016/j.ijsolstr.2024.113101_b0080) 2021; 48
Mukherjee (10.1016/j.ijsolstr.2024.113101_b0170) 2022; 257
Lucarini (10.1016/j.ijsolstr.2024.113101_b0155) 2022; 256
Dadgar-Rad (10.1016/j.ijsolstr.2024.113101_b0055) 2022; 54
Sano (10.1016/j.ijsolstr.2024.113101_b0210) 2022; 160
Chen (10.1016/j.ijsolstr.2024.113101_b0025) 2020; 16
Kumar Patra (10.1016/j.ijsolstr.2024.113101_b0115) 2024; 91
Huang (10.1016/j.ijsolstr.2024.113101_b0095) 2023; 59
Makushko (10.1016/j.ijsolstr.2024.113101_b0160) 2021; 31
Pezzulla (10.1016/j.ijsolstr.2024.113101_b0195) 2022; 166
Rajan (10.1016/j.ijsolstr.2024.113101_b0200) 2021; 90
Li (10.1016/j.ijsolstr.2024.113101_b0135) 2023; 279
Khajehsaeid (10.1016/j.ijsolstr.2024.113101_b0105) 2014; 79
Moezi (10.1016/j.ijsolstr.2024.113101_b0165) 2024; 280
Rambausek (10.1016/j.ijsolstr.2024.113101_b0205) 2022; 391
Garcia-Gonzalez (10.1016/j.ijsolstr.2024.113101_b0075) 2019; 28
Alam (10.1016/j.ijsolstr.2024.113101_b0005) 2023; 249
Chen (10.1016/j.ijsolstr.2024.113101_b0030) 2021; 266
Dadgar-Rad (10.1016/j.ijsolstr.2024.113101_b0060) 2024; 290
10.1016/j.ijsolstr.2024.113101_b0230
Zhao (10.1016/j.ijsolstr.2024.113101_b0285) 2022; 51
Bira (10.1016/j.ijsolstr.2024.113101_b0010) 2020; 7
Chung (10.1016/j.ijsolstr.2024.113101_b0040) 1993; 60
Sharma (10.1016/j.ijsolstr.2024.113101_b0215) 2024; 165
Yan (10.1016/j.ijsolstr.2024.113101_b0265) 2023; 170
Li (10.1016/j.ijsolstr.2024.113101_b0125) 2017; 89
Chen (10.1016/j.ijsolstr.2024.113101_b0015) 2020; 87
Narayanan (10.1016/j.ijsolstr.2024.113101_b0185) 2023; 184
Mukherjee (10.1016/j.ijsolstr.2024.113101_b0175) 2021; 151
Sim (10.1016/j.ijsolstr.2024.113101_b0220) 2024; 91
Li (10.1016/j.ijsolstr.2024.113101_b0130) 2022
Garcia-Gonzalez (10.1016/j.ijsolstr.2024.113101_b0085) 2021; 208–209
Zhang (10.1016/j.ijsolstr.2024.113101_b0280) 2020; 87
Wang (10.1016/j.ijsolstr.2024.113101_b0255) 2024; 202
Li (10.1016/j.ijsolstr.2024.113101_b0120) 2020; 152
Stewart (10.1016/j.ijsolstr.2024.113101_b0235) 2023; 179
Huang (10.1016/j.ijsolstr.2024.113101_b0090) 2023; 59
Kadapa (10.1016/j.ijsolstr.2024.113101_b0100) 2022; 166
Yang (10.1016/j.ijsolstr.2024.113101_b0270) 2024; 271
Lu (10.1016/j.ijsolstr.2024.113101_b0150) 2024; 190
Costi (10.1016/j.ijsolstr.2024.113101_b0045) 2024; 309
Liu (10.1016/j.ijsolstr.2024.113101_b0145) 2023; 258
Dadgar-Rad (10.1016/j.ijsolstr.2024.113101_b0050) 2022; 251
Tan (10.1016/j.ijsolstr.2024.113101_b0240) 2022; 230
Dehrouyeh-Semnani (10.1016/j.ijsolstr.2024.113101_b0070) 2023; 188
Kim (10.1016/j.ijsolstr.2024.113101_b0110) 2019; 4
Ye (10.1016/j.ijsolstr.2024.113101_b0275) 2021; 17
Nandan (10.1016/j.ijsolstr.2024.113101_b0180) 2023; 587
Zhao (10.1016/j.ijsolstr.2024.113101_b0290) 2019; 124
Chen (10.1016/j.ijsolstr.2024.113101_b0020) 2020; 157
Yan (10.1016/j.ijsolstr.2024.113101_b0260) 2021
Li (10.1016/j.ijsolstr.2024.113101_b0140) 2024; 134
Dehrouyeh-Semnani (10.1016/j.ijsolstr.2024.113101_b0065) 2021; 134
Wang (10.1016/j.ijsolstr.2024.113101_b0245) 2020; 142
References_xml – volume: 54
  year: 2022
  ident: b0055
  article-title: Large viscoelastic deformation of hard-magnetic soft beams
  publication-title: Extreme Mech. Lett.
