Performance-oriented model learning and model predictive control for PEMFC air supply system
As an efficient, clean and pollution-free power generation device, proton exchange membrane fuel cell (PEMFC) has been widely applied in transportation, distributed power generation and other fields. However, the performance of PEMFC cannot be separated from appropriate cathode gas supply, for examp...
Saved in:
| Published in: | International journal of hydrogen energy Vol. 64; pp. 339 - 348 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
25.04.2024
|
| Subjects: | |
| ISSN: | 0360-3199 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | As an efficient, clean and pollution-free power generation device, proton exchange membrane fuel cell (PEMFC) has been widely applied in transportation, distributed power generation and other fields. However, the performance of PEMFC cannot be separated from appropriate cathode gas supply, for example, it is prone to oxygen starvation under frequent variable load conditions. This is due to the mismatch between the air supply rate and the electrochemical reaction rate, making it difficult for the system to meet the air flow requirement instantaneously when subject to the load changes abruptly. Thus, oxygen starvation control has become a particularly challenging nonlinear control problem because of the great difficulty in achieving an accurate system identification model and an efficient controller. To this end, a long short-term memory (LSTM) neural network-based model predictive control (MPC) is developed to model and control the PEMFC air supply system, which combines the advantages of LSTM and MPC. Firstly, LSTM is utilized to train an online control-oriented model from the measured dataset. Secondly, a sparrow search algorithm (SSA) is utilized to update the hyper-parameters of LSTM model, which can obtain more accurate predictive model in MPC. Thirdly, the MPC with LSTM-SSA model is solved online using different high efficiency solvers. Fourthly, the proposed LSTM-SSA based on MPC is adopted to model and control a PEMFC air supply system. Finally, the stability proof of the proposed method is illustrated in the Appendix. The simulation results reveal that the data-driven learning method and MPC method have significant advantages in modeling and improving the system performance.
•Machine learning-based MPC framework is proposed to regulate air supply system.•LSTM as the predictive model in MPC is developed to describe the dynamic system.•Sparrow search algorithm is used to update the hyper-parameters of the LSTM model.•The control effects of proposed controller based on different solvers are compared. |
|---|---|
| AbstractList | As an efficient, clean and pollution-free power generation device, proton exchange membrane fuel cell (PEMFC) has been widely applied in transportation, distributed power generation and other fields. However, the performance of PEMFC cannot be separated from appropriate cathode gas supply, for example, it is prone to oxygen starvation under frequent variable load conditions. This is due to the mismatch between the air supply rate and the electrochemical reaction rate, making it difficult for the system to meet the air flow requirement instantaneously when subject to the load changes abruptly. Thus, oxygen starvation control has become a particularly challenging nonlinear control problem because of the great difficulty in achieving an accurate system identification model and an efficient controller. To this end, a long short-term memory (LSTM) neural network-based model predictive control (MPC) is developed to model and control the PEMFC air supply system, which combines the advantages of LSTM and MPC. Firstly, LSTM is utilized to train an online control-oriented model from the measured dataset. Secondly, a sparrow search algorithm (SSA) is utilized to update the hyper-parameters of LSTM model, which can obtain more accurate predictive model in MPC. Thirdly, the MPC with LSTM-SSA model is solved online using different high efficiency solvers. Fourthly, the proposed LSTM-SSA based on MPC is adopted to model and control a PEMFC air supply system. Finally, the stability proof of the proposed method is illustrated in the Appendix. The simulation results reveal that the data-driven learning method and MPC method have significant advantages in modeling and improving the system performance.
