Square-root algorithms for maximum correntropy estimation of linear discrete-time systems in presence of non-Gaussian noise

Recent developments in the realm of state estimation of stochastic dynamic systems in the presence of non-Gaussian noise have induced a new methodology called the maximum correntropy filtering. The filters designed under the maximum correntropy criterion (MCC) utilize a similarity measure (or corren...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Systems & control letters Ročník 108; s. 8 - 15
Hlavní autor: Kulikova, M.V.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.10.2017
Témata:
ISSN:0167-6911, 1872-7956
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Recent developments in the realm of state estimation of stochastic dynamic systems in the presence of non-Gaussian noise have induced a new methodology called the maximum correntropy filtering. The filters designed under the maximum correntropy criterion (MCC) utilize a similarity measure (or correntropy) between two random variables as a cost function. They are shown to improve the estimators’ robustness against outliers or impulsive noises. In this paper we explore the numerical stability of linear filtering technique proposed recently under the MCC approach. The resulted estimator is called the maximum correntropy criterion Kalman filter (MCC-KF). The purpose of this study is two-fold. First, the previously derived MCC-KF equations are revised and the related Kalman-like equality conditions are proved. Based on this theoretical finding, we improve the MCC-KF technique in the sense that the new method possesses a better estimation quality with the reduced computational cost compared with the previously proposed MCC-KF variant. Second, we devise some square-root implementations for the newly-designed improved estimator. The square-root algorithms are well known to be inherently more stable than the conventional Kalman-like implementations, which process the full error covariance matrix in each iteration step of the filter. Additionally, following the latest achievements in the KF community, all square-root algorithms are formulated here in the so-called array form. It implies the use of orthogonal transformations for recursive update of the required filtering quantities and, thereby, no loss of accuracy is incurred. Apart from the numerical stability benefits, the array form also makes the modern Kalman-like filters better suited to parallel implementation and to very large scale integration (VLSI) implementation. All the MCC-KF variants developed in this paper are demonstrated to outperform the previously proposed MCC-KF version in two numerical examples.
AbstractList Recent developments in the realm of state estimation of stochastic dynamic systems in the presence of non-Gaussian noise have induced a new methodology called the maximum correntropy filtering. The filters designed under the maximum correntropy criterion (MCC) utilize a similarity measure (or correntropy) between two random variables as a cost function. They are shown to improve the estimators’ robustness against outliers or impulsive noises. In this paper we explore the numerical stability of linear filtering technique proposed recently under the MCC approach. The resulted estimator is called the maximum correntropy criterion Kalman filter (MCC-KF). The purpose of this study is two-fold. First, the previously derived MCC-KF equations are revised and the related Kalman-like equality conditions are proved. Based on this theoretical finding, we improve the MCC-KF technique in the sense that the new method possesses a better estimation quality with the reduced computational cost compared with the previously proposed MCC-KF variant. Second, we devise some square-root implementations for the newly-designed improved estimator. The square-root algorithms are well known to be inherently more stable than the conventional Kalman-like implementations, which process the full error covariance matrix in each iteration step of the filter. Additionally, following the latest achievements in the KF community, all square-root algorithms are formulated here in the so-called array form. It implies the use of orthogonal transformations for recursive update of the required filtering quantities and, thereby, no loss of accuracy is incurred. Apart from the numerical stability benefits, the array form also makes the modern Kalman-like filters better suited to parallel implementation and to very large scale integration (VLSI) implementation. All the MCC-KF variants developed in this paper are demonstrated to outperform the previously proposed MCC-KF version in two numerical examples.
Author Kulikova, M.V.
Author_xml – sequence: 1
  givenname: M.V.
  orcidid: 0000-0001-8470-9831
  surname: Kulikova
  fullname: Kulikova, M.V.
  email: maria.kulikova@ist.utl.pt
  organization: CEMAT (Center for Computational and Stochastic Mathematics), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
BookMark eNqFUE1LAzEUDKJgW_0Lkj-wNdntZnfBgyJaBcGDeg5p8qIpu0l9ScXinze1evFSePB4HzPMzJgc-uCBkDPOppxxcb6cxk3UwfcwLRlvpiwXFwdkxNumLJquFodklDdNITrOj8k4xiVjrGRVNSJfT-9rhVBgCImq_jWgS29DpDYgHdSnG9YD1QERfMKw2lCIyQ0queBpsLR3HhRS46JGSFDkG9CsJkGmcJ6uECJ4DdvfrLqYq3WMTvk8uAgn5MiqPsLpb5-Ql9ub5-u74uFxfn999VDoipepEKacNa2pFl3LeGk7UUO5qCy3DQemjWFcN8Z00NpZXZdWC2NFCwvTqllV62ZWTYjY8WoMMSJYucJsAjeSM7mNUC7lX4RyG6FkubjIwIt_QO3Sj_mEyvX74Zc7OGRzHw5QRu22cRiHoJM0we2j-AZZkJj5
CitedBy_id crossref_primary_10_1109_TSMC_2019_2957269
crossref_primary_10_1016_j_ifacol_2020_12_264
crossref_primary_10_1007_s00034_021_01936_x
crossref_primary_10_1109_ACCESS_2020_2986022
crossref_primary_10_1016_j_cja_2021_10_024
crossref_primary_10_1016_j_ejcon_2022_100648
crossref_primary_10_1016_j_ifacol_2020_12_028
crossref_primary_10_1177_01423312241229039
crossref_primary_10_3390_e21111099
crossref_primary_10_1109_JSEN_2024_3436864
crossref_primary_10_1016_j_ifacol_2018_09_611
crossref_primary_10_1016_j_measurement_2022_110893
crossref_primary_10_1002_acs_3891
crossref_primary_10_1016_j_sysconle_2025_106198
crossref_primary_10_1109_TAC_2021_3056338
crossref_primary_10_3390_electronics11213548
crossref_primary_10_1016_j_isatra_2018_05_001
crossref_primary_10_1109_LSP_2019_2948257
crossref_primary_10_1016_j_sysconle_2024_106006
crossref_primary_10_1109_TAC_2019_2919341
crossref_primary_10_1002_asjc_1865
crossref_primary_10_3390_s18061919
crossref_primary_10_1109_LSP_2018_2869108
crossref_primary_10_1109_TVT_2022_3216337
crossref_primary_10_1016_j_sigpro_2019_03_003
crossref_primary_10_1016_j_apnum_2019_08_021
crossref_primary_10_3390_s18114080
crossref_primary_10_3389_fenrg_2022_990267
crossref_primary_10_3390_rs15235543
crossref_primary_10_1016_j_jfranklin_2020_03_042
crossref_primary_10_1080_00423114_2021_1928247
crossref_primary_10_1016_j_cnsns_2024_108266
crossref_primary_10_1109_TSMC_2019_2917712
crossref_primary_10_1002_rnc_5368
crossref_primary_10_1016_j_sigpro_2019_107253
crossref_primary_10_1049_cth2_12038
crossref_primary_10_1016_j_jfranklin_2024_106768
crossref_primary_10_1109_JSEN_2023_3251389
crossref_primary_10_1007_s40313_019_00476_9
crossref_primary_10_1007_s11768_022_00116_9
crossref_primary_10_1016_j_automatica_2021_110004
crossref_primary_10_1016_j_ymssp_2018_03_053
crossref_primary_10_1109_ACCESS_2018_2880618
crossref_primary_10_1016_j_sigpro_2017_12_012
crossref_primary_10_1109_TAC_2020_2997315
crossref_primary_10_1109_LRA_2021_3073646
crossref_primary_10_1109_TSIPN_2022_3175363
crossref_primary_10_1016_j_ifacol_2020_12_017
crossref_primary_10_1109_TAC_2023_3321368
crossref_primary_10_1109_JSEN_2020_3020273
crossref_primary_10_1016_j_ejcon_2020_07_003
Cites_doi 10.1109/TASL.2008.2002039
10.1016/j.sigpro.2016.06.025
10.1109/TAC.1986.1104128
10.1109/IJCNN.2012.6252730
10.1109/TPAMI.2010.220
10.1109/9.280773
10.1109/LSP.2015.2428713
10.1137/15M1039833
10.1109/LSP.2014.2319308
10.1109/TSP.2007.896065
10.1016/j.automatica.2016.10.004
10.1016/0165-1684(94)90077-9
10.1016/j.jfranklin.2015.03.039
10.1109/TAC.2013.2272136
10.1016/0005-1098(89)90013-7
10.1109/CISS.2016.7460553
10.1109/TAC.1971.1099816
10.1109/TSP.2015.2493985
10.1016/j.sigpro.2008.07.005
10.1093/oso/9780198535645.003.0010
10.1016/j.ejcon.2014.11.003
10.1109/9.384225
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.sysconle.2017.07.016
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-7956
EndPage 15
ExternalDocumentID 10_1016_j_sysconle_2017_07_016
S016769111730141X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSZ
T5K
TN5
WH7
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c312t-6d2478d3b98012f965e2b3f1f71e0cdd01c7dd9e8f4552fc6df68ebd8a435c743
ISICitedReferencesCount 67
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000414886200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-6911
IngestDate Sat Nov 29 05:30:31 EST 2025
Tue Nov 18 21:01:06 EST 2025
Fri Feb 23 02:32:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Maximum correntropy criterion
Robust estimation
Square-root filtering
Kalman filter
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-6d2478d3b98012f965e2b3f1f71e0cdd01c7dd9e8f4552fc6df68ebd8a435c743
ORCID 0000-0001-8470-9831
PageCount 8
ParticipantIDs crossref_primary_10_1016_j_sysconle_2017_07_016
crossref_citationtrail_10_1016_j_sysconle_2017_07_016
elsevier_sciencedirect_doi_10_1016_j_sysconle_2017_07_016
PublicationCentury 2000
PublicationDate October 2017
2017-10-00
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: October 2017
PublicationDecade 2010
PublicationTitle Systems & control letters
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Liu, Pokharel, Príncipe (b1) 2007; 55
G.T. Cinar, J.C. Príncipe, Hidden state estimation using the Correntropy Filter with fixed point update and adaptive kernel size, in: The 2012 International Joint Conference on Neural Networks, IJCNN, 2012, pp. 1–6.
Kailath, Sayed, Hassibi (b19) 2000
Chen, Liu, Zhao, Príncipe (b10) 2017; 76
Higham (b22) 2002
Chen, Wang, Zhao, Zheng, Príncipe (b8) 2015; 22
R. Izanloo, S.A. Fakoorian, H.S. Yazdi, D. Simon, Kalman filtering based on the maximum correntropy criterion in the presence of non-Gaussian noise, in: 2016 Annual Conference on Information Science and Systems, CISS, 2016,pp. 500–505.
Kulikov, Kulikova (b30) 2016; 38
Xu, Príncipe (b5) 2008; 16
Sayed, Kailath (b17) 1994; AC-39
He, Zheng, Hu (b6) 2011; 33
N.J. Higham, Analysis of the Cholesky decomposition of a semi-definite matrix, Tech. Rep. MIMS EPrint: 2008.56, University of Manchester 1990.
Liu, Qu, Zhao, Chen (b11) 2017; 130
Simon (b21) 2006
Kulikov, Kulikova (b27) 2014; 59
Park, Kailath (b18) 1995; 40
Kulikov, Kulikova (b29) 2016; 64
Kaminski, Bryson, Schmidt (b15) 1971; AC-16
Bierman (b16) 1977
Park, Kailath (b26) 1994; 40
.
Gunduz, Príncipe (b2) 2009; 89
Príncipe (b3) 2010
Chen, Xing, Liang, Zheng, Príncipe (b7) 2014; 21
R. Izanloo, S.A. Fakoorian, H.S. Yazdi, D. Simon, MatLab codes 2016.
Grewal, Andrews (b23) 2015
Kulikov, Kulikova (b28) 2015; 21
Ma, Qu, Gui, Xu, Zhao, Chen (b9) 2015; 352
Verhaegen (b14) 1989; 25
Golub, Van Loan (b24) 1983
Verhaegen, Van Dooren (b13) 1986; AC-31
10.1016/j.sysconle.2017.07.016_b4
Golub (10.1016/j.sysconle.2017.07.016_b24) 1983
10.1016/j.sysconle.2017.07.016_b12
Príncipe (10.1016/j.sysconle.2017.07.016_b3) 2010
Verhaegen (10.1016/j.sysconle.2017.07.016_b13) 1986; AC-31
Park (10.1016/j.sysconle.2017.07.016_b18) 1995; 40
He (10.1016/j.sysconle.2017.07.016_b6) 2011; 33
Kulikov (10.1016/j.sysconle.2017.07.016_b28) 2015; 21
Kulikov (10.1016/j.sysconle.2017.07.016_b30) 2016; 38
Xu (10.1016/j.sysconle.2017.07.016_b5) 2008; 16
Ma (10.1016/j.sysconle.2017.07.016_b9) 2015; 352
Park (10.1016/j.sysconle.2017.07.016_b26) 1994; 40
Gunduz (10.1016/j.sysconle.2017.07.016_b2) 2009; 89
Kaminski (10.1016/j.sysconle.2017.07.016_b15) 1971; AC-16
Sayed (10.1016/j.sysconle.2017.07.016_b17) 1994; AC-39
10.1016/j.sysconle.2017.07.016_b20
Chen (10.1016/j.sysconle.2017.07.016_b8) 2015; 22
Kulikov (10.1016/j.sysconle.2017.07.016_b27) 2014; 59
Kulikov (10.1016/j.sysconle.2017.07.016_b29) 2016; 64
10.1016/j.sysconle.2017.07.016_b25
Simon (10.1016/j.sysconle.2017.07.016_b21) 2006
Liu (10.1016/j.sysconle.2017.07.016_b11) 2017; 130
Verhaegen (10.1016/j.sysconle.2017.07.016_b14) 1989; 25
Bierman (10.1016/j.sysconle.2017.07.016_b16) 1977
Chen (10.1016/j.sysconle.2017.07.016_b7) 2014; 21
Chen (10.1016/j.sysconle.2017.07.016_b10) 2017; 76
Kailath (10.1016/j.sysconle.2017.07.016_b19) 2000
Grewal (10.1016/j.sysconle.2017.07.016_b23) 2015
Higham (10.1016/j.sysconle.2017.07.016_b22) 2002
Liu (10.1016/j.sysconle.2017.07.016_b1) 2007; 55
References_xml – volume: AC-39
  start-page: 619
  year: 1994
  end-page: 622
  ident: b17
  article-title: Extended
  publication-title: IEEE Trans. Autom. Control
– year: 2002
  ident: b22
  publication-title: Accuracy and Stability of Numerical Algorithms
– volume: 59
  start-page: 273
  year: 2014
  end-page: 279
  ident: b27
  article-title: Accurate numerical implementation of the continuous-discrete extended Kalman filter
  publication-title: IEEE Trans. Automat. Control
– volume: 89
  start-page: 14
  year: 2009
  end-page: 23
  ident: b2
  article-title: Correntropy as a novel measure for nonlinearity tests
  publication-title: Signal Process.
– volume: 130
  start-page: 152
  year: 2017
  end-page: 158
  ident: b11
  article-title: State space maximum correntropy filter
  publication-title: Signal Process.
– year: 2015
  ident: b23
  publication-title: Kalman Filtering: Theory and Practice using MATLAB
– reference: R. Izanloo, S.A. Fakoorian, H.S. Yazdi, D. Simon, MatLab codes 2016.
– volume: 64
  start-page: 948
  year: 2016
  end-page: 958
  ident: b29
  article-title: The accurate continuous-discrete extended Kalman filter for radar tracking
  publication-title: IEEE Trans. Signal Process.
– reference: R. Izanloo, S.A. Fakoorian, H.S. Yazdi, D. Simon, Kalman filtering based on the maximum correntropy criterion in the presence of non-Gaussian noise, in: 2016 Annual Conference on Information Science and Systems, CISS, 2016,pp. 500–505.
– volume: 25
  start-page: 437
  year: 1989
  end-page: 444
  ident: b14
  article-title: Round-off error propagation in four generally-applicable, recursive, least-squares estimation schemes
  publication-title: Automatica
– year: 1983
  ident: b24
  publication-title: Matrix Computations
– volume: AC-16
  start-page: 727
  year: 1971
  end-page: 735
  ident: b15
  article-title: Discrete square-root filtering: a survey of current techniques
  publication-title: IEEE Trans. Automat. Control
– year: 2006
  ident: b21
  publication-title: Optimal State Estimation: Kalman, H-Infinity, and Nonlinear Approaches
– volume: 21
  start-page: 880
  year: 2014
  end-page: 884
  ident: b7
  article-title: Steady-state mean-square error analysis for adaptive filtering under the maximum correntropy criterion
  publication-title: IEEE Signal Process. Lett.
– reference: N.J. Higham, Analysis of the Cholesky decomposition of a semi-definite matrix, Tech. Rep. MIMS EPrint: 2008.56, University of Manchester 1990.
– volume: 21
  start-page: 14
  year: 2015
  end-page: 26
  ident: b28
  article-title: High-order accurate continuous-discrete extended Kalman filter for chemical engineering
  publication-title: Eur. J. Control
– volume: 38
  start-page: A3565
  year: 2016
  end-page: A3588
  ident: b30
  article-title: Estimating the state in stiff continuous-time stochastic systems within extended Kalman filtering
  publication-title: SIAM J. Sci. Comput.
– reference: .
– volume: 16
  start-page: 1420
  year: 2008
  end-page: 1432
  ident: b5
  article-title: A pitch detector based on a generalized correlation function
  publication-title: IEEE Trans. Audio Speech Lang. Process.
– volume: 40
  start-page: 311
  year: 1994
  end-page: 318
  ident: b26
  article-title: An extended inverse QR adaptive filtering algorithm
  publication-title: Signal Process.
– year: 1977
  ident: b16
  publication-title: Factorization Methods for Discrete Sequential Estimation
– reference: G.T. Cinar, J.C. Príncipe, Hidden state estimation using the Correntropy Filter with fixed point update and adaptive kernel size, in: The 2012 International Joint Conference on Neural Networks, IJCNN, 2012, pp. 1–6.
– volume: 55
  start-page: 5286
  year: 2007
  end-page: 5298
  ident: b1
  article-title: Correntropy: properties and applications in non-Gaussian signal processing
  publication-title: IEEE Trans. Signal Process.
– volume: 33
  start-page: 1561
  year: 2011
  end-page: 1576
  ident: b6
  article-title: Maximum correntropy criterion for robust face recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 352
  start-page: 2708
  year: 2015
  end-page: 2727
  ident: b9
  article-title: Maximum correntropy criterion based sparse adaptive filtering algorithms for robust channel estimation under non-Gaussian environments
  publication-title: J. Franklin Inst. B
– volume: 22
  start-page: 1723
  year: 2015
  end-page: 1727
  ident: b8
  article-title: Convergence of a fixed-point algorithm under maximum correntropy criterion
  publication-title: IEEE Signal Process. Lett.
– volume: 76
  start-page: 70
  year: 2017
  end-page: 77
  ident: b10
  article-title: Maximum correntropy Kalman filter
  publication-title: Automatica
– volume: AC-31
  start-page: 907
  year: 1986
  end-page: 917
  ident: b13
  article-title: Numerical aspects of different Kalman filter implementations
  publication-title: IEEE Trans. Autom. Control
– volume: 40
  start-page: 895
  year: 1995
  end-page: 899
  ident: b18
  article-title: New square-root algorithms for
  publication-title: IEEE Trans. Automat. Control
– year: 2010
  ident: b3
  publication-title: Information Theoretic Learning: Renyi’s Entropy and Kernel Perspectives
– year: 2000
  ident: b19
  publication-title: Linear Estimation
– year: 2002
  ident: 10.1016/j.sysconle.2017.07.016_b22
– volume: 16
  start-page: 1420
  issue: 8
  year: 2008
  ident: 10.1016/j.sysconle.2017.07.016_b5
  article-title: A pitch detector based on a generalized correlation function
  publication-title: IEEE Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASL.2008.2002039
– volume: 130
  start-page: 152
  year: 2017
  ident: 10.1016/j.sysconle.2017.07.016_b11
  article-title: State space maximum correntropy filter
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2016.06.025
– volume: AC-31
  start-page: 907
  issue: 10
  year: 1986
  ident: 10.1016/j.sysconle.2017.07.016_b13
  article-title: Numerical aspects of different Kalman filter implementations
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.1986.1104128
– ident: 10.1016/j.sysconle.2017.07.016_b4
  doi: 10.1109/IJCNN.2012.6252730
– volume: 33
  start-page: 1561
  issue: 8
  year: 2011
  ident: 10.1016/j.sysconle.2017.07.016_b6
  article-title: Maximum correntropy criterion for robust face recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2010.220
– volume: AC-39
  start-page: 619
  issue: 3
  year: 1994
  ident: 10.1016/j.sysconle.2017.07.016_b17
  article-title: Extended Chandrasekhar recursion
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/9.280773
– year: 1983
  ident: 10.1016/j.sysconle.2017.07.016_b24
– year: 2000
  ident: 10.1016/j.sysconle.2017.07.016_b19
– volume: 22
  start-page: 1723
  issue: 10
  year: 2015
  ident: 10.1016/j.sysconle.2017.07.016_b8
  article-title: Convergence of a fixed-point algorithm under maximum correntropy criterion
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2015.2428713
– volume: 38
  start-page: A3565
  issue: 6
  year: 2016
  ident: 10.1016/j.sysconle.2017.07.016_b30
  article-title: Estimating the state in stiff continuous-time stochastic systems within extended Kalman filtering
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/15M1039833
– year: 2010
  ident: 10.1016/j.sysconle.2017.07.016_b3
– volume: 21
  start-page: 880
  issue: 7
  year: 2014
  ident: 10.1016/j.sysconle.2017.07.016_b7
  article-title: Steady-state mean-square error analysis for adaptive filtering under the maximum correntropy criterion
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2014.2319308
– year: 1977
  ident: 10.1016/j.sysconle.2017.07.016_b16
– volume: 55
  start-page: 5286
  issue: 11
  year: 2007
  ident: 10.1016/j.sysconle.2017.07.016_b1
  article-title: Correntropy: properties and applications in non-Gaussian signal processing
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2007.896065
– volume: 76
  start-page: 70
  year: 2017
  ident: 10.1016/j.sysconle.2017.07.016_b10
  article-title: Maximum correntropy Kalman filter
  publication-title: Automatica
  doi: 10.1016/j.automatica.2016.10.004
– volume: 40
  start-page: 311
  issue: 2–3
  year: 1994
  ident: 10.1016/j.sysconle.2017.07.016_b26
  article-title: An extended inverse QR adaptive filtering algorithm
  publication-title: Signal Process.
  doi: 10.1016/0165-1684(94)90077-9
– volume: 352
  start-page: 2708
  issue: 7
  year: 2015
  ident: 10.1016/j.sysconle.2017.07.016_b9
  article-title: Maximum correntropy criterion based sparse adaptive filtering algorithms for robust channel estimation under non-Gaussian environments
  publication-title: J. Franklin Inst. B
  doi: 10.1016/j.jfranklin.2015.03.039
– volume: 59
  start-page: 273
  issue: 1
  year: 2014
  ident: 10.1016/j.sysconle.2017.07.016_b27
  article-title: Accurate numerical implementation of the continuous-discrete extended Kalman filter
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2013.2272136
– volume: 25
  start-page: 437
  issue: 3
  year: 1989
  ident: 10.1016/j.sysconle.2017.07.016_b14
  article-title: Round-off error propagation in four generally-applicable, recursive, least-squares estimation schemes
  publication-title: Automatica
  doi: 10.1016/0005-1098(89)90013-7
– ident: 10.1016/j.sysconle.2017.07.016_b12
  doi: 10.1109/CISS.2016.7460553
– volume: AC-16
  start-page: 727
  issue: 6
  year: 1971
  ident: 10.1016/j.sysconle.2017.07.016_b15
  article-title: Discrete square-root filtering: a survey of current techniques
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.1971.1099816
– year: 2006
  ident: 10.1016/j.sysconle.2017.07.016_b21
– volume: 64
  start-page: 948
  issue: 4
  year: 2016
  ident: 10.1016/j.sysconle.2017.07.016_b29
  article-title: The accurate continuous-discrete extended Kalman filter for radar tracking
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2015.2493985
– volume: 89
  start-page: 14
  issue: 1
  year: 2009
  ident: 10.1016/j.sysconle.2017.07.016_b2
  article-title: Correntropy as a novel measure for nonlinearity tests
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2008.07.005
– ident: 10.1016/j.sysconle.2017.07.016_b25
  doi: 10.1093/oso/9780198535645.003.0010
– volume: 21
  start-page: 14
  year: 2015
  ident: 10.1016/j.sysconle.2017.07.016_b28
  article-title: High-order accurate continuous-discrete extended Kalman filter for chemical engineering
  publication-title: Eur. J. Control
  doi: 10.1016/j.ejcon.2014.11.003
– volume: 40
  start-page: 895
  issue: 5
  year: 1995
  ident: 10.1016/j.sysconle.2017.07.016_b18
  article-title: New square-root algorithms for Kalman filtering
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/9.384225
– ident: 10.1016/j.sysconle.2017.07.016_b20
– year: 2015
  ident: 10.1016/j.sysconle.2017.07.016_b23
SSID ssj0002033
Score 2.492003
Snippet Recent developments in the realm of state estimation of stochastic dynamic systems in the presence of non-Gaussian noise have induced a new methodology called...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 8
SubjectTerms Kalman filter
Maximum correntropy criterion
Robust estimation
Square-root filtering
Title Square-root algorithms for maximum correntropy estimation of linear discrete-time systems in presence of non-Gaussian noise
URI https://dx.doi.org/10.1016/j.sysconle.2017.07.016
Volume 108
WOSCitedRecordID wos000414886200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7956
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002033
  issn: 0167-6911
  databaseCode: AIEXJ
  dateStart: 19950109
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jj9MwGLVKhwMcEKsYNvnArUqJ4yzOcYSGTTBCYhj1FjmODRnapHRTEX-ez46deqBimANSFVVR7Szv9fOL833PCD2vOCnDXKiAxykPYqogDgLQQUpTQUQUlsT4FJy9z05O2GSSfxwMlKuF2UyzpmHbbT7_r1DDPgBbl85eAe6-U9gB3wF02ALssP0n4D99B9RlAIpYz-Z-aeHp_2vnujCa8W09W89GojWmTIt2_mOkXTZmvW7UopMv9GsbUJMrGeil563bc5dwbqqVhJloaNomeM3XS1OG2bT18kJWkbVCN9Ry-fBTUzvkvT6a1t_ajZGvH8ZnY38GAkY1l8vWT0pCsE1zGzRdVA2ZFxeZN8B25Zt_hO5uFuF8DNcEZzXVFqYkM8aqZI9X9m9jWJ9Z6JLWzgvXT6H7KUL4kPQaOoiyJGdDdHD09njyrh-zo5BS5wKvr8SrJd9_RvtljCdNTm-jW_aZAh91XLiDBrK5i256TpP30E-PFXjHCgyswJYV2GMF3rECtwp3rMAXWIEtK3DdYMcK_VufFdiw4j76_Or49OWbwK67EQhKolWQVlGcsYqWuZYvKk8TGZVUEZURGYqqConIqiqXTMVJEimRViplsqwYB-0tQJI-QEM4mHyIcExLkjAacyGElkEQFyTjmcy4lIRW9BAl7jYWwprS67VRpsXfgTxEL_p2886W5dIWuUOpsOKyE40FEPCSto-ufLTH6Mbun_IEDVeLtXyKrovNql4unln2_QJabqdg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Square-root+algorithms+for+maximum+correntropy+estimation+of+linear+discrete-time+systems+in+presence+of+non-Gaussian+noise&rft.jtitle=Systems+%26+control+letters&rft.au=Kulikova%2C+M.V.&rft.date=2017-10-01&rft.issn=0167-6911&rft.volume=108&rft.spage=8&rft.epage=15&rft_id=info:doi/10.1016%2Fj.sysconle.2017.07.016&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sysconle_2017_07_016
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6911&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6911&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6911&client=summon