A review of the Expectation Maximization algorithm in data-driven process identification

The Expectation Maximization (EM) algorithm has been widely used for parameter estimation in data-driven process identification. EM is an algorithm for maximum likelihood estimation of parameters and ensures convergence of the likelihood function. In presence of missing variables and in ill conditio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of process control Jg. 73; S. 123 - 136
Hauptverfasser: Sammaknejad, Nima, Zhao, Yujia, Huang, Biao
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.01.2019
Schlagworte:
ISSN:0959-1524, 1873-2771
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Expectation Maximization (EM) algorithm has been widely used for parameter estimation in data-driven process identification. EM is an algorithm for maximum likelihood estimation of parameters and ensures convergence of the likelihood function. In presence of missing variables and in ill conditioned problems, EM algorithm greatly assists the design of more robust identification algorithms. Such situations frequently occur in industrial environments. Missing observations due to sensor malfunctions, multiple process operating conditions and unknown time delay information are some of the examples that can resort to the EM algorithm. In this article, a review on applications of the EM algorithm to address such issues is provided. Future applications of EM algorithm as well as some open problems are also provided.
ISSN:0959-1524
1873-2771
DOI:10.1016/j.jprocont.2018.12.010