New generalized hyperbolic functions and auto-Bäcklund transformation to find new exact solutions of the ( 2 + 1 ) -dimensional NNV equation

In the present Letter, we first time define new functions (called generalized hyperbolic functions) and devise new kinds of transformation (called generalized hyperbolic function transformation) to construct new exact solutions of nonlinear partial differential equations. Based on the generalized hy...

Full description

Saved in:
Bibliographic Details
Published in:Physics letters. A Vol. 357; no. 6; pp. 438 - 448
Main Authors: Ren, Yujie, Zhang, Hongqing
Format: Journal Article
Language:English
Published: Elsevier B.V 25.09.2006
Subjects:
ISSN:0375-9601, 1873-2429
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In the present Letter, we first time define new functions (called generalized hyperbolic functions) and devise new kinds of transformation (called generalized hyperbolic function transformation) to construct new exact solutions of nonlinear partial differential equations. Based on the generalized hyperbolic function transformation and the auto-Bäcklund transformation of the ( 2 + 1 )-dimensional Nizhnik–Novikov–Veselov (NNV) equations, we obtain abundant families of new exact solutions of the NNV equations and analyze the properties of them by taking different parameter values of the generalized hyperbolic functions and different regions of the independent variables in these solutions by their figures. As a result, we find that these parameter values and the region size of the independent variables affect some solution structure. Therefore, we may regulate these parameter values and the region size to control the shape and number of solitons on the basis of our different requirements by means of computer simulation. These solutions may be useful to explain some physical phenomena.
AbstractList In the present Letter, we first time define new functions (called generalized hyperbolic functions) and devise new kinds of transformation (called generalized hyperbolic function transformation) to construct new exact solutions of nonlinear partial differential equations. Based on the generalized hyperbolic function transformation and the auto-Bäcklund transformation of the ( 2 + 1 )-dimensional Nizhnik–Novikov–Veselov (NNV) equations, we obtain abundant families of new exact solutions of the NNV equations and analyze the properties of them by taking different parameter values of the generalized hyperbolic functions and different regions of the independent variables in these solutions by their figures. As a result, we find that these parameter values and the region size of the independent variables affect some solution structure. Therefore, we may regulate these parameter values and the region size to control the shape and number of solitons on the basis of our different requirements by means of computer simulation. These solutions may be useful to explain some physical phenomena.
Author Ren, Yujie
Zhang, Hongqing
Author_xml – sequence: 1
  givenname: Yujie
  surname: Ren
  fullname: Ren, Yujie
  email: ryj195535@163.com
  organization: Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, PR China
– sequence: 2
  givenname: Hongqing
  surname: Zhang
  fullname: Zhang, Hongqing
  organization: Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, PR China
BookMark eNqFkEtuFDEQhi2USEwSroBqCULd2O5uj1tiAYl4SdGwAbaW211mPPTYg-0GhjvkFtyEi-HJkA2b1KZUj-9X1X9GTnzwSMhjRmtGmXi-qXfrfZow65pTKmra1lTyB2TB5LKpeMv7E7KgzbKrekHZQ3KW0obSQtJ-QW5W-AO-oMeoJ_cLR1jvdxiHMDkDdvYmu-ATaD-CnnOoLv_8Nl-nuZQ5ap9siFt9WIEcwLrS9kUOf2qTIYVpPtLBQl4jPAEOz4DBU6hGt0WfylBPsFp9Bvw238pckFOrp4SP_uVz8unN649X76rrD2_fX726rkzDeK5EKwU3fWcFt3rgUnYt641ZluDS9kOH1komx7YZBjp2dOj4KJeisb3gQ09Nc05eHHVNDClFtMq4fHtBectNilF1sFZt1J216mCtoq0q1hZc_IfvotvquL8ffHkEsTz33WFUyTj0BkcX0WQ1BnefxF9D_5x2
CitedBy_id crossref_primary_10_1016_j_ijleo_2018_04_026
