Fuzzy subspace clustering noisy image segmentation algorithm with adaptive local variance & non-local information and mean membership linking
The Fuzzy C-means (FCM) clustering algorithm is an effective method for image segmentation. Non-local spatial information considers more redundant information of the image thus is more robust to noise. However, under-segmentation of non-local spatial information may exist with higher noise density....
Gespeichert in:
| Veröffentlicht in: | Engineering applications of artificial intelligence Jg. 110; S. 104672 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.04.2022
|
| Schlagworte: | |
| ISSN: | 0952-1976, 1873-6769 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The Fuzzy C-means (FCM) clustering algorithm is an effective method for image segmentation. Non-local spatial information considers more redundant information of the image thus is more robust to noise. However, under-segmentation of non-local spatial information may exist with higher noise density. The number of iteration steps is also significant in FCM, and employing membership linking can effectively reduce the number of iteration steps. Nonetheless, when there are outliers in the membership degree, the membership linking can make the algorithm converge prematurely before reaching the optimum, affecting segmentation performance. This paper presents a fuzzy subspace clustering noisy image segmentation algorithm with adaptive local variance & non-local information and mean membership linking (FSC_LNML). Firstly, local variance templates are utilized to eliminate the under-segmentation of non-local information, and local variance & non-local information are integrated into the FCM objective function to improve robustness. Secondly, the mean membership linking is employed as the denominator of the objective function to reduce the number of iterations and solve the problem that the algorithm converges early before reaching the optimum when the membership has an outlier. Thirdly, the absolute intensity difference between the original image and the local variance & non-local information and its inverse are used to adaptively constrain the original image and the local variance & non-local information. Finally, the concept of the subspace is introduced to adaptively assign appropriate weights to each dimension of the image to improve the segmentation performance of color images. The simulation results on noisy grayscale images and noisy color images show that the efficiency of the proposed method FSC_LNML is better than other fuzzy-based clustering algorithms. The convergence proof of the algorithm is also presented.
•Introducing a local variance template in the non-local spatial information to eliminate the under-segmentation of the non-local spatial information.•Using the mean membership linking as the denominator of the objective function to reduce the iteration steps and solve the convergence problem of the objective function before the algorithm reaches the optimal solution.•Assigning appropriate weights to each image dimension to improve the segmentation performance of color images. |
|---|---|
| AbstractList | The Fuzzy C-means (FCM) clustering algorithm is an effective method for image segmentation. Non-local spatial information considers more redundant information of the image thus is more robust to noise. However, under-segmentation of non-local spatial information may exist with higher noise density. The number of iteration steps is also significant in FCM, and employing membership linking can effectively reduce the number of iteration steps. Nonetheless, when there are outliers in the membership degree, the membership linking can make the algorithm converge prematurely before reaching the optimum, affecting segmentation performance. This paper presents a fuzzy subspace clustering noisy image segmentation algorithm with adaptive local variance & non-local information and mean membership linking (FSC_LNML). Firstly, local variance templates are utilized to eliminate the under-segmentation of non-local information, and local variance & non-local information are integrated into the FCM objective function to improve robustness. Secondly, the mean membership linking is employed as the denominator of the objective function to reduce the number of iterations and solve the problem that the algorithm converges early before reaching the optimum when the membership has an outlier. Thirdly, the absolute intensity difference between the original image and the local variance & non-local information and its inverse are used to adaptively constrain the original image and the local variance & non-local information. Finally, the concept of the subspace is introduced to adaptively assign appropriate weights to each dimension of the image to improve the segmentation performance of color images. The simulation results on noisy grayscale images and noisy color images show that the efficiency of the proposed method FSC_LNML is better than other fuzzy-based clustering algorithms. The convergence proof of the algorithm is also presented.
•Introducing a local variance template in the non-local spatial information to eliminate the under-segmentation of the non-local spatial information.•Using the mean membership linking as the denominator of the objective function to reduce the iteration steps and solve the convergence problem of the objective function before the algorithm reaches the optimal solution.•Assigning appropriate weights to each image dimension to improve the segmentation performance of color images. |
| ArticleNumber | 104672 |
| Author | Wang, Xiaopeng Li, Xinna Wei, Tongyi Zhu, Shengyang |