– volume: 152
  year: 2020
  ident: b0120
  article-title: A nonlinear cross-section deformable thin-walled beam finite element model with high-order interpolation of warping displacement
  publication-title: Thin-Walled Struct.
– year: 2022
  ident: b0130
  article-title: Geometrically Exact Finite Element Formulation for Tendon-Driven Continuum Robots
  publication-title: Acta Mech. Solida Sin.
– volume: 271
  year: 2024
  ident: b0270
  article-title: A solid-shell model of hard-magnetic soft materials
  publication-title: Int. J. Mech. Sci.
– volume: 124
  start-page: 244
  year: 2019
  end-page: 263
  ident: b0290
  article-title: Mechanics of hard-magnetic soft materials
  publication-title: J. Mech. Phys. Solids
– volume: 391
  year: 2022
  ident: b0205
  article-title: A computational framework for magnetically hard and soft viscoelastic magnetorheological elastomers
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 266
  year: 2021
  ident: b0030
  article-title: Three-dimensional large-deformation model of hard-magnetic soft beams
  publication-title: Compos. Struct.
– volume: 166
  year: 2022
  ident: b0195
  article-title: A geometrically exact model for thin magneto-elastic shells
  publication-title: J. Mech. Phys. Solids
– volume: 17
  start-page: 3560
  year: 2021
  end-page: 3568
  ident: b0275
  article-title: Magttice: a lattice model for hard-magnetic soft materials
  publication-title: Soft Matter
– volume: 51
  year: 2022
  ident: b0285
  article-title: A network-based visco-hyperelastic constitutive model for optically clear adhesives
  publication-title: Extreme Mech. Lett.
– volume: 4
  year: 2019
  ident: b0110
  article-title: Ferromagnetic soft continuum robots
  publication-title: Sci. Robot.
– year: 2021
  ident: b0260
  article-title: A comprehensive framework for hard-magnetic beams: Reduced-order theory, 3D simulations, and experiments
  publication-title: Int. J. Solids Struct.
– volume: 279
  year: 2023
  ident: b0135
  article-title: A mechanics model of hard-magnetic soft rod with deformable cross-section under three-dimensional large deformation
  publication-title: Int. J. Solids Struct.
– volume: 157
  year: 2020
  ident: b0020
  article-title: On mechanics of functionally graded hard-magnetic soft beams
  publication-title: Int. J. Eng. Sci.
– volume: 48
  year: 2021
  ident: b0080
  article-title: Microstructural modelling of hard-magnetic soft materials: Dipole–dipole interactions versus Zeeman effect
  publication-title: Extreme Mech. Lett.
– volume: 91
  year: 2024
  ident: b0220
  article-title: Magneto-Mechanical Metamaterials: A Perspective
  publication-title: J. Appl. Mech.
– volume: 89
  start-page: 116
  year: 2017
  end-page: 126
  ident: b0125
  article-title: Geometrically exact curved beam element using internal force field defined in deformed configuration
  publication-title: Int. J. Non-Linear Mech.
– volume: 134
  start-page: 71
  year: 2024
  end-page: 96
  ident: b0140
  article-title: Geometrically exact 3D arbitrarily curved rod theory for dynamic analysis: Application to predicting the motion of hard-magnetic soft robotic arm
  publication-title: Appl. Math. Model.