crossref_primary_10_1088_1402_4896_ac7588
crossref_primary_10_1155_2013_201276
crossref_primary_10_1016_j_ijleo_2018_06_111
crossref_primary_10_1007_s11082_019_2162_8
crossref_primary_10_1016_j_physleta_2007_10_015
crossref_primary_10_1007_s11082_017_1112_6
crossref_primary_10_1016_j_ijleo_2020_165378
crossref_primary_10_1140_epjp_s13360_019_00019_w
crossref_primary_10_3390_sym1020201
crossref_primary_10_1002_mma_7249
crossref_primary_10_1007_s40819_021_01180_6
crossref_primary_10_1016_j_cpc_2015_04_016
crossref_primary_10_1080_09720502_2019_1597431
crossref_primary_10_3934_math_2025154
crossref_primary_10_1155_2012_265348
crossref_primary_10_1002_num_22622
crossref_primary_10_1002_num_22644
crossref_primary_10_1016_j_comptc_2018_02_003
crossref_primary_10_1088_1402_4896_ab9dad
crossref_primary_10_1140_epjp_i2015_15215_1
crossref_primary_10_1007_s40819_022_01375_5
crossref_primary_10_1016_j_physleta_2025_130947
crossref_primary_10_1007_s12648_025_03777_9
crossref_primary_10_1155_2021_5591016
crossref_primary_10_1080_00207160701504121
crossref_primary_10_1016_j_amc_2012_05_004
crossref_primary_10_1088_0031_8949_76_1_002
crossref_primary_10_1016_j_cjph_2021_01_012
crossref_primary_10_1515_phys_2015_0056
crossref_primary_10_1002_mma_7140
crossref_primary_10_1155_2011_575679
crossref_primary_10_1016_j_ijleo_2019_163108
crossref_primary_10_1007_s11082_017_1224_z
crossref_primary_10_1007_s11082_017_1225_y
crossref_primary_10_1007_s12043_017_1374_3
crossref_primary_10_1007_s11082_018_1416_1
crossref_primary_10_1080_09720502_2019_1681698
crossref_primary_10_1088_0031_8949_80_01_015006
crossref_primary_10_1108_HFF_03_2021_0232
crossref_primary_10_1016_j_chaos_2024_115007
crossref_primary_10_1016_j_ijleo_2019_163131
crossref_primary_10_1007_s12190_008_0159_8
Cites_doi 10.1016/S0378-4371(03)00361-3
10.1143/JPSJ.38.681
10.1016/S0375-9601(01)00487-X
10.1016/S0375-9601(02)00975-1
10.1088/0305-4470/37/3/020
10.1016/j.chaos.2005.04.063
10.1016/j.chaos.2004.04.006
10.1143/PTP.53.1652
10.1088/0305-4470/37/21/012
10.1088/0305-4470/27/4/026
10.1016/S0375-9601(00)00699-X
ContentType Journal Article
Copyright 2006 Elsevier B.V.
Copyright_xml – notice: 2006 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.physleta.2006.04.082
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-2429
EndPage 448
ExternalDocumentID 10_1016_j_physleta_2006_04_082
S0375960106006505
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
5VS
6TJ
7-5
71M
8P~
8WZ
9JN
A6W
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYJJ
ABFNM
ABLJU
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACKIV
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
K-O
KOM
M38
M41
MO0
MVM
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
TN5
WH7
WUQ
XJT
XOL
YYP
ZCG
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c312t-64862c95f62fab2885419cc777728f9b5eff818d43bb0d50b52d8763f962b90c3
ISICitedReferencesCount 56
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000240815300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0375-9601
IngestDate Sat Nov 29 03:34:41 EST 2025
Tue Nov 18 22:22:20 EST 2025
Fri Feb 23 02:29:53 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords ( 2 + 1 )-dimensional NNV equations
Generalized hyperbolic functions
Auto-Bäcklund transformation
Exact solution
Generalized hyperbolic function transformation
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-64862c95f62fab2885419cc777728f9b5eff818d43bb0d50b52d8763f962b90c3
PageCount 11
ParticipantIDs crossref_citationtrail_10_1016_j_physleta_2006_04_082
crossref_primary_10_1016_j_physleta_2006_04_082
elsevier_sciencedirect_doi_10_1016_j_physleta_2006_04_082
PublicationCentury 2000
PublicationDate 2006-09-25
PublicationDateYYYYMMDD 2006-09-25
PublicationDate_xml – month: 09
  year: 2006
  text: 2006-09-25
  day: 25
PublicationDecade 2000
