A Crash Course in Good and Bad Controls
Many students of statistics and econometrics express frustration with the way a problem known as “bad control” is treated in the traditional literature. The issue arises when the addition of a variable to a regression equation produces an unintended discrepancy between the regression coefficient and...
Gespeichert in:
| Veröffentlicht in: | Sociological methods & research Jg. 53; H. 3; S. 1071 - 1104 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Los Angeles, CA
SAGE Publications
01.08.2024
SAGE PUBLICATIONS, INC |
| Schlagworte: | |
| ISSN: | 0049-1241, 1552-8294 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Many students of statistics and econometrics express frustration with the way a problem known as “bad control” is treated in the traditional literature. The issue arises when the addition of a variable to a regression equation produces an unintended discrepancy between the regression coefficient and the effect that the coefficient is intended to represent. Avoiding such discrepancies presents a challenge to all analysts in the data intensive sciences. This note describes graphical tools for understanding, visualizing, and resolving the problem through a series of illustrative examples. By making this “crash course” accessible to instructors and practitioners, we hope to avail these tools to a broader community of scientists concerned with the causal interpretation of regression models. |
|---|---|
| AbstractList | Many students of statistics and econometrics express frustration with the way a problem known as “bad control” is treated in the traditional literature. The issue arises when the addition of a variable to a regression equation produces an unintended discrepancy between the regression coefficient and the effect that the coefficient is intended to represent. Avoiding such discrepancies presents a challenge to all analysts in the data intensive sciences. This note describes graphical tools for understanding, visualizing, and resolving the problem through a series of illustrative examples. By making this “crash course” accessible to instructors and practitioners, we hope to avail these tools to a broader community of scientists concerned with the causal interpretation of regression models. |
| Author | Cinelli, Carlos Forney, Andrew Pearl, Judea |
| Author_xml | – sequence: 1 givenname: Carlos orcidid: 0000-0002-2021-7739 surname: Cinelli fullname: Cinelli, Carlos email: cinelli@uw.edu – sequence: 2 givenname: Andrew orcidid: 0000-0002-6366-1290 surname: Forney fullname: Forney, Andrew – sequence: 3 givenname: Judea surname: Pearl fullname: Pearl, Judea |
| BookMark | eNp9kMFOwzAMhiM0JLbBA3CrxIFTh520TXMcFQykSVzgXJnWhU6lGUl34O1JVSQkEJws2_9n__ZCzHrbsxDnCCtEra8AEoMyQSkRjElTeSTmGEKcS5PMxHzsx6PgRCy83wGg1KDm4nIdFY78a1TYg_MctX20sbaOqK-ja6pDuR-c7fypOG6o83z2FZfi6fbmsbiLtw-b-2K9jSuFcoi1zE2SpswJEkPFrBrAWuXPuSQKxjIgZpCjxNSkEXRIG640Z5VuZKOW4mKau3f2_cB-KHfBWB9WlgpyY0AlmQkqnFSVs947bsq9a9_IfZQI5fiP8tc_AqN_MFU70NCOB1Lb_UuuJtLTC3_7-Rv4BJT2b3s |
| CitedBy_id | crossref_primary_10_1002_smj_3595 crossref_primary_10_1016_j_chieco_2024_102265 crossref_primary_10_1177_13540688251366835 crossref_primary_10_1177_0095327X241291856 crossref_primary_10_1016_j_biocon_2025_111159 crossref_primary_10_1111_ajsp_70032 crossref_primary_10_1007_s11634_024_00610_9 crossref_primary_10_1007_s11423_023_10241_0 crossref_primary_10_1098_rspb_2025_0963 crossref_primary_10_1016_j_scitotenv_2023_166493 crossref_primary_10_1108_INTR_11_2022_0904 crossref_primary_10_1002_berj_4025 crossref_primary_10_1093_jole_lzae011 crossref_primary_10_1515_mks_2024_0017 crossref_primary_10_1007_s41542_025_00223_4 crossref_primary_10_2308_TAR_2023_0062 crossref_primary_10_1016_j_ijinfomgt_2023_102702 crossref_primary_10_1017_S0033291724002502 crossref_primary_10_1007_s11205_023_03118_5 crossref_primary_10_1073_pnas_2322887121 crossref_primary_10_1057_s41294_025_00261_5 crossref_primary_10_3389_fpsyg_2025_1644696 crossref_primary_10_1017_S1537592724000434 crossref_primary_10_1177_00031224231156190 crossref_primary_10_1111_sjop_13066 crossref_primary_10_1215_00703370_11873109 crossref_primary_10_2139_ssrn_4677153 crossref_primary_10_1007_s11192_024_05085_1 crossref_primary_10_1177_25424823251328300 crossref_primary_10_1016_j_enpol_2023_113796 crossref_primary_10_1016_j_jbvi_2025_e00541 crossref_primary_10_1007_s11135_025_02060_7 crossref_primary_10_1111_ssqu_70078 crossref_primary_10_1007_s10654_025_01249_2 crossref_primary_10_1016_j_jclinepi_2025_111826 crossref_primary_10_1212_WNL_0000000000213640 crossref_primary_10_1080_00207659_2025_2478738 crossref_primary_10_1111_ele_14033 crossref_primary_10_3390_ijms26020857 crossref_primary_10_1016_j_gloenvcha_2024_102808 crossref_primary_10_3758_s13428_023_02252_9 crossref_primary_10_1257_aer_20211811 crossref_primary_10_3389_fpsyg_2025_1600764 crossref_primary_10_1016_j_cities_2025_106388 crossref_primary_10_1016_j_ecolecon_2025_108634 crossref_primary_10_1016_j_respol_2022_104551 crossref_primary_10_1007_s41682_024_00178_3 crossref_primary_10_1146_annurev_criminol_022422_013842 crossref_primary_10_1080_09644008_2025_2489409 crossref_primary_10_1080_17938120_2024_2399482 crossref_primary_10_1186_s12888_025_06829_w crossref_primary_10_1007_s11615_022_00435_1 crossref_primary_10_1287_mnsc_2022_00580 crossref_primary_10_1108_CMS_07_2024_0474 crossref_primary_10_1108_PR_06_2024_0583 crossref_primary_10_1080_0305764X_2025_2521512 crossref_primary_10_1177_00332941241308517 crossref_primary_10_1177_10591478241283835 crossref_primary_10_1007_s10551_024_05731_x crossref_primary_10_1057_s41599_025_04514_7 crossref_primary_10_1038_s41598_023_41357_1 crossref_primary_10_1590_0103_3352_2025_44_290090 crossref_primary_10_1016_j_csbj_2025_07_004 crossref_primary_10_1007_s10775_025_09748_0 crossref_primary_10_1177_10944281231221703 crossref_primary_10_14746_ssllt_48231 crossref_primary_10_1177_15271544231212155 crossref_primary_10_1093_restud_rdaf050 crossref_primary_10_1177_13540688251362306 crossref_primary_10_1017_S1755048324000361 crossref_primary_10_1002_pds_70173 crossref_primary_10_1080_00036846_2025_2470442 crossref_primary_10_1111_nana_13062 crossref_primary_10_1093_erae_jbae034 crossref_primary_10_1080_07352166_2022_2112902 crossref_primary_10_1007_s10680_024_09710_w crossref_primary_10_1177_1532673X241295673 crossref_primary_10_1177_27550311241249137 crossref_primary_10_3389_fpubh_2025_1562747 crossref_primary_10_1111_agec_12853 crossref_primary_10_1111_ejn_16521 crossref_primary_10_1109_ACCESS_2025_3574547 crossref_primary_10_1080_10705511_2025_2519209 crossref_primary_10_1007_s10668_023_03564_8 crossref_primary_10_1080_09645292_2025_2542734 crossref_primary_10_1111_1467_8454_12374 crossref_primary_10_1521_soco_2024_42_5_446 crossref_primary_10_1111_roie_12744 crossref_primary_10_1016_j_leaqua_2023_101677 crossref_primary_10_1016_j_jenvp_2025_102745 crossref_primary_10_1111_joms_13085 crossref_primary_10_1177_00104140251328017 crossref_primary_10_1038_s41598_024_82663_6 crossref_primary_10_1111_1745_9125_12367 crossref_primary_10_1007_s10838_023_09669_y crossref_primary_10_1017_ehs_2023_35 crossref_primary_10_1111_1745_9125_12362 crossref_primary_10_1080_01402382_2022_2164135 crossref_primary_10_1093_icc_dtad024 crossref_primary_10_1108_JKM_10_2024_1157 crossref_primary_10_1177_0734371X221121050 crossref_primary_10_1186_s12651_024_00384_9 crossref_primary_10_1002_cb_70038 crossref_primary_10_1017_S0003055423000072 crossref_primary_10_1093_jrsssa_qnae043 crossref_primary_10_1016_j_jeem_2022_102782 crossref_primary_10_1016_j_technovation_2025_103276 crossref_primary_10_1038_s41562_024_01939_z crossref_primary_10_1111_jcpp_14119 crossref_primary_10_1177_00938548251333798 crossref_primary_10_1016_j_jue_2023_103627 crossref_primary_10_1073_pnas_2403758121 crossref_primary_10_3390_bs15040526 crossref_primary_10_1016_j_socscimed_2023_116350 crossref_primary_10_1093_qopen_qoae029 crossref_primary_10_1080_00031305_2023_2261819 crossref_primary_10_1002_berj_4134 crossref_primary_10_1080_00343404_2024_2366289 crossref_primary_10_1007_s10648_024_09981_z crossref_primary_10_1080_0144929X_2025_2485395 crossref_primary_10_1007_s00148_022_00906_0 crossref_primary_10_1073_pnas_2312451120 crossref_primary_10_1177_10944281231219274 crossref_primary_10_1016_j_ijheh_2023_114271 crossref_primary_10_1093_ej_ueaf030 crossref_primary_10_1080_1068316X_2025_2474535 crossref_primary_10_1177_00222194241236164 crossref_primary_10_1111_cogs_70082 crossref_primary_10_1525_as_2025_2458608 crossref_primary_10_1016_j_apenergy_2023_120883 crossref_primary_10_1177_01600176231160486 crossref_primary_10_1088_2515_7620_ade2be crossref_primary_10_1093_oep_gpae034 crossref_primary_10_2139_ssrn_5392704 crossref_primary_10_1080_13504851_2024_2332533 crossref_primary_10_1111_2041_210X_14492 crossref_primary_10_1093_jeb_voaf084 crossref_primary_10_1007_s11356_022_23628_y crossref_primary_10_1080_17440572_2025_2539853 crossref_primary_10_1080_03050629_2023_2291659 crossref_primary_10_1057_s41288_025_00364_1 crossref_primary_10_1038_s41591_024_02902_1 crossref_primary_10_1111_brv_70055 crossref_primary_10_1093_ije_dyae147 crossref_primary_10_1016_j_leaqua_2023_101749 crossref_primary_10_1007_s40865_025_00271_y crossref_primary_10_1080_01402382_2024_2396737 crossref_primary_10_1002_evan_22020 crossref_primary_10_1007_s10551_024_05891_w crossref_primary_10_1017_S0007123424000644 crossref_primary_10_1177_10775595231224472 crossref_primary_10_1177_00938548241292820 crossref_primary_10_3390_languages10020020 crossref_primary_10_1007_s00181_023_02400_2 crossref_primary_10_1007_s10956_025_10236_x crossref_primary_10_1007_s10648_024_09962_2 crossref_primary_10_1016_j_econmod_2024_106957 crossref_primary_10_1111_brv_70029 crossref_primary_10_1016_j_irfa_2024_103304 crossref_primary_10_1002_ajim_23634 crossref_primary_10_1080_28375300_2025_2527996 crossref_primary_10_1111_bjso_12662 crossref_primary_10_1016_j_irfa_2025_104169 crossref_primary_10_1002_jae_3045 crossref_primary_10_1002_cpt_3159 crossref_primary_10_1080_00949655_2024_2449534 crossref_primary_10_2139_ssrn_3964310 crossref_primary_10_1002_gsj_1524 crossref_primary_10_1146_annurev_soc_030420_015345 crossref_primary_10_1111_kykl_12418 crossref_primary_10_1111_joms_13264 crossref_primary_10_1007_s11149_025_09495_8 crossref_primary_10_1111_joms_13267 crossref_primary_10_1016_j_alcr_2024_100641 crossref_primary_10_1007_s11162_024_09781_y crossref_primary_10_1080_10705511_2022_2131555 crossref_primary_10_1002_dev_22502 crossref_primary_10_1016_j_jeem_2025_103227 crossref_primary_10_1016_j_tra_2024_103979 crossref_primary_10_1016_j_leaqua_2024_101812 crossref_primary_10_1093_jrsssa_qnae095 crossref_primary_10_2139_ssrn_4503894 crossref_primary_10_1016_j_chieco_2025_102507 crossref_primary_10_1515_mks_2023_0047 crossref_primary_10_1007_s10648_024_09898_7 crossref_primary_10_1007_s13412_025_01013_8 crossref_primary_10_1002_smj_3714 crossref_primary_10_1038_s41598_023_50675_3 crossref_primary_10_1111_andr_13625 crossref_primary_10_1177_08997640241255707 crossref_primary_10_1016_j_infsof_2023_107198 crossref_primary_10_1016_j_procs_2023_08_059 crossref_primary_10_3390_su16229715 crossref_primary_10_1093_bioinformatics_btae527 crossref_primary_10_16997_jdd_1359 crossref_primary_10_1038_s42003_024_06499_6 crossref_primary_10_1177_00420980231158035 crossref_primary_10_1002_ece3_71076 crossref_primary_10_1177_00915521241300150 crossref_primary_10_1080_21620555_2023_2292538 crossref_primary_10_1016_j_socec_2023_102071 crossref_primary_10_1214_24_STS949 crossref_primary_10_1080_13510347_2025_2533502 crossref_primary_10_1007_s11205_024_03401_z crossref_primary_10_1016_j_chieco_2024_102127 crossref_primary_10_1007_s11482_024_10279_z crossref_primary_10_1145_3611667 crossref_primary_10_1111_socf_13044 crossref_primary_10_1146_annurev_biodatasci_103123_095750 crossref_primary_10_1057_s41287_025_00707_7 crossref_primary_10_1177_10693971251375124 crossref_primary_10_1002_pits_70083 crossref_primary_10_1111_csp2_70119 crossref_primary_10_1016_j_respol_2024_105133 crossref_primary_10_1080_13510347_2025_2537218 crossref_primary_10_1111_bjc_12428 crossref_primary_10_1007_s10602_023_09427_8 crossref_primary_10_1111_kykl_70002 crossref_primary_10_1080_10758216_2025_2519019 crossref_primary_10_1080_01443410_2025_2541751 crossref_primary_10_1111_1468_0009_12658 crossref_primary_10_1136_jech_2023_220692 crossref_primary_10_1002_pits_23578 crossref_primary_10_1177_01461672231209400 crossref_primary_10_1080_00036846_2024_2364917 crossref_primary_10_25300_MISQ_2024_18422 crossref_primary_10_1016_j_jcrimjus_2025_102383 crossref_primary_10_31497_zrzyxb_20250706 crossref_primary_10_1007_s40258_023_00843_3 crossref_primary_10_1016_j_irfa_2025_104477 crossref_primary_10_1016_j_rssm_2025_101038 |
| Cites_doi | 10.1017/9781139161879 10.1146/annurev-soc-071913-043455 10.2307/2981697 10.1097/ALN.0000000000003193 10.1007/978-1-4757-3692-2 10.18637/jss.v076.i12 10.1017/S0266466605050516 10.1162/REST_a_00153 10.1162/003465304323023688 10.1038/s41467-020-19478-2 10.1073/pnas.1510507113 10.1002/sim.3554 10.1515/jci-2013-0003 10.1515/jci-2016-0009 10.1093/esr/jcy037 10.1016/j.eeh.2020.101356 10.1080/01621459.1997.10474074 10.1515/9781400829828 10.1007/978-94-007-6094-3_13 10.1093/pan/mpw015 10.1080/01621459.1996.10476902 10.1002/sim.3565 10.18637/jss.v047.i11 10.1177/2515245917745629 10.1093/jas/sky277 10.2139/ssrn.3588978 10.1111/rssb.12348 10.1097/00001648-199901000-00008 10.1016/B978-1-55860-332-5.50011-0 10.3386/t0343 10.1515/jci-2013-0021 10.1111/rssb.12451 10.2307/j.ctv1c29t27 10.1017/CBO9780511803161 10.1002/sim.3532 10.1093/aje/kwr352 10.1515/jci-2015-0004 10.1017/CBO9781139025751 10.1002/sim.6973 10.1111/1467-9868.00381 10.1007/978-94-007-6094-3_15 10.1093/aje/kwj275 10.1214/09-SS057 10.1097/EDE.0b013e31828c776c 10.1093/biomet/82.4.669 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 |
| Copyright_xml | – notice: The Author(s) 2022 |
| DBID | AAYXX CITATION 7U4 8BJ AHOVV BHHNA DWI FQK JBE WZK |
| DOI | 10.1177/00491241221099552 |
| DatabaseName | CrossRef Sociological Abstracts (pre-2017) International Bibliography of the Social Sciences (IBSS) Education Research Index Sociological Abstracts Sociological Abstracts International Bibliography of the Social Sciences International Bibliography of the Social Sciences Sociological Abstracts (Ovid) |