– volume: 190
  year: 2024
  ident: b0150
  article-title: Mechanics of magnetic-shape memory polymers
  publication-title: J. Mech. Phys. Solids
– volume: 261
  year: 2024
  ident: b0190
  article-title: Tunable anti-plane wave bandgaps in 2D periodic hard-magnetic soft composites
  publication-title: Int. J. Mech. Sci.
– volume: 249
  year: 2023
  ident: b0005
  article-title: Magnetically tunable longitudinal wave band gaps in hard-magnetic soft laminates
  publication-title: Int. J. Mech. Sci.
– volume: 28
  year: 2019
  ident: b0075
  article-title: Magneto-visco-hyperelasticity for hard-magnetic soft materials: theory and numerical applications
  publication-title: Smart Mater. Struct.
– volume: 280
  year: 2024
  ident: b0165
  article-title: Development of a novel fractional magneto-viscoelastic dynamic model for an adaptive beam featuring functional composite magnetoactive elastomers: Simulations and experimental studies
  publication-title: Compos. Part B Eng.
– volume: 309
  year: 2024
  ident: b0045
  article-title: 3D Printable Self-Sensing Magnetorheological Elastomer
  publication-title: Macromol. Mater. Eng.
– volume: 91
  year: 2024
  ident: b0115
  article-title: Propagation of the Fundamental Lamb Modes in Strain Stiffened Hard-Magnetic Soft Plates
  publication-title: J. Appl. Mech.
– volume: 184
  year: 2023
  ident: b0185
  article-title: Micromechanics-based constitutive modeling of hard-magnetic soft materials
  publication-title: Mech. Mater.
– volume: 208–209
  start-page: 119
  year: 2021
  end-page: 132
  ident: b0085
  article-title: A microstructural-based approach to model magneto-viscoelastic materials at finite strains
  publication-title: Int. J. Solids Struct.
– volume: 87
  year: 2020
  ident: b0015
  article-title: Theoretical Modeling and Exact Solution for Extreme Bending Deformation of Hard-Magnetic Soft Beams
  publication-title: J. Appl. Mech.
– volume: 151
  year: 2021
  ident: b0175
  article-title: An explicit dissipative model for isotropic hard magnetorheological elastomers
  publication-title: J. Mech. Phys. Solids
– volume: 7
  year: 2020
  ident: b0010
  article-title: A Review of Magnetic Elastomers and Their Role in Soft Robotics
  publication-title: Front. Robot. AI
– volume: 16
  start-page: 6379
  year: 2020
  end-page: 6388
  ident: b0025
  article-title: Complex transformations of hard-magnetic soft beams by designing residual magnetic flux density
  publication-title: Soft Matter
– volume: 179
  year: 2023
  ident: b0235
  article-title: Magneto-viscoelasticity of hard-magnetic soft-elastomers: Application to modeling the dynamic snap-through behavior of a bistable arch
  publication-title: J. Mech. Phys. Solids
– volume: 90
  year: 2021
  ident: b0200
  article-title: Bending of hard-magnetic soft beams: A finite elasticity approach with anticlastic bending
  publication-title: Eur. J. Mech. - ASolids
– volume: 258
  year: 2023
  ident: b0145
  article-title: A meshfree model of hard-magnetic soft materials
  publication-title: Int. J. Mech. Sci.
– volume: 170
  year: 2023
  ident: b0265
  article-title: A reduced-order, rotation-based model for thin hard-magnetic plates
  publication-title: J. Mech. Phys. Solids
– volume: 160
  year: 2022
  ident: b0210
  article-title: A Kirchhoff-like theory for hard magnetic rods under geometrically nonlinear deformation in three dimensions
  publication-title: J. Mech. Phys. Solids
– volume: 79
  start-page: 44
  year: 2014
  end-page: 58
  ident: b0105
  article-title: A visco-hyperelastic constitutive model for rubber-like materials: A rate-dependent relaxation time scheme
  publication-title: Int. J. Eng. Sci.
– volume: 290
  year: 2024
  ident: b0060
  article-title: A three-dimensional micropolar beam model with application to the finite deformation analysis of hard-magnetic soft beams
  publication-title: Int. J. Solids Struct.
– volume: 188
  year: 2023
  ident: b0070
  article-title: Nonlinear geometrically exact dynamics of fluid-conveying cantilevered hard magnetic soft pipe with uniform and nonuniform magnetizations
  publication-title: Mech. Syst. Signal Process.
– volume: 230
  year: 2022
  ident: b0240
  article-title: Dynamic snap-through instability and damped oscillation of a flat arch of hard magneto-active elastomers
  publication-title: Int. J. Mech. Sci.
– volume: 587
  year: 2023
  ident: b0180
  article-title: Dynamic modeling of hard-magnetic soft actuators: Unraveling the role of polymer chain entanglements, crosslinks, and finite extensibility
  publication-title: J. Magn. Magn. Mater.
– volume: 134
  year: 2021
  ident: b0065
  article-title: On bifurcation behavior of hard magnetic soft cantilevers
  publication-title: Int. J. Non-Linear Mech.
– volume: 166
  year: 2022
  ident: b0100
  article-title: A unified numerical approach for soft to hard magneto-viscoelastically coupled polymers
  publication-title: Mech. Mater.
– reference: J.C. Simo A finite strain beam formulation. The three-dimensional dynamic problem. Part I Comput. Methods Appl. Mech. Eng. 49 1985 55 70 10/cvb8rf.
– volume: 60
  start-page: 371
  year: 1993
  end-page: 375
  ident: b0040
  article-title: A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method
  publication-title: J. Appl. Mech.
– volume: 256
  year: 2022
  ident: b0155
  article-title: Insights into the viscohyperelastic response of soft magnetorheological elastomers: Competition of macrostructural versus microstructural players
  publication-title: Int. J. Solids Struct.
– volume: 251
  year: 2022
  ident: b0050
  article-title: Finite deformation analysis of hard-magnetic soft materials based on micropolar continuum theory
  publication-title: Int. J. Solids Struct.
– volume: 165
  year: 2024
  ident: b0215
  article-title: Dynamic modeling and analysis of viscoelastic hard-magnetic soft actuators with thermal effects
  publication-title: Int. J. Non-Linear Mech.
– volume: 87
  year: 2020
  ident: b0280
  article-title: Micromechanics Study on Actuation Efficiency of Hard-Magnetic Soft Active Materials
  publication-title: J. Appl. Mech.
– volume: 59
  year: 2023
  ident: b0090
  article-title: Modeling of magnetic cilia carpet robots using discrete differential geometry formulation
  publication-title: Extreme Mech. Lett.
– volume: 257
  year: 2022
  ident: b0170
  article-title: A unified dual modeling framework for soft and hard magnetorheological elastomers
  publication-title: Int. J. Solids Struct.
– reference: J.C. Simo On a fully three-dimensional finite-strain viscoelastic damage model: Formulation and computational aspects Comput. Methods Appl. Mech. Eng. 60 1987 153 173 10/bkb5bs.
– volume: 51
  year: 2022
  ident: b0250
  article-title: Magnetic soft continuum robots with contact forces
  publication-title: Extreme Mech. Lett.
– volume: 183
  year: 2023
  ident: b0035
  article-title: On the dynamics of curved magnetoactive soft beams
  publication-title: Int. J. Eng. Sci.
– volume: 142
  year: 2020
  ident: b0245
  article-title: Hard-magnetic elastica
  publication-title: J. Mech. Phys. Solids
– volume: 31
  year: 2021
  ident: b0160
  article-title: Flexible Magnetoreceptor with Tunable Intrinsic Logic for On-Skin Touchless Human-Machine Interfaces
  publication-title: Adv. Funct. Mater.
– volume: 59
  year: 2023
  ident: b0095
  article-title: A discrete model for the geometrically nonlinear mechanics of hard-magnetic slender structures
  publication-title: Extreme Mech. Lett.
– volume: 202
  year: 2024
  ident: b0255
  article-title: Dynamic modeling and simulation of hard-magnetic soft beams interacting with environment via high-order finite elements of ANCF
  publication-title: Int. J. Eng. Sci.
– volume: 124
  start-page: 244
  year: 2019
  ident: 10.1016/j.ijsolstr.2024.113101_b0290
  article-title: Mechanics of hard-magnetic soft materials
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2018.10.008
– volume: 59
  year: 2023
  ident: 10.1016/j.ijsolstr.2024.113101_b0090
  article-title: Modeling of magnetic cilia carpet robots using discrete differential geometry formulation
  publication-title: Extreme Mech. Lett.
  doi: 10.1016/j.eml.2023.101967
– volume: 258
  year: 2023
  ident: 10.1016/j.ijsolstr.2024.113101_b0145
  article-title: A meshfree model of hard-magnetic soft materials
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2023.108566
– volume: 190
  year: 2024
  ident: 10.1016/j.ijsolstr.2024.113101_b0150
  article-title: Mechanics of magnetic-shape memory polymers
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2024.105742
– volume: 202
  year: 2024
  ident: 10.1016/j.ijsolstr.2024.113101_b0255
  article-title: Dynamic modeling and simulation of hard-magnetic soft beams interacting with environment via high-order finite elements of ANCF
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/j.ijengsci.2024.104102
– volume: 183
  year: 2023
  ident: 10.1016/j.ijsolstr.2024.113101_b0035
  article-title: On the dynamics of curved magnetoactive soft beams
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/j.ijengsci.2022.103792
– volume: 79
  start-page: 44
  year: 2014
  ident: 10.1016/j.ijsolstr.2024.113101_b0105
  article-title: A visco-hyperelastic constitutive model for rubber-like materials: A rate-dependent relaxation time scheme
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/j.ijengsci.2014.03.001
– volume: 16
  start-page: 6379
  year: 2020
  ident: 10.1016/j.ijsolstr.2024.113101_b0025
  article-title: Complex transformations of hard-magnetic soft beams by designing residual magnetic flux density
  publication-title: Soft Matter
  doi: 10.1039/C9SM02529D
– volume: 60
  start-page: 371
  year: 1993
  ident: 10.1016/j.ijsolstr.2024.113101_b0040
  article-title: A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.2900803
– volume: 91
  year: 2024
  ident: 10.1016/j.ijsolstr.2024.113101_b0220
  article-title: Magneto-Mechanical Metamaterials: A Perspective
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4063816
– volume: 230
  year: 2022
  ident: 10.1016/j.ijsolstr.2024.113101_b0240
  article-title: Dynamic snap-through instability and damped oscillation of a flat arch of hard magneto-active elastomers
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2022.107523
– volume: 587
  year: 2023
  ident: 10.1016/j.ijsolstr.2024.113101_b0180
  article-title: Dynamic modeling of hard-magnetic soft actuators: Unraveling the role of polymer chain entanglements, crosslinks, and finite extensibility
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2023.171237
– volume: 160
  year: 2022
  ident: 10.1016/j.ijsolstr.2024.113101_b0210
  article-title: A Kirchhoff-like theory for hard magnetic rods under geometrically nonlinear deformation in three dimensions
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2021.104739
– volume: 251
  year: 2022
  ident: 10.1016/j.ijsolstr.2024.113101_b0050
  article-title: Finite deformation analysis of hard-magnetic soft materials based on micropolar continuum theory
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2022.111747
– volume: 166
  year: 2022
  ident: 10.1016/j.ijsolstr.2024.113101_b0195
  article-title: A geometrically exact model for thin magneto-elastic shells
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2022.104916
– volume: 134
  start-page: 71
  year: 2024
  ident: 10.1016/j.ijsolstr.2024.113101_b0140
  article-title: Geometrically exact 3D arbitrarily curved rod theory for dynamic analysis: Application to predicting the motion of hard-magnetic soft robotic arm
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2024.05.044
– volume: 271
  year: 2024
  ident: 10.1016/j.ijsolstr.2024.113101_b0270
  article-title: A solid-shell model of hard-magnetic soft materials
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2024.109129
– volume: 208–209
  start-page: 119
  year: 2021
  ident: 10.1016/j.ijsolstr.2024.113101_b0085
  article-title: A microstructural-based approach to model magneto-viscoelastic materials at finite strains
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2020.10.028
– volume: 188
  year: 2023
  ident: 10.1016/j.ijsolstr.2024.113101_b0070
  article-title: Nonlinear geometrically exact dynamics of fluid-conveying cantilevered hard magnetic soft pipe with uniform and nonuniform magnetizations
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2022.110016
– volume: 391
  year: 2022
  ident: 10.1016/j.ijsolstr.2024.113101_b0205
  article-title: A computational framework for magnetically hard and soft viscoelastic magnetorheological elastomers
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2021.114500
– volume: 279
  year: 2023
  ident: 10.1016/j.ijsolstr.2024.113101_b0135
  article-title: A mechanics model of hard-magnetic soft rod with deformable cross-section under three-dimensional large deformation
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2023.112344
– volume: 184
  year: 2023
  ident: 10.1016/j.ijsolstr.2024.113101_b0185
  article-title: Micromechanics-based constitutive modeling of hard-magnetic soft materials
  publication-title: Mech. Mater.
