Performance-oriented model learning and model predictive control for PEMFC air supply system

As an efficient, clean and pollution-free power generation device, proton exchange membrane fuel cell (PEMFC) has been widely applied in transportation, distributed power generation and other fields. However, the performance of PEMFC cannot be separated from appropriate cathode gas supply, for examp...

Full description

Saved in:
Bibliographic Details
Published in:International journal of hydrogen energy Vol. 64; pp. 339 - 348
Main Authors: Deng, Zhihua, Chen, Ming, Wang, Haijiang, Chen, Qihong
Format: Journal Article
Language:English
Published: Elsevier Ltd 25.04.2024
Subjects:
ISSN:0360-3199
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract As an efficient, clean and pollution-free power generation device, proton exchange membrane fuel cell (PEMFC) has been widely applied in transportation, distributed power generation and other fields. However, the performance of PEMFC cannot be separated from appropriate cathode gas supply, for example, it is prone to oxygen starvation under frequent variable load conditions. This is due to the mismatch between the air supply rate and the electrochemical reaction rate, making it difficult for the system to meet the air flow requirement instantaneously when subject to the load changes abruptly. Thus, oxygen starvation control has become a particularly challenging nonlinear control problem because of the great difficulty in achieving an accurate system identification model and an efficient controller. To this end, a long short-term memory (LSTM) neural network-based model predictive control (MPC) is developed to model and control the PEMFC air supply system, which combines the advantages of LSTM and MPC. Firstly, LSTM is utilized to train an online control-oriented model from the measured dataset. Secondly, a sparrow search algorithm (SSA) is utilized to update the hyper-parameters of LSTM model, which can obtain more accurate predictive model in MPC. Thirdly, the MPC with LSTM-SSA model is solved online using different high efficiency solvers. Fourthly, the proposed LSTM-SSA based on MPC is adopted to model and control a PEMFC air supply system. Finally, the stability proof of the proposed method is illustrated in the Appendix. The simulation results reveal that the data-driven learning method and MPC method have significant advantages in modeling and improving the system performance. •Machine learning-based MPC framework is proposed to regulate air supply system.•LSTM as the predictive model in MPC is developed to describe the dynamic system.•Sparrow search algorithm is used to update the hyper-parameters of the LSTM model.•The control effects of proposed controller based on different solvers are compared.
AbstractList As an efficient, clean and pollution-free power generation device, proton exchange membrane fuel cell (PEMFC) has been widely applied in transportation, distributed power generation and other fields. However, the performance of PEMFC cannot be separated from appropriate cathode gas supply, for example, it is prone to oxygen starvation under frequent variable load conditions. This is due to the mismatch between the air supply rate and the electrochemical reaction rate, making it difficult for the system to meet the air flow requirement instantaneously when subject to the load changes abruptly. Thus, oxygen starvation control has become a particularly challenging nonlinear control problem because of the great difficulty in achieving an accurate system identification model and an efficient controller. To this end, a long short-term memory (LSTM) neural network-based model predictive control (MPC) is developed to model and control the PEMFC air supply system, which combines the advantages of LSTM and MPC. Firstly, LSTM is utilized to train an online control-oriented model from the measured dataset. Secondly, a sparrow search algorithm (SSA) is utilized to update the hyper-parameters of LSTM model, which can obtain more accurate predictive model in MPC. Thirdly, the MPC with LSTM-SSA model is solved online using different high efficiency solvers. Fourthly, the proposed LSTM-SSA based on MPC is adopted to model and control a PEMFC air supply system. Finally, the stability proof of the proposed method is illustrated in the Appendix. The simulation results reveal that the data-driven learning method and MPC method have significant advantages in modeling and improving the system performance. •Machine learning-based MPC framework is proposed to regulate air supply system.•LSTM as the predictive model in MPC is developed to describe the dynamic system.•Sparrow search algorithm is used to update the hyper-parameters of the LSTM model.•The control effects of proposed controller based on different solvers are compared.