| Author_xml | – sequence: 1 givenname: Tongyi surname: Wei fullname: Wei, Tongyi email: 11200715@stu.lzjtu.edu.cn – sequence: 2 givenname: Xiaopeng surname: Wang fullname: Wang, Xiaopeng email: wangxiaopeng@mail.lzjtu.cn – sequence: 3 givenname: Xinna surname: Li fullname: Li, Xinna email: 13884591830@163.com – sequence: 4 givenname: Shengyang surname: Zhu fullname: Zhu, Shengyang email: wty19961005@gmail.com |
| BookMark | eNqFkE1r20AQhpfiQu2kf6HsKTc5u_pYSZBDi0magKGX5ryMd0fyuNJK7MoOzn_of-4GJZdefJmBF553mGfFFm5wyNg3KdZSSHV7WKNrYRyB1qlI0xjmqkw_saWsyixRpaoXbCnqIk1kXaovbBXCQQiRVblasr8Px9fXMw_HXRjBIDfdMUzoybXcDRTOnHpokQdse3QTTDQ4Dl07eJr2PX-Jk4OFcaIT8m4w0PETeAIXq25ig0vmkFwz-P4dd5b3CC6Ofoc-7GnkHbk_8eY1-9xAF_Dr-75izw_3vzePyfbXz6fNj21iMplOSdHUZVPUpYDSlDZGVVEUStaNKXZGgFVC5pWpatFkSqaAlUWLubJZVeeqaER2xe7mXuOHEDw22tD83OSBOi2FflOrD_pDrX5Tq2e1EVf_4aOPnvz5Mvh9BjE-dyL0OhjCKMuSRzNpO9Clin9fHZ18 |
| CitedBy_id | crossref_primary_10_1016_j_engappai_2022_105335 crossref_primary_10_1016_j_array_2025_100465 crossref_primary_10_1016_j_ijar_2023_02_013 crossref_primary_10_1016_j_bspc_2024_107063 crossref_primary_10_1016_j_eswa_2024_124943 crossref_primary_10_1109_TNNLS_2025_3558613 crossref_primary_10_1016_j_engappai_2024_108104 crossref_primary_10_1016_j_engappai_2023_107776 crossref_primary_10_3233_JCM_247192 crossref_primary_10_3390_app14020644 crossref_primary_10_1016_j_engappai_2024_108594 crossref_primary_10_1109_TNS_2024_3389106 crossref_primary_10_1016_j_bspc_2023_104925 crossref_primary_10_3390_sym16101370 crossref_primary_10_1109_ACCESS_2024_3521595 crossref_primary_10_1016_j_asoc_2025_113926 crossref_primary_10_1016_j_compeleceng_2025_110358 crossref_primary_10_1007_s40815_023_01490_5 crossref_primary_10_1016_j_dsp_2024_104798 crossref_primary_10_1016_j_patcog_2024_110366 crossref_primary_10_3390_math10224301 crossref_primary_10_1016_j_cviu_2023_103765 crossref_primary_10_1016_j_engappai_2022_105464 crossref_primary_10_1016_j_dsp_2024_104492 crossref_primary_10_1016_j_engappai_2024_109229 crossref_primary_10_1016_j_patcog_2022_108686 crossref_primary_10_1007_s40815_025_02068_z crossref_primary_10_3390_math11234800 crossref_primary_10_1007_s11227_023_05336_7 crossref_primary_10_1016_j_engappai_2024_109135 crossref_primary_10_1007_s10489_024_05813_3 crossref_primary_10_1007_s11042_025_20848_5 crossref_primary_10_1109_ACCESS_2024_3472037 crossref_primary_10_1007_s11063_024_11450_1 |
| Cites_doi | 10.1016/j.engappai.2006.01.011 10.1016/j.knosys.2020.106731 10.1016/j.engappai.2021.104299 10.1016/j.patcog.2017.03.012 10.1016/j.autcon.2021.103838 10.3390/sym11060753 10.1007/s11263-007-0052-1 10.1109/TIP.2012.2219547 10.1016/j.engappai.2021.104280 10.1016/j.ecolind.2021.107475 10.1049/iet-ipr.2015.0236 10.1109/TFUZZ.2017.2743679 10.1016/j.neucom.2012.10.022 10.1109/TFUZZ.2018.2889018 10.1109/TPAMI.2010.161 10.1109/TIP.2016.2631883 10.1016/j.fss.2018.01.019 10.1109/CVPR.2015.7298965 10.1109/TPAMI.2016.2537320 10.1016/j.asoc.2019.02.038 10.1109/TCYB.2015.2501848 10.1016/j.patcog.2006.07.011 10.1016/j.patcog.2009.09.010 10.1016/j.asoc.2020.106318 10.1016/j.ins.2013.05.029 10.1109/TIP.2015.2456505 10.1155/2015/485495 10.1109/TIP.2010.2040763 10.1109/TSMCB.2004.831165 10.1109/JSTARS.2018.2846603 10.1109/TGRS.2017.2685945 10.1016/j.neucom.2006.10.022 10.1109/TGRS.2013.2263282 10.1016/j.sigpro.2019.107347 10.1016/j.patcog.2007.11.011 10.1016/j.patrec.2016.11.019 10.1007/s11704-010-0393-8 10.1109/JSTARS.2021.3085397 10.1109/TFUZZ.2018.2796074 10.1109/CVPR.2017.305 10.1137/1025116 10.1016/j.patrec.2004.09.016 10.1109/LGRS.2015.2425225 10.1109/TGRS.2017.2702061 10.1016/j.engappai.2021.104209 10.1016/j.asoc.2021.107245 10.1049/iet-ipr.2011.0128 10.1109/42.996338 10.1109/TFUZZ.2008.2005008 10.1049/iet-ipr.2019.0942 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.engappai.2022.104672 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISSN | 1873-6769 |
| ExternalDocumentID | 10_1016_j_engappai_2022_104672 S0952197622000069 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS WUQ ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c312t-5f97f5970a7c7d3128555619fc5bc0ad60148c890f3612ae8dede46d389465f03 |
| ISICitedReferencesCount | 40 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000753705600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0952-1976 |
| IngestDate | Tue Nov 18 22:10:46 EST 2025 Sat Nov 29 07:05:41 EST 2025 Fri Feb 23 02:39:21 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Mean membership linking Fuzzy subspace clustering Robustness Noise image segmentation |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c312t-5f97f5970a7c7d3128555619fc5bc0ad60148c890f3612ae8dede46d389465f03 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_engappai_2022_104672 crossref_primary_10_1016_j_engappai_2022_104672 elsevier_sciencedirect_doi_10_1016_j_engappai_2022_104672 |
| PublicationCentury | 2000 |
| PublicationDate | April 2022 2022-04-00 |
| PublicationDateYYYYMMDD | 2022-04-01 |