| DatabaseTitle | CrossRef Sociological Abstracts (pre-2017) International Bibliography of the Social Sciences (IBSS) Sociological Abstracts |
| DatabaseTitleList | Sociological Abstracts (pre-2017) CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sociology & Social History Statistics |
| EISSN | 1552-8294 |
| EndPage | 1104 |
| ExternalDocumentID | 10_1177_00491241221099552 10.1177_00491241221099552 |
| GrantInformation_xml | – fundername: Office of Naval Research grantid: #N00014-17-S-1209; #N00014-21-1-235 funderid: https://doi.org/10.13039/100000006 – fundername: National Science Foundation grantid: #IIS-2106908 funderid: https://doi.org/10.13039/100000001 – fundername: Toyota Research Institute of North America grantid: PO000897 |
| GroupedDBID | --Z -TM -~X .2G .2L 01A 09Z 0R~ 123 186 1OL 1~K 31S 31V 31W 31X 3R3 4.4 41~ 53G 56W 5VS 9M8 AABOD AACKU AADIR AADUE AAGGD AAGLT AAJPV AAKTJ AAMFR AANSI AAPEO AAQDB AAQXI AARIX AATAA AAWLO ABAWP ABCCA ABCJG ABDLQ ABEHJ ABEIX ABFXH ABHQH ABIDT ABIPJ ABIVO ABJNI ABKRH ABPNF ABPPZ ABQKF ABQPY ABQXT ABRHV ABTDE ABUJY ABYTW ACAEP ACDXX ACFUR ACFZE ACGFS ACGOD ACHQT ACJER ACLZU ACNCT ACOFE ACOXC ACROE ACRPL ACSIQ ACUFS ACUIR ADDLC ADEBD ADEIA ADMHG ADNMO ADNON ADPEE ADRRZ ADSTG ADTOS ADUKL ADYCS ADZJE AEDXQ AEEHM AEOBU AESMA AESZF AETEA AEUHG AEVPJ AEWDL AEWHI AEXNY AFEET AFFNX AFKBI AFKRG AFMOU AFQAA AFUIA AFWMB AGDVU AGKLV AGNHF AGNWV AGQPQ AGWNL AHDMH AHHFK AHWHD AJUZI ALFTD ALMA_UNASSIGNED_HOLDINGS ANDLU ARBYP ARTOV ASPBG AUTPY AUVAJ AVWKF AYPQM AZFZN B8O B8S B8T B8Z BDZRT BKOMP BMVBW BPACV BYIEH CAG CBRKF CCGJY CEADM COF CS3 DD0 DD~ DG~ DOPDO DU5 DV7 DV8 EBS EJD F5P FEDTE FHBDP GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 HF~ HVGLF HZ~ H~9 J8X LPU N9A O9- OHT P.B P2P PQQKQ Q1R Q7O Q7P Q7X RIG ROL S01 SASJQ SAUOL SBI SCNPE SFB SFC SFK SFR SFT SFX SGP SGU SGV SHB SHF SHM SPJ SPK SPP SQCSI SSDHQ TN5 ULY WH7 WHG XOL XZL YHZ YNT YYP YYQ YZZ ZCG ZPLXX ZPPRI ZUP ZY4 ~32 AAEJI AAPII AAYXX ABUAX ABUFD ACCVC AEYHP AJGYC AJHME AJVBE AMNSR CITATION 7U4 8BJ AHOVV BHHNA DWI FQK JBE WZK |
| ID | FETCH-LOGICAL-c312t-7289455ee41ae0cee3f01d38b82aa09960aee02455e9da7107ee0fec7e6c7f2f3 |
| IEDL.DBID | AEVPJ |
| ISICitedReferencesCount | 377 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000805124800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0049-1241 |
| IngestDate | Sat Nov 08 00:03:06 EST 2025 Sat Nov 29 08:11:58 EST 2025 Tue Nov 18 21:58:29 EST 2025 Tue Jun 17 22:27:27 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | DAG causal inference bad controls regression back-door criterion |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c312t-7289455ee41ae0cee3f01d38b82aa09960aee02455e9da7107ee0fec7e6c7f2f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6366-1290 0000-0002-2021-7739 |
| PQID | 3089903469 |
| PQPubID | 48873 |
| PageCount | 34 |
| ParticipantIDs | proquest_journals_3089903469 crossref_primary_10_1177_00491241221099552 crossref_citationtrail_10_1177_00491241221099552 sage_journals_10_1177_00491241221099552 |
| PublicationCentury | 2000 |
| PublicationDate | 20240800 2024-08-00 20240801 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 8 year: 2024 text: 20240800 |
| PublicationDecade | 2020 |
| PublicationPlace | Los Angeles, CA |
| PublicationPlace_xml | – name: Los Angeles, CA – name: Thousand Oaks |
| PublicationTitle | Sociological methods & research |
| PublicationYear | 2024 |
| Publisher | SAGE Publications SAGE PUBLICATIONS, INC |
| Publisher_xml | – name: SAGE Publications – name: SAGE PUBLICATIONS, INC |
| References | Pearl 2011; 174 Textor, van der Zander, Gilthorpe, Liśkiewicz, Ellison 2016; 45 Wright 1921; 20 Shrier 2009; 28 Dorie, Harada, Carnegie, Hill 2016; 35 Rubin 2009; 28 Balke, Pearl 1997; 92 Greenland, Pearl, Robins 1999 Griffith, Morris, Tudball, Herbert, Mancano, Pike, Sharp, Sterne, Palmer, Smith, et 2020; 11 Chen, Pearl 2013 Henckel, Perković, Maathuis 2022; 84 Perkovic, Textor, Kalisch, Maathuis 2018; 18 White, Lu 2011; 93 Hahn 2004; 86 Hernández-Díaz, Schisterman, Hernán 2006; 164 Rohrer 2018; 1 Banack, Kaufman 2013; 24 Elwert, Winship 2014; 40 Wooldridge 2005; 21 Pearl 2013; 1 Kuroki, Miyakawa 2003; 65 Shpitser, Pearl 2008; 9 Pearl 1995; 82 Pearl 2009; 3 Pearl 2015; 3 Steiner, Kim 2016; 4 Kalisch, Mächler, Colombo, Maathuis, Bühlmann 2012; 47 Rosenbaum 1984; 147 Middleton, Scott, Diakow, Hill 2016; 24 Witte, Henckel, Maathuis, Didelez 2020; 21 Breen 2018; 34 Tikka, Karvanen 2017; 76 Bello, Ferreira, Gianola, Rosa 2018; 96 Gaskell, Sleigh 2020; 132 Cinelli, Hazlett Schneider 2020; 78 Sjölander 2009; 28 Cinelli, Kumor, Chen, Pearl, Bareinboim 2019 Cinelli, Hazlett; 82 Ding, Miratrix 2015; 3 Bareinboim, Pearl 2016; 113 Rotnitzky, Smucler 2020; 21 Angrist, Imbens, Rubin 1996; 91 bibr40-00491241221099552 bibr8-00491241221099552 bibr46-00491241221099552 Angrist J. D. (bibr3-00491241221099552) 2014 bibr20-00491241221099552 bibr59-00491241221099552 bibr13-00491241221099552 bibr60-00491241221099552 bibr26-00491241221099552 Rotnitzky A. (bibr58-00491241221099552) 2020; 21 Witte J. (bibr70-00491241221099552) 2020; 21 bibr7-00491241221099552 bibr41-00491241221099552 Pearl J. (bibr53-00491241221099552) 2018 bibr17-00491241221099552 bibr67-00491241221099552 Wooldridge J. M (bibr73-00491241221099552) 2010 bibr47-00491241221099552 bibr37-00491241221099552 Pearl J (bibr44-00491241221099552) bibr27-00491241221099552 bibr72-00491241221099552 bibr31-00491241221099552 bibr1-00491241221099552 Wright P. G (bibr74-00491241221099552) 1928 Bowden R. J. (bibr11-00491241221099552) 1990 Morgan S. L. (bibr42-00491241221099552) 2015 bibr9-00491241221099552 bibr32-00491241221099552 Cramér H (bibr21-00491241221099552) 1946 bibr29-00491241221099552 bibr68-00491241221099552 bibr39-00491241221099552 bibr48-00491241221099552 bibr38-00491241221099552 bibr62-00491241221099552 bibr2-00491241221099552 bibr22-00491241221099552 Textor J. (bibr66-00491241221099552) 2016; 45 bibr12-00491241221099552 Cinelli C. (bibr18-00491241221099552) bibr5-00491241221099552 Chen B. (bibr14-00491241221099552) 2013 bibr30-00491241221099552 bibr76-00491241221099552 bibr28-00491241221099552 bibr10-00491241221099552 bibr23-00491241221099552 bibr69-00491241221099552 Pearl J. (bibr52-00491241221099552) 2016 Hernán M. (bibr33-00491241221099552) 2020 bibr43-00491241221099552 bibr49-00491241221099552 bibr50-00491241221099552 bibr56-00491241221099552 bibr63-00491241221099552 bibr36-00491241221099552 Wright S (bibr75-00491241221099552) 1921; 20 bibr16-00491241221099552 Perkovic E. (bibr54-00491241221099552) 2018; 18 bibr71-00491241221099552 bibr51-00491241221099552 bibr4-00491241221099552 Shpitser I. (bibr61-00491241221099552) 2008; 9 Cinelli C. (bibr19-00491241221099552) 2019 bibr64-00491241221099552 bibr57-00491241221099552 bibr24-00491241221099552 bibr34-00491241221099552 bibr6-00491241221099552 bibr45-00491241221099552 bibr35-00491241221099552 bibr55-00491241221099552 bibr65-00491241221099552 bibr15-00491241221099552 bibr25-00491241221099552 |
| References_xml | – volume: 45 start-page: 1887 issue: 6 year: 2016 end-page: 94 article-title: Robust Causal Inference Using Directed Acyclic Graphs: the R Package ‘dagitty’ publication-title: International journal of epidemiology – volume: 28 start-page: 1416 issue: 9 year: 2009 end-page: 20 article-title: Propensity Scores and M-structures publication-title: Statistics in medicine – volume: 24 start-page: 307 issue: 3 year: 2016 end-page: 23 article-title: Bias Amplification and Bias Unmasking publication-title: Political Analysis – volume: 91 start-page: 444 issue: 434 year: 1996 end-page: 55 article-title: Identification of Causal Effects Using Instrumental Variables publication-title: Journal of the American statistical Association – volume: 3 start-page: 41 issue: 1 year: 2015 end-page: 57 article-title: To Adjust Or Not to Adjust? Sensitivity Analysis of M-bias and Butterfly-bias publication-title: Journal of Causal Inference – volume: 93 start-page: 1453 issue: 4 year: 2011 end-page: 9 article-title: Causal Diagrams for Treatment Effect Estimation with Application to Efficient Covariate Selection publication-title: Review of Economics and Statistics – year: 2013 article-title: Regression and Causation: A Critical Examination of Six Econometrics Textbooks publication-title: Real-World Economics Review – volume: 86 start-page: 73 issue: 1 year: 2004 end-page: 6 article-title: Functional Restriction and Efficiency in Causal Inference publication-title: Review of Economics and Statistics – volume: 3 start-page: 59 issue: 1 year: 2015 end-page: 60 article-title: Comment on Ding and Miratrix:“to Adjust Or Not to Adjust?” publication-title: Journal of Causal Inference – volume: 1 start-page: 27 issue: 1 year: 2018 end-page: 42 article-title: Thinking Clearly About Correlations and Causation: Graphical Causal Models for Observational Data publication-title: Advances in Methods and Practices in Psychological Science – year: 2019 article-title: Sensitivity Analysis of Linear Structural Causal Models publication-title: International Conference on Machine Learning – volume: 132 start-page: 951 issue: 5 year: 2020 end-page: 67 article-title: An Introduction to Causal Diagrams for Anesthesiology Research publication-title: Anesthesiology – volume: 20 start-page: 557 issue: 7 year: 1921 end-page: 85 article-title: Correlation and Causation publication-title: Journal of agricultural research – volume: 82 start-page: 39 issue: 1 end-page: 67 article-title: Making Sense of Sensitivity: Extending Omitted Variable Bias publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) – volume: 47 start-page: 1 issue: 11 year: 2012 end-page: 26 article-title: Causal Inference Using Graphical Models with the R Package Pcalg publication-title: Journal of Statistical Software – volume: 18 year: 2018 article-title: Complete Graphical Characterization and Construction of Adjustment Sets in Markov Equivalence Classes of Ancestral Graphs publication-title: Journal of Machine Learning Research – article-title: An Omitted Variable Bias Framework for Sensitivity Analysis of Instrumental Variables publication-title: Work. Pap – volume: 11 start-page: 1 issue: 1 year: 2020 end-page: 12 article-title: Collider Bias Undermines Our Understanding of Covid-19 Disease Risk and Severity publication-title: Nature communications – volume: 76 year: 2017 article-title: Identifying Causal Effects with the R Package Causaleffect publication-title: Journal of Statistical Software – volume: 24 start-page: 461 issue: 3 year: 2013 end-page: 2 article-title: The “obesity Paradox” Explained publication-title: Epidemiology (Cambridge, Mass.) – volume: 65 start-page: 209 issue: 1 year: 2003 end-page: 22 article-title: Covariate Selection for Estimating the Causal Effect of Control Plans by Using Causal Diagrams publication-title: Journal of the Royal Statistical Society: Series B – volume: 9 start-page: 1941 issue: Sep year: 2008 end-page: 79 article-title: Complete Identification Methods for the Causal Hierarchy publication-title: Journal of Machine Learning Research – volume: 3 start-page: 96 year: 2009 end-page: 146 article-title: Causal Inference in Statistics: An Overview publication-title: Statistics surveys – volume: 21 start-page: 246 year: 2020 article-title: On Efficient Adjustment in Causal Graphs publication-title: Journal of Machine Learning Research – volume: 113 start-page: 7345 issue: 27 year: 2016 end-page: 52 article-title: Causal Inference and the Data-fusion Problem publication-title: Proceedings of the National Academy of Sciences – volume: 34 start-page: 603 issue: 6 year: 2018 end-page: 11 article-title: Some Methodological Problems in the Study of Multigenerational Mobility publication-title: European Sociological Review – volume: 40 start-page: 31 year: 2014 end-page: 53 article-title: Endogenous Selection Bias: The Problem of Conditioning on a Collider Variable publication-title: Annual review of sociology – volume: 84 start-page: 579 issue: 2 year: 2022 end-page: 99 article-title: Graphical Criteria for Efficient Total Effect Estimation Via Adjustment in Causal Linear Models publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) – volume: 82 start-page: 669 issue: 4 year: 1995 end-page: 88 article-title: Causal Diagrams for Empirical Research publication-title: Biometrika – volume: 35 start-page: 3453 issue: 20 year: 2016 end-page: 70 article-title: A Flexible, Interpretable Framework for Assessing Sensitivity to Unmeasured Confounding publication-title: Statistics in medicine – volume: 1 start-page: 155 issue: 1 year: 2013 end-page: 70 article-title: Linear Models: A Useful “microscope” for Causal Analysis publication-title: Journal of Causal Inference – volume: 21 start-page: 1026 issue: 5 year: 2005 end-page: 8 article-title: Violating Ignorability of Treatment by Controlling for Too Many Factors publication-title: Econometric Theory – start-page: 37 year: 1999 end-page: 48 article-title: Causal Diagrams for Epidemiologic Research publication-title: Epidemiology (Cambridge, Mass.) – volume: 92 start-page: 1171 issue: 439 year: 1997 end-page: 6 article-title: Bounds on Treatment Effects from Studies with Imperfect Compliance publication-title: Journal of the American Statistical Association – volume: 4 issue: 2 year: 2016 article-title: The Mechanics of Omitted Variable Bias: Bias Amplification and Cancellation of Offsetting Biases publication-title: Journal of causal inference – volume: 147 start-page: 656 issue: 5 year: 1984 end-page: 66 article-title: The Consequences of Adjustment for a Concomitant Variable that Has Been Affected by the Treatment publication-title: Journal of the Royal Statistical Society: Series A (General) – volume: 28 start-page: 1420 issue: 9 year: 2009 end-page: 3 article-title: Should Observational Studies Be Designed to Allow Lack of Balance in Covariate Distributions Across Treatment Groups? publication-title: Statistics in Medicine – volume: 96 start-page: 4045 issue: 10 year: 2018 end-page: 62 article-title: Conceptual Framework for Investigating Causal Effects from Observational Data in Livestock publication-title: Journal of animal science – volume: 78 start-page: 101356 year: 2020 article-title: Collider Bias in Economic History Research publication-title: Explorations in Economic History – volume: 164 start-page: 1115 issue: 11 year: 2006 end-page: 20 article-title: The Birth Weight “paradox” Uncovered? publication-title: American journal of epidemiology – volume: 21 start-page: 1 issue: 188 year: 2020 end-page: 86 article-title: Efficient Adjustment Sets for Population Average Causal Treatment Effect Estimation in Graphical Models publication-title: Journal of Machine Learning Research – volume: 174 start-page: 1223 issue: 11 year: 2011 end-page: 7 article-title: Invited Commentary: Understanding Bias Amplification publication-title: American journal of epidemiology – volume: 28 start-page: 1317 issue: 8 year: 2009 end-page: 8 article-title: Propensity Scores publication-title: Statistics in Medicine – ident: bibr28-00491241221099552 doi: 10.1017/9781139161879 – volume-title: Counterfactuals and Causal Inference year: 2015 ident: bibr42-00491241221099552 – volume-title: Instrumental Variables year: 1990 ident: bibr11-00491241221099552 – ident: bibr26-00491241221099552 doi: 10.1146/annurev-soc-071913-043455 – ident: bibr76-00491241221099552 – ident: bibr56-00491241221099552 doi: 10.2307/2981697 – ident: bibr71-00491241221099552 – ident: bibr15-00491241221099552 – ident: bibr18-00491241221099552 publication-title: Work. Pap – ident: bibr27-00491241221099552 doi: 10.1097/ALN.0000000000003193 – ident: bibr57-00491241221099552 doi: 10.1007/978-1-4757-3692-2 – ident: bibr68-00491241221099552 doi: 10.18637/jss.v076.i12 – ident: bibr72-00491241221099552 doi: 10.1017/S0266466605050516 – ident: bibr67-00491241221099552 – ident: bibr38-00491241221099552 – ident: bibr69-00491241221099552 doi: 10.1162/REST_a_00153 – ident: bibr62-00491241221099552 – volume: 21 start-page: 1 issue: 188 year: 2020 ident: bibr58-00491241221099552 publication-title: Journal of Machine Learning Research – ident: bibr31-00491241221099552 doi: 10.1162/003465304323023688 – ident: bibr20-00491241221099552 – ident: bibr30-00491241221099552 doi: 10.1038/s41467-020-19478-2 – ident: bibr7-00491241221099552 doi: 10.1073/pnas.1510507113 – ident: bibr63-00491241221099552 doi: 10.1002/sim.3554 – ident: bibr13-00491241221099552 – ident: bibr49-00491241221099552 doi: 10.1515/jci-2013-0003 – volume: 45 start-page: 1887 issue: 6 year: 2016 ident: bibr66-00491241221099552 publication-title: International journal of epidemiology – ident: bibr65-00491241221099552 doi: 10.1515/jci-2016-0009 – ident: bibr12-00491241221099552 doi: 10.1093/esr/jcy037 – ident: bibr60-00491241221099552 doi: 10.1016/j.eeh.2020.101356 – volume: 21 start-page: 246 year: 2020 ident: bibr70-00491241221099552 publication-title: Journal of Machine Learning Research – ident: bibr47-00491241221099552 – ident: bibr5-00491241221099552 doi: 10.1080/01621459.1997.10474074 – volume-title: Econometric Analysis of Cross Section and Panel Data year: 2010 ident: bibr73-00491241221099552 – volume-title: Mathematical Methods of Statistics year: 1946 ident: bibr21-00491241221099552 – ident: bibr1-00491241221099552 doi: 10.1515/9781400829828 – ident: bibr25-00491241221099552 doi: 10.1007/978-94-007-6094-3_13 – ident: bibr41-00491241221099552 doi: 10.1093/pan/mpw015 – ident: bibr2-00491241221099552 doi: 10.1080/01621459.1996.10476902 – ident: bibr45-00491241221099552 – ident: bibr59-00491241221099552 doi: 10.1002/sim.3565 – ident: bibr37-00491241221099552 doi: 10.18637/jss.v047.i11 – ident: bibr55-00491241221099552 doi: 10.1177/2515245917745629 – volume-title: Causal Inference in Statistics: a Primer year: 2016 ident: bibr52-00491241221099552 – ident: bibr8-00491241221099552 doi: 10.1093/jas/sky277 – ident: bibr40-00491241221099552 – volume: 20 start-page: 557 issue: 7 year: 1921 ident: bibr75-00491241221099552 publication-title: Journal of agricultural research – volume-title: The Book of Why: The New Science of Cause and Effect year: 2018 ident: bibr53-00491241221099552 – ident: bibr16-00491241221099552 doi: 10.2139/ssrn.3588978 – ident: bibr17-00491241221099552 doi: 10.1111/rssb.12348 – ident: bibr29-00491241221099552 doi: 10.1097/00001648-199901000-00008 – ident: bibr4-00491241221099552 doi: 10.1016/B978-1-55860-332-5.50011-0 – ident: bibr9-00491241221099552 doi: 10.3386/t0343 – volume-title: Causal Inference: What If year: 2020 ident: bibr33-00491241221099552 – volume-title: Mastering ’metrics: The Path From Cause to Effect year: 2014 ident: bibr3-00491241221099552 – ident: bibr23-00491241221099552 doi: 10.1515/jci-2013-0021 – ident: bibr32-00491241221099552 doi: 10.1111/rssb.12451 – volume: 18 year: 2018 ident: bibr54-00491241221099552 publication-title: Journal of Machine Learning Research – ident: bibr22-00491241221099552 doi: 10.2307/j.ctv1c29t27 – volume-title: Causality ident: bibr44-00491241221099552 doi: 10.1017/CBO9780511803161 – ident: bibr64-00491241221099552 doi: 10.1002/sim.3532 – ident: bibr48-00491241221099552 doi: 10.1093/aje/kwr352 – ident: bibr50-00491241221099552 doi: 10.1515/jci-2015-0004 – volume-title: Tariff on Animal and Vegetable Oils year: 1928 ident: bibr74-00491241221099552 – ident: bibr36-00491241221099552 doi: 10.1017/CBO9781139025751 – ident: bibr46-00491241221099552 – ident: bibr24-00491241221099552 doi: 10.1002/sim.6973 – ident: bibr39-00491241221099552 doi: 10.1111/1467-9868.00381 – ident: bibr10-00491241221099552 doi: 10.1007/978-94-007-6094-3_15 – year: 2019 ident: bibr19-00491241221099552 publication-title: International Conference on Machine Learning – ident: bibr34-00491241221099552 doi: 10.1093/aje/kwj275 – ident: bibr35-00491241221099552 – year: 2013 ident: bibr14-00491241221099552 publication-title: Real-World Economics Review – volume: 9 start-page: 1941 year: 2008 ident: bibr61-00491241221099552 publication-title: Journal of Machine Learning Research – ident: bibr51-00491241221099552 doi: 10.1214/09-SS057 – ident: bibr6-00491241221099552 doi: 10.1097/EDE.0b013e31828c776c – ident: bibr43-00491241221099552 doi: 10.1093/biomet/82.4.669 |
| SSID | ssj0012703 |
| Score | 2.7203174 |
| Snippet | Many students of statistics and econometrics express frustration with the way a problem known as “bad control” is treated in the traditional literature. The... |
| SourceID | proquest crossref sage |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1071 |
| SubjectTerms | Causal models Discrepancies Econometrics Frustration Regression (Statistics) Statistics |
| Title | A Crash Course in Good and Bad Controls |
| URI | https://journals.sagepub.com/doi/full/10.1177/00491241221099552 https://www.proquest.com/docview/3089903469 |
| Volume | 53 |
| WOSCitedRecordID | wos000805124800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVSPB databaseName: SAGE HSS 2015 customDbUrl: eissn: 1552-8294 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012703 issn: 0049-1241 databaseCode: AEVPJ dateStart: 19990201 isFulltext: true titleUrlDefault: http://journals.sagepub.com/ providerName: SAGE Publications |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV1LT8JAEJ4gePDi2wii2YORxKTa7vbFySBBjQfCQQ23ZtnORhIphoIJ_94d2oIaNZ68ttvHzk47M_vNfANwKgJEZaIuy0YHLdcxAUqIA9fSSiqjIiFHIRfNJoJuN-z3m70SjItamFyC6QWlVZk3Wvys6eum3ejLHGQkRp6mMUwO5wTseB6_mk1HUbbdXXTVoCOET89GBG0rSoicW0V52xpUOBHFlKHS6jz17pfAAw_sHJSmLgGukwOh3z70sylb-acfUsIWVupm69_ntw2buUPLWpkG7kAJk12oLetg2BnLKoBZRkgy34NGi7UnMn1m1C8vRTZM2O14HDOZxOxaxqydZc-n-_B403lo31l5vwZLCYdPrcAEb67nIbqORNtYX6FtJxbhIORS2kQDIxEJ6vWwGUvj2hg9sTWqAH0VaK7FAZSTcYKHwGIxECpGEUtXuz76g9DE8TrkWmvjD3JdBbsQfaRyMnPqqfESOQV_-VcRVuF8eclrxuTx2-B6sZ5RsWSRIIjUFq7frEKD1m916scb1f488gg2uBFOllxYh_J0MsNjWFdv02E6Ocn19B05DPcl |
| linkProvider | SAGE Publications |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7SCnrxLbZWzUEsCCt57Ha3x1paq9bSQ5XelmwywYJspVsF_73JPloVFcHzZkOYmWRm-Ga-QeiU-wDSZF0OAQqOS02CEkDkOloKaUwkYMBFOmzCHwyC8bg5zKsqbS9MLsHkwpZVmROlj_XidvspGU_T-CTKmMV0PM88v2XXhO3mUpZbnYfhzQJDYD7J8WVL-O_SHNP8dpPPXmkZan6o7kodTnfzP0fdQht5mIlbmV1soxWId1B10Z2Cz3DWl4szmpC3XVRv4fZMJI_YTrFLAE9ifDWdKixihS-Fwu2spj3ZQ_fdzqjdc_IpCo7klM0d36RUrucBuFQAMT6Ra0IVD6KACUEsOYsAsACsB00lTMBhtEc0SB8a0tdM831UiqcxHCCseMSlAq6Eq90GNKLAZNc6YFprE6UxXUGkkGIoc4pxO-niKaQFq_hXkVTQ-eKX54xf47fFtUI1YSH9kFvgknCT5ldQ3api-enHjap_XnmC1nqju37Yvx7cHqJ1ZgSVlf_VUGk-e4EjtCpf55Nkdpyb3ztjeM8X |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA_iRHzxW9ycmgdxIFTz0a7d45ybn4w9qOytpMkFB9KNdQr-9yZruqmoCD43DeHumrvr7-53CB3xEECarMsjQMHzqUlQIkh8T0shjYlEDLiYDpsIu92o32_03A832wvjJJid2rIqc6LpZW2_7pHSZw5jtIQ8DeOXKGMW1wkCcwWXTFpDjJ2Xmu3H3s0MR2AhcRizJf33qcM1v93ks2eah5sfKrymTqez9t_jrqNVF27iZm4fG2gB0k1UmXWp4GOc9-finC7kbQvVmrg1FtkTttPsMsCDFF8OhwqLVOFzoXArr23PttFDp33fuvLcNAVPcsomXmhSKz8IAHwqgBjfyDWhikdJxIQglqRFAFggNoCGEibwMFokGmQIdRlqpvkOWkyHKewirHjCpQKuhK_9OtSTyGTZOmJaaxOtMV1GpJBkLB3VuJ148RzTgl38q0jK6GT2yijn2fhtcbVQT1xoIOYWwCTcpPtlVLPqmD_6caPKn1ceouXeRSe-u-7e7qEVZuSUVwFW0eJk_AL7aEm-TgbZ-MBZ4DuIi9GL |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Crash+Course+in+Good+and+Bad+Controls&rft.jtitle=Sociological+methods+%26+research&rft.au=Cinelli%2C+Carlos&rft.au=Forney%2C+Andrew&rft.au=Pearl%2C+Judea&rft.date=2024-08-01&rft.issn=0049-1241&rft.eissn=1552-8294&rft.volume=53&rft.issue=3&rft.spage=1071&rft.epage=1104&rft_id=info:doi/10.1177%2F00491241221099552&rft.externalDBID=n%2Fa&rft.externalDocID=10_1177_00491241221099552 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0049-1241&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0049-1241&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0049-1241&client=summon |