Author Chen, Ming
Wang, Haijiang
Deng, Zhihua
Chen, Qihong
Author_xml – sequence: 1
  givenname: Zhihua
  surname: Deng
  fullname: Deng, Zhihua
  organization: Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
– sequence: 2
  givenname: Ming
  surname: Chen
  fullname: Chen, Ming
  email: chenmingustb@sina.com
  organization: Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
– sequence: 3
  givenname: Haijiang
  surname: Wang
  fullname: Wang, Haijiang
  organization: Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
– sequence: 4
  givenname: Qihong
  surname: Chen
  fullname: Chen, Qihong
  email: chenqh@whut.edu.cn
  organization: School of Automation, Wuhan University of Technology, Wuhan, 430070, China
BookMark eNqFkEFLwzAYhnOY4Db9C5I_0Jo0WbqCB2VsKkzcQW9CSJOvmtImJYmD_Xs7dBcvO33wwvPyfs8MTZx3gNANJTklVNy2uW2_DgYc5AUpeE5ozhZ0gqaECZIxWlWXaBZjSwgtCa-m6GMHofGhV05D5oMFl8Dg3hvocAcqOOs-sXKnaAhgrE52D1h7l4Lv8Ejj3fpls8LKBhy_h6E74HiICfordNGoLsL1352j9836bfWUbV8fn1cP20wzWqSs5MYQRkjNOC-grLhaQiGA1XVTLysltF4QRWllFo0uylLUFWd6WTSCi7pWQNkc3f326uBjDNBIbZNK9rhQ2U5SIo92ZCtPduTRjiRUjnZGXPzDh2B7FQ7nwftfEMbn9haCjHo0qEdHAXSSxttzFT-iCYl-
CitedBy_id crossref_primary_10_1016_j_jpowsour_2025_238396
crossref_primary_10_1061_JLEED9_EYENG_5853
crossref_primary_10_3390_en18154100
crossref_primary_10_3390_act13110455
crossref_primary_10_1002_aic_18909
crossref_primary_10_1016_j_renene_2024_121772
crossref_primary_10_1016_j_rser_2025_116122
crossref_primary_10_3390_act13070268
crossref_primary_10_1016_j_enconman_2024_119309
crossref_primary_10_1016_j_ijhydene_2025_150366
crossref_primary_10_1016_j_neucom_2025_129712
crossref_primary_10_1016_j_ifacol_2024_11_184
crossref_primary_10_1016_j_seta_2024_104051
crossref_primary_10_1002_fuce_70016
crossref_primary_10_1016_j_ijhydene_2024_06_283
crossref_primary_10_1016_j_ijhydene_2024_12_520
crossref_primary_10_1109_TCSII_2025_3540486
Cites_doi 10.1016/j.ijhydene.2022.01.065
10.1109/TTE.2020.2970835
10.1016/j.jpowsour.2021.230808
10.1109/TII.2022.3196621
10.1016/j.isatra.2021.04.004
10.1109/TNNLS.2020.3015869
10.1016/j.buildenv.2013.11.016
10.1016/j.apenergy.2021.117572
10.1109/TSMC.2020.3043147
10.1016/j.est.2023.108170
10.1016/j.ijhydene.2010.08.071
10.1016/j.ijhydene.2010.05.017
10.1016/j.enconman.2021.115159
10.1016/j.jpowsour.2020.228154
10.2118/176023-PA
10.1016/j.eswa.2020.113617
10.1016/j.enconman.2021.114851
10.1016/j.apenergy.2022.120385
10.1007/s10462-020-09838-1
10.1016/j.ins.2019.08.005
10.1016/j.enconman.2019.112385
10.1016/j.ijhydene.2019.10.089
10.1016/j.apenergy.2020.115059
10.1016/j.apenergy.2020.115460
10.1016/j.ijhydene.2018.10.180
10.1016/j.ijhydene.2015.05.109
10.1016/j.apenergy.2018.09.036
10.1063/5.0014788
10.1109/TCST.2018.2802467
10.1016/j.physd.2019.132306
10.1016/j.apenergy.2018.08.099
10.1016/j.energy.2021.122490
10.1080/21642583.2019.1708830
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID AAYXX
CITATION
DOI 10.1016/j.ijhydene.2024.01.351
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 348
ExternalDocumentID 10_1016_j_ijhydene_2024_01_351
S0360319924003914
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEZYN
AFJKZ
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANKPU
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SES
SEW
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
TN5
XPP
ZMT
~G-
29J
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
R2-
SAC
SCB
T9H
WUQ
~HD
ID FETCH-LOGICAL-c312t-74dd0300b3442e794a8e26e3bbfb89a6cc50a119d5fc2776b943c82f646bbae13
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001216886000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-3199
IngestDate Sat Nov 29 04:59:04 EST 2025
Tue Nov 18 22:18:37 EST 2025