| PublicationDate_xml | – month: 04 year: 2022 text: April 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering applications of artificial intelligence |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Lei, Jia, Zhang, Liu, Meng, Nandi (b29) 2018; 27 Arbelaez, Maire, Fowlkes, Malik (b3) 2010; 33 Wei, Wang, Si, Tan, Lu (b49) 2021; 101 Ghamisi, Benediktsson, Ulfarsson (b17) 2013; 52 Krizhevsky, Sutskever, Hinton (b27) 2012; 25 Lei, Jia, Zhang, He, Meng, Nandi (b28) 2018; 26 Xia, Hu, Hu, Shi, Bai, Zhong, Zhang, Lu (b53) 2017; 55 Wang, Wang, Fang, Yang (b48) 2020; 92 He, Yao, Yang, Yan, Zhang, Wen, Zhang, Liu (b23) 2021; 14 Lin, Lin, Chen, Zhang, Qi, Hou (b31) 2021; 125 Chen, Zhang (b10) 2004; 34 Zhang, Bruzzone, Shi, Hao, Wang (b57) 2018; 11 Bai, M., Urtasun, R., 2017. Deep watershed transform for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5221–5229. Hasheminejad, Vosoughian (b21) 2020; 18 Yin, Qian, Gong (b54) 2017; 68 Albu, Precup, Teban (b2) 2019; 17 Pozna, Precup (b41) 2014; 11 Wang, Tu (b45) 2012 Janmaijaya, Shukla, Muhuri, Abraham (b24) 2021; 103 Gan, Wu, Yang (b16) 2006 Zhao, Jiao, Liu (b61) 2011; 5 Szilagyi, Benyo, Szilágyi, Adam (b44) 2003 Zhang, Guo, Huang, Liu, Chen (b58) 2019; 11 Hashemzadeh, Oskouei, Farajzadeh (b22) 2019; 78 Zhang, Wang, Shi, Hao (b59) 2017; 55 Weng, Dong (b50) 2021; 104 Han, Shi (b20) 2007; 70 Oskouei, Hashemzadeh, Asheghi, Balafar (b38) 2021 Elazab, Wang, Jia, Wu, Li, Hu (b13) 2015; 2015 Zhao, Li, Li, Zhao (b62) 2017; 85 Buades, Coll, Morel (b7) 2008; 76 Pont-Tuset, Arbelaez, Barron, Marques, Malik (b40) 2016; 39 Gan, Wu (b15) 2008; 41 Bai, Chen, Zhang, Liu, Lu (b4) 2015; 46 Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440. Zhao (b60) 2013; 106 Memon, Lee (b36) 2018; 340 Guo, Wang, Shen (b19) 2016; 10 Zaixin, Lizhi, Guangquan (b55) 2014; 8 Chatzis, Varvarigou (b9) 2008; 16 Ahmed, Yamany, Mohamed, Farag, Moriarty (b1) 2002; 21 Liu, Zhang, Wang (b32) 2015; 24 Cocosco, Kollokian, Kwan, Pike, Evans (b11) 1997 Peizhuang (b39) 1983; 25 Jiang, Ma, Broyd, Chen (b25) 2021; 130 Shotton, Winn, Rother, Criminisi (b42) 2006 Mishro, Agrawal, Panda, Abraham (b37) 2020; 14 Sodjinou, Mohammadi, Mahama, Gouton (b43) 2021 Wang, Wang, Chung, Deng (b46) 2013; 246 Cai, Chen, Zhang (b8) 2007; 40 Wong, Gedeon, Kóczy (b51) 2004 Krinidis, Chatzis (b26) 2010; 19 Ma, Li, Qin, Hao (b35) 2016; 26 Wu, Yu, Yang (b52) 2005; 26 Zeng, Wang, Cui, Zheng, Feng (b56) 2017; 26 Feng, Li, Hu, Yu, Zhao (b14) 2020; 168 Gong, Liang, Shi, Ma, Ma (b18) 2012; 22 Wang, Wang, Fang, Jiao (b47) 2021; 105 Borlea, Precup, Borlea, Iercan (b6) 2021; 214 Deng, Choi, Chung, Wang (b12) 2010; 43 Liu, Zhao, Zhang (b33) 2015; 12 Li, Fevens, Krzyzak, Song (b30) 2006; 19 10.1016/j.engappai.2022.104672_b34 Ghamisi (10.1016/j.engappai.2022.104672_b17) 2013; 52 Zaixin (10.1016/j.engappai.2022.104672_b55) 2014; 8 Weng (10.1016/j.engappai.2022.104672_b50) 2021; 104 Ma (10.1016/j.engappai.2022.104672_b35) 2016; 26 Zhao (10.1016/j.engappai.2022.104672_b60) 2013; 106 Guo (10.1016/j.engappai.2022.104672_b19) 2016; 10 Peizhuang (10.1016/j.engappai.2022.104672_b39) 1983; 25 Wang (10.1016/j.engappai.2022.104672_b47) 2021; 105 Zhang (10.1016/j.engappai.2022.104672_b57) 2018; 11 Krizhevsky (10.1016/j.engappai.2022.104672_b27) 2012; 25 Feng (10.1016/j.engappai.2022.104672_b14) 2020; 168 Oskouei (10.1016/j.engappai.2022.104672_b38) 2021 10.1016/j.engappai.2022.104672_b5 Pont-Tuset (10.1016/j.engappai.2022.104672_b40) 2016; 39 Borlea (10.1016/j.engappai.2022.104672_b6) 2021; 214 Wong (10.1016/j.engappai.2022.104672_b51) 2004 Albu (10.1016/j.engappai.2022.104672_b2) 2019; 17 Buades (10.1016/j.engappai.2022.104672_b7) 2008; 76 Deng (10.1016/j.engappai.2022.104672_b12) 2010; 43 Bai (10.1016/j.engappai.2022.104672_b4) 2015; 46 Krinidis (10.1016/j.engappai.2022.104672_b26) 2010; 19 Lin (10.1016/j.engappai.2022.104672_b31) 2021; 125 Chatzis (10.1016/j.engappai.2022.104672_b9) 2008; 16 Wei (10.1016/j.engappai.2022.104672_b49) 2021; 101 Zhao (10.1016/j.engappai.2022.104672_b61) 2011; 5 Chen (10.1016/j.engappai.2022.104672_b10) 2004; 34 Gong (10.1016/j.engappai.2022.104672_b18) 2012; 22 Lei (10.1016/j.engappai.2022.104672_b29) 2018; 27 Szilagyi (10.1016/j.engappai.2022.104672_b44) 2003 Wu (10.1016/j.engappai.2022.104672_b52) 2005; 26 Gan (10.1016/j.engappai.2022.104672_b15) 2008; 41 Zeng (10.1016/j.engappai.2022.104672_b56) 2017; 26 Shotton (10.1016/j.engappai.2022.104672_b42) 2006 Zhang (10.1016/j.engappai.2022.104672_b58) 2019; 11 Zhao (10.1016/j.engappai.2022.104672_b62) 2017; 85 He (10.1016/j.engappai.2022.104672_b23) 2021; 14 Sodjinou (10.1016/j.engappai.2022.104672_b43) 2021 Yin (10.1016/j.engappai.2022.104672_b54) 2017; 68 Li (10.1016/j.engappai.2022.104672_b30) 2006; 19 Lei (10.1016/j.engappai.2022.104672_b28) 2018; 26 Zhang (10.1016/j.engappai.2022.104672_b59) 2017; 55 Elazab (10.1016/j.engappai.2022.104672_b13) 2015; 2015 Ahmed (10.1016/j.engappai.2022.104672_b1) 2002; 21 Arbelaez (10.1016/j.engappai.2022.104672_b3) 2010; 33 Cai (10.1016/j.engappai.2022.104672_b8) 2007; 40 Memon (10.1016/j.engappai.2022.104672_b36) 2018; 340 Xia (10.1016/j.engappai.2022.104672_b53) 2017; 55 Wang (10.1016/j.engappai.2022.104672_b45) 2012 Pozna (10.1016/j.engappai.2022.104672_b41) 2014; 11 Wang (10.1016/j.engappai.2022.104672_b48) 2020; 92 Cocosco (10.1016/j.engappai.2022.104672_b11) 1997 Janmaijaya (10.1016/j.engappai.2022.104672_b24) 2021; 103 Gan (10.1016/j.engappai.2022.104672_b16) 2006 Han (10.1016/j.engappai.2022.104672_b20) 2007; 70 Mishro (10.1016/j.engappai.2022.104672_b37) 2020; 14 Wang (10.1016/j.engappai.2022.104672_b46) 2013; 246 Jiang (10.1016/j.engappai.2022.104672_b25) 2021; 130 Hashemzadeh (10.1016/j.engappai.2022.104672_b22) 2019; 78 Liu (10.1016/j.engappai.2022.104672_b32) 2015; 24 Hasheminejad (10.1016/j.engappai.2022.104672_b21) 2020; 18 Liu (10.1016/j.engappai.2022.104672_b33) 2015; 12 |