PublicationTitle Physics letters. A
PublicationYear 2006
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wang, Wang, Zhou (bib006) 2002; 303
Miura (bib003) 1978
Vekslerchik (bib005) 2004; 37
Konno, Wadati (bib002) 1975; 53
Ren, Zhand (bib008) 2006; 27
Lou (bib010) 2000; 277
Wang, Zhang (bib011) 2005; 16
Zhang, Chen (bib015) 2005; 23
Hu (bib009) 1994; 27
Veselov, Novikov (bib007) 1984; 30
Yan, Zhang (bib012) 2001; 34
Wadati (bib001) 1975; 38
Yan (bib013) 2003; 326
Wang, Wang (bib004) 2001; 287
Yan (bib014) 2004; 37
Konno (10.1016/j.physleta.2006.04.082_bib002) 1975; 53
Wang (10.1016/j.physleta.2006.04.082_bib004) 2001; 287
Yan (10.1016/j.physleta.2006.04.082_bib014) 2004; 37
Zhang (10.1016/j.physleta.2006.04.082_bib015) 2005; 23
Miura (10.1016/j.physleta.2006.04.082_bib003) 1978
Wang (10.1016/j.physleta.2006.04.082_bib006) 2002; 303
Wang (10.1016/j.physleta.2006.04.082_bib011) 2005; 16
Yan (10.1016/j.physleta.2006.04.082_bib012) 2001; 34
Hu (10.1016/j.physleta.2006.04.082_bib009) 1994; 27
Wadati (10.1016/j.physleta.2006.04.082_bib001) 1975; 38
Veselov (10.1016/j.physleta.2006.04.082_bib007) 1984; 30
Ren (10.1016/j.physleta.2006.04.082_bib008) 2006; 27
Vekslerchik (10.1016/j.physleta.2006.04.082_bib005) 2004; 37
Lou (10.1016/j.physleta.2006.04.082_bib010) 2000; 277
Yan (10.1016/j.physleta.2006.04.082_bib013) 2003; 326
References_xml – volume: 303
  start-page: 45
  year: 2002
  ident: bib006
  publication-title: Phys. Lett. A
– volume: 27
  start-page: 1331
  year: 1994
  ident: bib009
  publication-title: J. Phys. A: Math. Gen.
– volume: 16
  start-page: 3
  year: 2005
  ident: bib011
  publication-title: J. Mod. Phys. C
– volume: 37
  start-page: 5667
  year: 2004
  ident: bib005
  publication-title: J. Phys. A: Math. Gen.
– volume: 27
  start-page: 959
  year: 2006
  ident: bib008
  publication-title: Chaos Solitons Fractals
– volume: 37
  start-page: 841
  year: 2004
  ident: bib014
  publication-title: J. Phys. A: Math. Gen.
– volume: 326
  start-page: 344
  year: 2003
  ident: bib013
  publication-title: Physica A
– volume: 23
  start-page: 175
  year: 2005
  ident: bib015
  publication-title: Chaos Solitons Fractals
– volume: 53
  start-page: 1652
  year: 1975
  ident: bib002
  publication-title: Prog. Theor. Phys.
– volume: 38
  start-page: 681
  year: 1975
  ident: bib001
  publication-title: J. Phys. Soc. Jpn.
– volume: 34
  start-page: 365
  year: 2001
  ident: bib012
  publication-title: Commun. Theor. Phys.
– volume: 287
  start-page: 211
  year: 2001
  ident: bib004
  publication-title: Phys. Lett. A
– volume: 30
  start-page: 588
  year: 1984
  ident: bib007
  publication-title: Sov. Math. Dokl.
– volume: 277
  start-page: 94
  year: 2000
  ident: bib010
  publication-title: Phys. Lett. A
– year: 1978
  ident: bib003
  article-title: Bäcklund Transformation
– volume: 326
  start-page: 344
  year: 2003
  ident: 10.1016/j.physleta.2006.04.082_bib013
  publication-title: Physica A
  doi: 10.1016/S0378-4371(03)00361-3
– volume: 38
  start-page: 681
  year: 1975
  ident: 10.1016/j.physleta.2006.04.082_bib001
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.38.681
– volume: 287
  start-page: 211
  year: 2001
  ident: 10.1016/j.physleta.2006.04.082_bib004
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(01)00487-X
– volume: 303
  start-page: 45
  year: 2002
  ident: 10.1016/j.physleta.2006.04.082_bib006
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(02)00975-1
– volume: 37
  start-page: 841
  year: 2004
  ident: 10.1016/j.physleta.2006.04.082_bib014
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/37/3/020
– volume: 27
  start-page: 959
  year: 2006
  ident: 10.1016/j.physleta.2006.04.082_bib008
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2005.04.063
– volume: 34
  start-page: 365
  year: 2001
  ident: 10.1016/j.physleta.2006.04.082_bib012
  publication-title: Commun. Theor. Phys.
– year: 1978
  ident: 10.1016/j.physleta.2006.04.082_bib003
– volume: 23
  start-page: 175
  year: 2005
  ident: 10.1016/j.physleta.2006.04.082_bib015
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2004.04.006
– volume: 16
  start-page: 3
  year: 2005
  ident: 10.1016/j.physleta.2006.04.082_bib011
  publication-title: J. Mod. Phys. C
– volume: 53
  start-page: 1652
  year: 1975
  ident: 10.1016/j.physleta.2006.04.082_bib002
  publication-title: Prog. Theor. Phys.
  doi: 10.1143/PTP.53.1652
– volume: 30
  start-page: 588
  year: 1984
  ident: 10.1016/j.physleta.2006.04.082_bib007
  publication-title: Sov. Math. Dokl.
– volume: 37
  start-page: 5667
  year: 2004
  ident: 10.1016/j.physleta.2006.04.082_bib005
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/37/21/012
– volume: 27
  start-page: 1331
  year: 1994
  ident: 10.1016/j.physleta.2006.04.082_bib009
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/27/4/026
– volume: 277
  start-page: 94
  year: 2000
  ident: 10.1016/j.physleta.2006.04.082_bib010
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(00)00699-X
SSID ssj0001609
Score 2.076951
Snippet In the present Letter, we first time define new functions (called generalized hyperbolic functions) and devise new kinds of transformation (called generalized...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 438
SubjectTerms ( [formula omitted])-dimensional NNV equations
Auto-Bäcklund transformation
Exact solution
Generalized hyperbolic function transformation
Generalized hyperbolic functions
Title New generalized hyperbolic functions and auto-Bäcklund transformation to find new exact solutions of the ( 2 + 1 ) -dimensional NNV equation
URI https://dx.doi.org/10.1016/j.physleta.2006.04.082
Volume 357
WOSCitedRecordID wos000240815300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2429
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001609
  issn: 0375-9601
  databaseCode: AIEXJ
  dateStart: 19950102
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FFiQuiKcoL82BA8ja4Md67T22qKhwiBAUFE6Wvd5tEyK7Tewq4j_wJxD_hD_GrNd2DK1UECKHVbTSJLbn8-y8h5CnoZ9JkUecoj3LKZOpR9NcKZpx17gcUCKmrBk2EU0m8XQq3o5G37pamLNFVBTxei1O_iurcQ-ZbUpn_4Ld_Y_iBn5HpuOKbMf1jxhvMhaPbDPp2RdUJ4_R0lxmpv2vYw4xm_nWtGitq5LuNZFyJj8vapNKOVBjTRShdExM24wdd9TaVFP2l97lFqCC6vi47jmeYzwMNDfjAmyrD2cy-eio03rD_FYLbtJO5cpZNLVEq_HGofrOSsFP9XzWI673aR-UxdFpd9QOPBWC2qpm6z47V0Jjy7aikKIZZQGmrBSOo8DEqsVQTAe2kXWLx6HQZbY_THt-M9u589zRYL0U87HxGOHtpW0gio1dO_3ot7bb782FiSYK3aix4RWy7eMOSs7t3df70zf9ee9xm0jU3cigDv3if7tYBRqoNYc3yY3WHoFdi6NbZKSK2-Ray6A75CuiCQZogg2aoEcTIJrAounHd4sk-BVJUJVgkASIJGiQBD2SoNSASIJn4IMDHjyHIYYAMQQdhu6SD6_2D18e0HaCB5WB51eUMzSYpQg193Wa-XEcMk9IGeHHj7XIQqU1aow5C7LMzUM3C_3ctEjUgvuZcGVwj2wVZaHuE3CVYgHayzLVKYt1JgLOkDjPNdJylu6QsHuoiWzb25spK4uky2OcJx0zzOxVnrgsQWbskBc93Ylt8HIpheh4lrRqqlU_E4TaJbQP_oH2Ibm-easeka1qWavH5Ko8q2ar5ZMWlT8BeFu9DA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+generalized+hyperbolic+functions+and+auto-B%C3%A4cklund+transformation+to+find+new+exact+solutions+of+the+%28+2+%2B+1+%29+-dimensional+NNV+equation&rft.jtitle=Physics+letters.+A&rft.au=Ren%2C+Yujie&rft.au=Zhang%2C+Hongqing&rft.date=2006-09-25&rft.pub=Elsevier+B.V&rft.issn=0375-9601&rft.eissn=1873-2429&rft.volume=357&rft.issue=6&rft.spage=438&rft.epage=448&rft_id=info:doi/10.1016%2Fj.physleta.2006.04.082&rft.externalDocID=S0375960106006505
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0375-9601&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0375-9601&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0375-9601&client=summon