  doi: 10.1016/j.mechmat.2023.104722
– volume: 31
  year: 2021
  ident: 10.1016/j.ijsolstr.2024.113101_b0160
  article-title: Flexible Magnetoreceptor with Tunable Intrinsic Logic for On-Skin Touchless Human-Machine Interfaces
  publication-title: Adv. Funct. Mater.
– volume: 90
  year: 2021
  ident: 10.1016/j.ijsolstr.2024.113101_b0200
  article-title: Bending of hard-magnetic soft beams: A finite elasticity approach with anticlastic bending
  publication-title: Eur. J. Mech. - ASolids
– volume: 91
  year: 2024
  ident: 10.1016/j.ijsolstr.2024.113101_b0115
  article-title: Propagation of the Fundamental Lamb Modes in Strain Stiffened Hard-Magnetic Soft Plates
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4064789
– year: 2022
  ident: 10.1016/j.ijsolstr.2024.113101_b0130
  article-title: Geometrically Exact Finite Element Formulation for Tendon-Driven Continuum Robots
  publication-title: Acta Mech. Solida Sin.
– ident: 10.1016/j.ijsolstr.2024.113101_b0230
  doi: 10.1016/0045-7825(87)90107-1
– volume: 142
  year: 2020
  ident: 10.1016/j.ijsolstr.2024.113101_b0245
  article-title: Hard-magnetic elastica
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2020.104045
– volume: 87
  year: 2020
  ident: 10.1016/j.ijsolstr.2024.113101_b0015
  article-title: Theoretical Modeling and Exact Solution for Extreme Bending Deformation of Hard-Magnetic Soft Beams
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4045716
– volume: 48
  year: 2021
  ident: 10.1016/j.ijsolstr.2024.113101_b0080
  article-title: Microstructural modelling of hard-magnetic soft materials: Dipole–dipole interactions versus Zeeman effect
  publication-title: Extreme Mech. Lett.
  doi: 10.1016/j.eml.2021.101382
– volume: 280
  year: 2024
  ident: 10.1016/j.ijsolstr.2024.113101_b0165
  article-title: Development of a novel fractional magneto-viscoelastic dynamic model for an adaptive beam featuring functional composite magnetoactive elastomers: Simulations and experimental studies
  publication-title: Compos. Part B Eng.
  doi: 10.1016/j.compositesb.2024.111501
– volume: 17
  start-page: 3560
  year: 2021
  ident: 10.1016/j.ijsolstr.2024.113101_b0275
  article-title: Magttice: a lattice model for hard-magnetic soft materials
  publication-title: Soft Matter
  doi: 10.1039/D0SM01662D
– volume: 309
  year: 2024
  ident: 10.1016/j.ijsolstr.2024.113101_b0045
  article-title: 3D Printable Self-Sensing Magnetorheological Elastomer
  publication-title: Macromol. Mater. Eng.
  doi: 10.1002/mame.202300294
– volume: 165
  year: 2024
  ident: 10.1016/j.ijsolstr.2024.113101_b0215
  article-title: Dynamic modeling and analysis of viscoelastic hard-magnetic soft actuators with thermal effects
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/j.ijnonlinmec.2024.104801
– year: 2021
  ident: 10.1016/j.ijsolstr.2024.113101_b0260
  article-title: A comprehensive framework for hard-magnetic beams: Reduced-order theory, 3D simulations, and experiments
  publication-title: Int. J. Solids Struct.
– volume: 249
  year: 2023
  ident: 10.1016/j.ijsolstr.2024.113101_b0005
  article-title: Magnetically tunable longitudinal wave band gaps in hard-magnetic soft laminates
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2023.108262
– volume: 7
  year: 2020
  ident: 10.1016/j.ijsolstr.2024.113101_b0010
  article-title: A Review of Magnetic Elastomers and Their Role in Soft Robotics
  publication-title: Front. Robot. AI
  doi: 10.3389/frobt.2020.588391
– volume: 157
  year: 2020
  ident: 10.1016/j.ijsolstr.2024.113101_b0020
  article-title: On mechanics of functionally graded hard-magnetic soft beams
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/j.ijengsci.2020.103391
– volume: 261
  year: 2024
  ident: 10.1016/j.ijsolstr.2024.113101_b0190
  article-title: Tunable anti-plane wave bandgaps in 2D periodic hard-magnetic soft composites
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2023.108686
– volume: 89
  start-page: 116
  year: 2017
  ident: 10.1016/j.ijsolstr.2024.113101_b0125
  article-title: Geometrically exact curved beam element using internal force field defined in deformed configuration
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/j.ijnonlinmec.2016.12.008
– volume: 134
  year: 2021
  ident: 10.1016/j.ijsolstr.2024.113101_b0065
  article-title: On bifurcation behavior of hard magnetic soft cantilevers
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/j.ijnonlinmec.2021.103746
– volume: 28
  year: 2019
  ident: 10.1016/j.ijsolstr.2024.113101_b0075
  article-title: Magneto-visco-hyperelasticity for hard-magnetic soft materials: theory and numerical applications
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/ab2b05
– volume: 257
  year: 2022
  ident: 10.1016/j.ijsolstr.2024.113101_b0170
  article-title: A unified dual modeling framework for soft and hard magnetorheological elastomers
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2022.111513
– volume: 51
  year: 2022
  ident: 10.1016/j.ijsolstr.2024.113101_b0250
  article-title: Magnetic soft continuum robots with contact forces
  publication-title: Extreme Mech. Lett.
  doi: 10.1016/j.eml.2022.101604
– ident: 10.1016/j.ijsolstr.2024.113101_b0225
  doi: 10.1016/0045-7825(85)90050-7
– volume: 170
  year: 2023
  ident: 10.1016/j.ijsolstr.2024.113101_b0265
  article-title: A reduced-order, rotation-based model for thin hard-magnetic plates
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2022.105095
– volume: 4
  year: 2019
  ident: 10.1016/j.ijsolstr.2024.113101_b0110
  article-title: Ferromagnetic soft continuum robots
  publication-title: Sci. Robot.
  doi: 10.1126/scirobotics.aax7329
– volume: 166
  year: 2022
  ident: 10.1016/j.ijsolstr.2024.113101_b0100
  article-title: A unified numerical approach for soft to hard magneto-viscoelastically coupled polymers
  publication-title: Mech. Mater.
  doi: 10.1016/j.mechmat.2021.104207
– volume: 256
  year: 2022
  ident: 10.1016/j.ijsolstr.2024.113101_b0155
  article-title: Insights into the viscohyperelastic response of soft magnetorheological elastomers: Competition of macrostructural versus microstructural players
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2022.111981
– volume: 151
  year: 2021
  ident: 10.1016/j.ijsolstr.2024.113101_b0175
  article-title: An explicit dissipative model for isotropic hard magnetorheological elastomers
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2021.104361
– volume: 152
  year: 2020
  ident: 10.1016/j.ijsolstr.2024.113101_b0120
  article-title: A nonlinear cross-section deformable thin-walled beam finite element model with high-order interpolation of warping displacement
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2020.106748
– volume: 54
  year: 2022
  ident: 10.1016/j.ijsolstr.2024.113101_b0055
  article-title: Large viscoelastic deformation of hard-magnetic soft beams
  publication-title: Extreme Mech. Lett.
  doi: 10.1016/j.eml.2022.101773
– volume: 51
  year: 2022
  ident: 10.1016/j.ijsolstr.2024.113101_b0285
  article-title: A network-based visco-hyperelastic constitutive model for optically clear adhesives
  publication-title: Extreme Mech. Lett.
  doi: 10.1016/j.eml.2021.101594
– volume: 290
  year: 2024
  ident: 10.1016/j.ijsolstr.2024.113101_b0060
  article-title: A three-dimensional micropolar beam model with application to the finite deformation analysis of hard-magnetic soft beams
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2024.112662
– volume: 179
  year: 2023
  ident: 10.1016/j.ijsolstr.2024.113101_b0235
  article-title: Magneto-viscoelasticity of hard-magnetic soft-elastomers: Application to modeling the dynamic snap-through behavior of a bistable arch
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2023.105366
– volume: 266
  year: 2021
  ident: 10.1016/j.ijsolstr.2024.113101_b0030
  article-title: Three-dimensional large-deformation model of hard-magnetic soft beams
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2021.113822
– volume: 59
  year: 2023
  ident: 10.1016/j.ijsolstr.2024.113101_b0095
  article-title: A discrete model for the geometrically nonlinear mechanics of hard-magnetic slender structures
  publication-title: Extreme Mech. Lett.
  doi: 10.1016/j.eml.2023.101977
– volume: 87
  year: 2020
  ident: 10.1016/j.ijsolstr.2024.113101_b0280
  article-title: Micromechanics Study on Actuation Efficiency of Hard-Magnetic Soft Active Materials
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4047291
SSID ssj0004390
Score 2.4812927
Snippet •A magneto-viscoelastic rod theory of the HMS curved rod under 3D large deformation is presented.•The generalized Maxwell model under finite deformation is...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 113101
SubjectTerms 3D large deformation
Generalized Maxwell Model
Generalized-α method
Geometrically exact curved rod
Hard-magnetic soft (HMS) material
Viscoelasticity
Title Magneto-viscoelastic rod model for hard-magnetic soft rods under 3D large deformation: Theory and numerical implementation
URI https://dx.doi.org/10.1016/j.ijsolstr.2024.113101
Volume 305
WOSCitedRecordID wos001333188100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0020-7683
  databaseCode: AIEXJ
  dateStart: 20200201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0004390
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9swDBaydof1MOyJtXtAh90Cd5ZlR_ZuxdKiK7pihw7IzbAe7hxkThEnQdHf0B89UvIrW4BuGHYxAkeKIvGzRVL8SELey0DmXIvIG2kJBooWwpNS4IErbHaKj9jIZLbYhLi4iCeT5OtgcNdwYdYzUZbxzU1y_V9FDfdA2Eid_Qtxtz8KN-AzCB2uIHa4_pHgv2RXpVnOvXVRqbkB5dhmaZ5rV_TGhhUi08r7YdvBdxW8ibFBZWviLoZ8PJxhfPhQm5baWAdn4IE8etrLlTvomSHLsg5AbyU87YLjO19jL0MFTL_QLjW0y167WnSBjOc2umBStJhtPdpj2GTBeL9qI4ZWznd7VmTV947Qdl6sHNuk788Iwl9iQ1qiTRfV5EgHvgeWEe-_uLklbP--CTh_xPSwmMKEYCKHOAwWr2H1OJsJtvG8Gs8jMTUhHhPHD8huIKIE3pG7R5-PJ2cdz5Y7n13zZ3qM8-2jbVd2egrM5RPyuLY86JFDzFMyMOUzstfLR_mc3G7DDgVoUIsdCnCgG9ihiB1sUFGLHcrH1GKH9rDzkTrkUJA4bZFDN5Hzgnw7Ob78dOrVxTk8xVmwBKtMj4TMwzyIcaOKsMyZ72e-xELxMpK-FrnxI6V4oJhOIs1lFCiuQwY6UcQEf0l2ynlpXhEqBEtMEkumchkmJo9DFSrFcjDFdSZVvk-iZhVTVWeuxwIqs7QJUZymzeqnuPqpW_198qHtd-1yt9zbI2mElNYaqNMsU8DWPX0P_qHva_KoexTekB14-Mxb8lCtl0W1eFfD8CcbTrVD
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magneto-viscoelastic+rod+model+for+hard-magnetic+soft+rods+under+3D+large+deformation%3A+Theory+and+numerical+implementation&rft.jtitle=International+journal+of+solids+and+structures&rft.au=Li%2C+Xin&rft.au=Zhang%2C+Dingcong&rft.au=Guan%2C+Jiashen&rft.au=Liu%2C+Ju&rft.date=2024-12-01&rft.pub=Elsevier+Ltd&rft.issn=0020-7683&rft.volume=305&rft_id=info:doi/10.1016%2Fj.ijsolstr.2024.113101&rft.externalDocID=S0020768324004608
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7683&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7683&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7683&client=summon