| References_xml | – volume: 68 start-page: 245 year: 2017 end-page: 259 ident: b54 article-title: Unsupervised hierarchical image segmentation through fuzzy entropy maximization publication-title: Pattern Recognit – volume: 43 start-page: 767 year: 2010 end-page: 781 ident: b12 article-title: Enhanced soft subspace clustering integrating within-cluster and between-cluster information publication-title: Pattern Recognit – volume: 12 start-page: 1770 year: 2015 end-page: 1774 ident: b33 article-title: Image fuzzy clustering based on the region-level Markov random field model publication-title: IEEE Geosci. Remote Sens. Lett – year: 2021 ident: b38 article-title: CGFFCM: Cluster-weight and group-local feature-weight learning in fuzzy C-means clustering algorithm for color image segmentation publication-title: Appl. Soft Comput. – volume: 11 start-page: 21 year: 2014 end-page: 39 ident: b41 article-title: Applications of signatures to expert systems modelling publication-title: Acta Polytech. Hungarica – volume: 246 start-page: 133 year: 2013 end-page: 154 ident: b46 article-title: Fuzzy partition based soft subspace clustering and its applications in high dimensional data publication-title: Inf. Sci. (Ny) – volume: 5 start-page: 45 year: 2011 end-page: 56 ident: b61 article-title: Fuzzy c-means clustering with non local spatial information for noisy image segmentation publication-title: Front. Comput. Sci. China – volume: 26 start-page: 639 year: 2005 end-page: 652 ident: b52 article-title: A novel fuzzy clustering algorithm based on a fuzzy scatter matrix with optimality tests publication-title: Pattern Recognit. Lett – volume: 16 start-page: 1351 year: 2008 end-page: 1361 ident: b9 article-title: A fuzzy clustering approach toward hidden Markov random field models for enhanced spatially constrained image segmentation publication-title: IEEE Trans. Fuzzy Syst. – year: 1997 ident: b11 article-title: Brainweb: Online interface to a 3D MRI simulated brain database publication-title: NeuroImage – volume: 18 start-page: 51 year: 2020 end-page: 73 ident: b21 article-title: AB2C: artificial bee colony for clustering publication-title: Int. J. Artif. Intell – volume: 104 year: 2021 ident: b50 article-title: A new active contour model driven by pre-fitting bias field estimation and clustering technique for image segmentation publication-title: Eng. Appl. Artif. Intell. – volume: 55 start-page: 3965 year: 2017 end-page: 3981 ident: b53 article-title: AID: A benchmark data set for performance evaluation of aerial scene classification publication-title: IEEE Trans. Geosci. Remote Sens – volume: 214 year: 2021 ident: b6 article-title: A unified form of fuzzy C-means and K-means algorithms and its partitional implementation publication-title: Knowl.-Based Syst. – volume: 11 start-page: 753 year: 2019 ident: b58 article-title: Kernel-based robust bias-correction fuzzy weighted C-ordered-means clustering algorithm publication-title: Symmetry (Basel) – volume: 55 start-page: 5057 year: 2017 end-page: 5068 ident: b59 article-title: A novel adaptive fuzzy local information publication-title: IEEE Trans. Geosci. Remote Sens – volume: 26 start-page: 3027 year: 2018 end-page: 3041 ident: b28 article-title: Significantly fast and robust fuzzy c-means clustering algorithm based on morphological reconstruction and membership filtering publication-title: IEEE Trans. Fuzzy Syst. – volume: 78 start-page: 324 year: 2019 end-page: 345 ident: b22 article-title: New fuzzy C-means clustering method based on feature-weight and cluster-weight learning publication-title: Appl. Soft Comput – volume: 103 year: 2021 ident: b24 article-title: Industry 4.0: Latent Dirichlet allocation and clustering based theme identification of bibliography publication-title: Eng. Appl. Artif. Intell. – start-page: 2312 year: 2012 end-page: 2319 ident: b45 article-title: Affinity learning via self-diffusion for image segmentation and clustering publication-title: 2012 IEEE Conference on Computer Vision and Pattern Recognition – volume: 41 start-page: 1939 year: 2008 end-page: 1947 ident: b15 article-title: A convergence theorem for the fuzzy subspace clustering (FSC) algorithm publication-title: Pattern Recognit – year: 2021 ident: b43 article-title: A deep semantic segmentation-based algorithm to segment crops and weeds in agronomic color images publication-title: Inf. Process. Agric. – volume: 33 start-page: 898 year: 2010 end-page: 916 ident: b3 article-title: Contour detection and hierarchical image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell – volume: 27 start-page: 1753 year: 2018 end-page: 1766 ident: b29 article-title: Superpixel-based fast fuzzy C-means clustering for color image segmentation publication-title: IEEE Trans. Fuzzy Syst. – volume: 39 start-page: 128 year: 2016 end-page: 140 ident: b40 article-title: Multiscale combinatorial grouping for image segmentation and object proposal generation publication-title: IEEE Trans. Pattern Anal. Mach. Intell – volume: 52 start-page: 2565 year: 2013 end-page: 2574 ident: b17 article-title: Spectral–spatial classification of hyperspectral images based on hidden Markov random fields publication-title: IEEE Trans. Geosci. Remote Sens – volume: 26 start-page: 1216 year: 2016 end-page: 1230 ident: b35 article-title: Unsupervised multi-class co-segmentation via joint-cut over publication-title: IEEE Trans. Image Process – volume: 70 start-page: 665 year: 2007 end-page: 671 ident: b20 article-title: An improved ant colony algorithm for fuzzy clustering in image segmentation publication-title: Neurocomputing – volume: 40 start-page: 825 year: 2007 end-page: 838 ident: b8 article-title: Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation publication-title: Pattern Recognit – volume: 19 start-page: 1328 year: 2010 end-page: 1337 ident: b26 article-title: A robust fuzzy local information C-means clustering algorithm publication-title: IEEE Trans. Image Process – volume: 25 start-page: 442 year: 1983 ident: b39 article-title: Pattern recognition with fuzzy objective function algorithms (James C. Bezdek) publication-title: SIAM Rev – start-page: 1 year: 2006 end-page: 15 ident: b42 article-title: Textonboost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation publication-title: European Conference on Computer Vision – volume: 19 start-page: 403 year: 2006 end-page: 410 ident: b30 article-title: Automatic clinical image segmentation using pathological modeling publication-title: PCA and SVM. Eng. Appl. Artif. Intell – volume: 34 start-page: 1907 year: 2004 end-page: 1916 ident: b10 article-title: Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure publication-title: IEEE Trans. Syst. Man, Cybern. Part B – volume: 168 year: 2020 ident: b14 article-title: BCEFCM_S: Bias correction embedded fuzzy c-means with spatial constraint to segment multiple spectral images with intensity inhomogeneities and noises publication-title: Signal Process. – volume: 21 start-page: 193 year: 2002 end-page: 199 ident: b1 article-title: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data publication-title: IEEE Trans. Med. Imaging – volume: 22 start-page: 573 year: 2012 end-page: 584 ident: b18 article-title: Fuzzy c-means clustering with local information and kernel metric for image segmentation publication-title: IEEE Trans. Image Process – volume: 46 start-page: 3259 year: 2015 end-page: 3271 ident: b4 article-title: Infrared ship target segmentation based on spatial information improved FCM publication-title: IEEE Trans. Cybern. – volume: 101 year: 2021 ident: b49 article-title: An image segmentation method based on a modified local-information weighted intuitionistic fuzzy C-means clustering and gold-panning algorithm publication-title: Eng. Appl. Artif. Intell. – volume: 24 start-page: 3990 year: 2015 end-page: 4000 ident: b32 article-title: Incorporating adaptive local information into fuzzy clustering for image segmentation publication-title: IEEE Trans. Image Process – volume: 105 year: 2021 ident: b47 article-title: Fuzzy image clustering incorporating local and region-level information with median memberships publication-title: Appl. Soft Comput – volume: 92 year: 2020 ident: b48 article-title: Robust fuzzy c-means clustering algorithm with adaptive spatial & intensity constraint and membership linking for noise image segmentation publication-title: Appl. Soft Comput – volume: 10 start-page: 272 year: 2016 end-page: 279 ident: b19 article-title: Adaptive fuzzy c-means algorithm based on local noise detecting for image segmentation publication-title: IET Image Process – volume: 14 start-page: 6544 year: 2021 end-page: 6558 ident: b23 article-title: An extraction method for glacial lakes based on landsat-8 imagery using an improved U-net network publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens – volume: 8 start-page: 150 year: 2014 end-page: 161 ident: b55 article-title: Neighbourhood weighted fuzzy c-means clustering algorithm for image segmentation publication-title: IET Image Process – start-page: 724 year: 2003 end-page: 726 ident: b44 article-title: MR brain image segmentation using an enhanced fuzzy c-means algorithm publication-title: Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No. 03CH37439) – volume: 85 start-page: 49 year: 2017 end-page: 55 ident: b62 article-title: A fuzzy clustering image segmentation algorithm based on hidden Markov random field models and voronoi tessellation publication-title: Pattern Recognit. Lett – volume: 340 start-page: 91 year: 2018 end-page: 108 ident: b36 article-title: Generalised kernel weighted fuzzy C-means clustering algorithm with local information publication-title: Fuzzy Sets Syst – volume: 2015 year: 2015 ident: b13 article-title: Segmentation of brain tissues from magnetic resonance images using adaptively regularized kernel-based fuzzy-means clustering publication-title: Comput. Math. Methods Med. – volume: 125 year: 2021 ident: b31 article-title: Ecological risks of geological disasters and the patterns of the urban agglomeration in the Fujian Delta region publication-title: Ecol. Indic – start-page: 1649 year: 2004 end-page: 1654 ident: b51 article-title: Construction of fuzzy signature from data: an example of SARS pre-clinical diagnosis system publication-title: 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No. 04CH37542) – volume: 130 year: 2021 ident: b25 article-title: Digital twin and its implementations in the civil engineering sector publication-title: Autom. Constr – reference: Bai, M., Urtasun, R., 2017. Deep watershed transform for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5221–5229. – volume: 25 start-page: 1097 year: 2012 end-page: 1105 ident: b27 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 26 start-page: 1671 year: 2017 end-page: 1687 ident: b56 article-title: A unified collaborative multikernel fuzzy clustering for multiview data publication-title: IEEE Trans. Fuzzy Syst. – reference: Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440. – volume: 106 start-page: 115 year: 2013 end-page: 125 ident: b60 article-title: Fuzzy clustering algorithms with self-tuning non-local spatial information for image segmentation publication-title: Neurocomputing – volume: 14 start-page: 1929 year: 2020 end-page: 1936 ident: b37 article-title: Novel fuzzy clustering-based bias field correction technique for brain magnetic resonance images publication-title: IET Image Process – start-page: 271 year: 2006 end-page: 278 ident: b16 article-title: A fuzzy subspace algorithm for clustering high dimensional data publication-title: International Conference on Advanced Data Mining and Applications – volume: 11 start-page: 2896 year: 2018 end-page: 2910 ident: b57 article-title: Enhanced spatially constrained remotely sensed imagery classification using a fuzzy local double neighborhood information c-means clustering algorithm publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens – volume: 76 start-page: 123 year: 2008 end-page: 139 ident: b7 article-title: Nonlocal image and movie denoising publication-title: Int. J. Comput. Vis – volume: 17 start-page: 285 year: 2019 end-page: 308 ident: b2 article-title: Results and challenges of artificial neural networks used for decision-making and control in medical applications publication-title: Facta Univ. Ser. Mech. Eng – volume: 19 start-page: 403 issue: 4 year: 2006 ident: 10.1016/j.engappai.2022.104672_b30 article-title: Automatic clinical image segmentation using pathological modeling publication-title: PCA and SVM. Eng. Appl. Artif. Intell doi: 10.1016/j.engappai.2006.01.011 – year: 2021 ident: 10.1016/j.engappai.2022.104672_b43 article-title: A deep semantic segmentation-based algorithm to segment crops and weeds in agronomic color images publication-title: Inf. Process. Agric. – start-page: 1649 year: 2004 ident: 10.1016/j.engappai.2022.104672_b51 article-title: Construction of fuzzy signature from data: an example of SARS pre-clinical diagnosis system – volume: 214 year: 2021 ident: 10.1016/j.engappai.2022.104672_b6 article-title: A unified form of fuzzy C-means and K-means algorithms and its partitional implementation publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.106731 – volume: 104 year: 2021 ident: 10.1016/j.engappai.2022.104672_b50 article-title: A new active contour model driven by pre-fitting bias field estimation and clustering technique for image segmentation publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2021.104299 – volume: 68 start-page: 245 year: 2017 ident: 10.1016/j.engappai.2022.104672_b54 article-title: Unsupervised hierarchical image segmentation through fuzzy entropy maximization publication-title: Pattern Recognit doi: 10.1016/j.patcog.2017.03.012 – year: 2021 ident: 10.1016/j.engappai.2022.104672_b38 article-title: CGFFCM: Cluster-weight and group-local feature-weight learning in fuzzy C-means clustering algorithm for color image segmentation publication-title: Appl. Soft Comput. – volume: 130 year: 2021 ident: 10.1016/j.engappai.2022.104672_b25 article-title: Digital twin and its implementations in the civil engineering sector publication-title: Autom. Constr doi: 10.1016/j.autcon.2021.103838 – volume: 11 start-page: 753 issue: 6 year: 2019 ident: 10.1016/j.engappai.2022.104672_b58 article-title: Kernel-based robust bias-correction fuzzy weighted C-ordered-means clustering algorithm publication-title: Symmetry (Basel) doi: 10.3390/sym11060753 – volume: 76 start-page: 123 issue: 2 year: 2008 ident: 10.1016/j.engappai.2022.104672_b7 article-title: Nonlocal image and movie denoising publication-title: Int. J. Comput. Vis doi: 10.1007/s11263-007-0052-1 – volume: 17 start-page: 285 issue: 3 year: 2019 ident: 10.1016/j.engappai.2022.104672_b2 article-title: Results and challenges of artificial neural networks used for decision-making and control in medical applications publication-title: Facta Univ. Ser. Mech. Eng – volume: 22 start-page: 573 issue: 2 year: 2012 ident: 10.1016/j.engappai.2022.104672_b18 article-title: Fuzzy c-means clustering with local information and kernel metric for image segmentation publication-title: IEEE Trans. Image Process doi: 10.1109/TIP.2012.2219547 – volume: 103 year: 2021 ident: 10.1016/j.engappai.2022.104672_b24 article-title: Industry 4.0: Latent Dirichlet allocation and clustering based theme identification of bibliography publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2021.104280 – volume: 125 year: 2021 ident: 10.1016/j.engappai.2022.104672_b31 article-title: Ecological risks of geological disasters and the patterns of the urban agglomeration in the Fujian Delta region publication-title: Ecol. Indic doi: 10.1016/j.ecolind.2021.107475 – volume: 10 start-page: 272 issue: 4 year: 2016 ident: 10.1016/j.engappai.2022.104672_b19 article-title: Adaptive fuzzy c-means algorithm based on local noise detecting for image segmentation publication-title: IET Image Process doi: 10.1049/iet-ipr.2015.0236 – volume: 26 start-page: 1671 issue: 3 year: 2017 ident: 10.1016/j.engappai.2022.104672_b56 article-title: A unified collaborative multikernel fuzzy clustering for multiview data publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2017.2743679 – volume: 106 start-page: 115 year: 2013 ident: 10.1016/j.engappai.2022.104672_b60 article-title: Fuzzy clustering algorithms with self-tuning non-local spatial information for image segmentation publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.10.022 – volume: 27 start-page: 1753 issue: 9 year: 2018 ident: 10.1016/j.engappai.2022.104672_b29 article-title: Superpixel-based fast fuzzy C-means clustering for color image segmentation publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2018.2889018 – volume: 33 start-page: 898 issue: 5 year: 2010 ident: 10.1016/j.engappai.2022.104672_b3 article-title: Contour detection and hierarchical image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell doi: 10.1109/TPAMI.2010.161 – volume: 26 start-page: 1216 issue: 3 year: 2016 ident: 10.1016/j.engappai.2022.104672_b35 article-title: Unsupervised multi-class co-segmentation via joint-cut over L1-manifold hyper-graph of discriminative image regions publication-title: IEEE Trans. Image Process doi: 10.1109/TIP.2016.2631883 – volume: 18 start-page: 51 issue: 2 year: 2020 ident: 10.1016/j.engappai.2022.104672_b21 article-title: AB2C: artificial bee colony for clustering publication-title: Int. J. Artif. Intell – volume: 340 start-page: 91 year: 2018 ident: 10.1016/j.engappai.2022.104672_b36 article-title: Generalised kernel weighted fuzzy C-means clustering algorithm with local information publication-title: Fuzzy Sets Syst doi: 10.1016/j.fss.2018.01.019 – ident: 10.1016/j.engappai.2022.104672_b34 doi: 10.1109/CVPR.2015.7298965 – volume: 39 start-page: 128 issue: 1 year: 2016 ident: 10.1016/j.engappai.2022.104672_b40 article-title: Multiscale combinatorial grouping for image segmentation and object proposal generation publication-title: IEEE Trans. Pattern Anal. Mach. Intell doi: 10.1109/TPAMI.2016.2537320 – volume: 78 start-page: 324 year: 2019 ident: 10.1016/j.engappai.2022.104672_b22 article-title: New fuzzy C-means clustering method based on feature-weight and cluster-weight learning publication-title: Appl. Soft Comput doi: 10.1016/j.asoc.2019.02.038 – volume: 46 start-page: 3259 issue: 12 year: 2015 ident: 10.1016/j.engappai.2022.104672_b4 article-title: Infrared ship target segmentation based on spatial information improved FCM publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2015.2501848 – volume: 40 start-page: 825 issue: 3 year: 2007 ident: 10.1016/j.engappai.2022.104672_b8 article-title: Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation publication-title: Pattern Recognit doi: 10.1016/j.patcog.2006.07.011 – volume: 43 start-page: 767 issue: 3 year: 2010 ident: 10.1016/j.engappai.2022.104672_b12 article-title: Enhanced soft subspace clustering integrating within-cluster and between-cluster information publication-title: Pattern Recognit doi: 10.1016/j.patcog.2009.09.010 – volume: 92 year: 2020 ident: 10.1016/j.engappai.2022.104672_b48 article-title: Robust fuzzy c-means clustering algorithm with adaptive spatial & intensity constraint and membership linking for noise image segmentation publication-title: Appl. Soft Comput doi: 10.1016/j.asoc.2020.106318 – start-page: 2312 year: 2012 ident: 10.1016/j.engappai.2022.104672_b45 article-title: Affinity learning via self-diffusion for image segmentation and clustering – volume: 246 start-page: 133 year: 2013 ident: 10.1016/j.engappai.2022.104672_b46 article-title: Fuzzy partition based soft subspace clustering and its applications in high dimensional data publication-title: Inf. Sci. (Ny) doi: 10.1016/j.ins.2013.05.029 – volume: 24 start-page: 3990 issue: 11 year: 2015 ident: 10.1016/j.engappai.2022.104672_b32 article-title: Incorporating adaptive local information into fuzzy clustering for image segmentation publication-title: IEEE Trans. Image Process doi: 10.1109/TIP.2015.2456505 – volume: 2015 year: 2015 ident: 10.1016/j.engappai.2022.104672_b13 article-title: Segmentation of brain tissues from magnetic resonance images using adaptively regularized kernel-based fuzzy-means clustering publication-title: Comput. Math. Methods Med. doi: 10.1155/2015/485495 – volume: 19 start-page: 1328 issue: 5 year: 2010 ident: 10.1016/j.engappai.2022.104672_b26 article-title: A robust fuzzy local information C-means clustering algorithm publication-title: IEEE Trans. Image Process doi: 10.1109/TIP.2010.2040763 – volume: 34 start-page: 1907 issue: 4 year: 2004 ident: 10.1016/j.engappai.2022.104672_b10 article-title: Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure publication-title: IEEE Trans. Syst. Man, Cybern. Part B doi: 10.1109/TSMCB.2004.831165 – volume: 25 start-page: 1097 year: 2012 ident: 10.1016/j.engappai.2022.104672_b27 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – start-page: 724 year: 2003 ident: 10.1016/j.engappai.2022.104672_b44 article-title: MR brain image segmentation using an enhanced fuzzy c-means algorithm – volume: 11 start-page: 2896 issue: 8 year: 2018 ident: 10.1016/j.engappai.2022.104672_b57 article-title: Enhanced spatially constrained remotely sensed imagery classification using a fuzzy local double neighborhood information c-means clustering algorithm publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens doi: 10.1109/JSTARS.2018.2846603 – volume: 55 start-page: 3965 issue: 7 year: 2017 ident: 10.1016/j.engappai.2022.104672_b53 article-title: AID: A benchmark data set for performance evaluation of aerial scene classification publication-title: IEEE Trans. Geosci. Remote Sens doi: 10.1109/TGRS.2017.2685945 – volume: 70 start-page: 665 issue: 4–6 year: 2007 ident: 10.1016/j.engappai.2022.104672_b20 article-title: An improved ant colony algorithm for fuzzy clustering in image segmentation publication-title: Neurocomputing doi: 10.1016/j.neucom.2006.10.022 – volume: 11 start-page: 21 issue: 2 year: 2014 ident: 10.1016/j.engappai.2022.104672_b41 article-title: Applications of signatures to expert systems modelling publication-title: Acta Polytech. Hungarica – volume: 52 start-page: 2565 issue: 5 year: 2013 ident: 10.1016/j.engappai.2022.104672_b17 article-title: Spectral–spatial classification of hyperspectral images based on hidden Markov random fields publication-title: IEEE Trans. Geosci. Remote Sens doi: 10.1109/TGRS.2013.2263282 – volume: 168 year: 2020 ident: 10.1016/j.engappai.2022.104672_b14 article-title: BCEFCM_S: Bias correction embedded fuzzy c-means with spatial constraint to segment multiple spectral images with intensity inhomogeneities and noises publication-title: Signal Process. doi: 10.1016/j.sigpro.2019.107347 – volume: 41 start-page: 1939 issue: 6 year: 2008 ident: 10.1016/j.engappai.2022.104672_b15 article-title: A convergence theorem for the fuzzy subspace clustering (FSC) algorithm publication-title: Pattern Recognit doi: 10.1016/j.patcog.2007.11.011 – volume: 85 start-page: 49 year: 2017 ident: 10.1016/j.engappai.2022.104672_b62 article-title: A fuzzy clustering image segmentation algorithm based on hidden Markov random field models and voronoi tessellation publication-title: Pattern Recognit. Lett doi: 10.1016/j.patrec.2016.11.019 – volume: 5 start-page: 45 issue: 1 year: 2011 ident: 10.1016/j.engappai.2022.104672_b61 article-title: Fuzzy c-means clustering with non local spatial information for noisy image segmentation publication-title: Front. Comput. Sci. China doi: 10.1007/s11704-010-0393-8 – volume: 14 start-page: 6544 year: 2021 ident: 10.1016/j.engappai.2022.104672_b23 article-title: An extraction method for glacial lakes based on landsat-8 imagery using an improved U-net network publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens doi: 10.1109/JSTARS.2021.3085397 – start-page: 1 year: 2006 ident: 10.1016/j.engappai.2022.104672_b42 article-title: Textonboost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation – volume: 26 start-page: 3027 issue: 5 year: 2018 ident: 10.1016/j.engappai.2022.104672_b28 article-title: Significantly fast and robust fuzzy c-means clustering algorithm based on morphological reconstruction and membership filtering publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2018.2796074 – ident: 10.1016/j.engappai.2022.104672_b5 doi: 10.1109/CVPR.2017.305 – volume: 25 start-page: 442 issue: 3 year: 1983 ident: 10.1016/j.engappai.2022.104672_b39 article-title: Pattern recognition with fuzzy objective function algorithms (James C. Bezdek) publication-title: SIAM Rev doi: 10.1137/1025116 – volume: 26 start-page: 639 issue: 5 year: 2005 ident: 10.1016/j.engappai.2022.104672_b52 article-title: A novel fuzzy clustering algorithm based on a fuzzy scatter matrix with optimality tests publication-title: Pattern Recognit. Lett doi: 10.1016/j.patrec.2004.09.016 – volume: 12 start-page: 1770 issue: 8 year: 2015 ident: 10.1016/j.engappai.2022.104672_b33 article-title: Image fuzzy clustering based on the region-level Markov random field model publication-title: IEEE Geosci. Remote Sens. Lett doi: 10.1109/LGRS.2015.2425225 – volume: 55 start-page: 5057 issue: 9 year: 2017 ident: 10.1016/j.engappai.2022.104672_b59 article-title: A novel adaptive fuzzy local information c-means clustering algorithm for remotely sensed imagery classification publication-title: IEEE Trans. Geosci. Remote Sens doi: 10.1109/TGRS.2017.2702061 – year: 1997 ident: 10.1016/j.engappai.2022.104672_b11 article-title: Brainweb: Online interface to a 3D MRI simulated brain database – volume: 101 year: 2021 ident: 10.1016/j.engappai.2022.104672_b49 article-title: An image segmentation method based on a modified local-information weighted intuitionistic fuzzy C-means clustering and gold-panning algorithm publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2021.104209 – volume: 105 year: 2021 ident: 10.1016/j.engappai.2022.104672_b47 article-title: Fuzzy image clustering incorporating local and region-level information with median memberships publication-title: Appl. Soft Comput doi: 10.1016/j.asoc.2021.107245 – volume: 8 start-page: 150 issue: 3 year: 2014 ident: 10.1016/j.engappai.2022.104672_b55 article-title: Neighbourhood weighted fuzzy c-means clustering algorithm for image segmentation publication-title: IET Image Process doi: 10.1049/iet-ipr.2011.0128 – start-page: 271 year: 2006 ident: 10.1016/j.engappai.2022.104672_b16 article-title: A fuzzy subspace algorithm for clustering high dimensional data – volume: 21 start-page: 193 issue: 3 year: 2002 ident: 10.1016/j.engappai.2022.104672_b1 article-title: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.996338 – volume: 16 start-page: 1351 issue: 5 year: 2008 ident: 10.1016/j.engappai.2022.104672_b9 article-title: A fuzzy clustering approach toward hidden Markov random field models for enhanced spatially constrained image segmentation publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2008.2005008 – volume: 14 start-page: 1929 issue: 9 year: 2020 ident: 10.1016/j.engappai.2022.104672_b37 article-title: Novel fuzzy clustering-based bias field correction technique for brain magnetic resonance images publication-title: IET Image Process doi: 10.1049/iet-ipr.2019.0942 |
| SSID | ssj0003846 |
| Score | 2.5452125 |
| Snippet | The Fuzzy C-means (FCM) clustering algorithm is an effective method for image segmentation. Non-local spatial information considers more redundant information... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 104672 |
| SubjectTerms | Fuzzy subspace clustering Mean membership linking Noise image segmentation Robustness |
| Title | Fuzzy subspace clustering noisy image segmentation algorithm with adaptive local variance & non-local information and mean membership linking |
| URI | https://dx.doi.org/10.1016/j.engappai.2022.104672 |
| Volume | 110 |
| WOSCitedRecordID | wos000753705600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMX3ohSQHNAXCwHx_FrjxVqBQhVHIIUcbE263XiKnaixIma_gf-WH8Vsy_bhYrSAxcrGnl37cznncfOg5B3U2l0ePghhYwJN8iF705RjLsiT9jU5yzjQnH6a3x2lkwm9Fuvd2VzYXaLuKqSiwu6-q-sRhoyW6bO3oHdzaRIwN_IdLwi2_H6T4w_3V5e7p0NbghoDguHL7ayFoL0CFTLYrN3ilKG6WzErDRpR5XDFrPluqjnpUl1y9hKRRQpQefs0JxWiQUSJdWycjXZlFytbTxzKX36pZANRlQEmOnKcM313xY_dLon5yoYYa2illQPkU6Z0PbkSIUdjJfVbF-0pwB6p5oUTHYBmzXRRYWmVlUjdH7Mt8rRO8fb9szcarwdaCi3QTLWbem7Q6p7xjQ7uImM1XuwPLXW7YD-EA_aU3E-wKXwLVkxkEsM2gHX63H_Jieb6EUbGHee2nlSOU-q57lHDvw4pEmfHBx_Ppl8afSCUaLTxuwbdPLVb36im1WljvozfkweGrsFjjXenpCeqJ6SR8aGASMhNkiybUIs7Rn5qRAJFpHQIhIUIkEhErqIhAaRIBEJFpGgoAcWkfAeGjxCB4-AeASJR2jxCAaPz8n305Pxx0-u6QLi8tHQr90wp3GOZq_HYh5nSEpC2dKV5jycco9lkfSJ84R6-Qi1dSaSTGQiiDLUxIMozL3RC9LHZxEvCaAy6yU04swPwmCYyw7IaH1kUaxUuZAektD-4Sk3JfJlp5ZF-neWH5IPzbiVLhJz6whq-ZkaVVersClC9Zaxr-682hF50H5Lr0m_Xm_FG3Kf7-pis35rcPoL0IHWVQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuzzy+subspace+clustering+noisy+image+segmentation+algorithm+with+adaptive+local+variance+%26+non-local+information+and+mean+membership+linking&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Wei%2C+Tongyi&rft.au=Wang%2C+Xiaopeng&rft.au=Li%2C+Xinna&rft.au=Zhu%2C+Shengyang&rft.date=2022-04-01&rft.issn=0952-1976&rft.volume=110&rft.spage=104672&rft_id=info:doi/10.1016%2Fj.engappai.2022.104672&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2022_104672 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |