A novel fuzzy clustering based method for image segmentation in RGB-D images
Automatic image segmentation is a challenging task in computer vision applications, especially in the presence of occluded objects, varying color, and different lighting conditions. The advancement of depth-sensing technologies has introduced RGB-Depth cameras which are capable to generate RGB-Depth...
Uloženo v:
| Vydáno v: | Engineering applications of artificial intelligence Ročník 111; s. 104709 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.05.2022
|
| Témata: | |
| ISSN: | 0952-1976, 1873-6769 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Automatic image segmentation is a challenging task in computer vision applications, especially in the presence of occluded objects, varying color, and different lighting conditions. The advancement of depth-sensing technologies has introduced RGB-Depth cameras which are capable to generate RGB-Depth images and brought significant changes in computer vision applications. However, the segmentation of RGB-Depth images is a difficult task. Therefore, in this paper, a new segmentation method for RGB-Depth images has been introduced and named as random Henry gas solubility optimization-fuzzy clustering method. Firstly, a random Henry gas solubility optimization algorithm has been developed. Next, the proposed optimization algorithm has been employed to obtain optimal fuzzy clusters which are finally merged through segmentation by aggregating superpixels. The standard NYU depth V2 RGB-Depth indoor image dataset is used for performance evaluation. The proposed segmentation approach has been compared with five different methods namely, kmeans, fuzzy c-means, Henry gas solubility optimization algorithm, chaotic gravitational search algorithm, and J-Segmentation in terms of qualitative and quantitative measures. The result analysis shows that the proposed RGB-D segmentation method outperforms the other considered methods. |
|---|---|
| AbstractList | Automatic image segmentation is a challenging task in computer vision applications, especially in the presence of occluded objects, varying color, and different lighting conditions. The advancement of depth-sensing technologies has introduced RGB-Depth cameras which are capable to generate RGB-Depth images and brought significant changes in computer vision applications. However, the segmentation of RGB-Depth images is a difficult task. Therefore, in this paper, a new segmentation method for RGB-Depth images has been introduced and named as random Henry gas solubility optimization-fuzzy clustering method. Firstly, a random Henry gas solubility optimization algorithm has been developed. Next, the proposed optimization algorithm has been employed to obtain optimal fuzzy clusters which are finally merged through segmentation by aggregating superpixels. The standard NYU depth V2 RGB-Depth indoor image dataset is used for performance evaluation. The proposed segmentation approach has been compared with five different methods namely, kmeans, fuzzy c-means, Henry gas solubility optimization algorithm, chaotic gravitational search algorithm, and J-Segmentation in terms of qualitative and quantitative measures. The result analysis shows that the proposed RGB-D segmentation method outperforms the other considered methods. |
| ArticleNumber | 104709 |
| Author | Saraswat, Mukesh Yadav, Nand Kishor |
| Author_xml | – sequence: 1 givenname: Nand Kishor orcidid: 0000-0002-1849-3224 surname: Yadav fullname: Yadav, Nand Kishor email: nandkishor.yadav@gmail.com – sequence: 2 givenname: Mukesh orcidid: 0000-0002-3427-9105 surname: Saraswat fullname: Saraswat, Mukesh email: saraswatmukesh@gmail.com |
| BookMark | eNqFkNFKwzAUhoNMcJu-guQFOpOmTVrwwjl1CgNB9DqkyUnN6NKRdIPt6e2o3nizqwPn8P2c_5ugkW89IHRLyYwSyu_WM_C12m6Vm6UkTftlJkh5gca0ECzhgpcjNCZlnia0FPwKTWJcE0JYkfExWs2xb_fQYLs7Hg9YN7vYQXC-xpWKYPAGuu_WYNsG7DaqBhyh3oDvVOdaj53HH8vH5Gm4xWt0aVUT4eZ3TtHXy_Pn4jVZvS_fFvNVohlNu0SkLGcGeEZIAcyokvLMUKCZqlLLNc90bnMjWJpTUYEQKgNbKFoBh8waRdgU8SFXhzbGAFZuQ_9BOEhK5MmJXMs_J_LkRA5OevD-H6jdUKULyjXn8YcBh77c3kGQUTvwGowLoDtpWncu4gc8D4RI |
| CitedBy_id | crossref_primary_10_1038_s41598_025_94318_1 crossref_primary_10_1007_s11831_025_10304_w crossref_primary_10_1016_j_asoc_2022_109939 crossref_primary_10_1016_j_autcon_2023_105055 crossref_primary_10_1016_j_bspc_2024_107063 crossref_primary_10_3390_s23146612 crossref_primary_10_1007_s11760_024_03419_3 crossref_primary_10_1016_j_eswa_2024_124943 crossref_primary_10_1016_j_engappai_2024_109229 crossref_primary_10_1016_j_patcog_2022_108686 crossref_primary_10_1016_j_asoc_2025_113675 crossref_primary_10_1016_j_engappai_2023_107327 crossref_primary_10_1016_j_bspc_2025_108457 crossref_primary_10_3390_brainsci13060893 crossref_primary_10_1007_s11042_023_15267_3 crossref_primary_10_1109_ACCESS_2024_3365700 crossref_primary_10_3390_s25154652 crossref_primary_10_1016_j_asoc_2023_110268 crossref_primary_10_3390_buildings15050748 crossref_primary_10_3390_su16062417 crossref_primary_10_1016_j_engappai_2022_105162 crossref_primary_10_3390_electronics13061107 crossref_primary_10_1016_j_engappai_2025_110599 crossref_primary_10_1088_1361_6501_ad1816 |
| Cites_doi | 10.1016/j.cviu.2017.03.007 10.1023/A:1008202821328 10.1016/j.optlaseng.2019.06.011 10.1109/TPAMI.2015.2513407 10.3390/app8060902 10.1016/j.asoc.2018.05.006 10.1016/j.compag.2021.106237 10.1016/j.swevo.2013.11.003 10.1371/journal.pone.0150652 10.1016/j.future.2019.07.015 10.1016/0031-3203(91)90097-O 10.1109/IC3.2018.8530568 10.1016/j.jnggs.2018.02.001 10.1007/s00521-015-1920-1 10.1016/j.engappai.2018.03.001 10.1126/science.220.4598.671 10.1109/IC3.2016.7880252 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.engappai.2022.104709 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISSN | 1873-6769 |
| ExternalDocumentID | 10_1016_j_engappai_2022_104709 S095219762200029X |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS WUQ ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c312t-72353de64008e3da9164d1e14ab2f6c64c5f5d732517be77a4ef8a1be6e4fda03 |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000797949300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0952-1976 |
| IngestDate | Tue Nov 18 22:39:08 EST 2025 Sat Nov 29 07:11:26 EST 2025 Fri Feb 23 02:39:12 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Henry gas solubility optimization Image segmentation Fuzzy clustering Meta-heuristic optimization algorithms |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c312t-72353de64008e3da9164d1e14ab2f6c64c5f5d732517be77a4ef8a1be6e4fda03 |
| ORCID | 0000-0002-1849-3224 0000-0002-3427-9105 |
| ParticipantIDs | crossref_primary_10_1016_j_engappai_2022_104709 crossref_citationtrail_10_1016_j_engappai_2022_104709 elsevier_sciencedirect_doi_10_1016_j_engappai_2022_104709 |
| PublicationCentury | 2000 |
| PublicationDate | May 2022 2022-05-00 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: May 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering applications of artificial intelligence |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Mirjalili (b21) 2016; 27 Goldberg (b8) 1989 Lai, Bo, Ren, Fox (b17) 2011 QaisaHan, Hasanienb Saad Alghuwainem (b26) 2018; 69 Selim, Alsultan (b29) 1991; 24 Hasnat, Alata, Trémeau (b12) 2012; 6 Yalic, Can (b34) 2018; 4 Ekekrantz, Bore, Ambrus, Folkesson, Jensfelt (b6) 2017 Stutz, Hermans, Leibe (b32) 2018; 166 Sun, Wang, Wei (b33) 2018 Richtsfeld, Mörwald, Prankl, Zillich, Vincze (b28) 2012 Kennedy, Eberhart (b15) 1995 Kirkpatrick, Gelatt, Vecchi (b16) 1983; 220 Zawbaa, Emary, Grosan (b36) 2016; 11 Yoshida, H., Kawata, K., Fukuyama, Y., Nakanishi, Y., 1999. A particle swarm optimization for reactive power and voltage control considering voltage stability. In: Proc. Int. Conf. Intelligent System Application to Power Systems, Rio de Janeiro, Brazil. pp. 117–121. Alomous, Alrosan, Norwawi, Alomari, Dheeb, Almomani, Alqahtani (b1) 2005; 96 Chen, Tang, Zou, Huang, Zhou, Chen (b3) 2021; 187 Hashim, Houssein, Kashif, Mabrouk, Al-Atabany (b10) 2019 Mittal, H., Saraswat, M., 2018b. cKGSA based fuzzy clustering method for image segmentation of RGB-D images. In: Proceedings of 2018 Eleventh International Conference on Contemporary Computing (IC3). pp. 1–6. Silberman, Hoiem, Kohli, Fergus (b30) 2012 Li, Wu, Chang (b18) 2012 Nanda, Panda (b25) 2014; 16 Dal Mutto, Zanuttigh, Cortelazzo (b4) 2012; 6 Mittal, H., Pal, R., Kulhari, A., Saraswat, M., 2016. Chaotic kbest gravitational search algorithm (ckgsa). In: Proc. of IEEE International Conference on Contemporary Computing. pp. 1–6. Ren, Bo, Fox (b27) 2012 Hashim, Houssein, Mabrouk, Al-Atabany, Mirjalili (b11) 2019 Mittal, Saraswat (b23) 2018; 71 Chen, Tang, Zou, Huang, Li, He (b2) 2019; 122 Gupta, Arbelaez, Malik (b9) 2013 Fang, Yu, Wu, Chen, Jia (b7) 2018 Hasnat, Alata, Tremeau (b13) 2016; 38 Memon, Unar, Memon (b20) 2015 Li, Zhang, Wang, Zhao, Han, Chen (b19) 2017 Deng, Todorovic, Latecki (b5) 2016 Holland (b14) 1975 Storn, Price (b31) 1997; 11 Alomous (10.1016/j.engappai.2022.104709_b1) 2005; 96 Stutz (10.1016/j.engappai.2022.104709_b32) 2018; 166 Yalic (10.1016/j.engappai.2022.104709_b34) 2018; 4 Mittal (10.1016/j.engappai.2022.104709_b23) 2018; 71 Storn (10.1016/j.engappai.2022.104709_b31) 1997; 11 Hashim (10.1016/j.engappai.2022.104709_b10) 2019 Hashim (10.1016/j.engappai.2022.104709_b11) 2019 Ren (10.1016/j.engappai.2022.104709_b27) 2012 Sun (10.1016/j.engappai.2022.104709_b33) 2018 Selim (10.1016/j.engappai.2022.104709_b29) 1991; 24 Deng (10.1016/j.engappai.2022.104709_b5) 2016 Gupta (10.1016/j.engappai.2022.104709_b9) 2013 Lai (10.1016/j.engappai.2022.104709_b17) 2011 Mirjalili (10.1016/j.engappai.2022.104709_b21) 2016; 27 QaisaHan (10.1016/j.engappai.2022.104709_b26) 2018; 69 Holland (10.1016/j.engappai.2022.104709_b14) 1975 Richtsfeld (10.1016/j.engappai.2022.104709_b28) 2012 10.1016/j.engappai.2022.104709_b35 Kirkpatrick (10.1016/j.engappai.2022.104709_b16) 1983; 220 Chen (10.1016/j.engappai.2022.104709_b3) 2021; 187 Goldberg (10.1016/j.engappai.2022.104709_b8) 1989 Hasnat (10.1016/j.engappai.2022.104709_b13) 2016; 38 Li (10.1016/j.engappai.2022.104709_b18) 2012 Kennedy (10.1016/j.engappai.2022.104709_b15) 1995 Ekekrantz (10.1016/j.engappai.2022.104709_b6) 2017 Chen (10.1016/j.engappai.2022.104709_b2) 2019; 122 Hasnat (10.1016/j.engappai.2022.104709_b12) 2012; 6 Memon (10.1016/j.engappai.2022.104709_b20) 2015 Silberman (10.1016/j.engappai.2022.104709_b30) 2012 10.1016/j.engappai.2022.104709_b22 Fang (10.1016/j.engappai.2022.104709_b7) 2018 Nanda (10.1016/j.engappai.2022.104709_b25) 2014; 16 Dal Mutto (10.1016/j.engappai.2022.104709_b4) 2012; 6 Zawbaa (10.1016/j.engappai.2022.104709_b36) 2016; 11 10.1016/j.engappai.2022.104709_b24 Li (10.1016/j.engappai.2022.104709_b19) 2017 |
| References_xml | – year: 2018 ident: b7 article-title: Superpixel segmentation using weighted coplanar feature clustering on RGBD images publication-title: Appl. Sci. – start-page: 564 year: 2013 end-page: 571 ident: b9 article-title: Perceptual organization and recognition of indoor scenes from RGB-D images publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – year: 2018 ident: b33 article-title: An Improved Whale Optimization Algorithm Based on Different Searching Paths and Perceptual Disturbance, Vol. 10 – start-page: 789 year: 2012 end-page: 796 ident: b18 article-title: Segmentation using superpixels: A bipartite graph partitioning approach publication-title: Proc. of IEEE Conference on Computer Vision and Pattern Recognition – reference: Yoshida, H., Kawata, K., Fukuyama, Y., Nakanishi, Y., 1999. A particle swarm optimization for reactive power and voltage control considering voltage stability. In: Proc. Int. Conf. Intelligent System Application to Power Systems, Rio de Janeiro, Brazil. pp. 117–121. – reference: Mittal, H., Pal, R., Kulhari, A., Saraswat, M., 2016. Chaotic kbest gravitational search algorithm (ckgsa). In: Proc. of IEEE International Conference on Contemporary Computing. pp. 1–6. – volume: 220 start-page: 671 year: 1983 end-page: 680 ident: b16 article-title: Optimization by simulated annealing publication-title: Science – start-page: 646 year: 2019 end-page: 667 ident: b11 article-title: Henry gas solubility optimization: A novel physics-based algorithm publication-title: Future Gener. Comput. Syst. – start-page: 4791 year: 2012 end-page: 4796 ident: b28 article-title: Segmentation of unknown objects in indoor environments publication-title: Intelligent Robots and Systems (IROS)/RSJ International Conference – volume: 24 start-page: 1003 year: 1991 end-page: 1008 ident: b29 article-title: A simulated annealing algorithm for the clustering problem publication-title: Pattern Recognit. – volume: 69 start-page: 504 year: 2018 end-page: 515 ident: b26 article-title: Augmented grey wolf optimizer for grid-connected PMSG-based wind energy conversion systems publication-title: Appl. Soft Comput. – start-page: 1941 year: 1995 end-page: 1948 ident: b15 article-title: PSO optimization publication-title: Proc. IEEE Int. Conf. Neural Net., Vol. 4 – start-page: 127 year: 2016 end-page: 136 ident: b5 article-title: Unsupervised object region proposals for RGB-D indoor scenes publication-title: Comput. Vis. Image Underst. – start-page: 333 year: 2017 end-page: 339 ident: b19 article-title: Henry’s law and accumulation of weak source for crust-derived helium: A case study of weihe basin publication-title: J. Nat. Gas Geosci. – start-page: 2759 year: 2012 end-page: 2766 ident: b27 article-title: RGB-D scene labeling: Features and algorithms publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – year: 2015 ident: b20 article-title: Image Quality Assessment for Performance Evaluation of Focus Measure Operators, Vol. 34 – start-page: 746 year: 2012 end-page: 760 ident: b30 article-title: Indoor segmentation and support inference from RGBD images publication-title: Computer Vision–ECCV-12 – volume: 38 start-page: 2255 year: 2016 end-page: 2268 ident: b13 article-title: Joint color-spatial-directional clustering and region merging (jcsd-rm) for unsupervised RGB-D image segmentation publication-title: Pattern Anal. Mach. Intell. – volume: 6 start-page: 505 year: 2012 end-page: 521 ident: b4 article-title: Fusion of geometry and color information for scene segmentation publication-title: Signal Process. – year: 1975 ident: b14 article-title: Adaptation in Natural and Artificial Systems – volume: 166 start-page: 1 year: 2018 end-page: 27 ident: b32 article-title: Superpixels: An evaluation of the state-of-the-art publication-title: Comput. Vis. Image Underst. – volume: 27 start-page: 1053 year: 2016 end-page: 1073 ident: b21 article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems publication-title: Neural Comput. Appl. – year: 1989 ident: b8 article-title: Genetic Algorithms in Search Optimization and Machine Learning – volume: 96 year: 2005 ident: b1 article-title: A survey: challenges of image segmentation publication-title: J. Theor. Appl. Inf. Technol. – start-page: 1 year: 2019 end-page: 13 ident: b10 article-title: A modified henry gas solubility optimization for solving motif discovery problem publication-title: Neural Comput. Appl. – year: 2017 ident: b6 article-title: Unsupervised object discovery and segmentation of RGB-D images publication-title: Comput. Vis. Pattern Recognit. – volume: 122 start-page: 170 year: 2019 end-page: 183 ident: b2 article-title: High-accuracy multi-camera reconstruction enhanced by adaptive point cloud correction algorithm publication-title: Opt. Lasers Eng. – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: b31 article-title: Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Glob. Optim. – volume: 4 start-page: 379 year: 2018 end-page: 386 ident: b34 article-title: Automatic object segmentation on RGB-D data using surface normals and region similarity publication-title: VISIGRAPP – volume: 71 start-page: 226 year: 2018 end-page: 235 ident: b23 article-title: An optimum multi-level image thresholding segmentation using non-local means 2D histogram and exponential kbest gravitational search algorithm publication-title: Eng. Appl. Artif. Intell. – reference: Mittal, H., Saraswat, M., 2018b. cKGSA based fuzzy clustering method for image segmentation of RGB-D images. In: Proceedings of 2018 Eleventh International Conference on Contemporary Computing (IC3). pp. 1–6. – volume: 11 year: 2016 ident: b36 article-title: Feature selection via chaotic antlion optimization publication-title: PLoS One – volume: 187 start-page: 106 year: 2021 end-page: 237 ident: b3 article-title: 3D global mapping of large-scale unstructured orchard integrating eye-in-hand stereo vision and SLAM publication-title: Comput. Electron. Agric. – volume: 6 start-page: 505 year: 2012 end-page: 521 ident: b12 article-title: Unsupervised RGB-D image segmentation using joint clustering and region merging publication-title: J-STSP – start-page: 1817 year: 2011 end-page: 1824 ident: b17 article-title: A large-scale hierarchical multi-view RGB-D object dataset publication-title: IEEE International Conference on Robotics and Automation (ICRA) – volume: 16 start-page: 1 year: 2014 end-page: 18 ident: b25 article-title: A survey on nature inspired metaheuristicalgorithms for partitional clustering publication-title: Swarm Evol. Comput. – start-page: 2759 year: 2012 ident: 10.1016/j.engappai.2022.104709_b27 article-title: RGB-D scene labeling: Features and algorithms – volume: 166 start-page: 1 year: 2018 ident: 10.1016/j.engappai.2022.104709_b32 article-title: Superpixels: An evaluation of the state-of-the-art publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2017.03.007 – start-page: 127 year: 2016 ident: 10.1016/j.engappai.2022.104709_b5 article-title: Unsupervised object region proposals for RGB-D indoor scenes publication-title: Comput. Vis. Image Underst. – volume: 11 start-page: 341 year: 1997 ident: 10.1016/j.engappai.2022.104709_b31 article-title: Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Glob. Optim. doi: 10.1023/A:1008202821328 – volume: 122 start-page: 170 year: 2019 ident: 10.1016/j.engappai.2022.104709_b2 article-title: High-accuracy multi-camera reconstruction enhanced by adaptive point cloud correction algorithm publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2019.06.011 – year: 1989 ident: 10.1016/j.engappai.2022.104709_b8 – volume: 38 start-page: 2255 year: 2016 ident: 10.1016/j.engappai.2022.104709_b13 article-title: Joint color-spatial-directional clustering and region merging (jcsd-rm) for unsupervised RGB-D image segmentation publication-title: Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2513407 – volume: 96 year: 2005 ident: 10.1016/j.engappai.2022.104709_b1 article-title: A survey: challenges of image segmentation publication-title: J. Theor. Appl. Inf. Technol. – year: 2018 ident: 10.1016/j.engappai.2022.104709_b7 article-title: Superpixel segmentation using weighted coplanar feature clustering on RGBD images publication-title: Appl. Sci. doi: 10.3390/app8060902 – volume: 69 start-page: 504 year: 2018 ident: 10.1016/j.engappai.2022.104709_b26 article-title: Augmented grey wolf optimizer for grid-connected PMSG-based wind energy conversion systems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.05.006 – volume: 187 start-page: 106 year: 2021 ident: 10.1016/j.engappai.2022.104709_b3 article-title: 3D global mapping of large-scale unstructured orchard integrating eye-in-hand stereo vision and SLAM publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106237 – start-page: 789 year: 2012 ident: 10.1016/j.engappai.2022.104709_b18 article-title: Segmentation using superpixels: A bipartite graph partitioning approach – volume: 16 start-page: 1 year: 2014 ident: 10.1016/j.engappai.2022.104709_b25 article-title: A survey on nature inspired metaheuristicalgorithms for partitional clustering publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2013.11.003 – volume: 11 year: 2016 ident: 10.1016/j.engappai.2022.104709_b36 article-title: Feature selection via chaotic antlion optimization publication-title: PLoS One doi: 10.1371/journal.pone.0150652 – start-page: 564 year: 2013 ident: 10.1016/j.engappai.2022.104709_b9 article-title: Perceptual organization and recognition of indoor scenes from RGB-D images – start-page: 646 year: 2019 ident: 10.1016/j.engappai.2022.104709_b11 article-title: Henry gas solubility optimization: A novel physics-based algorithm publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.07.015 – start-page: 1817 year: 2011 ident: 10.1016/j.engappai.2022.104709_b17 article-title: A large-scale hierarchical multi-view RGB-D object dataset – start-page: 1941 year: 1995 ident: 10.1016/j.engappai.2022.104709_b15 article-title: PSO optimization – volume: 6 start-page: 505 year: 2012 ident: 10.1016/j.engappai.2022.104709_b12 article-title: Unsupervised RGB-D image segmentation using joint clustering and region merging publication-title: J-STSP – year: 1975 ident: 10.1016/j.engappai.2022.104709_b14 – volume: 24 start-page: 1003 year: 1991 ident: 10.1016/j.engappai.2022.104709_b29 article-title: A simulated annealing algorithm for the clustering problem publication-title: Pattern Recognit. doi: 10.1016/0031-3203(91)90097-O – volume: 6 start-page: 505 year: 2012 ident: 10.1016/j.engappai.2022.104709_b4 article-title: Fusion of geometry and color information for scene segmentation publication-title: Signal Process. – year: 2018 ident: 10.1016/j.engappai.2022.104709_b33 – start-page: 746 year: 2012 ident: 10.1016/j.engappai.2022.104709_b30 article-title: Indoor segmentation and support inference from RGBD images – ident: 10.1016/j.engappai.2022.104709_b24 doi: 10.1109/IC3.2018.8530568 – start-page: 1 year: 2019 ident: 10.1016/j.engappai.2022.104709_b10 article-title: A modified henry gas solubility optimization for solving motif discovery problem publication-title: Neural Comput. Appl. – start-page: 4791 year: 2012 ident: 10.1016/j.engappai.2022.104709_b28 article-title: Segmentation of unknown objects in indoor environments – year: 2017 ident: 10.1016/j.engappai.2022.104709_b6 article-title: Unsupervised object discovery and segmentation of RGB-D images publication-title: Comput. Vis. Pattern Recognit. – start-page: 333 year: 2017 ident: 10.1016/j.engappai.2022.104709_b19 article-title: Henry’s law and accumulation of weak source for crust-derived helium: A case study of weihe basin publication-title: J. Nat. Gas Geosci. doi: 10.1016/j.jnggs.2018.02.001 – volume: 27 start-page: 1053 year: 2016 ident: 10.1016/j.engappai.2022.104709_b21 article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1920-1 – volume: 4 start-page: 379 year: 2018 ident: 10.1016/j.engappai.2022.104709_b34 article-title: Automatic object segmentation on RGB-D data using surface normals and region similarity publication-title: VISIGRAPP – year: 2015 ident: 10.1016/j.engappai.2022.104709_b20 – volume: 71 start-page: 226 year: 2018 ident: 10.1016/j.engappai.2022.104709_b23 article-title: An optimum multi-level image thresholding segmentation using non-local means 2D histogram and exponential kbest gravitational search algorithm publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2018.03.001 – volume: 220 start-page: 671 year: 1983 ident: 10.1016/j.engappai.2022.104709_b16 article-title: Optimization by simulated annealing publication-title: Science doi: 10.1126/science.220.4598.671 – ident: 10.1016/j.engappai.2022.104709_b22 doi: 10.1109/IC3.2016.7880252 – ident: 10.1016/j.engappai.2022.104709_b35 |
| SSID | ssj0003846 |
| Score | 2.438795 |
| Snippet | Automatic image segmentation is a challenging task in computer vision applications, especially in the presence of occluded objects, varying color, and... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 104709 |
| SubjectTerms | Fuzzy clustering Henry gas solubility optimization Image segmentation Meta-heuristic optimization algorithms |
| Title | A novel fuzzy clustering based method for image segmentation in RGB-D images |
| URI | https://dx.doi.org/10.1016/j.engappai.2022.104709 |
| Volume | 111 |
| WOSCitedRecordID | wos000797949300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZgy4ELb9Tykg_copSN87BzXKC8VSEo0t4ix560KdtstdldSn8940eyqahUEOISRY4cJ54v4_HkmxlCnleJhrFM45BVkQ6TTImwNME5TKVac7RPQGtbbILv74vpNP_sSeytLSfAm0acneWn_1XU2IbCNqGzfyHu_qbYgOcodDyi2PH4R4KfBM18DbOgWp2f_wzUbGVSIRiHgFmwtC8ZbdmF9Ykh7LRweOIDkCzr8cvbl-Frd6294LffZC4Mhr-9LZNgYSlHtgDIIMdnr1Kklmuvy3XwsW6P5j0n2Lik2x_SsUZW36E9GjoicA_b0_6cd6yLkNnQkZybkYVRzn26a6dkBY9DQ629oIWdzv1NozvnwvEuNIf4brLeNUObP9N8nG_WsJ5Z-NUMaMZjJgaJ5dPrZIvxNBcjsjV5vzf90C_TsXBRXN0DDsLHLx_tcstlYI0c3CG3_DaCTpz475Jr0Nwjt_2WgnqF3WJTV7Wja7tPPk2oBQi1AKEbgFALEOoAQhEg1IKADgFC64ZagLhr7QPy7c3ewat3oa-pEao4YsuQsziNNWSougXEWuLuINERRIksWZWpLFFplWoem0x2JXAuE6iEjErIIKm0HMcPyaiZN7BNqACVlWjN5MDwi4-00GjqMsalUDwXUO6QtJuvQvmE86buyazomIXHRTfPhZnnws3zDnnR9zt1KVeu7JF34ii84egMwgJRdEXfR__Q9zG5ufkQnpDRcrGCp-SGWi_rdvHMA-4XrEyYCw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+fuzzy+clustering+based+method+for+image+segmentation+in+RGB-D+images&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Yadav%2C+Nand+Kishor&rft.au=Saraswat%2C+Mukesh&rft.date=2022-05-01&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.eissn=1873-6769&rft.volume=111&rft_id=info:doi/10.1016%2Fj.engappai.2022.104709&rft.externalDocID=S095219762200029X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |