A Crash Course in Good and Bad Controls

Many students of statistics and econometrics express frustration with the way a problem known as “bad control” is treated in the traditional literature. The issue arises when the addition of a variable to a regression equation produces an unintended discrepancy between the regression coefficient and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sociological methods & research Jg. 53; H. 3; S. 1071 - 1104
Hauptverfasser: Cinelli, Carlos, Forney, Andrew, Pearl, Judea
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Los Angeles, CA SAGE Publications 01.08.2024
SAGE PUBLICATIONS, INC
Schlagworte:
ISSN:0049-1241, 1552-8294
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Many students of statistics and econometrics express frustration with the way a problem known as “bad control” is treated in the traditional literature. The issue arises when the addition of a variable to a regression equation produces an unintended discrepancy between the regression coefficient and the effect that the coefficient is intended to represent. Avoiding such discrepancies presents a challenge to all analysts in the data intensive sciences. This note describes graphical tools for understanding, visualizing, and resolving the problem through a series of illustrative examples. By making this “crash course” accessible to instructors and practitioners, we hope to avail these tools to a broader community of scientists concerned with the causal interpretation of regression models.
AbstractList Many students of statistics and econometrics express frustration with the way a problem known as “bad control” is treated in the traditional literature. The issue arises when the addition of a variable to a regression equation produces an unintended discrepancy between the regression coefficient and the effect that the coefficient is intended to represent. Avoiding such discrepancies presents a challenge to all analysts in the data intensive sciences. This note describes graphical tools for understanding, visualizing, and resolving the problem through a series of illustrative examples. By making this “crash course” accessible to instructors and practitioners, we hope to avail these tools to a broader community of scientists concerned with the causal interpretation of regression models.
Author Cinelli, Carlos
Forney, Andrew
Pearl, Judea
Author_xml – sequence: 1
  givenname: Carlos
  orcidid: 0000-0002-2021-7739
  surname: Cinelli
  fullname: Cinelli, Carlos
  email: cinelli@uw.edu
– sequence: 2
  givenname: Andrew
  orcidid: 0000-0002-6366-1290
  surname: Forney
  fullname: Forney, Andrew
– sequence: 3
  givenname: Judea
  surname: Pearl
  fullname: Pearl, Judea
BookMark eNp9kMFOwzAMhiM0JLbBA3CrxIFTh520TXMcFQykSVzgXJnWhU6lGUl34O1JVSQkEJws2_9n__ZCzHrbsxDnCCtEra8AEoMyQSkRjElTeSTmGEKcS5PMxHzsx6PgRCy83wGg1KDm4nIdFY78a1TYg_MctX20sbaOqK-ja6pDuR-c7fypOG6o83z2FZfi6fbmsbiLtw-b-2K9jSuFcoi1zE2SpswJEkPFrBrAWuXPuSQKxjIgZpCjxNSkEXRIG640Z5VuZKOW4mKau3f2_cB-KHfBWB9WlgpyY0AlmQkqnFSVs947bsq9a9_IfZQI5fiP8tc_AqN_MFU70NCOB1Lb_UuuJtLTC3_7-Rv4BJT2b3s
CitedBy_id crossref_primary_10_1002_smj_3595
crossref_primary_10_1016_j_chieco_2024_102265
crossref_primary_10_1177_13540688251366835
crossref_primary_10_1177_0095327X241291856
crossref_primary_10_1016_j_biocon_2025_111159
crossref_primary_10_1111_ajsp_70032
crossref_primary_10_1007_s11634_024_00610_9
crossref_primary_10_1007_s11423_023_10241_0
crossref_primary_10_1098_rspb_2025_0963
crossref_primary_10_1016_j_scitotenv_2023_166493
crossref_primary_10_1108_INTR_11_2022_0904
crossref_primary_10_1002_berj_4025
crossref_primary_10_1093_jole_lzae011
crossref_primary_10_1515_mks_2024_0017
crossref_primary_10_1007_s41542_025_00223_4
crossref_primary_10_2308_TAR_2023_0062
crossref_primary_10_1016_j_ijinfomgt_2023_102702
crossref_primary_10_1017_S0033291724002502
crossref_primary_10_1007_s11205_023_03118_5
crossref_primary_10_1073_pnas_2322887121
crossref_primary_10_1057_s41294_025_00261_5
crossref_primary_10_3389_fpsyg_2025_1644696
crossref_primary_10_1017_S1537592724000434
crossref_primary_10_1177_00031224231156190
crossref_primary_10_1111_sjop_13066
crossref_primary_10_1215_00703370_11873109
crossref_primary_10_2139_ssrn_4677153
crossref_primary_10_1007_s11192_024_05085_1
crossref_primary_10_1177_25424823251328300
crossref_primary_10_1016_j_enpol_2023_113796
crossref_primary_10_1016_j_jbvi_2025_e00541
crossref_primary_10_1007_s11135_025_02060_7
crossref_primary_10_1111_ssqu_70078
crossref_primary_10_1007_s10654_025_01249_2
crossref_primary_10_1016_j_jclinepi_2025_111826
crossref_primary_10_1212_WNL_0000000000213640
crossref_primary_10_1080_00207659_2025_2478738
crossref_primary_10_1111_ele_14033
crossref_primary_10_3390_ijms26020857
crossref_primary_10_1016_j_gloenvcha_2024_102808
crossref_primary_10_3758_s13428_023_02252_9
crossref_primary_10_1257_aer_20211811
crossref_primary_10_3389_fpsyg_2025_1600764
crossref_primary_10_1016_j_cities_2025_106388
crossref_primary_10_1016_j_ecolecon_2025_108634
crossref_primary_10_1016_j_respol_2022_104551
crossref_primary_10_1007_s41682_024_00178_3
crossref_primary_10_1146_annurev_criminol_022422_013842
crossref_primary_10_1080_09644008_2025_2489409
crossref_primary_10_1080_17938120_2024_2399482
crossref_primary_10_1186_s12888_025_06829_w
crossref_primary_10_1007_s11615_022_00435_1
crossref_primary_10_1287_mnsc_2022_00580
crossref_primary_10_1108_CMS_07_2024_0474
crossref_primary_10_1108_PR_06_2024_0583
crossref_primary_10_1080_0305764X_2025_2521512
crossref_primary_10_1177_00332941241308517
crossref_primary_10_1177_10591478241283835
crossref_primary_10_1007_s10551_024_05731_x
crossref_primary_10_1057_s41599_025_04514_7
crossref_primary_10_1038_s41598_023_41357_1
crossref_primary_10_1590_0103_3352_2025_44_290090
crossref_primary_10_1016_j_csbj_2025_07_004
crossref_primary_10_1007_s10775_025_09748_0
crossref_primary_10_1177_10944281231221703
crossref_primary_10_14746_ssllt_48231
crossref_primary_10_1177_15271544231212155
crossref_primary_10_1093_restud_rdaf050
crossref_primary_10_1177_13540688251362306
crossref_primary_10_1017_S1755048324000361
crossref_primary_10_1002_pds_70173
crossref_primary_10_1080_00036846_2025_2470442
crossref_primary_10_1111_nana_13062
crossref_primary_10_1093_erae_jbae034
crossref_primary_10_1080_07352166_2022_2112902
crossref_primary_10_1007_s10680_024_09710_w
crossref_primary_10_1177_1532673X241295673
crossref_primary_10_1177_27550311241249137
crossref_primary_10_3389_fpubh_2025_1562747
crossref_primary_10_1111_agec_12853
crossref_primary_10_1111_ejn_16521
crossref_primary_10_1109_ACCESS_2025_3574547
crossref_primary_10_1080_10705511_2025_2519209
crossref_primary_10_1007_s10668_023_03564_8
crossref_primary_10_1080_09645292_2025_2542734
crossref_primary_10_1111_1467_8454_12374
crossref_primary_10_1521_soco_2024_42_5_446
crossref_primary_10_1111_roie_12744
crossref_primary_10_1016_j_leaqua_2023_101677
crossref_primary_10_1016_j_jenvp_2025_102745
crossref_primary_10_1111_joms_13085
crossref_primary_10_1177_00104140251328017
crossref_primary_10_1038_s41598_024_82663_6
crossref_primary_10_1111_1745_9125_12367
crossref_primary_10_1007_s10838_023_09669_y
crossref_primary_10_1017_ehs_2023_35
crossref_primary_10_1111_1745_9125_12362
crossref_primary_10_1080_01402382_2022_2164135
crossref_primary_10_1093_icc_dtad024
crossref_primary_10_1108_JKM_10_2024_1157
crossref_primary_10_1177_0734371X221121050
crossref_primary_10_1186_s12651_024_00384_9
crossref_primary_10_1002_cb_70038
crossref_primary_10_1017_S0003055423000072
crossref_primary_10_1093_jrsssa_qnae043
crossref_primary_10_1016_j_jeem_2022_102782
crossref_primary_10_1016_j_technovation_2025_103276
crossref_primary_10_1038_s41562_024_01939_z
crossref_primary_10_1111_jcpp_14119
crossref_primary_10_1177_00938548251333798
crossref_primary_10_1016_j_jue_2023_103627
crossref_primary_10_1073_pnas_2403758121
crossref_primary_10_3390_bs15040526
crossref_primary_10_1016_j_socscimed_2023_116350
crossref_primary_10_1093_qopen_qoae029
crossref_primary_10_1080_00031305_2023_2261819
crossref_primary_10_1002_berj_4134
crossref_primary_10_1080_00343404_2024_2366289
crossref_primary_10_1007_s10648_024_09981_z
crossref_primary_10_1080_0144929X_2025_2485395
crossref_primary_10_1007_s00148_022_00906_0
crossref_primary_10_1073_pnas_2312451120
crossref_primary_10_1177_10944281231219274
crossref_primary_10_1016_j_ijheh_2023_114271
crossref_primary_10_1093_ej_ueaf030
crossref_primary_10_1080_1068316X_2025_2474535
crossref_primary_10_1177_00222194241236164
crossref_primary_10_1111_cogs_70082
crossref_primary_10_1525_as_2025_2458608
crossref_primary_10_1016_j_apenergy_2023_120883
crossref_primary_10_1177_01600176231160486
crossref_primary_10_1088_2515_7620_ade2be
crossref_primary_10_1093_oep_gpae034
crossref_primary_10_2139_ssrn_5392704
crossref_primary_10_1080_13504851_2024_2332533
crossref_primary_10_1111_2041_210X_14492
crossref_primary_10_1093_jeb_voaf084
crossref_primary_10_1007_s11356_022_23628_y
crossref_primary_10_1080_17440572_2025_2539853
crossref_primary_10_1080_03050629_2023_2291659
crossref_primary_10_1057_s41288_025_00364_1
crossref_primary_10_1038_s41591_024_02902_1
crossref_primary_10_1111_brv_70055
crossref_primary_10_1093_ije_dyae147
crossref_primary_10_1016_j_leaqua_2023_101749
crossref_primary_10_1007_s40865_025_00271_y
crossref_primary_10_1080_01402382_2024_2396737
crossref_primary_10_1002_evan_22020
crossref_primary_10_1007_s10551_024_05891_w
crossref_primary_10_1017_S0007123424000644
crossref_primary_10_1177_10775595231224472
crossref_primary_10_1177_00938548241292820
crossref_primary_10_3390_languages10020020
crossref_primary_10_1007_s00181_023_02400_2
crossref_primary_10_1007_s10956_025_10236_x
crossref_primary_10_1007_s10648_024_09962_2
crossref_primary_10_1016_j_econmod_2024_106957
crossref_primary_10_1111_brv_70029
crossref_primary_10_1016_j_irfa_2024_103304
crossref_primary_10_1002_ajim_23634
crossref_primary_10_1080_28375300_2025_2527996
crossref_primary_10_1111_bjso_12662
crossref_primary_10_1016_j_irfa_2025_104169
crossref_primary_10_1002_jae_3045
crossref_primary_10_1002_cpt_3159
crossref_primary_10_1080_00949655_2024_2449534
crossref_primary_10_2139_ssrn_3964310
crossref_primary_10_1002_gsj_1524
crossref_primary_10_1146_annurev_soc_030420_015345
crossref_primary_10_1111_kykl_12418
crossref_primary_10_1111_joms_13264
crossref_primary_10_1007_s11149_025_09495_8
crossref_primary_10_1111_joms_13267
crossref_primary_10_1016_j_alcr_2024_100641
crossref_primary_10_1007_s11162_024_09781_y
crossref_primary_10_1080_10705511_2022_2131555
crossref_primary_10_1002_dev_22502
crossref_primary_10_1016_j_jeem_2025_103227
crossref_primary_10_1016_j_tra_2024_103979
crossref_primary_10_1016_j_leaqua_2024_101812
crossref_primary_10_1093_jrsssa_qnae095
crossref_primary_10_2139_ssrn_4503894
crossref_primary_10_1016_j_chieco_2025_102507
crossref_primary_10_1515_mks_2023_0047
crossref_primary_10_1007_s10648_024_09898_7
crossref_primary_10_1007_s13412_025_01013_8
crossref_primary_10_1002_smj_3714
crossref_primary_10_1038_s41598_023_50675_3
crossref_primary_10_1111_andr_13625
crossref_primary_10_1177_08997640241255707
crossref_primary_10_1016_j_infsof_2023_107198
crossref_primary_10_1016_j_procs_2023_08_059
crossref_primary_10_3390_su16229715
crossref_primary_10_1093_bioinformatics_btae527
crossref_primary_10_16997_jdd_1359
crossref_primary_10_1038_s42003_024_06499_6
crossref_primary_10_1177_00420980231158035
crossref_primary_10_1002_ece3_71076
crossref_primary_10_1177_00915521241300150
crossref_primary_10_1080_21620555_2023_2292538
crossref_primary_10_1016_j_socec_2023_102071
crossref_primary_10_1214_24_STS949
crossref_primary_10_1080_13510347_2025_2533502
crossref_primary_10_1007_s11205_024_03401_z
crossref_primary_10_1016_j_chieco_2024_102127
crossref_primary_10_1007_s11482_024_10279_z
crossref_primary_10_1145_3611667
crossref_primary_10_1111_socf_13044
crossref_primary_10_1146_annurev_biodatasci_103123_095750
crossref_primary_10_1057_s41287_025_00707_7
crossref_primary_10_1177_10693971251375124
crossref_primary_10_1002_pits_70083
crossref_primary_10_1111_csp2_70119
crossref_primary_10_1016_j_respol_2024_105133
crossref_primary_10_1080_13510347_2025_2537218
crossref_primary_10_1111_bjc_12428
crossref_primary_10_1007_s10602_023_09427_8
crossref_primary_10_1111_kykl_70002
crossref_primary_10_1080_10758216_2025_2519019
crossref_primary_10_1080_01443410_2025_2541751
crossref_primary_10_1111_1468_0009_12658
crossref_primary_10_1136_jech_2023_220692
crossref_primary_10_1002_pits_23578
crossref_primary_10_1177_01461672231209400
crossref_primary_10_1080_00036846_2024_2364917
crossref_primary_10_25300_MISQ_2024_18422
crossref_primary_10_1016_j_jcrimjus_2025_102383
crossref_primary_10_31497_zrzyxb_20250706
crossref_primary_10_1007_s40258_023_00843_3
crossref_primary_10_1016_j_irfa_2025_104477
crossref_primary_10_1016_j_rssm_2025_101038
Cites_doi 10.1017/9781139161879
10.1146/annurev-soc-071913-043455
10.2307/2981697
10.1097/ALN.0000000000003193
10.1007/978-1-4757-3692-2
10.18637/jss.v076.i12
10.1017/S0266466605050516
10.1162/REST_a_00153
10.1162/003465304323023688
10.1038/s41467-020-19478-2
10.1073/pnas.1510507113
10.1002/sim.3554
10.1515/jci-2013-0003
10.1515/jci-2016-0009
10.1093/esr/jcy037
10.1016/j.eeh.2020.101356
10.1080/01621459.1997.10474074
10.1515/9781400829828
10.1007/978-94-007-6094-3_13
10.1093/pan/mpw015
10.1080/01621459.1996.10476902
10.1002/sim.3565
10.18637/jss.v047.i11
10.1177/2515245917745629
10.1093/jas/sky277
10.2139/ssrn.3588978
10.1111/rssb.12348
10.1097/00001648-199901000-00008
10.1016/B978-1-55860-332-5.50011-0
10.3386/t0343
10.1515/jci-2013-0021
10.1111/rssb.12451
10.2307/j.ctv1c29t27
10.1017/CBO9780511803161
10.1002/sim.3532
10.1093/aje/kwr352
10.1515/jci-2015-0004
10.1017/CBO9781139025751
10.1002/sim.6973
10.1111/1467-9868.00381
10.1007/978-94-007-6094-3_15
10.1093/aje/kwj275
10.1214/09-SS057
10.1097/EDE.0b013e31828c776c
10.1093/biomet/82.4.669
ContentType Journal Article
Copyright The Author(s) 2022
Copyright_xml – notice: The Author(s) 2022
DBID AAYXX
CITATION
7U4
8BJ
AHOVV
BHHNA
DWI
FQK
JBE
WZK
DOI 10.1177/00491241221099552
DatabaseName CrossRef
Sociological Abstracts (pre-2017)
International Bibliography of the Social Sciences (IBSS)
Education Research Index
Sociological Abstracts
Sociological Abstracts
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
Sociological Abstracts (Ovid)
DatabaseTitle CrossRef
Sociological Abstracts (pre-2017)
International Bibliography of the Social Sciences (IBSS)
Sociological Abstracts
DatabaseTitleList Sociological Abstracts (pre-2017)
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Sociology & Social History
Statistics
EISSN 1552-8294
EndPage 1104
ExternalDocumentID 10_1177_00491241221099552
10.1177_00491241221099552
GrantInformation_xml – fundername: Office of Naval Research
  grantid: #N00014-17-S-1209; #N00014-21-1-235
  funderid: https://doi.org/10.13039/100000006
– fundername: National Science Foundation
  grantid: #IIS-2106908
  funderid: https://doi.org/10.13039/100000001
– fundername: Toyota Research Institute of North America
  grantid: PO000897
GroupedDBID --Z
-TM
-~X
.2G
.2L
01A
09Z
0R~
123
186
1OL
1~K
31S
31V
31W
31X
3R3
4.4
41~
53G
56W
5VS
9M8
AABOD
AACKU
AADIR
AADUE
AAGGD
AAGLT
AAJPV
AAKTJ
AAMFR
AANSI
AAPEO
AAQDB
AAQXI
AARIX
AATAA
AAWLO
ABAWP
ABCCA
ABCJG
ABDLQ
ABEHJ
ABEIX
ABFXH
ABHQH
ABIDT
ABIPJ
ABIVO
ABJNI
ABKRH
ABPNF
ABPPZ
ABQKF
ABQPY
ABQXT
ABRHV
ABTDE
ABUJY
ABYTW
ACAEP
ACDXX
ACFUR
ACFZE
ACGFS
ACGOD
ACHQT
ACJER
ACLZU
ACNCT
ACOFE
ACOXC
ACROE
ACRPL
ACSIQ
ACUFS
ACUIR
ADDLC
ADEBD
ADEIA
ADMHG
ADNMO
ADNON
ADPEE
ADRRZ
ADSTG
ADTOS
ADUKL
ADYCS
ADZJE
AEDXQ
AEEHM
AEOBU
AESMA
AESZF
AETEA
AEUHG
AEVPJ
AEWDL
AEWHI
AEXNY
AFEET
AFFNX
AFKBI
AFKRG
AFMOU
AFQAA
AFUIA
AFWMB
AGDVU
AGKLV
AGNHF
AGNWV
AGQPQ
AGWNL
AHDMH
AHHFK
AHWHD
AJUZI
ALFTD
ALMA_UNASSIGNED_HOLDINGS
ANDLU
ARBYP
ARTOV
ASPBG
AUTPY
AUVAJ
AVWKF
AYPQM
AZFZN
B8O
B8S
B8T
B8Z
BDZRT
BKOMP
BMVBW
BPACV
BYIEH
CAG
CBRKF
CCGJY
CEADM
COF
CS3
DD0
DD~
DG~
DOPDO
DU5
DV7
DV8
EBS
EJD
F5P
FEDTE
FHBDP
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
HF~
HVGLF
HZ~
H~9
J8X
LPU
N9A
O9-
OHT
P.B
P2P
PQQKQ
Q1R
Q7O
Q7P
Q7X
RIG
ROL
S01
SASJQ
SAUOL
SBI
SCNPE
SFB
SFC
SFK
SFR
SFT
SFX
SGP
SGU
SGV
SHB
SHF
SHM
SPJ
SPK
SPP
SQCSI
SSDHQ
TN5
ULY
WH7
WHG
XOL
XZL
YHZ
YNT
YYP
YYQ
YZZ
ZCG
ZPLXX
ZPPRI
ZUP
ZY4
~32
AAEJI
AAPII
AAYXX
ABUAX
ABUFD
ACCVC
AEYHP
AJGYC
AJHME
AJVBE
AMNSR
CITATION
7U4
8BJ
AHOVV
BHHNA
DWI
FQK
JBE
WZK
ID FETCH-LOGICAL-c312t-7289455ee41ae0cee3f01d38b82aa09960aee02455e9da7107ee0fec7e6c7f2f3
IEDL.DBID AEVPJ
ISICitedReferencesCount 377
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000805124800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0049-1241
IngestDate Sat Nov 08 00:03:06 EST 2025
Sat Nov 29 08:11:58 EST 2025
Tue Nov 18 21:58:29 EST 2025
Tue Jun 17 22:27:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords DAG
causal inference
bad controls
regression
back-door criterion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-7289455ee41ae0cee3f01d38b82aa09960aee02455e9da7107ee0fec7e6c7f2f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6366-1290
0000-0002-2021-7739
PQID 3089903469
PQPubID 48873
PageCount 34
ParticipantIDs proquest_journals_3089903469
crossref_primary_10_1177_00491241221099552
crossref_citationtrail_10_1177_00491241221099552
sage_journals_10_1177_00491241221099552
PublicationCentury 2000
PublicationDate 20240800
2024-08-00
20240801
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 8
  year: 2024
  text: 20240800
PublicationDecade 2020
PublicationPlace Los Angeles, CA
PublicationPlace_xml – name: Los Angeles, CA
– name: Thousand Oaks
PublicationTitle Sociological methods & research
PublicationYear 2024
Publisher SAGE Publications
SAGE PUBLICATIONS, INC
Publisher_xml – name: SAGE Publications
– name: SAGE PUBLICATIONS, INC
References Pearl 2011; 174
Textor, van der Zander, Gilthorpe, Liśkiewicz, Ellison 2016; 45
Wright 1921; 20
Shrier 2009; 28
Dorie, Harada, Carnegie, Hill 2016; 35
Rubin 2009; 28
Balke, Pearl 1997; 92
Greenland, Pearl, Robins 1999
Griffith, Morris, Tudball, Herbert, Mancano, Pike, Sharp, Sterne, Palmer, Smith, et 2020; 11
Chen, Pearl 2013
Henckel, Perković, Maathuis 2022; 84
Perkovic, Textor, Kalisch, Maathuis 2018; 18
White, Lu 2011; 93
Hahn 2004; 86
Hernández-Díaz, Schisterman, Hernán 2006; 164
Rohrer 2018; 1
Banack, Kaufman 2013; 24
Elwert, Winship 2014; 40
Wooldridge 2005; 21
Pearl 2013; 1
Kuroki, Miyakawa 2003; 65
Shpitser, Pearl 2008; 9
Pearl 1995; 82
Pearl 2009; 3
Pearl 2015; 3
Steiner, Kim 2016; 4
Kalisch, Mächler, Colombo, Maathuis, Bühlmann 2012; 47
Rosenbaum 1984; 147
Middleton, Scott, Diakow, Hill 2016; 24
Witte, Henckel, Maathuis, Didelez 2020; 21
Breen 2018; 34
Tikka, Karvanen 2017; 76
Bello, Ferreira, Gianola, Rosa 2018; 96
Gaskell, Sleigh 2020; 132
Cinelli, Hazlett
Schneider 2020; 78
Sjölander 2009; 28
Cinelli, Kumor, Chen, Pearl, Bareinboim 2019
Cinelli, Hazlett; 82
Ding, Miratrix 2015; 3
Bareinboim, Pearl 2016; 113
Rotnitzky, Smucler 2020; 21
Angrist, Imbens, Rubin 1996; 91
bibr40-00491241221099552
bibr8-00491241221099552
bibr46-00491241221099552
Angrist J. D. (bibr3-00491241221099552) 2014
bibr20-00491241221099552
bibr59-00491241221099552
bibr13-00491241221099552
bibr60-00491241221099552
bibr26-00491241221099552
Rotnitzky A. (bibr58-00491241221099552) 2020; 21
Witte J. (bibr70-00491241221099552) 2020; 21
bibr7-00491241221099552
bibr41-00491241221099552
Pearl J. (bibr53-00491241221099552) 2018
bibr17-00491241221099552
bibr67-00491241221099552
Wooldridge J. M (bibr73-00491241221099552) 2010
bibr47-00491241221099552
bibr37-00491241221099552
Pearl J (bibr44-00491241221099552)
bibr27-00491241221099552
bibr72-00491241221099552
bibr31-00491241221099552
bibr1-00491241221099552
Wright P. G (bibr74-00491241221099552) 1928
Bowden R. J. (bibr11-00491241221099552) 1990
Morgan S. L. (bibr42-00491241221099552) 2015
bibr9-00491241221099552
bibr32-00491241221099552
Cramér H (bibr21-00491241221099552) 1946
bibr29-00491241221099552
bibr68-00491241221099552
bibr39-00491241221099552
bibr48-00491241221099552
bibr38-00491241221099552
bibr62-00491241221099552
bibr2-00491241221099552
bibr22-00491241221099552
Textor J. (bibr66-00491241221099552) 2016; 45
bibr12-00491241221099552
Cinelli C. (bibr18-00491241221099552)
bibr5-00491241221099552
Chen B. (bibr14-00491241221099552) 2013
bibr30-00491241221099552
bibr76-00491241221099552
bibr28-00491241221099552
bibr10-00491241221099552
bibr23-00491241221099552
bibr69-00491241221099552
Pearl J. (bibr52-00491241221099552) 2016
Hernán M. (bibr33-00491241221099552) 2020
bibr43-00491241221099552
bibr49-00491241221099552
bibr50-00491241221099552
bibr56-00491241221099552
bibr63-00491241221099552
bibr36-00491241221099552
Wright S (bibr75-00491241221099552) 1921; 20
bibr16-00491241221099552
Perkovic E. (bibr54-00491241221099552) 2018; 18
bibr71-00491241221099552
bibr51-00491241221099552
bibr4-00491241221099552
Shpitser I. (bibr61-00491241221099552) 2008; 9
Cinelli C. (bibr19-00491241221099552) 2019
bibr64-00491241221099552
bibr57-00491241221099552
bibr24-00491241221099552
bibr34-00491241221099552
bibr6-00491241221099552
bibr45-00491241221099552
bibr35-00491241221099552
bibr55-00491241221099552
bibr65-00491241221099552
bibr15-00491241221099552
bibr25-00491241221099552
References_xml – volume: 45
  start-page: 1887
  issue: 6
  year: 2016
  end-page: 94
  article-title: Robust Causal Inference Using Directed Acyclic Graphs: the R Package ‘dagitty’
  publication-title: International journal of epidemiology
– volume: 28
  start-page: 1416
  issue: 9
  year: 2009
  end-page: 20
  article-title: Propensity Scores and M-structures
  publication-title: Statistics in medicine
– volume: 24
  start-page: 307
  issue: 3
  year: 2016
  end-page: 23
  article-title: Bias Amplification and Bias Unmasking
  publication-title: Political Analysis
– volume: 91
  start-page: 444
  issue: 434
  year: 1996
  end-page: 55
  article-title: Identification of Causal Effects Using Instrumental Variables
  publication-title: Journal of the American statistical Association
– volume: 3
  start-page: 41
  issue: 1
  year: 2015
  end-page: 57
  article-title: To Adjust Or Not to Adjust? Sensitivity Analysis of M-bias and Butterfly-bias
  publication-title: Journal of Causal Inference
– volume: 93
  start-page: 1453
  issue: 4
  year: 2011
  end-page: 9
  article-title: Causal Diagrams for Treatment Effect Estimation with Application to Efficient Covariate Selection
  publication-title: Review of Economics and Statistics
– year: 2013
  article-title: Regression and Causation: A Critical Examination of Six Econometrics Textbooks
  publication-title: Real-World Economics Review
– volume: 86
  start-page: 73
  issue: 1
  year: 2004
  end-page: 6
  article-title: Functional Restriction and Efficiency in Causal Inference
  publication-title: Review of Economics and Statistics
– volume: 3
  start-page: 59
  issue: 1
  year: 2015
  end-page: 60
  article-title: Comment on Ding and Miratrix:“to Adjust Or Not to Adjust?”
  publication-title: Journal of Causal Inference
– volume: 1
  start-page: 27
  issue: 1
  year: 2018
  end-page: 42
  article-title: Thinking Clearly About Correlations and Causation: Graphical Causal Models for Observational Data
  publication-title: Advances in Methods and Practices in Psychological Science
– year: 2019
  article-title: Sensitivity Analysis of Linear Structural Causal Models
  publication-title: International Conference on Machine Learning
– volume: 132
  start-page: 951
  issue: 5
  year: 2020
  end-page: 67
  article-title: An Introduction to Causal Diagrams for Anesthesiology Research
  publication-title: Anesthesiology
– volume: 20
  start-page: 557
  issue: 7
  year: 1921
  end-page: 85
  article-title: Correlation and Causation
  publication-title: Journal of agricultural research
– volume: 82
  start-page: 39
  issue: 1
  end-page: 67
  article-title: Making Sense of Sensitivity: Extending Omitted Variable Bias
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
– volume: 47
  start-page: 1
  issue: 11
  year: 2012
  end-page: 26
  article-title: Causal Inference Using Graphical Models with the R Package Pcalg
  publication-title: Journal of Statistical Software
– volume: 18
  year: 2018
  article-title: Complete Graphical Characterization and Construction of Adjustment Sets in Markov Equivalence Classes of Ancestral Graphs
  publication-title: Journal of Machine Learning Research
– article-title: An Omitted Variable Bias Framework for Sensitivity Analysis of Instrumental Variables
  publication-title: Work. Pap
– volume: 11
  start-page: 1
  issue: 1
  year: 2020
  end-page: 12
  article-title: Collider Bias Undermines Our Understanding of Covid-19 Disease Risk and Severity
  publication-title: Nature communications
– volume: 76
  year: 2017
  article-title: Identifying Causal Effects with the R Package Causaleffect
  publication-title: Journal of Statistical Software
– volume: 24
  start-page: 461
  issue: 3
  year: 2013
  end-page: 2
  article-title: The “obesity Paradox” Explained
  publication-title: Epidemiology (Cambridge, Mass.)
– volume: 65
  start-page: 209
  issue: 1
  year: 2003
  end-page: 22
  article-title: Covariate Selection for Estimating the Causal Effect of Control Plans by Using Causal Diagrams
  publication-title: Journal of the Royal Statistical Society: Series B
– volume: 9
  start-page: 1941
  issue: Sep
  year: 2008
  end-page: 79
  article-title: Complete Identification Methods for the Causal Hierarchy
  publication-title: Journal of Machine Learning Research
– volume: 3
  start-page: 96
  year: 2009
  end-page: 146
  article-title: Causal Inference in Statistics: An Overview
  publication-title: Statistics surveys
– volume: 21
  start-page: 246
  year: 2020
  article-title: On Efficient Adjustment in Causal Graphs
  publication-title: Journal of Machine Learning Research
– volume: 113
  start-page: 7345
  issue: 27
  year: 2016
  end-page: 52
  article-title: Causal Inference and the Data-fusion Problem
  publication-title: Proceedings of the National Academy of Sciences
– volume: 34
  start-page: 603
  issue: 6
  year: 2018
  end-page: 11
  article-title: Some Methodological Problems in the Study of Multigenerational Mobility
  publication-title: European Sociological Review
– volume: 40
  start-page: 31
  year: 2014
  end-page: 53
  article-title: Endogenous Selection Bias: The Problem of Conditioning on a Collider Variable
  publication-title: Annual review of sociology
– volume: 84
  start-page: 579
  issue: 2
  year: 2022
  end-page: 99
  article-title: Graphical Criteria for Efficient Total Effect Estimation Via Adjustment in Causal Linear Models
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
– volume: 82
  start-page: 669
  issue: 4
  year: 1995
  end-page: 88
  article-title: Causal Diagrams for Empirical Research
  publication-title: Biometrika
– volume: 35
  start-page: 3453
  issue: 20
  year: 2016
  end-page: 70
  article-title: A Flexible, Interpretable Framework for Assessing Sensitivity to Unmeasured Confounding
  publication-title: Statistics in medicine
– volume: 1
  start-page: 155
  issue: 1
  year: 2013
  end-page: 70
  article-title: Linear Models: A Useful “microscope” for Causal Analysis
  publication-title: Journal of Causal Inference
– volume: 21
  start-page: 1026
  issue: 5
  year: 2005
  end-page: 8
  article-title: Violating Ignorability of Treatment by Controlling for Too Many Factors
  publication-title: Econometric Theory
– start-page: 37
  year: 1999
  end-page: 48
  article-title: Causal Diagrams for Epidemiologic Research
  publication-title: Epidemiology (Cambridge, Mass.)
– volume: 92
  start-page: 1171
  issue: 439
  year: 1997
  end-page: 6
  article-title: Bounds on Treatment Effects from Studies with Imperfect Compliance
  publication-title: Journal of the American Statistical Association
– volume: 4
  issue: 2
  year: 2016
  article-title: The Mechanics of Omitted Variable Bias: Bias Amplification and Cancellation of Offsetting Biases
  publication-title: Journal of causal inference
– volume: 147
  start-page: 656
  issue: 5
  year: 1984
  end-page: 66
  article-title: The Consequences of Adjustment for a Concomitant Variable that Has Been Affected by the Treatment
  publication-title: Journal of the Royal Statistical Society: Series A (General)
– volume: 28
  start-page: 1420
  issue: 9
  year: 2009
  end-page: 3
  article-title: Should Observational Studies Be Designed to Allow Lack of Balance in Covariate Distributions Across Treatment Groups?
  publication-title: Statistics in Medicine
– volume: 96
  start-page: 4045
  issue: 10
  year: 2018
  end-page: 62
  article-title: Conceptual Framework for Investigating Causal Effects from Observational Data in Livestock
  publication-title: Journal of animal science
– volume: 78
  start-page: 101356
  year: 2020
  article-title: Collider Bias in Economic History Research
  publication-title: Explorations in Economic History
– volume: 164
  start-page: 1115
  issue: 11
  year: 2006
  end-page: 20
  article-title: The Birth Weight “paradox” Uncovered?
  publication-title: American journal of epidemiology
– volume: 21
  start-page: 1
  issue: 188
  year: 2020
  end-page: 86
  article-title: Efficient Adjustment Sets for Population Average Causal Treatment Effect Estimation in Graphical Models
  publication-title: Journal of Machine Learning Research
– volume: 174
  start-page: 1223
  issue: 11
  year: 2011
  end-page: 7
  article-title: Invited Commentary: Understanding Bias Amplification
  publication-title: American journal of epidemiology
– volume: 28
  start-page: 1317
  issue: 8
  year: 2009
  end-page: 8
  article-title: Propensity Scores
  publication-title: Statistics in Medicine
– ident: bibr28-00491241221099552
  doi: 10.1017/9781139161879
– volume-title: Counterfactuals and Causal Inference
  year: 2015
  ident: bibr42-00491241221099552
– volume-title: Instrumental Variables
  year: 1990
  ident: bibr11-00491241221099552
– ident: bibr26-00491241221099552
  doi: 10.1146/annurev-soc-071913-043455
– ident: bibr76-00491241221099552
– ident: bibr56-00491241221099552
  doi: 10.2307/2981697
– ident: bibr71-00491241221099552
– ident: bibr15-00491241221099552
– ident: bibr18-00491241221099552
  publication-title: Work. Pap
– ident: bibr27-00491241221099552
  doi: 10.1097/ALN.0000000000003193
– ident: bibr57-00491241221099552
  doi: 10.1007/978-1-4757-3692-2
– ident: bibr68-00491241221099552
  doi: 10.18637/jss.v076.i12
– ident: bibr72-00491241221099552
  doi: 10.1017/S0266466605050516
– ident: bibr67-00491241221099552
– ident: bibr38-00491241221099552
– ident: bibr69-00491241221099552
  doi: 10.1162/REST_a_00153
– ident: bibr62-00491241221099552
– volume: 21
  start-page: 1
  issue: 188
  year: 2020
  ident: bibr58-00491241221099552
  publication-title: Journal of Machine Learning Research
– ident: bibr31-00491241221099552
  doi: 10.1162/003465304323023688
– ident: bibr20-00491241221099552
– ident: bibr30-00491241221099552
  doi: 10.1038/s41467-020-19478-2
– ident: bibr7-00491241221099552
  doi: 10.1073/pnas.1510507113
– ident: bibr63-00491241221099552
  doi: 10.1002/sim.3554
– ident: bibr13-00491241221099552
– ident: bibr49-00491241221099552
  doi: 10.1515/jci-2013-0003
– volume: 45
  start-page: 1887
  issue: 6
  year: 2016
  ident: bibr66-00491241221099552
  publication-title: International journal of epidemiology
– ident: bibr65-00491241221099552
  doi: 10.1515/jci-2016-0009
– ident: bibr12-00491241221099552
  doi: 10.1093/esr/jcy037
– ident: bibr60-00491241221099552
  doi: 10.1016/j.eeh.2020.101356
– volume: 21
  start-page: 246
  year: 2020
  ident: bibr70-00491241221099552
  publication-title: Journal of Machine Learning Research
– ident: bibr47-00491241221099552
– ident: bibr5-00491241221099552
  doi: 10.1080/01621459.1997.10474074
– volume-title: Econometric Analysis of Cross Section and Panel Data
  year: 2010
  ident: bibr73-00491241221099552
– volume-title: Mathematical Methods of Statistics
  year: 1946
  ident: bibr21-00491241221099552
– ident: bibr1-00491241221099552
  doi: 10.1515/9781400829828
– ident: bibr25-00491241221099552
  doi: 10.1007/978-94-007-6094-3_13
– ident: bibr41-00491241221099552
  doi: 10.1093/pan/mpw015
– ident: bibr2-00491241221099552
  doi: 10.1080/01621459.1996.10476902
– ident: bibr45-00491241221099552
– ident: bibr59-00491241221099552
  doi: 10.1002/sim.3565
– ident: bibr37-00491241221099552
  doi: 10.18637/jss.v047.i11
– ident: bibr55-00491241221099552
  doi: 10.1177/2515245917745629
– volume-title: Causal Inference in Statistics: a Primer
  year: 2016
  ident: bibr52-00491241221099552
– ident: bibr8-00491241221099552
  doi: 10.1093/jas/sky277
– ident: bibr40-00491241221099552
– volume: 20
  start-page: 557
  issue: 7
  year: 1921
  ident: bibr75-00491241221099552
  publication-title: Journal of agricultural research
– volume-title: The Book of Why: The New Science of Cause and Effect
  year: 2018
  ident: bibr53-00491241221099552
– ident: bibr16-00491241221099552
  doi: 10.2139/ssrn.3588978
– ident: bibr17-00491241221099552
  doi: 10.1111/rssb.12348
– ident: bibr29-00491241221099552
  doi: 10.1097/00001648-199901000-00008
– ident: bibr4-00491241221099552
  doi: 10.1016/B978-1-55860-332-5.50011-0
– ident: bibr9-00491241221099552
  doi: 10.3386/t0343
– volume-title: Causal Inference: What If
  year: 2020
  ident: bibr33-00491241221099552
– volume-title: Mastering ’metrics: The Path From Cause to Effect
  year: 2014
  ident: bibr3-00491241221099552
– ident: bibr23-00491241221099552
  doi: 10.1515/jci-2013-0021
– ident: bibr32-00491241221099552
  doi: 10.1111/rssb.12451
– volume: 18
  year: 2018
  ident: bibr54-00491241221099552
  publication-title: Journal of Machine Learning Research
– ident: bibr22-00491241221099552
  doi: 10.2307/j.ctv1c29t27
– volume-title: Causality
  ident: bibr44-00491241221099552
  doi: 10.1017/CBO9780511803161
– ident: bibr64-00491241221099552
  doi: 10.1002/sim.3532
– ident: bibr48-00491241221099552
  doi: 10.1093/aje/kwr352
– ident: bibr50-00491241221099552
  doi: 10.1515/jci-2015-0004
– volume-title: Tariff on Animal and Vegetable Oils
  year: 1928
  ident: bibr74-00491241221099552
– ident: bibr36-00491241221099552
  doi: 10.1017/CBO9781139025751
– ident: bibr46-00491241221099552
– ident: bibr24-00491241221099552
  doi: 10.1002/sim.6973
– ident: bibr39-00491241221099552
  doi: 10.1111/1467-9868.00381
– ident: bibr10-00491241221099552
  doi: 10.1007/978-94-007-6094-3_15
– year: 2019
  ident: bibr19-00491241221099552
  publication-title: International Conference on Machine Learning
– ident: bibr34-00491241221099552
  doi: 10.1093/aje/kwj275
– ident: bibr35-00491241221099552
– year: 2013
  ident: bibr14-00491241221099552
  publication-title: Real-World Economics Review
– volume: 9
  start-page: 1941
  year: 2008
  ident: bibr61-00491241221099552
  publication-title: Journal of Machine Learning Research
– ident: bibr51-00491241221099552
  doi: 10.1214/09-SS057
– ident: bibr6-00491241221099552
  doi: 10.1097/EDE.0b013e31828c776c
– ident: bibr43-00491241221099552
  doi: 10.1093/biomet/82.4.669
SSID ssj0012703
Score 2.7203174
Snippet Many students of statistics and econometrics express frustration with the way a problem known as “bad control” is treated in the traditional literature. The...
SourceID proquest
crossref
sage
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1071
SubjectTerms Causal models
Discrepancies
Econometrics
Frustration
Regression (Statistics)
Statistics
Title A Crash Course in Good and Bad Controls
URI https://journals.sagepub.com/doi/full/10.1177/00491241221099552
https://www.proquest.com/docview/3089903469
Volume 53
WOSCitedRecordID wos000805124800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVSPB
  databaseName: SAGE HSS 2015
  customDbUrl:
  eissn: 1552-8294
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012703
  issn: 0049-1241
  databaseCode: AEVPJ
  dateStart: 19990201
  isFulltext: true
  titleUrlDefault: http://journals.sagepub.com/
  providerName: SAGE Publications
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV1LT8JAEJ4gePDi2wii2YORxKTa7vbFySBBjQfCQQ23ZtnORhIphoIJ_94d2oIaNZ68ttvHzk47M_vNfANwKgJEZaIuy0YHLdcxAUqIA9fSSiqjIiFHIRfNJoJuN-z3m70SjItamFyC6QWlVZk3Wvys6eum3ejLHGQkRp6mMUwO5wTseB6_mk1HUbbdXXTVoCOET89GBG0rSoicW0V52xpUOBHFlKHS6jz17pfAAw_sHJSmLgGukwOh3z70sylb-acfUsIWVupm69_ntw2buUPLWpkG7kAJk12oLetg2BnLKoBZRkgy34NGi7UnMn1m1C8vRTZM2O14HDOZxOxaxqydZc-n-_B403lo31l5vwZLCYdPrcAEb67nIbqORNtYX6FtJxbhIORS2kQDIxEJ6vWwGUvj2hg9sTWqAH0VaK7FAZSTcYKHwGIxECpGEUtXuz76g9DE8TrkWmvjD3JdBbsQfaRyMnPqqfESOQV_-VcRVuF8eclrxuTx2-B6sZ5RsWSRIIjUFq7frEKD1m916scb1f488gg2uBFOllxYh_J0MsNjWFdv02E6Ocn19B05DPcl
linkProvider SAGE Publications
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7SCnrxLbZWzUEsCCt57Ha3x1paq9bSQ5XelmwywYJspVsF_73JPloVFcHzZkOYmWRm-Ga-QeiU-wDSZF0OAQqOS02CEkDkOloKaUwkYMBFOmzCHwyC8bg5zKsqbS9MLsHkwpZVmROlj_XidvspGU_T-CTKmMV0PM88v2XXhO3mUpZbnYfhzQJDYD7J8WVL-O_SHNP8dpPPXmkZan6o7kodTnfzP0fdQht5mIlbmV1soxWId1B10Z2Cz3DWl4szmpC3XVRv4fZMJI_YTrFLAE9ifDWdKixihS-Fwu2spj3ZQ_fdzqjdc_IpCo7klM0d36RUrucBuFQAMT6Ra0IVD6KACUEsOYsAsACsB00lTMBhtEc0SB8a0tdM831UiqcxHCCseMSlAq6Eq90GNKLAZNc6YFprE6UxXUGkkGIoc4pxO-niKaQFq_hXkVTQ-eKX54xf47fFtUI1YSH9kFvgknCT5ldQ3api-enHjap_XnmC1nqju37Yvx7cHqJ1ZgSVlf_VUGk-e4EjtCpf55Nkdpyb3ztjeM8X
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA_iRHzxW9ycmgdxIFTz0a7d45ybn4w9qOytpMkFB9KNdQr-9yZruqmoCD43DeHumrvr7-53CB3xEECarMsjQMHzqUlQIkh8T0shjYlEDLiYDpsIu92o32_03A832wvjJJid2rIqc6LpZW2_7pHSZw5jtIQ8DeOXKGMW1wkCcwWXTFpDjJ2Xmu3H3s0MR2AhcRizJf33qcM1v93ks2eah5sfKrymTqez9t_jrqNVF27iZm4fG2gB0k1UmXWp4GOc9-finC7kbQvVmrg1FtkTttPsMsCDFF8OhwqLVOFzoXArr23PttFDp33fuvLcNAVPcsomXmhSKz8IAHwqgBjfyDWhikdJxIQglqRFAFggNoCGEibwMFokGmQIdRlqpvkOWkyHKewirHjCpQKuhK_9OtSTyGTZOmJaaxOtMV1GpJBkLB3VuJ148RzTgl38q0jK6GT2yijn2fhtcbVQT1xoIOYWwCTcpPtlVLPqmD_6caPKn1ceouXeRSe-u-7e7qEVZuSUVwFW0eJk_AL7aEm-TgbZ-MBZ4DuIi9GL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Crash+Course+in+Good+and+Bad+Controls&rft.jtitle=Sociological+methods+%26+research&rft.au=Cinelli%2C+Carlos&rft.au=Forney%2C+Andrew&rft.au=Pearl%2C+Judea&rft.date=2024-08-01&rft.issn=0049-1241&rft.eissn=1552-8294&rft.volume=53&rft.issue=3&rft.spage=1071&rft.epage=1104&rft_id=info:doi/10.1177%2F00491241221099552&rft.externalDBID=n%2Fa&rft.externalDocID=10_1177_00491241221099552
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0049-1241&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0049-1241&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0049-1241&client=summon