A review of the Expectation Maximization algorithm in data-driven process identification
The Expectation Maximization (EM) algorithm has been widely used for parameter estimation in data-driven process identification. EM is an algorithm for maximum likelihood estimation of parameters and ensures convergence of the likelihood function. In presence of missing variables and in ill conditio...
Uloženo v:
| Vydáno v: | Journal of process control Ročník 73; s. 123 - 136 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.01.2019
|
| Témata: | |
| ISSN: | 0959-1524, 1873-2771 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The Expectation Maximization (EM) algorithm has been widely used for parameter estimation in data-driven process identification. EM is an algorithm for maximum likelihood estimation of parameters and ensures convergence of the likelihood function. In presence of missing variables and in ill conditioned problems, EM algorithm greatly assists the design of more robust identification algorithms. Such situations frequently occur in industrial environments. Missing observations due to sensor malfunctions, multiple process operating conditions and unknown time delay information are some of the examples that can resort to the EM algorithm. In this article, a review on applications of the EM algorithm to address such issues is provided. Future applications of EM algorithm as well as some open problems are also provided. |
|---|---|
| ISSN: | 0959-1524 1873-2771 |
| DOI: | 10.1016/j.jprocont.2018.12.010 |