Geometric properties of the lattice of polynomials with integer coefficients
This paper is related to the classic but still being examined issue of approximation of functions by polynomials with integer coefficients. Let \(r\), \(n\) be positive integers with \(n \ge 6r\). Let \(\boldsymbol{P}_n \cap \boldsymbol{M}_r\) be the space of polynomials of degree at most \(n\) on \...
Uloženo v:
| Vydáno v: | Rocznik Akademii Górniczo-Hutniczej im. Stanisława Staszica. Opuscula Mathematica Ročník 44; číslo 4; s. 565 - 585 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
AGH Univeristy of Science and Technology Press
01.01.2024
|
| Témata: | |
| ISSN: | 1232-9274 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper is related to the classic but still being examined issue of approximation of functions by polynomials with integer coefficients. Let \(r\), \(n\) be positive integers with \(n \ge 6r\). Let \(\boldsymbol{P}_n \cap \boldsymbol{M}_r\) be the space of polynomials of degree at most \(n\) on \([0,1]\) with integer coefficients such that \(P^{(k)}(0)/k!\) and \(P^{(k)}(1)/k!\) are integers for \(k=0,\dots,r-1\) and let \(\boldsymbol{P}_n^\mathbb{Z} \cap \boldsymbol{M}_r\) be the additive group of polynomials with integer coefficients. We explore the problem of estimating the minimal distance of elements of \(\boldsymbol{P}_n^\mathbb{Z} \cap \boldsymbol{M}_r\) from \(\boldsymbol{P}_n \cap \boldsymbol{M}_r\) in \(L_2(0,1)\). We give rather precise quantitative estimations for successive minima of \(\boldsymbol{P}_n^\mathbb{Z}\) in certain specific cases. At the end, we study properties of the shortest polynomials in some hyperplane in \(\boldsymbol{P}_n \cap \boldsymbol{M}_r\). |
|---|---|
| AbstractList | This paper is related to the classic but still being examined issue of approximation of functions by polynomials with integer coefficients. Let \(r\), \(n\) be positive integers with \(n \ge 6r\). Let \(\boldsymbol{P}_n \cap \boldsymbol{M}_r\) be the space of polynomials of degree at most \(n\) on \([0,1]\) with integer coefficients such that \(P^{(k)}(0)/k!\) and \(P^{(k)}(1)/k!\) are integers for \(k=0,\dots,r-1\) and let \(\boldsymbol{P}_n^\mathbb{Z} \cap \boldsymbol{M}_r\) be the additive group of polynomials with integer coefficients. We explore the problem of estimating the minimal distance of elements of \(\boldsymbol{P}_n^\mathbb{Z} \cap \boldsymbol{M}_r\) from \(\boldsymbol{P}_n \cap \boldsymbol{M}_r\) in \(L_2(0,1)\). We give rather precise quantitative estimations for successive minima of \(\boldsymbol{P}_n^\mathbb{Z}\) in certain specific cases. At the end, we study properties of the shortest polynomials in some hyperplane in \(\boldsymbol{P}_n \cap \boldsymbol{M}_r\). |
| Author | Lipnicki, Artur mieta ski, Marek J. |
| Author_xml | – sequence: 1 givenname: Artur orcidid: 0000-0001-9848-6157 surname: Lipnicki fullname: Lipnicki, Artur – sequence: 2 givenname: Marek J. orcidid: 0000-0002-6557-6436 surname: mieta ski fullname: mieta ski, Marek J. |
| BookMark | eNo9kEFqwzAQRbVIoUnaG3ThCziVZEm2liW0aSAlm-zFRBolCo5lZEHJ7Ws3pfBhmM_wYN6CzLrYISEvjK5qocXrvv-CfF5xysVKjFlJJWdkznjFS81r8UgWw3ChVEmm5ZzsNhivmFOwRZ9ijykHHIroi3zGooWcg8Vp7WN76-I1QDsU3yGfi9BlPGEqbETvgw3Y5eGJPPjxAJ__5pIcPt4P689yt99s12-70laM51Jpr6SDSjjqPDs6q-xUNUdla1dpi5zWUtYgPYWmarRDx7VvrJdHJqCulmR7x7oIF9OncIV0MxGC-S1iOhkY_7AtGg7YACjlLJeCykY3wBpXU9QeOCg9ssSdZVMchoT-n8eomYSau1AzCTVijBmFVj81NXB8 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.7494/OpMath.2024.44.4.565 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EndPage | 585 |
| ExternalDocumentID | oai_doaj_org_article_2ae8aa66dc25405898a18d70e9fa2a69 10_7494_OpMath_2024_44_4_565 |
| GroupedDBID | 5VS AAYXX ABDBF ACUHS ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION E3Z EOJEC GROUPED_DOAJ IPNFZ KQ8 OBODZ P2P RIG RNS Y2W |
| ID | FETCH-LOGICAL-c312t-69f65da34d0df1bdc6c69f68b6c7d39ce207557a5f0a8389ded29f8cf5b14a73 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001226330000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1232-9274 |
| IngestDate | Fri Oct 03 12:53:50 EDT 2025 Sat Nov 29 03:34:26 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c312t-69f65da34d0df1bdc6c69f68b6c7d39ce207557a5f0a8389ded29f8cf5b14a73 |
| ORCID | 0000-0001-9848-6157 0000-0002-6557-6436 |
| OpenAccessLink | https://doaj.org/article/2ae8aa66dc25405898a18d70e9fa2a69 |
| PageCount | 21 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2ae8aa66dc25405898a18d70e9fa2a69 crossref_primary_10_7494_OpMath_2024_44_4_565 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Rocznik Akademii Górniczo-Hutniczej im. Stanisława Staszica. Opuscula Mathematica |
| PublicationYear | 2024 |
| Publisher | AGH Univeristy of Science and Technology Press |
| Publisher_xml | – name: AGH Univeristy of Science and Technology Press |
| SSID | ssj0065195 |
| Score | 2.2568698 |
| Snippet | This paper is related to the classic but still being examined issue of approximation of functions by polynomials with integer coefficients. Let \(r\), \(n\) be... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| StartPage | 565 |
| SubjectTerms | approximation by polynomials with integer coefficients covering radius lattice roots of polynomial |
| Title | Geometric properties of the lattice of polynomials with integer coefficients |
| URI | https://doaj.org/article/2ae8aa66dc25405898a18d70e9fa2a69 |
| Volume | 44 |
| WOSCitedRecordID | wos001226330000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 1232-9274 databaseCode: DOA dateStart: 20040101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: false ssIdentifier: ssj0065195 providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQAD4ine8sCaNnEcP0ZAFAZaGDp0sxw_JKTSRG1A4t9zl7RVNxYkLzlZkfXdJfeQ7ztC7kDqsaKfMME8JCgBPikwk0RoEZSIPA_Mt8Mm5HisplP9vjXqC--EdfTAHXADZoOyVgjvGAYXSiubKS_ToKNlVrSte6nU62Sq-wcL5EzBVAvihURD4tU1zUmu-eCtHkFsBZkh430Oq1-gY9lySlvc_a2TGR6Sg1V0SO-7Ux2RnTA_JvujDbXq8oS8PofqE8dgOVpjIX2BjKi0ihT20Jlt8DIbPtbV7AdbjsG8KBZbaUsMERbUVaGljcAbFKdkMnyaPL4kq5EIicsz1gCEURTe5tynPmald8KhSJXCSZ9rFwCLopC2iKlVEIv44JmOysWizLiV-Rnpzat5OCdURCsh_AqOC3BQqbY6-sBlyVUAD5W5C5KsITF1R3xhIGFACE0HoUEIDYdlAMIL8oC4bfYibXUrAGWalTLNX8q8_I-XXJE9PFlXJ7kmvWbxFW7IrvtuPpaL29ZOfgGb18HT |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geometric+properties+of+the+lattice+of+polynomials+with+integer+coefficients&rft.jtitle=Rocznik+Akademii+G%C3%B3rniczo-Hutniczej+im.+Stanis%C5%82awa+Staszica.+Opuscula+Mathematica&rft.au=Artur+Lipnicki&rft.au=Marek+J.+%C5%9Amieta%C5%84ski&rft.date=2024-01-01&rft.pub=AGH+Univeristy+of+Science+and+Technology+Press&rft.issn=1232-9274&rft.volume=44&rft.issue=4&rft.spage=565&rft.epage=585&rft_id=info:doi/10.7494%2FOpMath.2024.44.4.565&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2ae8aa66dc25405898a18d70e9fa2a69 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1232-9274&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1232-9274&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1232-9274&client=summon |