Sat Feb 15 15:51:24 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Long short-term memory network
Model predictive control
Proton exchange membrane fuel cell
Oxygen starvation
Data-driven
Sparrow search algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-74dd0300b3442e794a8e26e3bbfb89a6cc50a119d5fc2776b943c82f646bbae13
PageCount 10
ParticipantIDs crossref_citationtrail_10_1016_j_ijhydene_2024_01_351
crossref_primary_10_1016_j_ijhydene_2024_01_351
elsevier_sciencedirect_doi_10_1016_j_ijhydene_2024_01_351
PublicationCentury 2000
PublicationDate 2024-04-25
PublicationDateYYYYMMDD 2024-04-25
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-25
  day: 25
PublicationDecade 2020
PublicationTitle International journal of hydrogen energy
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Deng, Chan, Chen (bib3) 2023; 331
Luo, Ma, Wang (bib24) 2020; 12
Li, Qiu, Yin (bib21) 2022
Hou, Yang, Ke (bib15) 2020; 269
Suh (bib12) 2006
Xue, Shen (bib36) 2020; 8
Liu, Chen, Peng (bib13) 2022; 240
Arafat, Rashidul, Alamgir (bib1) 2023; 72
Feng, Huang, Jin (bib23) 2022; 520
Li, Yang, Yin (bib33) 2020; 6
Ma, Zhang, Gao (bib10) 2020; 45
Yang, Li, Li (bib2) 2022; 47
Zhao, Xia, Dang (bib30) 2022; 253
Deng, Li, Cui (bib27) 2019; 44
Wang, Chen, Quan (bib16) 2020; 276
Pukrushpan, Stefabopoulou, Peng (bib11) 2004
Loo, Wong, Tan (bib6) 2010; 35
Zhao, Xia, Dang (bib7) 2022; 253
Zhang, Wang, Wang (bib28) 2020; 511
Luo, Stordal, Lorentzen (bib32) 2015; 20
Wang, Jia, Qiao (bib37) 2020; 32
Peng, Ren, Zhao (bib14) 2020; 205
Zehra, Rahman, Armghan (bib17) 2022; 121
Liu, Gao, Su (bib29) 2018; 27
Sherstinsky (bib34) 2020; 404
Peighambardoust, Rowshanzamir, Amjadi (bib4) 2010; 35
Sun, Shen, Hua (bib22) 2018; 231
Xu, Fang, Li (bib8) 2018; 230
Afram, Sharifi (bib26) 2014; 72
Cheng, Liu (bib9) 2015; 40
Li, Xu, Du (bib19) 2020; 461
Li, Wang, Wang (bib20) 2023; 19
Song, Pan, Chen (bib5) 2021; 302
Van, Mosquera, Nápoles (bib35) 2020; 53
Liu, Chen, Feng (bib18) 2020; 51
Wang, Li, Feng (bib25) 2021; 249
Zhang, Li, Cai (bib31) 2020
Luo (10.1016/j.ijhydene.2024.01.351_bib32) 2015; 20
Deng (10.1016/j.ijhydene.2024.01.351_bib3) 2023; 331
Ma (10.1016/j.ijhydene.2024.01.351_bib10) 2020; 45
Zhao (10.1016/j.ijhydene.2024.01.351_bib30) 2022; 253
Wang (10.1016/j.ijhydene.2024.01.351_bib37) 2020; 32
Loo (10.1016/j.ijhydene.2024.01.351_bib6) 2010; 35
Liu (10.1016/j.ijhydene.2024.01.351_bib29) 2018; 27
Yang (10.1016/j.ijhydene.2024.01.351_bib2) 2022; 47
Zhao (10.1016/j.ijhydene.2024.01.351_bib7) 2022; 253
Sun (10.1016/j.ijhydene.2024.01.351_bib22) 2018; 231
Sherstinsky (10.1016/j.ijhydene.2024.01.351_bib34) 2020; 404
Xue (10.1016/j.ijhydene.2024.01.351_bib36) 2020; 8
Peng (10.1016/j.ijhydene.2024.01.351_bib14) 2020; 205
Afram (10.1016/j.ijhydene.2024.01.351_bib26) 2014; 72
Deng (10.1016/j.ijhydene.2024.01.351_bib27) 2019; 44
Li (10.1016/j.ijhydene.2024.01.351_bib20) 2023; 19
Liu (10.1016/j.ijhydene.2024.01.351_bib13) 2022; 240
Li (10.1016/j.ijhydene.2024.01.351_bib19) 2020; 461
Peighambardoust (10.1016/j.ijhydene.2024.01.351_bib4) 2010; 35
Zhang (10.1016/j.ijhydene.2024.01.351_bib28) 2020; 511
Liu (10.1016/j.ijhydene.2024.01.351_bib18) 2020; 51
Zehra (10.1016/j.ijhydene.2024.01.351_bib17) 2022; 121
Wang (10.1016/j.ijhydene.2024.01.351_bib25) 2021; 249
Pukrushpan (10.1016/j.ijhydene.2024.01.351_bib11) 2004
Cheng (10.1016/j.ijhydene.2024.01.351_bib9) 2015; 40
Luo (10.1016/j.ijhydene.2024.01.351_bib24) 2020; 12
Li (10.1016/j.ijhydene.2024.01.351_bib33) 2020; 6
Suh (10.1016/j.ijhydene.2024.01.351_bib12) 2006
Song (10.1016/j.ijhydene.2024.01.351_bib5) 2021; 302
Hou (10.1016/j.ijhydene.2024.01.351_bib15) 2020; 269
Xu (10.1016/j.ijhydene.2024.01.351_bib8) 2018; 230
Wang (10.1016/j.ijhydene.2024.01.351_bib16) 2020; 276
Li (10.1016/j.ijhydene.2024.01.351_bib21) 2022
Feng (10.1016/j.ijhydene.2024.01.351_bib23) 2022; 520
Van (10.1016/j.ijhydene.2024.01.351_bib35) 2020; 53
Arafat (10.1016/j.ijhydene.2024.01.351_bib1) 2023; 72
Zhang (10.1016/j.ijhydene.2024.01.351_bib31) 2020
References_xml – volume: 40
  start-page: 9452
  year: 2015
  end-page: 9461
  ident: bib9
  article-title: Nonlinear modeling and identification of proton exchange membrane fuel cell (PEMFC)
  publication-title: Int J Hydrogen Energy
– volume: 121
  start-page: 217
  year: 2022
  end-page: 231
  ident: bib17
  article-title: Artificial intelligence-based nonlinear control of renewable energies and storage system in a DC microgrid
  publication-title: ISA (Instrum Soc Am) Trans
– volume: 6
  start-page: 288
  year: 2020
  end-page: 297
  ident: bib33
  article-title: Real-time implementation of maximum net power strategy based on sliding mode variable structure control for proton exchange membrane fuel cell system
  publication-title: IEEE Transact. Transport. Electrif.
– volume: 72
  start-page: 108170
  year: 2023
  end-page: 108182
  ident: bib1
  article-title: Control strategy review for hydrogen-renewable energy power system
  publication-title: J Energy Storage
– volume: 511
  start-page: 1
  year: 2020
  end-page: 17
  ident: bib28
  article-title: Adaptive robust control of oxygen excess ratio for PEMFC system based on type-2 fuzzy logic system
  publication-title: Inf Sci
– volume: 47
  start-page: 9986
  year: 2022
  end-page: 10020
  ident: bib2
  article-title: A critical survey of proton exchange membrane fuel cell system control: Summaries, advances, and perspectives
  publication-title: Int J Hydrogen Energy
– volume: 231
  start-page: 866
  year: 2018
  end-page: 875
  ident: bib22
  article-title: Data-driven oxygen excess ratio control for proton exchange membrane fuel cell
  publication-title: Appl Energy
– volume: 8
  start-page: 22
  year: 2020
  end-page: 34
  ident: bib36
  article-title: A novel swarm intelligence optimization approach: sparrow search algorithm
  publication-title: Syst. Sci. Control Eng.
– volume: 72
  start-page: 343
  year: 2014
  end-page: 355
  ident: bib26
  article-title: Theory and applications of HVAC control systems-A review of model predictive control (MPC)
  publication-title: Build Environ
– start-page: 113617
  year: 2020
  end-page: 113630
  ident: bib31
  article-title: Advanced orthogonal moth flame optimization with broyden-fletcher-goldfarb-shanno algorithm: framework and real-world problems
  publication-title: Expert Syst Appl
– volume: 27
  start-page: 1129
  year: 2018
  end-page: 1138
  ident: bib29
  article-title: Disturbance-observer-based control for air management of PEM fuel cell systems via sliding mode technique
  publication-title: IEEE Trans Control Syst Technol
– volume: 19
  start-page: 5743
  year: 2023
  end-page: 5751
  ident: bib20
  article-title: An LSTM and ANN fusion dynamic model of a proton exchange membrane fuel cell
  publication-title: IEEE Trans Ind Inf
– volume: 520
  start-page: 230808
  year: 2022
  end-page: 230820
  ident: bib23
  article-title: Artificial intelligence-based multi-objective optimization for proton exchange membrane fuel cell: a literature review
  publication-title: J Power Sources
– volume: 12
  start-page: 64301
  year: 2020
  end-page: 64322
  ident: bib24
  article-title: Model-free adaptive control for the PEMFC air supply system based on interval type-2 fuzzy logic systems
  publication-title: J Renew Sustain Energy
– year: 2022
  ident: bib21
  article-title: Net power optimization based on extremum search and model-free adaptive control of PEMFC power generation system for high altitude
  publication-title: IEEE Transact. Transport. Electrif.
– volume: 53
  start-page: 5929
  year: 2020
  end-page: 5955
  ident: bib35
  article-title: A review on the long short-term memory model
  publication-title: Artif Intell Rev
– year: 2006
  ident: bib12
  article-title: Modeling, analysis and control of fuel cell hybrid power systems
– volume: 331
  start-page: 120385
  year: 2023
  end-page: 1203400
  ident: bib3
  article-title: Efficient degradation prediction of PEMFCs using ELM-AE based on fuzzy extension broad learning system
  publication-title: Appl Energy
– volume: 276
  start-page: 115460
  year: 2020
  end-page: 115472
  ident: bib16
  article-title: Hierarchical model predictive control via deep learning vehicle speed predictions for oxygen stoichiometry regulation of fuel cells
  publication-title: Appl Energy
– volume: 253
  start-page: 115159
  year: 2022
  end-page: 115176
  ident: bib30
  article-title: Design and control of air supply system for PEMFC UAV based on dynamic decoupling strategy
  publication-title: Energy Convers Manag
– volume: 45
  start-page: 29705
  year: 2020
  end-page: 29717
  ident: bib10
  article-title: Oxygen excess ratio control of PEM fuel cells using observer-based nonlinear triple-step controller
  publication-title: Int J Hydrogen Energy
– volume: 253
  start-page: 115159
  year: 2022
  end-page: 115171
  ident: bib7
  article-title: Design and control of air supply system for PEMFC UAV based on dynamic decoupling strategy
  publication-title: Energy Convers Manag
– volume: 302
  start-page: 117572
  year: 2021
  end-page: 117584
  ident: bib5
  article-title: Effects of temperature on the performance of fuel cell hybrid electric vehicles: a review
  publication-title: Appl Energy
– volume: 32
  start-page: 3643
  year: 2020
  end-page: 3652
  ident: bib37
  article-title: Deep learning-based model predictive control for continuous stirred-tank reactor system
  publication-title: IEEE Transact Neural Networks Learn Syst
– volume: 205
  start-page: 112385
  year: 2020
  end-page: 1123404
  ident: bib14
  article-title: Hybrid dynamic modeling-based membrane hydration analysis for the commercial high-power integrated PEMFC systems considering water transport equivalent
  publication-title: Energy Convers Manag
– volume: 44
  start-page: 19357
  year: 2019
  end-page: 19369
  ident: bib27
  article-title: Nonlinear controller design based on cascade adaptive sliding mode control for PEM fuel cell air supply systems
  publication-title: Int J Hydrogen Energy
– volume: 240
  start-page: 122490
  year: 2022
  end-page: 122501
  ident: bib13
  article-title: Feedforward-decoupled closed-loop fuzzy proportion-integral-derivative control of air supply system of proton exchange membrane fuel cell
  publication-title: Energy
– volume: 461
  start-page: 1
  year: 2020
  end-page: 10
  ident: bib19
  article-title: Performance prediction and power density maximization of a proton exchange membrane fuel cell based on deep belief network
  publication-title: J Power Sources
– volume: 35
  start-page: 9349
  year: 2010
  end-page: 9384
  ident: bib4
  article-title: Review of the proton exchange membranes for fuel cell applications
  publication-title: Int J Hydrogen Energy
– volume: 230
  start-page: 106
  year: 2018
  end-page: 121
  ident: bib8
  article-title: Nonlinear dynamic mechanism modeling of a polymer electrolyte membrane fuel cell with dead-ended anode considering mass transport and actuator properties
  publication-title: Appl Energy
– volume: 269
  start-page: 115059
  year: 2020
  end-page: 115071
  ident: bib15
  article-title: Control logics and strategies for air supply in PEM fuel cell engines
  publication-title: Appl Energy
– volume: 35
  start-page: 11861
  year: 2010
  end-page: 11877
  ident: bib6
  article-title: Characterization of the dynamic response of proton exchange membrane fuel cells-A numerical study
  publication-title: Int J Hydrogen Energy
– volume: 20
  start-page: 962
  year: 2015
  end-page: 982
  ident: bib32
  article-title: Iterative ensemble smoother as an approximate solution to a regularized minimum-average-cost problem: theory and applications
  publication-title: SPE J
– volume: 249
  start-page: 114851
  year: 2021
  end-page: 114865
  ident: bib25
  article-title: Simulation study on the PEMFC oxygen starvation based on the coupling algorithm of model predictive control and PID
  publication-title: Energy Convers Manag
– volume: 51
  start-page: 209
  year: 2020
  end-page: 222
  ident: bib18
  article-title: Stacked broad learning system: from incremental flatted structure to deep model
  publication-title: IEEE Transact. Syst. Man Cybernetics: Systems
– year: 2004
  ident: bib11
  article-title: Control of fuel cell power systems: principles, modeling. In: analysis and feedback design
– volume: 404
  start-page: 132306
  year: 2020
  end-page: 132334
  ident: bib34
  article-title: Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network
  publication-title: Phys Nonlinear Phenom
– volume: 47
  start-page: 9986
  issue: 17
  year: 2022
  ident: 10.1016/j.ijhydene.2024.01.351_bib2
  article-title: A critical survey of proton exchange membrane fuel cell system control: Summaries, advances, and perspectives
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.01.065
– volume: 6
  start-page: 288
  issue: 1
  year: 2020
  ident: 10.1016/j.ijhydene.2024.01.351_bib33
  article-title: Real-time implementation of maximum net power strategy based on sliding mode variable structure control for proton exchange membrane fuel cell system
  publication-title: IEEE Transact. Transport. Electrif.
  doi: 10.1109/TTE.2020.2970835
– volume: 520
  start-page: 230808
  year: 2022
  ident: 10.1016/j.ijhydene.2024.01.351_bib23
  article-title: Artificial intelligence-based multi-objective optimization for proton exchange membrane fuel cell: a literature review
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2021.230808
– volume: 19
  start-page: 5743
  issue: 4
  year: 2023
  ident: 10.1016/j.ijhydene.2024.01.351_bib20
  article-title: An LSTM and ANN fusion dynamic model of a proton exchange membrane fuel cell
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2022.3196621
– volume: 121
  start-page: 217
  year: 2022
  ident: 10.1016/j.ijhydene.2024.01.351_bib17
  article-title: Artificial intelligence-based nonlinear control of renewable energies and storage system in a DC microgrid
  publication-title: ISA (Instrum Soc Am) Trans
  doi: 10.1016/j.isatra.2021.04.004
– volume: 32
  start-page: 3643
  issue: 8
  year: 2020
  ident: 10.1016/j.ijhydene.2024.01.351_bib37
  article-title: Deep learning-based model predictive control for continuous stirred-tank reactor system
  publication-title: IEEE Transact Neural Networks Learn Syst
  doi: 10.1109/TNNLS.2020.3015869
– volume: 72
  start-page: 343
  year: 2014
  ident: 10.1016/j.ijhydene.2024.01.351_bib26
  article-title: Theory and applications of HVAC control systems-A review of model predictive control (MPC)
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2013.11.016
– volume: 302
  start-page: 117572
  year: 2021
  ident: 10.1016/j.ijhydene.2024.01.351_bib5
  article-title: Effects of temperature on the performance of fuel cell hybrid electric vehicles: a review
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.117572
– year: 2004
  ident: 10.1016/j.ijhydene.2024.01.351_bib11
– volume: 51
  start-page: 209
  issue: 1
  year: 2020
  ident: 10.1016/j.ijhydene.2024.01.351_bib18
  article-title: Stacked broad learning system: from incremental flatted structure to deep model
  publication-title: IEEE Transact. Syst. Man Cybernetics: Systems
  doi: 10.1109/TSMC.2020.3043147
– volume: 72
  start-page: 108170
  year: 2023
  ident: 10.1016/j.ijhydene.2024.01.351_bib1
  article-title: Control strategy review for hydrogen-renewable energy power system
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2023.108170
– volume: 35
  start-page: 11861
  issue: 21
  year: 2010
  ident: 10.1016/j.ijhydene.2024.01.351_bib6
  article-title: Characterization of the dynamic response of proton exchange membrane fuel cells-A numerical study
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.08.071
– volume: 35
  start-page: 9349
  issue: 17
  year: 2010
  ident: 10.1016/j.ijhydene.2024.01.351_bib4
  article-title: Review of the proton exchange membranes for fuel cell applications
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.05.017
– volume: 253
  start-page: 115159
  year: 2022
  ident: 10.1016/j.ijhydene.2024.01.351_bib7
  article-title: Design and control of air supply system for PEMFC UAV based on dynamic decoupling strategy
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2021.115159
– volume: 253
  start-page: 115159
  year: 2022
  ident: 10.1016/j.ijhydene.2024.01.351_bib30
  article-title: Design and control of air supply system for PEMFC UAV based on dynamic decoupling strategy
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2021.115159
– year: 2006
  ident: 10.1016/j.ijhydene.2024.01.351_bib12
– year: 2022
  ident: 10.1016/j.ijhydene.2024.01.351_bib21
  article-title: Net power optimization based on extremum search and model-free adaptive control of PEMFC power generation system for high altitude
  publication-title: IEEE Transact. Transport. Electrif.
– volume: 461
  start-page: 1
  year: 2020
  ident: 10.1016/j.ijhydene.2024.01.351_bib19
  article-title: Performance prediction and power density maximization of a proton exchange membrane fuel cell based on deep belief network
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2020.228154
– volume: 20
  start-page: 962
  issue: 5
  year: 2015
  ident: 10.1016/j.ijhydene.2024.01.351_bib32
  article-title: Iterative ensemble smoother as an approximate solution to a regularized minimum-average-cost problem: theory and applications
  publication-title: SPE J
  doi: 10.2118/176023-PA
– start-page: 113617
  year: 2020
  ident: 10.1016/j.ijhydene.2024.01.351_bib31
  article-title: Advanced orthogonal moth flame optimization with broyden-fletcher-goldfarb-shanno algorithm: framework and real-world problems
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113617
– volume: 249
  start-page: 114851
  year: 2021
  ident: 10.1016/j.ijhydene.2024.01.351_bib25
  article-title: Simulation study on the PEMFC oxygen starvation based on the coupling algorithm of model predictive control and PID
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2021.114851
– volume: 331
  start-page: 120385
  year: 2023
  ident: 10.1016/j.ijhydene.2024.01.351_bib3
  article-title: Efficient degradation prediction of PEMFCs using ELM-AE based on fuzzy extension broad learning system
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.120385
– volume: 53
  start-page: 5929
  issue: 8
  year: 2020
  ident: 10.1016/j.ijhydene.2024.01.351_bib35
  article-title: A review on the long short-term memory model
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-020-09838-1
– volume: 511
  start-page: 1
  year: 2020
  ident: 10.1016/j.ijhydene.2024.01.351_bib28
  article-title: Adaptive robust control of oxygen excess ratio for PEMFC system based on type-2 fuzzy logic system
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2019.08.005
– volume: 205
  start-page: 112385
  year: 2020
  ident: 10.1016/j.ijhydene.2024.01.351_bib14
  article-title: Hybrid dynamic modeling-based membrane hydration analysis for the commercial high-power integrated PEMFC systems considering water transport equivalent
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2019.112385
– volume: 45
  start-page: 29705
  issue: 54
  year: 2020
  ident: 10.1016/j.ijhydene.2024.01.351_bib10
  article-title: Oxygen excess ratio control of PEM fuel cells using observer-based nonlinear triple-step controller
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.10.089
– volume: 269
  start-page: 115059
  year: 2020
  ident: 10.1016/j.ijhydene.2024.01.351_bib15
  article-title: Control logics and strategies for air supply in PEM fuel cell engines
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115059
– volume: 276
  start-page: 115460
  year: 2020
  ident: 10.1016/j.ijhydene.2024.01.351_bib16
  article-title: Hierarchical model predictive control via deep learning vehicle speed predictions for oxygen stoichiometry regulation of fuel cells
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115460
– volume: 44
  start-page: 19357
  issue: 35
  year: 2019
  ident: 10.1016/j.ijhydene.2024.01.351_bib27
  article-title: Nonlinear controller design based on cascade adaptive sliding mode control for PEM fuel cell air supply systems
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.10.180
– volume: 40
  start-page: 9452
  issue: 30
  year: 2015
  ident: 10.1016/j.ijhydene.2024.01.351_bib9
  article-title: Nonlinear modeling and identification of proton exchange membrane fuel cell (PEMFC)
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.05.109
– volume: 231
  start-page: 866
  year: 2018
  ident: 10.1016/j.ijhydene.2024.01.351_bib22
  article-title: Data-driven oxygen excess ratio control for proton exchange membrane fuel cell
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.09.036
– volume: 12
  start-page: 64301
  year: 2020
  ident: 10.1016/j.ijhydene.2024.01.351_bib24
  article-title: Model-free adaptive control for the PEMFC air supply system based on interval type-2 fuzzy logic systems
  publication-title: J Renew Sustain Energy
  doi: 10.1063/5.0014788
– volume: 27
  start-page: 1129
  issue: 3
  year: 2018
  ident: 10.1016/j.ijhydene.2024.01.351_bib29
  article-title: Disturbance-observer-based control for air management of PEM fuel cell systems via sliding mode technique
  publication-title: IEEE Trans Control Syst Technol
  doi: 10.1109/TCST.2018.2802467
– volume: 404
  start-page: 132306
  year: 2020
  ident: 10.1016/j.ijhydene.2024.01.351_bib34
  article-title: Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network
  publication-title: Phys Nonlinear Phenom
  doi: 10.1016/j.physd.2019.132306
– volume: 230
  start-page: 106
  year: 2018
  ident: 10.1016/j.ijhydene.2024.01.351_bib8
  article-title: Nonlinear dynamic mechanism modeling of a polymer electrolyte membrane fuel cell with dead-ended anode considering mass transport and actuator properties
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.08.099
– volume: 240
  start-page: 122490
  year: 2022
  ident: 10.1016/j.ijhydene.2024.01.351_bib13
  article-title: Feedforward-decoupled closed-loop fuzzy proportion-integral-derivative control of air supply system of proton exchange membrane fuel cell
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122490
– volume: 8
  start-page: 22
  issue: 1
  year: 2020
  ident: 10.1016/j.ijhydene.2024.01.351_bib36
  article-title: A novel swarm intelligence optimization approach: sparrow search algorithm
  publication-title: Syst. Sci. Control Eng.
  doi: 10.1080/21642583.2019.1708830
SSID ssj0017049
Score 2.5360546
Snippet As an efficient, clean and pollution-free power generation device, proton exchange membrane fuel cell (PEMFC) has been widely applied in transportation,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 339
SubjectTerms Data-driven
Long short-term memory network
Model predictive control
Oxygen starvation
Proton exchange membrane fuel cell
Sparrow search algorithm
Title Performance-oriented model learning and model predictive control for PEMFC air supply system
URI https://dx.doi.org/10.1016/j.ijhydene.2024.01.351
Volume 64
WOSCitedRecordID wos001216886000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0360-3199
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017049
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBch3cP2MPbJui_0sLfizpZkyXosJaUba8mgG2EMjCwrjUNxgpuW9h_Z37uTJTluF9b1YS8mPizZyv18Okt3v0PoA1UZmXLNoqLkOrI7gZHimYmUJmVi6cGTdvf8-xdxfJxNJnI8GPwKuTCXZ6Kus6srufyvqgYZKNumzt5D3V2nIIDfoHQ4gtrh-E-KH69TAaKFZTG2PmVb8CaUiHBZiU60bOxOTRs_FKLWbeDheHR0sL-jqmbn3Jb9vPaMz31X9uZaYo-BYnZdNotTWz2gzSvsXGXjzMqPWTW7WMcH-eyQozCFtov77spDVc0Bvae3r_1azRZe6tcrSBvm4nKbuzwta_ldWaRggznrGVHq6I38fEwdE-cfpt6tOsx3qzkMCwa0a29mKVipZ7C9wa19a87rIhFDkNs8D_3ktp88TnJqM_O3iEhlNkRbe59Gk8_d_pTwH1ZhLL3c881PtNnt6bkyJ0_QY_8Ngvccdp6igamfoUc9Zsrn6OcmFOEWMjigCAOKvGiNIuxRhKE1blGEAUXYoQg7FL1A3w5GJ_uHkS_EEWmakFUkWFnCZBAXlDFiwIKrzBBuaFFMi0wqrnUaqySRZTrVRAheSEa1tQGMF4UyCX2JhvWiNq8QNhI8ShWnMWOSCWLgjIikpJamj5RcbaM0_E-59iz1tljKWf53TW2jj127peNpubOFDGrIvbfpvMgcEHZH29f3vtsb9HD9MrxFw1VzYd6hB_pyVZ037z28fgM_WKc-
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance-oriented+model+learning+and+model+predictive+control+for+PEMFC+air+supply+system&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Deng%2C+Zhihua&rft.au=Chen%2C+Ming&rft.au=Wang%2C+Haijiang&rft.au=Chen%2C+Qihong&rft.date=2024-04-25&rft.issn=0360-3199&rft.volume=64&rft.spage=339&rft.epage=348&rft_id=info:doi/10.1016%2Fj.ijhydene.2024.01.351&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijhydene_2024_01_351
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon