Geometric properties of the lattice of polynomials with integer coefficients

This paper is related to the classic but still being examined issue of approximation of functions by polynomials with integer coefficients. Let \(r\), \(n\) be positive integers with \(n \ge 6r\). Let \(\boldsymbol{P}_n \cap \boldsymbol{M}_r\) be the space of polynomials of degree at most \(n\) on \...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Rocznik Akademii Górniczo-Hutniczej im. Stanisława Staszica. Opuscula Mathematica Ročník 44; číslo 4; s. 565 - 585
Hlavní autori: Lipnicki, Artur, mieta ski, Marek J.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: AGH Univeristy of Science and Technology Press 01.01.2024
Predmet:
ISSN:1232-9274
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper is related to the classic but still being examined issue of approximation of functions by polynomials with integer coefficients. Let \(r\), \(n\) be positive integers with \(n \ge 6r\). Let \(\boldsymbol{P}_n \cap \boldsymbol{M}_r\) be the space of polynomials of degree at most \(n\) on \([0,1]\) with integer coefficients such that \(P^{(k)}(0)/k!\) and \(P^{(k)}(1)/k!\) are integers for \(k=0,\dots,r-1\) and let \(\boldsymbol{P}_n^\mathbb{Z} \cap \boldsymbol{M}_r\) be the additive group of polynomials with integer coefficients. We explore the problem of estimating the minimal distance of elements of \(\boldsymbol{P}_n^\mathbb{Z} \cap \boldsymbol{M}_r\) from \(\boldsymbol{P}_n \cap \boldsymbol{M}_r\) in \(L_2(0,1)\). We give rather precise quantitative estimations for successive minima of \(\boldsymbol{P}_n^\mathbb{Z}\) in certain specific cases. At the end, we study properties of the shortest polynomials in some hyperplane in \(\boldsymbol{P}_n \cap \boldsymbol{M}_r\).
AbstractList This paper is related to the classic but still being examined issue of approximation of functions by polynomials with integer coefficients. Let \(r\), \(n\) be positive integers with \(n \ge 6r\). Let \(\boldsymbol{P}_n \cap \boldsymbol{M}_r\) be the space of polynomials of degree at most \(n\) on \([0,1]\) with integer coefficients such that \(P^{(k)}(0)/k!\) and \(P^{(k)}(1)/k!\) are integers for \(k=0,\dots,r-1\) and let \(\boldsymbol{P}_n^\mathbb{Z} \cap \boldsymbol{M}_r\) be the additive group of polynomials with integer coefficients. We explore the problem of estimating the minimal distance of elements of \(\boldsymbol{P}_n^\mathbb{Z} \cap \boldsymbol{M}_r\) from \(\boldsymbol{P}_n \cap \boldsymbol{M}_r\) in \(L_2(0,1)\). We give rather precise quantitative estimations for successive minima of \(\boldsymbol{P}_n^\mathbb{Z}\) in certain specific cases. At the end, we study properties of the shortest polynomials in some hyperplane in \(\boldsymbol{P}_n \cap \boldsymbol{M}_r\).
Author Lipnicki, Artur
mieta ski, Marek J.
Author_xml – sequence: 1
  givenname: Artur
  orcidid: 0000-0001-9848-6157
  surname: Lipnicki
  fullname: Lipnicki, Artur
– sequence: 2
  givenname: Marek J.
  orcidid: 0000-0002-6557-6436
  surname: mieta ski
  fullname: mieta ski, Marek J.
BookMark eNo9kEFqwzAQRbVIoUnaG3ThCziVZEm2liW0aSAlm-zFRBolCo5lZEHJ7Ws3pfBhmM_wYN6CzLrYISEvjK5qocXrvv-CfF5xysVKjFlJJWdkznjFS81r8UgWw3ChVEmm5ZzsNhivmFOwRZ9ijykHHIroi3zGooWcg8Vp7WN76-I1QDsU3yGfi9BlPGEqbETvgw3Y5eGJPPjxAJ__5pIcPt4P689yt99s12-70laM51Jpr6SDSjjqPDs6q-xUNUdla1dpi5zWUtYgPYWmarRDx7VvrJdHJqCulmR7x7oIF9OncIV0MxGC-S1iOhkY_7AtGg7YACjlLJeCykY3wBpXU9QeOCg9ssSdZVMchoT-n8eomYSau1AzCTVijBmFVj81NXB8
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.7494/OpMath.2024.44.4.565
DatabaseName CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EndPage 585
ExternalDocumentID oai_doaj_org_article_2ae8aa66dc25405898a18d70e9fa2a69
10_7494_OpMath_2024_44_4_565
GroupedDBID 5VS
AAYXX
ABDBF
ACUHS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
E3Z
EOJEC
GROUPED_DOAJ
IPNFZ
KQ8
OBODZ
P2P
RIG
RNS
Y2W
ID FETCH-LOGICAL-c312t-69f65da34d0df1bdc6c69f68b6c7d39ce207557a5f0a8389ded29f8cf5b14a73
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001226330000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1232-9274
IngestDate Fri Oct 03 12:53:50 EDT 2025
Sat Nov 29 03:34:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-69f65da34d0df1bdc6c69f68b6c7d39ce207557a5f0a8389ded29f8cf5b14a73
ORCID 0000-0001-9848-6157
0000-0002-6557-6436
OpenAccessLink https://doaj.org/article/2ae8aa66dc25405898a18d70e9fa2a69
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_2ae8aa66dc25405898a18d70e9fa2a69
crossref_primary_10_7494_OpMath_2024_44_4_565
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Rocznik Akademii Górniczo-Hutniczej im. Stanisława Staszica. Opuscula Mathematica
PublicationYear 2024
Publisher AGH Univeristy of Science and Technology Press
Publisher_xml – name: AGH Univeristy of Science and Technology Press
SSID ssj0065195
Score 2.256969
Snippet This paper is related to the classic but still being examined issue of approximation of functions by polynomials with integer coefficients. Let \(r\), \(n\) be...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 565
SubjectTerms approximation by polynomials with integer coefficients
covering radius
lattice
roots of polynomial
Title Geometric properties of the lattice of polynomials with integer coefficients
URI https://doaj.org/article/2ae8aa66dc25405898a18d70e9fa2a69
Volume 44
WOSCitedRecordID wos001226330000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1232-9274
  databaseCode: DOA
  dateStart: 20040101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: false
  ssIdentifier: ssj0065195
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQAD4ine8sCaNg_HjxEQhYEWhg7dLMcPCak0URuQ-PfcxW3VjQXJSywrsr5zcvdZd98RcocyVS7nNikCtjArOHxSFRBXCAYKEVLpnIvNJsR4LKdT9b7V6gtzwqI8cARukBsvjeHc2RyDC6mkyaQTqVfB5IZ3pXupUGsyFf_BHDVTkGpBvJAoIF6xaE4wxQZvzQhiK2CGOeszGP0SHcuWU9rS7u-czPCQHKyiQ3ofd3VEdvz8mOyPNtKqyxPy-uzrT2yDZWmDF-kLVESldaCwhs5Mi8ls-NjUsx8sOYbjRfGylXbCEH5Bbe072QjMoDglk-HT5PElWbVESGyR5W3CVeClMwVzqQtZ5Sy3OCUrboUrlPWARVkKU4bUSIhFnHe5CtKGssqYEcUZ6c3ruT8nNJSZl5UBRsgYEzatUmlCbkOlwGqGuwuSrCHRTRS-0EAYEEIdIdQIoWYwNEB4QR4Qt81alK3uJsCYemVM_ZcxL__jJVdkD3cW70muSa9dfPkbsmu_24_l4rY7J7-55cHC
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geometric+properties+of+the+lattice+of+polynomials+with+integer+coefficients&rft.jtitle=Rocznik+Akademii+G%C3%B3rniczo-Hutniczej+im.+Stanis%C5%82awa+Staszica.+Opuscula+Mathematica&rft.au=Lipnicki%2C+Artur&rft.au=mieta+ski%2C+Marek+J.&rft.date=2024-01-01&rft.issn=1232-9274&rft.volume=44&rft.issue=4&rft.spage=565&rft.epage=585&rft_id=info:doi/10.7494%2FOpMath.2024.44.4.565&rft.externalDBID=n%2Fa&rft.externalDocID=10_7494_OpMath_2024_44_4_565
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1232-9274&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1232-9274&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1232-9274&client=summon