•Machine learning-based MPC framework is proposed to regulate air supply system.•LSTM as the predictive model in MPC is developed to describe the dynamic system.•Sparrow search algorithm is used to update the hyper-parameters of the LSTM model.•The control effects of proposed controller based on different solvers are compared. |
| Author | Chen, Ming Wang, Haijiang Deng, Zhihua Chen, Qihong |
| Author_xml | – sequence: 1 givenname: Zhihua surname: Deng fullname: Deng, Zhihua organization: Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China – sequence: 2 givenname: Ming surname: Chen fullname: Chen, Ming email: chenmingustb@sina.com organization: Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China – sequence: 3 givenname: Haijiang surname: Wang fullname: Wang, Haijiang organization: Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China – sequence: 4 givenname: Qihong surname: Chen fullname: Chen, Qihong email: chenqh@whut.edu.cn organization: School of Automation, Wuhan University of Technology, Wuhan, 430070, China |
| BookMark | eNqFkEFLwzAYhnOY4Db9C5I_0Jo0WbqCB2VsKkzcQW9CSJOvmtImJYmD_Xs7dBcvO33wwvPyfs8MTZx3gNANJTklVNy2uW2_DgYc5AUpeE5ozhZ0gqaECZIxWlWXaBZjSwgtCa-m6GMHofGhV05D5oMFl8Dg3hvocAcqOOs-sXKnaAhgrE52D1h7l4Lv8Ejj3fpls8LKBhy_h6E74HiICfordNGoLsL1352j9836bfWUbV8fn1cP20wzWqSs5MYQRkjNOC-grLhaQiGA1XVTLysltF4QRWllFo0uylLUFWd6WTSCi7pWQNkc3f326uBjDNBIbZNK9rhQ2U5SIo92ZCtPduTRjiRUjnZGXPzDh2B7FQ7nwftfEMbn9haCjHo0qEdHAXSSxttzFT-iCYl- |
| CitedBy_id | crossref_primary_10_1016_j_jpowsour_2025_238396 crossref_primary_10_1061_JLEED9_EYENG_5853 crossref_primary_10_3390_en18154100 crossref_primary_10_3390_act13110455 crossref_primary_10_1002_aic_18909 crossref_primary_10_1016_j_renene_2024_121772 crossref_primary_10_1016_j_rser_2025_116122 crossref_primary_10_3390_act13070268 crossref_primary_10_1016_j_enconman_2024_119309 crossref_primary_10_1016_j_ijhydene_2025_150366 crossref_primary_10_1016_j_neucom_2025_129712 crossref_primary_10_1016_j_ifacol_2024_11_184 crossref_primary_10_1016_j_seta_2024_104051 crossref_primary_10_1002_fuce_70016 crossref_primary_10_1016_j_ijhydene_2024_06_283 crossref_primary_10_1016_j_ijhydene_2024_12_520 crossref_primary_10_1109_TCSII_2025_3540486 |
| Cites_doi | 10.1016/j.ijhydene.2022.01.065 10.1109/TTE.2020.2970835 10.1016/j.jpowsour.2021.230808 10.1109/TII.2022.3196621 10.1016/j.isatra.2021.04.004 10.1109/TNNLS.2020.3015869 10.1016/j.buildenv.2013.11.016 10.1016/j.apenergy.2021.117572 10.1109/TSMC.2020.3043147 10.1016/j.est.2023.108170 10.1016/j.ijhydene.2010.08.071 10.1016/j.ijhydene.2010.05.017 10.1016/j.enconman.2021.115159 10.1016/j.jpowsour.2020.228154 10.2118/176023-PA 10.1016/j.eswa.2020.113617 10.1016/j.enconman.2021.114851 10.1016/j.apenergy.2022.120385 10.1007/s10462-020-09838-1 10.1016/j.ins.2019.08.005 10.1016/j.enconman.2019.112385 10.1016/j.ijhydene.2019.10.089 10.1016/j.apenergy.2020.115059 10.1016/j.apenergy.2020.115460 10.1016/j.ijhydene.2018.10.180 10.1016/j.ijhydene.2015.05.109 10.1016/j.apenergy.2018.09.036 10.1063/5.0014788 10.1109/TCST.2018.2802467 10.1016/j.physd.2019.132306 10.1016/j.apenergy.2018.08.099 10.1016/j.energy.2021.122490 10.1080/21642583.2019.1708830 |
| ContentType | Journal Article |
| Copyright | 2024 |
| Copyright_xml | – notice: 2024 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ijhydene.2024.01.351 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EndPage | 348 |
| ExternalDocumentID | 10_1016_j_ijhydene_2024_01_351 S0360319924003914 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXKI AAXUO ABFNM ABJNI ABMAC ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEIPS AEKER AENEX AEZYN AFJKZ AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AJSZI AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANKPU AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SES SEW SPC SPCBC SSK SSM SSR SSZ T5K TN5 XPP ZMT ~G- 29J 9DU AAQXK AATTM AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HVGLF R2- SAC SCB T9H WUQ ~HD |
| ID | FETCH-LOGICAL-c312t-74dd0300b3442e794a8e26e3bbfb89a6cc50a119d5fc2776b943c82f646bbae13 |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001216886000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-3199 |
| IngestDate | Sat Nov 29 04:59:04 EST 2025 Tue Nov 18 22:18:37 EST 2025 Sat Feb 15 15:51:24 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Long short-term memory network Model predictive control Proton exchange membrane fuel cell Oxygen starvation Data-driven Sparrow search algorithm |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c312t-74dd0300b3442e794a8e26e3bbfb89a6cc50a119d5fc2776b943c82f646bbae13 |
| PageCount | 10 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_ijhydene_2024_01_351 crossref_primary_10_1016_j_ijhydene_2024_01_351 elsevier_sciencedirect_doi_10_1016_j_ijhydene_2024_01_351 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-04-25 |
| PublicationDateYYYYMMDD | 2024-04-25 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-25 day: 25 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of hydrogen energy |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Deng, Chan, Chen (bib3) 2023; 331 Luo, Ma, Wang (bib24) 2020; 12 Li, Qiu, Yin (bib21) 2022 Hou, Yang, Ke (bib15) 2020; 269 Suh (bib12) 2006 Xue, Shen (bib36) 2020; 8 Liu, Chen, Peng (bib13) 2022; 240 Arafat, Rashidul, Alamgir (bib1) 2023; 72 Feng, Huang, Jin (bib23) 2022; 520 Li, Yang, Yin (bib33) 2020; 6 Ma, Zhang, Gao (bib10) 2020; 45 Yang, Li, Li (bib2) 2022; 47 Zhao, Xia, Dang (bib30) 2022; 253 Deng, Li, Cui (bib27) 2019; 44 Wang, Chen, Quan (bib16) 2020; 276 Pukrushpan, Stefabopoulou, Peng (bib11) 2004 Loo, Wong, Tan (bib6) 2010; 35 Zhao, Xia, Dang (bib7) 2022; 253 Zhang, Wang, Wang (bib28) 2020; 511 Luo, Stordal, Lorentzen (bib32) 2015; 20 Wang, Jia, Qiao (bib37) 2020; 32 Peng, Ren, Zhao (bib14) 2020; 205 Zehra, Rahman, Armghan (bib17) 2022; 121 Liu, Gao, Su (bib29) 2018; 27 Sherstinsky (bib34) 2020; 404 Peighambardoust, Rowshanzamir, Amjadi (bib4) 2010; 35 Sun, Shen, Hua (bib22) 2018; 231 Xu, Fang, Li (bib8) 2018; 230 Afram, Sharifi (bib26) 2014; 72 Cheng, Liu (bib9) 2015; 40 Li, Xu, Du (bib19) 2020; 461 Li, Wang, Wang (bib20) 2023; 19 Song, Pan, Chen (bib5) 2021; 302 Van, Mosquera, Nápoles (bib35) 2020; 53 Liu, Chen, Feng (bib18) 2020; 51 Wang, Li, Feng (bib25) 2021; 249 Zhang, Li, Cai (bib31) 2020 Luo (10.1016/j.ijhydene.2024.01.351_bib32) 2015; 20 Deng (10.1016/j.ijhydene.2024.01.351_bib3) 2023; 331 Ma (10.1016/j.ijhydene.2024.01.351_bib10) 2020; 45 Zhao (10.1016/j.ijhydene.2024.01.351_bib30) 2022; 253 Wang (10.1016/j.ijhydene.2024.01.351_bib37) 2020; 32 Loo (10.1016/j.ijhydene.2024.01.351_bib6) 2010; 35 Liu (10.1016/j.ijhydene.2024.01.351_bib29) 2018; 27 Yang (10.1016/j.ijhydene.2024.01.351_bib2) 2022; 47 Zhao (10.1016/j.ijhydene.2024.01.351_bib7) 2022; 253 Sun (10.1016/j.ijhydene.2024.01.351_bib22) 2018; 231 Sherstinsky (10.1016/j.ijhydene.2024.01.351_bib34) 2020; 404 Xue (10.1016/j.ijhydene.2024.01.351_bib36) 2020; 8 Peng (10.1016/j.ijhydene.2024.01.351_bib14) 2020; 205 Afram (10.1016/j.ijhydene.2024.01.351_bib26) 2014; 72 Deng (10.1016/j.ijhydene.2024.01.351_bib27) 2019; 44 Li (10.1016/j.ijhydene.2024.01.351_bib20) 2023; 19 Liu (10.1016/j.ijhydene.2024.01.351_bib13) 2022; 240 Li (10.1016/j.ijhydene.2024.01.351_bib19) 2020; 461 Peighambardoust (10.1016/j.ijhydene.2024.01.351_bib4) 2010; 35 Zhang (10.1016/j.ijhydene.2024.01.351_bib28) 2020; 511 Liu (10.1016/j.ijhydene.2024.01.351_bib18) 2020; 51 Zehra (10.1016/j.ijhydene.2024.01.351_bib17) 2022; 121 Wang (10.1016/j.ijhydene.2024.01.351_bib25) 2021; 249 Pukrushpan (10.1016/j.ijhydene.2024.01.351_bib11) 2004 Cheng (10.1016/j.ijhydene.2024.01.351_bib9) 2015; 40 Luo (10.1016/j.ijhydene.2024.01.351_bib24) 2020; 12 Li (10.1016/j.ijhydene.2024.01.351_bib33) 2020; 6 Suh (10.1016/j.ijhydene.2024.01.351_bib12) 2006 Song (10.1016/j.ijhydene.2024.01.351_bib5) 2021; 302 Hou (10.1016/j.ijhydene.2024.01.351_bib15) 2020; 269 Xu (10.1016/j.ijhydene.2024.01.351_bib8) 2018; 230 Wang (10.1016/j.ijhydene.2024.01.351_bib16) 2020; 276 Li (10.1016/j.ijhydene.2024.01.351_bib21) 2022 Feng (10.1016/j.ijhydene.2024.01.351_bib23) 2022; 520 Van (10.1016/j.ijhydene.2024.01.351_bib35) 2020; 53 Arafat (10.1016/j.ijhydene.2024.01.351_bib1) 2023; 72 Zhang (10.1016/j.ijhydene.2024.01.351_bib31) 2020 |
| References_xml | – volume: 40 start-page: 9452 year: 2015 end-page: 9461 ident: bib9 article-title: Nonlinear modeling and identification of proton exchange membrane fuel cell (PEMFC) publication-title: Int J Hydrogen Energy – volume: 121 start-page: 217 year: 2022 end-page: 231 ident: bib17 article-title: Artificial intelligence-based nonlinear control of renewable energies and storage system in a DC microgrid publication-title: ISA (Instrum Soc Am) Trans – volume: 6 start-page: 288 year: 2020 end-page: 297 ident: bib33 article-title: Real-time implementation of maximum net power strategy based on sliding mode variable structure control for proton exchange membrane fuel cell system publication-title: IEEE Transact. Transport. Electrif. – volume: 72 start-page: 108170 year: 2023 end-page: 108182 ident: bib1 article-title: Control strategy review for hydrogen-renewable energy power system publication-title: J Energy Storage – volume: 511 start-page: 1 year: 2020 end-page: 17 ident: bib28 article-title: Adaptive robust control of oxygen excess ratio for PEMFC system based on type-2 fuzzy logic system publication-title: Inf Sci – volume: 47 start-page: 9986 year: 2022 end-page: 10020 ident: bib2 article-title: A critical survey of proton exchange membrane fuel cell system control: Summaries, advances, and perspectives publication-title: Int J Hydrogen Energy – volume: 231 start-page: 866 year: 2018 end-page: 875 ident: bib22 article-title: Data-driven oxygen excess ratio control for proton exchange membrane fuel cell publication-title: Appl Energy – volume: 8 start-page: 22 year: 2020 end-page: 34 ident: bib36 article-title: A novel swarm intelligence optimization approach: sparrow search algorithm publication-title: Syst. Sci. Control Eng. – volume: 72 start-page: 343 year: 2014 end-page: 355 ident: bib26 article-title: Theory and applications of HVAC control systems-A review of model predictive control (MPC) publication-title: Build Environ – start-page: 113617 year: 2020 end-page: 113630 ident: bib31 article-title: Advanced orthogonal moth flame optimization with broyden-fletcher-goldfarb-shanno algorithm: framework and real-world problems publication-title: Expert Syst Appl – volume: 27 start-page: 1129 year: 2018 end-page: 1138 ident: bib29 article-title: Disturbance-observer-based control for air management of PEM fuel cell systems via sliding mode technique publication-title: IEEE Trans Control Syst Technol – volume: 19 start-page: 5743 year: 2023 end-page: 5751 ident: bib20 article-title: An LSTM and ANN fusion dynamic model of a proton exchange membrane fuel cell publication-title: IEEE Trans Ind Inf – volume: 520 start-page: 230808 year: 2022 end-page: 230820 ident: bib23 article-title: Artificial intelligence-based multi-objective optimization for proton exchange membrane fuel cell: a literature review publication-title: J Power Sources – volume: 12 start-page: 64301 year: 2020 end-page: 64322 ident: bib24 article-title: Model-free adaptive control for the PEMFC air supply system based on interval type-2 fuzzy logic systems publication-title: J Renew Sustain Energy – year: 2022 ident: bib21 article-title: Net power optimization based on extremum search and model-free adaptive control of PEMFC power generation system for high altitude publication-title: IEEE Transact. Transport. Electrif. – volume: 53 start-page: 5929 year: 2020 end-page: 5955 ident: bib35 article-title: A review on the long short-term memory model publication-title: Artif Intell Rev – year: 2006 ident: bib12 article-title: Modeling, analysis and control of fuel cell hybrid power systems – volume: 331 start-page: 120385 year: 2023 end-page: 1203400 ident: bib3 article-title: Efficient degradation prediction of PEMFCs using ELM-AE based on fuzzy extension broad learning system publication-title: Appl Energy – volume: 276 start-page: 115460 year: 2020 end-page: 115472 ident: bib16 article-title: Hierarchical model predictive control via deep learning vehicle speed predictions for oxygen stoichiometry regulation of fuel cells publication-title: Appl Energy – volume: 253 start-page: 115159 year: 2022 end-page: 115176 ident: bib30 article-title: Design and control of air supply system for PEMFC UAV based on dynamic decoupling strategy publication-title: Energy Convers Manag – volume: 45 start-page: 29705 year: 2020 end-page: 29717 ident: bib10 article-title: Oxygen excess ratio control of PEM fuel cells using observer-based nonlinear triple-step controller publication-title: Int J Hydrogen Energy – volume: 253 start-page: 115159 year: 2022 end-page: 115171 ident: bib7 article-title: Design and control of air supply system for PEMFC UAV based on dynamic decoupling strategy publication-title: Energy Convers Manag – volume: 302 start-page: 117572 year: 2021 end-page: 117584 ident: bib5 article-title: Effects of temperature on the performance of fuel cell hybrid electric vehicles: a review publication-title: Appl Energy – volume: 32 start-page: 3643 year: 2020 end-page: 3652 ident: bib37 article-title: Deep learning-based model predictive control for continuous stirred-tank reactor system publication-title: IEEE Transact Neural Networks Learn Syst – volume: 205 start-page: 112385 year: 2020 end-page: 1123404 ident: bib14 article-title: Hybrid dynamic modeling-based membrane hydration analysis for the commercial high-power integrated PEMFC systems considering water transport equivalent publication-title: Energy Convers Manag – volume: 44 start-page: 19357 year: 2019 end-page: 19369 ident: bib27 article-title: Nonlinear controller design based on cascade adaptive sliding mode control for PEM fuel cell air supply systems publication-title: Int J Hydrogen Energy – volume: 240 start-page: 122490 year: 2022 end-page: 122501 ident: bib13 article-title: Feedforward-decoupled closed-loop fuzzy proportion-integral-derivative control of air supply system of proton exchange membrane fuel cell publication-title: Energy – volume: 461 start-page: 1 year: 2020 end-page: 10 ident: bib19 article-title: Performance prediction and power density maximization of a proton exchange membrane fuel cell based on deep belief network publication-title: J Power Sources – volume: 35 start-page: 9349 year: 2010 end-page: 9384 ident: bib4 article-title: Review of the proton exchange membranes for fuel cell applications publication-title: Int J Hydrogen Energy – volume: 230 start-page: 106 year: 2018 end-page: 121 ident: bib8 article-title: Nonlinear dynamic mechanism modeling of a polymer electrolyte membrane fuel cell with dead-ended anode considering mass transport and actuator properties publication-title: Appl Energy – volume: 269 start-page: 115059 year: 2020 end-page: 115071 ident: bib15 article-title: Control logics and strategies for air supply in PEM fuel cell engines publication-title: Appl Energy – volume: 35 start-page: 11861 year: 2010 end-page: 11877 ident: bib6 article-title: Characterization of the dynamic response of proton exchange membrane fuel cells-A numerical study publication-title: Int J Hydrogen Energy – volume: 20 start-page: 962 year: 2015 end-page: 982 ident: bib32 article-title: Iterative ensemble smoother as an approximate solution to a regularized minimum-average-cost problem: theory and applications publication-title: SPE J – volume: 249 start-page: 114851 year: 2021 end-page: 114865 ident: bib25 article-title: Simulation study on the PEMFC oxygen starvation based on the coupling algorithm of model predictive control and PID publication-title: Energy Convers Manag – volume: 51 start-page: 209 year: 2020 end-page: 222 ident: bib18 article-title: Stacked broad learning system: from incremental flatted structure to deep model publication-title: IEEE Transact. Syst. Man Cybernetics: Systems – year: 2004 ident: bib11 article-title: Control of fuel cell power systems: principles, modeling. In: analysis and feedback design – volume: 404 start-page: 132306 year: 2020 end-page: 132334 ident: bib34 article-title: Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network publication-title: Phys Nonlinear Phenom – volume: 47 start-page: 9986 issue: 17 year: 2022 ident: 10.1016/j.ijhydene.2024.01.351_bib2 article-title: A critical survey of proton exchange membrane fuel cell system control: Summaries, advances, and perspectives publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2022.01.065 – volume: 6 start-page: 288 issue: 1 year: 2020 ident: 10.1016/j.ijhydene.2024.01.351_bib33 article-title: Real-time implementation of maximum net power strategy based on sliding mode variable structure control for proton exchange membrane fuel cell system publication-title: IEEE Transact. Transport. Electrif. doi: 10.1109/TTE.2020.2970835 – volume: 520 start-page: 230808 year: 2022 ident: 10.1016/j.ijhydene.2024.01.351_bib23 article-title: Artificial intelligence-based multi-objective optimization for proton exchange membrane fuel cell: a literature review publication-title: J Power Sources doi: 10.1016/j.jpowsour.2021.230808 – volume: 19 start-page: 5743 issue: 4 year: 2023 ident: 10.1016/j.ijhydene.2024.01.351_bib20 article-title: An LSTM and ANN fusion dynamic model of a proton exchange membrane fuel cell publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2022.3196621 – volume: 121 start-page: 217 year: 2022 ident: 10.1016/j.ijhydene.2024.01.351_bib17 article-title: Artificial intelligence-based nonlinear control of renewable energies and storage system in a DC microgrid publication-title: ISA (Instrum Soc Am) Trans doi: 10.1016/j.isatra.2021.04.004 – volume: 32 start-page: 3643 issue: 8 year: 2020 ident: 10.1016/j.ijhydene.2024.01.351_bib37 article-title: Deep learning-based model predictive control for continuous stirred-tank reactor system publication-title: IEEE Transact Neural Networks Learn Syst doi: 10.1109/TNNLS.2020.3015869 – volume: 72 start-page: 343 year: 2014 ident: 10.1016/j.ijhydene.2024.01.351_bib26 article-title: Theory and applications of HVAC control systems-A review of model predictive control (MPC) publication-title: Build Environ doi: 10.1016/j.buildenv.2013.11.016 – volume: 302 start-page: 117572 year: 2021 ident: 10.1016/j.ijhydene.2024.01.351_bib5 article-title: Effects of temperature on the performance of fuel cell hybrid electric vehicles: a review publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.117572 – year: 2004 ident: 10.1016/j.ijhydene.2024.01.351_bib11 – volume: 51 start-page: 209 issue: 1 year: 2020 ident: 10.1016/j.ijhydene.2024.01.351_bib18 article-title: Stacked broad learning system: from incremental flatted structure to deep model publication-title: IEEE Transact. Syst. Man Cybernetics: Systems doi: 10.1109/TSMC.2020.3043147 – volume: 72 start-page: 108170 year: 2023 ident: 10.1016/j.ijhydene.2024.01.351_bib1 article-title: Control strategy review for hydrogen-renewable energy power system publication-title: J Energy Storage doi: 10.1016/j.est.2023.108170 – volume: 35 start-page: 11861 issue: 21 year: 2010 ident: 10.1016/j.ijhydene.2024.01.351_bib6 article-title: Characterization of the dynamic response of proton exchange membrane fuel cells-A numerical study publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2010.08.071 – volume: 35 start-page: 9349 issue: 17 year: 2010 ident: 10.1016/j.ijhydene.2024.01.351_bib4 article-title: Review of the proton exchange membranes for fuel cell applications publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2010.05.017 – volume: 253 start-page: 115159 year: 2022 ident: 10.1016/j.ijhydene.2024.01.351_bib7 article-title: Design and control of air supply system for PEMFC UAV based on dynamic decoupling strategy publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2021.115159 – volume: 253 start-page: 115159 year: 2022 ident: 10.1016/j.ijhydene.2024.01.351_bib30 article-title: Design and control of air supply system for PEMFC UAV based on dynamic decoupling strategy publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2021.115159 – year: 2006 ident: 10.1016/j.ijhydene.2024.01.351_bib12 – year: 2022 ident: 10.1016/j.ijhydene.2024.01.351_bib21 article-title: Net power optimization based on extremum search and model-free adaptive control of PEMFC power generation system for high altitude publication-title: IEEE Transact. Transport. Electrif. – volume: 461 start-page: 1 year: 2020 ident: 10.1016/j.ijhydene.2024.01.351_bib19 article-title: Performance prediction and power density maximization of a proton exchange membrane fuel cell based on deep belief network publication-title: J Power Sources doi: 10.1016/j.jpowsour.2020.228154 – volume: 20 start-page: 962 issue: 5 year: 2015 ident: 10.1016/j.ijhydene.2024.01.351_bib32 article-title: Iterative ensemble smoother as an approximate solution to a regularized minimum-average-cost problem: theory and applications publication-title: SPE J doi: 10.2118/176023-PA – start-page: 113617 year: 2020 ident: 10.1016/j.ijhydene.2024.01.351_bib31 article-title: Advanced orthogonal moth flame optimization with broyden-fletcher-goldfarb-shanno algorithm: framework and real-world problems publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113617 – volume: 249 start-page: 114851 year: 2021 ident: 10.1016/j.ijhydene.2024.01.351_bib25 article-title: Simulation study on the PEMFC oxygen starvation based on the coupling algorithm of model predictive control and PID publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2021.114851 – volume: 331 start-page: 120385 year: 2023 ident: 10.1016/j.ijhydene.2024.01.351_bib3 article-title: Efficient degradation prediction of PEMFCs using ELM-AE based on fuzzy extension broad learning system publication-title: Appl Energy doi: 10.1016/j.apenergy.2022.120385 – volume: 53 start-page: 5929 issue: 8 year: 2020 ident: 10.1016/j.ijhydene.2024.01.351_bib35 article-title: A review on the long short-term memory model publication-title: Artif Intell Rev doi: 10.1007/s10462-020-09838-1 – volume: 511 start-page: 1 year: 2020 ident: 10.1016/j.ijhydene.2024.01.351_bib28 article-title: Adaptive robust control of oxygen excess ratio for PEMFC system based on type-2 fuzzy logic system publication-title: Inf Sci doi: 10.1016/j.ins.2019.08.005 – volume: 205 start-page: 112385 year: 2020 ident: 10.1016/j.ijhydene.2024.01.351_bib14 article-title: Hybrid dynamic modeling-based membrane hydration analysis for the commercial high-power integrated PEMFC systems considering water transport equivalent publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2019.112385 – volume: 45 start-page: 29705 issue: 54 year: 2020 ident: 10.1016/j.ijhydene.2024.01.351_bib10 article-title: Oxygen excess ratio control of PEM fuel cells using observer-based nonlinear triple-step controller publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2019.10.089 – volume: 269 start-page: 115059 year: 2020 ident: 10.1016/j.ijhydene.2024.01.351_bib15 article-title: Control logics and strategies for air supply in PEM fuel cell engines publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.115059 – volume: 276 start-page: 115460 year: 2020 ident: 10.1016/j.ijhydene.2024.01.351_bib16 article-title: Hierarchical model predictive control via deep learning vehicle speed predictions for oxygen stoichiometry regulation of fuel cells publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.115460 – volume: 44 start-page: 19357 issue: 35 year: 2019 ident: 10.1016/j.ijhydene.2024.01.351_bib27 article-title: Nonlinear controller design based on cascade adaptive sliding mode control for PEM fuel cell air supply systems publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2018.10.180 – volume: 40 start-page: 9452 issue: 30 year: 2015 ident: 10.1016/j.ijhydene.2024.01.351_bib9 article-title: Nonlinear modeling and identification of proton exchange membrane fuel cell (PEMFC) publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2015.05.109 – volume: 231 start-page: 866 year: 2018 ident: 10.1016/j.ijhydene.2024.01.351_bib22 article-title: Data-driven oxygen excess ratio control for proton exchange membrane fuel cell publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.09.036 – volume: 12 start-page: 64301 year: 2020 ident: 10.1016/j.ijhydene.2024.01.351_bib24 article-title: Model-free adaptive control for the PEMFC air supply system based on interval type-2 fuzzy logic systems publication-title: J Renew Sustain Energy doi: 10.1063/5.0014788 – volume: 27 start-page: 1129 issue: 3 year: 2018 ident: 10.1016/j.ijhydene.2024.01.351_bib29 article-title: Disturbance-observer-based control for air management of PEM fuel cell systems via sliding mode technique publication-title: IEEE Trans Control Syst Technol doi: 10.1109/TCST.2018.2802467 – volume: 404 start-page: 132306 year: 2020 ident: 10.1016/j.ijhydene.2024.01.351_bib34 article-title: Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network publication-title: Phys Nonlinear Phenom doi: 10.1016/j.physd.2019.132306 – volume: 230 start-page: 106 year: 2018 ident: 10.1016/j.ijhydene.2024.01.351_bib8 article-title: Nonlinear dynamic mechanism modeling of a polymer electrolyte membrane fuel cell with dead-ended anode considering mass transport and actuator properties publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.08.099 – volume: 240 start-page: 122490 year: 2022 ident: 10.1016/j.ijhydene.2024.01.351_bib13 article-title: Feedforward-decoupled closed-loop fuzzy proportion-integral-derivative control of air supply system of proton exchange membrane fuel cell publication-title: Energy doi: 10.1016/j.energy.2021.122490 – volume: 8 start-page: 22 issue: 1 year: 2020 ident: 10.1016/j.ijhydene.2024.01.351_bib36 article-title: A novel swarm intelligence optimization approach: sparrow search algorithm publication-title: Syst. Sci. Control Eng. doi: 10.1080/21642583.2019.1708830 |
| SSID | ssj0017049 |
| Score | 2.5360546 |
| Snippet | As an efficient, clean and pollution-free power generation device, proton exchange membrane fuel cell (PEMFC) has been widely applied in transportation,... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 339 |
| SubjectTerms | Data-driven Long short-term memory network Model predictive control Oxygen starvation Proton exchange membrane fuel cell Sparrow search algorithm |
| Title | Performance-oriented model learning and model predictive control for PEMFC air supply system |
| URI | https://dx.doi.org/10.1016/j.ijhydene.2024.01.351 |
| Volume | 64 |
| WOSCitedRecordID | wos001216886000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0360-3199 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0017049 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBch3cP2MPbJui_0sLfizpZkyXosJaUba8mgG2EMjCwrjUNxgpuW9h_Z37uTJTluF9b1YS8mPizZyv18Okt3v0PoA1UZmXLNoqLkOrI7gZHimYmUJmVi6cGTdvf8-xdxfJxNJnI8GPwKuTCXZ6Kus6srufyvqgYZKNumzt5D3V2nIIDfoHQ4gtrh-E-KH69TAaKFZTG2PmVb8CaUiHBZiU60bOxOTRs_FKLWbeDheHR0sL-jqmbn3Jb9vPaMz31X9uZaYo-BYnZdNotTWz2gzSvsXGXjzMqPWTW7WMcH-eyQozCFtov77spDVc0Bvae3r_1azRZe6tcrSBvm4nKbuzwta_ldWaRggznrGVHq6I38fEwdE-cfpt6tOsx3qzkMCwa0a29mKVipZ7C9wa19a87rIhFDkNs8D_3ktp88TnJqM_O3iEhlNkRbe59Gk8_d_pTwH1ZhLL3c881PtNnt6bkyJ0_QY_8Ngvccdp6igamfoUc9Zsrn6OcmFOEWMjigCAOKvGiNIuxRhKE1blGEAUXYoQg7FL1A3w5GJ_uHkS_EEWmakFUkWFnCZBAXlDFiwIKrzBBuaFFMi0wqrnUaqySRZTrVRAheSEa1tQGMF4UyCX2JhvWiNq8QNhI8ShWnMWOSCWLgjIikpJamj5RcbaM0_E-59iz1tljKWf53TW2jj127peNpubOFDGrIvbfpvMgcEHZH29f3vtsb9HD9MrxFw1VzYd6hB_pyVZ037z28fgM_WKc- |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance-oriented+model+learning+and+model+predictive+control+for+PEMFC+air+supply+system&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Deng%2C+Zhihua&rft.au=Chen%2C+Ming&rft.au=Wang%2C+Haijiang&rft.au=Chen%2C+Qihong&rft.date=2024-04-25&rft.issn=0360-3199&rft.volume=64&rft.spage=339&rft.epage=348&rft_id=info:doi/10.1016%2Fj.ijhydene.2024.01.351&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijhydene_2024_01_351 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon |