Fuzzy subspace clustering noisy image segmentation algorithm with adaptive local variance & non-local information and mean membership linking

The Fuzzy C-means (FCM) clustering algorithm is an effective method for image segmentation. Non-local spatial information considers more redundant information of the image thus is more robust to noise. However, under-segmentation of non-local spatial information may exist with higher noise density....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering applications of artificial intelligence Jg. 110; S. 104672
Hauptverfasser: Wei, Tongyi, Wang, Xiaopeng, Li, Xinna, Zhu, Shengyang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.04.2022
Schlagworte:
ISSN:0952-1976, 1873-6769
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The Fuzzy C-means (FCM) clustering algorithm is an effective method for image segmentation. Non-local spatial information considers more redundant information of the image thus is more robust to noise. However, under-segmentation of non-local spatial information may exist with higher noise density. The number of iteration steps is also significant in FCM, and employing membership linking can effectively reduce the number of iteration steps. Nonetheless, when there are outliers in the membership degree, the membership linking can make the algorithm converge prematurely before reaching the optimum, affecting segmentation performance. This paper presents a fuzzy subspace clustering noisy image segmentation algorithm with adaptive local variance & non-local information and mean membership linking (FSC_LNML). Firstly, local variance templates are utilized to eliminate the under-segmentation of non-local information, and local variance & non-local information are integrated into the FCM objective function to improve robustness. Secondly, the mean membership linking is employed as the denominator of the objective function to reduce the number of iterations and solve the problem that the algorithm converges early before reaching the optimum when the membership has an outlier. Thirdly, the absolute intensity difference between the original image and the local variance & non-local information and its inverse are used to adaptively constrain the original image and the local variance & non-local information. Finally, the concept of the subspace is introduced to adaptively assign appropriate weights to each dimension of the image to improve the segmentation performance of color images. The simulation results on noisy grayscale images and noisy color images show that the efficiency of the proposed method FSC_LNML is better than other fuzzy-based clustering algorithms. The convergence proof of the algorithm is also presented. •Introducing a local variance template in the non-local spatial information to eliminate the under-segmentation of the non-local spatial information.•Using the mean membership linking as the denominator of the objective function to reduce the iteration steps and solve the convergence problem of the objective function before the algorithm reaches the optimal solution.•Assigning appropriate weights to each image dimension to improve the segmentation performance of color images.
AbstractList The Fuzzy C-means (FCM) clustering algorithm is an effective method for image segmentation. Non-local spatial information considers more redundant information of the image thus is more robust to noise. However, under-segmentation of non-local spatial information may exist with higher noise density. The number of iteration steps is also significant in FCM, and employing membership linking can effectively reduce the number of iteration steps. Nonetheless, when there are outliers in the membership degree, the membership linking can make the algorithm converge prematurely before reaching the optimum, affecting segmentation performance. This paper presents a fuzzy subspace clustering noisy image segmentation algorithm with adaptive local variance & non-local information and mean membership linking (FSC_LNML). Firstly, local variance templates are utilized to eliminate the under-segmentation of non-local information, and local variance & non-local information are integrated into the FCM objective function to improve robustness. Secondly, the mean membership linking is employed as the denominator of the objective function to reduce the number of iterations and solve the problem that the algorithm converges early before reaching the optimum when the membership has an outlier. Thirdly, the absolute intensity difference between the original image and the local variance & non-local information and its inverse are used to adaptively constrain the original image and the local variance & non-local information. Finally, the concept of the subspace is introduced to adaptively assign appropriate weights to each dimension of the image to improve the segmentation performance of color images. The simulation results on noisy grayscale images and noisy color images show that the efficiency of the proposed method FSC_LNML is better than other fuzzy-based clustering algorithms. The convergence proof of the algorithm is also presented. •Introducing a local variance template in the non-local spatial information to eliminate the under-segmentation of the non-local spatial information.•Using the mean membership linking as the denominator of the objective function to reduce the iteration steps and solve the convergence problem of the objective function before the algorithm reaches the optimal solution.•Assigning appropriate weights to each image dimension to improve the segmentation performance of color images.
ArticleNumber 104672
Author Wang, Xiaopeng
Li, Xinna
Wei, Tongyi
Zhu, Shengyang
Author_xml – sequence: 1
  givenname: Tongyi
  surname: Wei
  fullname: Wei, Tongyi
  email: 11200715@stu.lzjtu.edu.cn
– sequence: 2
  givenname: Xiaopeng
  surname: Wang
  fullname: Wang, Xiaopeng
  email: wangxiaopeng@mail.lzjtu.cn
– sequence: 3
  givenname: Xinna
  surname: Li
  fullname: Li, Xinna
  email: 13884591830@163.com
– sequence: 4
  givenname: Shengyang
  surname: Zhu
  fullname: Zhu, Shengyang
  email: wty19961005@gmail.com
BookMark eNqFkE1r20AQhpfiQu2kf6HsKTc5u_pYSZBDi0magKGX5ryMd0fyuNJK7MoOzn_of-4GJZdefJmBF553mGfFFm5wyNg3KdZSSHV7WKNrYRyB1qlI0xjmqkw_saWsyixRpaoXbCnqIk1kXaovbBXCQQiRVblasr8Px9fXMw_HXRjBIDfdMUzoybXcDRTOnHpokQdse3QTTDQ4Dl07eJr2PX-Jk4OFcaIT8m4w0PETeAIXq25ig0vmkFwz-P4dd5b3CC6Ofoc-7GnkHbk_8eY1-9xAF_Dr-75izw_3vzePyfbXz6fNj21iMplOSdHUZVPUpYDSlDZGVVEUStaNKXZGgFVC5pWpatFkSqaAlUWLubJZVeeqaER2xe7mXuOHEDw22tD83OSBOi2FflOrD_pDrX5Tq2e1EVf_4aOPnvz5Mvh9BjE-dyL0OhjCKMuSRzNpO9Clin9fHZ18
CitedBy_id crossref_primary_10_1016_j_engappai_2022_105335
crossref_primary_10_1016_j_array_2025_100465
crossref_primary_10_1016_j_ijar_2023_02_013
crossref_primary_10_1016_j_bspc_2024_107063
crossref_primary_10_1016_j_eswa_2024_124943
crossref_primary_10_1109_TNNLS_2025_3558613
crossref_primary_10_1016_j_engappai_2024_108104
crossref_primary_10_1016_j_engappai_2023_107776
crossref_primary_10_3233_JCM_247192
crossref_primary_10_3390_app14020644
crossref_primary_10_1016_j_engappai_2024_108594
crossref_primary_10_1109_TNS_2024_3389106
crossref_primary_10_1016_j_bspc_2023_104925
crossref_primary_10_3390_sym16101370
crossref_primary_10_1109_ACCESS_2024_3521595
crossref_primary_10_1016_j_asoc_2025_113926
crossref_primary_10_1016_j_compeleceng_2025_110358
crossref_primary_10_1007_s40815_023_01490_5
crossref_primary_10_1016_j_dsp_2024_104798
crossref_primary_10_1016_j_patcog_2024_110366
crossref_primary_10_3390_math10224301
crossref_primary_10_1016_j_cviu_2023_103765
crossref_primary_10_1016_j_engappai_2022_105464
crossref_primary_10_1016_j_dsp_2024_104492
crossref_primary_10_1016_j_engappai_2024_109229
crossref_primary_10_1016_j_patcog_2022_108686
crossref_primary_10_1007_s40815_025_02068_z
crossref_primary_10_3390_math11234800
crossref_primary_10_1007_s11227_023_05336_7
crossref_primary_10_1016_j_engappai_2024_109135
crossref_primary_10_1007_s10489_024_05813_3
crossref_primary_10_1007_s11042_025_20848_5
crossref_primary_10_1109_ACCESS_2024_3472037
crossref_primary_10_1007_s11063_024_11450_1
Cites_doi 10.1016/j.engappai.2006.01.011
10.1016/j.knosys.2020.106731
10.1016/j.engappai.2021.104299
10.1016/j.patcog.2017.03.012
10.1016/j.autcon.2021.103838
10.3390/sym11060753
10.1007/s11263-007-0052-1
10.1109/TIP.2012.2219547
10.1016/j.engappai.2021.104280
10.1016/j.ecolind.2021.107475
10.1049/iet-ipr.2015.0236
10.1109/TFUZZ.2017.2743679
10.1016/j.neucom.2012.10.022
10.1109/TFUZZ.2018.2889018
10.1109/TPAMI.2010.161
10.1109/TIP.2016.2631883
10.1016/j.fss.2018.01.019
10.1109/CVPR.2015.7298965
10.1109/TPAMI.2016.2537320
10.1016/j.asoc.2019.02.038
10.1109/TCYB.2015.2501848
10.1016/j.patcog.2006.07.011
10.1016/j.patcog.2009.09.010
10.1016/j.asoc.2020.106318
10.1016/j.ins.2013.05.029
10.1109/TIP.2015.2456505
10.1155/2015/485495
10.1109/TIP.2010.2040763
10.1109/TSMCB.2004.831165
10.1109/JSTARS.2018.2846603
10.1109/TGRS.2017.2685945
10.1016/j.neucom.2006.10.022
10.1109/TGRS.2013.2263282
10.1016/j.sigpro.2019.107347
10.1016/j.patcog.2007.11.011
10.1016/j.patrec.2016.11.019
10.1007/s11704-010-0393-8
10.1109/JSTARS.2021.3085397
10.1109/TFUZZ.2018.2796074
10.1109/CVPR.2017.305
10.1137/1025116
10.1016/j.patrec.2004.09.016
10.1109/LGRS.2015.2425225
10.1109/TGRS.2017.2702061
10.1016/j.engappai.2021.104209
10.1016/j.asoc.2021.107245
10.1049/iet-ipr.2011.0128
10.1109/42.996338
10.1109/TFUZZ.2008.2005008
10.1049/iet-ipr.2019.0942
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2022.104672
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
ExternalDocumentID 10_1016_j_engappai_2022_104672
S0952197622000069
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c312t-5f97f5970a7c7d3128555619fc5bc0ad60148c890f3612ae8dede46d389465f03
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000753705600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0952-1976
IngestDate Tue Nov 18 22:10:46 EST 2025
Sat Nov 29 07:05:41 EST 2025
Fri Feb 23 02:39:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Mean membership linking
Fuzzy subspace clustering
Robustness
Noise image segmentation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-5f97f5970a7c7d3128555619fc5bc0ad60148c890f3612ae8dede46d389465f03
ParticipantIDs crossref_citationtrail_10_1016_j_engappai_2022_104672
crossref_primary_10_1016_j_engappai_2022_104672
elsevier_sciencedirect_doi_10_1016_j_engappai_2022_104672
PublicationCentury 2000
PublicationDate April 2022
2022-04-00
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 2022
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Lei, Jia, Zhang, Liu, Meng, Nandi (b29) 2018; 27
Arbelaez, Maire, Fowlkes, Malik (b3) 2010; 33
Wei, Wang, Si, Tan, Lu (b49) 2021; 101
Ghamisi, Benediktsson, Ulfarsson (b17) 2013; 52
Krizhevsky, Sutskever, Hinton (b27) 2012; 25
Lei, Jia, Zhang, He, Meng, Nandi (b28) 2018; 26
Xia, Hu, Hu, Shi, Bai, Zhong, Zhang, Lu (b53) 2017; 55
Wang, Wang, Fang, Yang (b48) 2020; 92
He, Yao, Yang, Yan, Zhang, Wen, Zhang, Liu (b23) 2021; 14
Lin, Lin, Chen, Zhang, Qi, Hou (b31) 2021; 125
Chen, Zhang (b10) 2004; 34
Zhang, Bruzzone, Shi, Hao, Wang (b57) 2018; 11
Bai, M., Urtasun, R., 2017. Deep watershed transform for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5221–5229.
Hasheminejad, Vosoughian (b21) 2020; 18
Yin, Qian, Gong (b54) 2017; 68
Albu, Precup, Teban (b2) 2019; 17
Pozna, Precup (b41) 2014; 11
Wang, Tu (b45) 2012
Janmaijaya, Shukla, Muhuri, Abraham (b24) 2021; 103
Gan, Wu, Yang (b16) 2006
Zhao, Jiao, Liu (b61) 2011; 5
Szilagyi, Benyo, Szilágyi, Adam (b44) 2003
Zhang, Guo, Huang, Liu, Chen (b58) 2019; 11
Hashemzadeh, Oskouei, Farajzadeh (b22) 2019; 78
Zhang, Wang, Shi, Hao (b59) 2017; 55
Weng, Dong (b50) 2021; 104
Han, Shi (b20) 2007; 70
Oskouei, Hashemzadeh, Asheghi, Balafar (b38) 2021
Elazab, Wang, Jia, Wu, Li, Hu (b13) 2015; 2015
Zhao, Li, Li, Zhao (b62) 2017; 85
Buades, Coll, Morel (b7) 2008; 76
Pont-Tuset, Arbelaez, Barron, Marques, Malik (b40) 2016; 39
Gan, Wu (b15) 2008; 41
Bai, Chen, Zhang, Liu, Lu (b4) 2015; 46
Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440.
Zhao (b60) 2013; 106
Memon, Lee (b36) 2018; 340
Guo, Wang, Shen (b19) 2016; 10
Zaixin, Lizhi, Guangquan (b55) 2014; 8
Chatzis, Varvarigou (b9) 2008; 16
Ahmed, Yamany, Mohamed, Farag, Moriarty (b1) 2002; 21
Liu, Zhang, Wang (b32) 2015; 24
Cocosco, Kollokian, Kwan, Pike, Evans (b11) 1997
Peizhuang (b39) 1983; 25
Jiang, Ma, Broyd, Chen (b25) 2021; 130
Shotton, Winn, Rother, Criminisi (b42) 2006
Mishro, Agrawal, Panda, Abraham (b37) 2020; 14
Sodjinou, Mohammadi, Mahama, Gouton (b43) 2021
Wang, Wang, Chung, Deng (b46) 2013; 246
Cai, Chen, Zhang (b8) 2007; 40
Wong, Gedeon, Kóczy (b51) 2004
Krinidis, Chatzis (b26) 2010; 19
Ma, Li, Qin, Hao (b35) 2016; 26
Wu, Yu, Yang (b52) 2005; 26
Zeng, Wang, Cui, Zheng, Feng (b56) 2017; 26
Feng, Li, Hu, Yu, Zhao (b14) 2020; 168
Gong, Liang, Shi, Ma, Ma (b18) 2012; 22
Wang, Wang, Fang, Jiao (b47) 2021; 105
Borlea, Precup, Borlea, Iercan (b6) 2021; 214
Deng, Choi, Chung, Wang (b12) 2010; 43
Liu, Zhao, Zhang (b33) 2015; 12
Li, Fevens, Krzyzak, Song (b30) 2006; 19
10.1016/j.engappai.2022.104672_b34
Ghamisi (10.1016/j.engappai.2022.104672_b17) 2013; 52
Zaixin (10.1016/j.engappai.2022.104672_b55) 2014; 8
Weng (10.1016/j.engappai.2022.104672_b50) 2021; 104
Ma (10.1016/j.engappai.2022.104672_b35) 2016; 26
Zhao (10.1016/j.engappai.2022.104672_b60) 2013; 106
Guo (10.1016/j.engappai.2022.104672_b19) 2016; 10
Peizhuang (10.1016/j.engappai.2022.104672_b39) 1983; 25
Wang (10.1016/j.engappai.2022.104672_b47) 2021; 105
Zhang (10.1016/j.engappai.2022.104672_b57) 2018; 11
Krizhevsky (10.1016/j.engappai.2022.104672_b27) 2012; 25
Feng (10.1016/j.engappai.2022.104672_b14) 2020; 168
Oskouei (10.1016/j.engappai.2022.104672_b38) 2021
10.1016/j.engappai.2022.104672_b5
Pont-Tuset (10.1016/j.engappai.2022.104672_b40) 2016; 39
Borlea (10.1016/j.engappai.2022.104672_b6) 2021; 214
Wong (10.1016/j.engappai.2022.104672_b51) 2004
Albu (10.1016/j.engappai.2022.104672_b2) 2019; 17
Buades (10.1016/j.engappai.2022.104672_b7) 2008; 76
Deng (10.1016/j.engappai.2022.104672_b12) 2010; 43
Bai (10.1016/j.engappai.2022.104672_b4) 2015; 46
Krinidis (10.1016/j.engappai.2022.104672_b26) 2010; 19
Lin (10.1016/j.engappai.2022.104672_b31) 2021; 125
Chatzis (10.1016/j.engappai.2022.104672_b9) 2008; 16
Wei (10.1016/j.engappai.2022.104672_b49) 2021; 101
Zhao (10.1016/j.engappai.2022.104672_b61) 2011; 5
Chen (10.1016/j.engappai.2022.104672_b10) 2004; 34
Gong (10.1016/j.engappai.2022.104672_b18) 2012; 22
Lei (10.1016/j.engappai.2022.104672_b29) 2018; 27
Szilagyi (10.1016/j.engappai.2022.104672_b44) 2003
Wu (10.1016/j.engappai.2022.104672_b52) 2005; 26
Gan (10.1016/j.engappai.2022.104672_b15) 2008; 41
Zeng (10.1016/j.engappai.2022.104672_b56) 2017; 26
Shotton (10.1016/j.engappai.2022.104672_b42) 2006
Zhang (10.1016/j.engappai.2022.104672_b58) 2019; 11
Zhao (10.1016/j.engappai.2022.104672_b62) 2017; 85
He (10.1016/j.engappai.2022.104672_b23) 2021; 14
Sodjinou (10.1016/j.engappai.2022.104672_b43) 2021
Yin (10.1016/j.engappai.2022.104672_b54) 2017; 68
Li (10.1016/j.engappai.2022.104672_b30) 2006; 19
Lei (10.1016/j.engappai.2022.104672_b28) 2018; 26
Zhang (10.1016/j.engappai.2022.104672_b59) 2017; 55
Elazab (10.1016/j.engappai.2022.104672_b13) 2015; 2015
Ahmed (10.1016/j.engappai.2022.104672_b1) 2002; 21
Arbelaez (10.1016/j.engappai.2022.104672_b3) 2010; 33
Cai (10.1016/j.engappai.2022.104672_b8) 2007; 40
Memon (10.1016/j.engappai.2022.104672_b36) 2018; 340
Xia (10.1016/j.engappai.2022.104672_b53) 2017; 55
Wang (10.1016/j.engappai.2022.104672_b45) 2012
Pozna (10.1016/j.engappai.2022.104672_b41) 2014; 11
Wang (10.1016/j.engappai.2022.104672_b48) 2020; 92
Cocosco (10.1016/j.engappai.2022.104672_b11) 1997
Janmaijaya (10.1016/j.engappai.2022.104672_b24) 2021; 103
Gan (10.1016/j.engappai.2022.104672_b16) 2006
Han (10.1016/j.engappai.2022.104672_b20) 2007; 70
Mishro (10.1016/j.engappai.2022.104672_b37) 2020; 14
Wang (10.1016/j.engappai.2022.104672_b46) 2013; 246
Jiang (10.1016/j.engappai.2022.104672_b25) 2021; 130
Hashemzadeh (10.1016/j.engappai.2022.104672_b22) 2019; 78
Liu (10.1016/j.engappai.2022.104672_b32) 2015; 24
Hasheminejad (10.1016/j.engappai.2022.104672_b21) 2020; 18
Liu (10.1016/j.engappai.2022.104672_b33) 2015; 12
References_xml – volume: 68
  start-page: 245
  year: 2017
  end-page: 259
  ident: b54
  article-title: Unsupervised hierarchical image segmentation through fuzzy entropy maximization
  publication-title: Pattern Recognit
– volume: 43
  start-page: 767
  year: 2010
  end-page: 781
  ident: b12
  article-title: Enhanced soft subspace clustering integrating within-cluster and between-cluster information
  publication-title: Pattern Recognit
– volume: 12
  start-page: 1770
  year: 2015
  end-page: 1774
  ident: b33
  article-title: Image fuzzy clustering based on the region-level Markov random field model
  publication-title: IEEE Geosci. Remote Sens. Lett
– year: 2021
  ident: b38
  article-title: CGFFCM: Cluster-weight and group-local feature-weight learning in fuzzy C-means clustering algorithm for color image segmentation
  publication-title: Appl. Soft Comput.
– volume: 11
  start-page: 21
  year: 2014
  end-page: 39
  ident: b41
  article-title: Applications of signatures to expert systems modelling
  publication-title: Acta Polytech. Hungarica
– volume: 246
  start-page: 133
  year: 2013
  end-page: 154
  ident: b46
  article-title: Fuzzy partition based soft subspace clustering and its applications in high dimensional data
  publication-title: Inf. Sci. (Ny)
– volume: 5
  start-page: 45
  year: 2011
  end-page: 56
  ident: b61
  article-title: Fuzzy c-means clustering with non local spatial information for noisy image segmentation
  publication-title: Front. Comput. Sci. China
– volume: 26
  start-page: 639
  year: 2005
  end-page: 652
  ident: b52
  article-title: A novel fuzzy clustering algorithm based on a fuzzy scatter matrix with optimality tests
  publication-title: Pattern Recognit. Lett
– volume: 16
  start-page: 1351
  year: 2008
  end-page: 1361
  ident: b9
  article-title: A fuzzy clustering approach toward hidden Markov random field models for enhanced spatially constrained image segmentation
  publication-title: IEEE Trans. Fuzzy Syst.
– year: 1997
  ident: b11
  article-title: Brainweb: Online interface to a 3D MRI simulated brain database
  publication-title: NeuroImage
– volume: 18
  start-page: 51
  year: 2020
  end-page: 73
  ident: b21
  article-title: AB2C: artificial bee colony for clustering
  publication-title: Int. J. Artif. Intell
– volume: 104
  year: 2021
  ident: b50
  article-title: A new active contour model driven by pre-fitting bias field estimation and clustering technique for image segmentation
  publication-title: Eng. Appl. Artif. Intell.
– volume: 55
  start-page: 3965
  year: 2017
  end-page: 3981
  ident: b53
  article-title: AID: A benchmark data set for performance evaluation of aerial scene classification
  publication-title: IEEE Trans. Geosci. Remote Sens
– volume: 214
  year: 2021
  ident: b6
  article-title: A unified form of fuzzy C-means and K-means algorithms and its partitional implementation
  publication-title: Knowl.-Based Syst.
– volume: 11
  start-page: 753
  year: 2019
  ident: b58
  article-title: Kernel-based robust bias-correction fuzzy weighted C-ordered-means clustering algorithm
  publication-title: Symmetry (Basel)
– volume: 55
  start-page: 5057
  year: 2017
  end-page: 5068
  ident: b59
  article-title: A novel adaptive fuzzy local information
  publication-title: IEEE Trans. Geosci. Remote Sens
– volume: 26
  start-page: 3027
  year: 2018
  end-page: 3041
  ident: b28
  article-title: Significantly fast and robust fuzzy c-means clustering algorithm based on morphological reconstruction and membership filtering
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 78
  start-page: 324
  year: 2019
  end-page: 345
  ident: b22
  article-title: New fuzzy C-means clustering method based on feature-weight and cluster-weight learning
  publication-title: Appl. Soft Comput
– volume: 103
  year: 2021
  ident: b24
  article-title: Industry 4.0: Latent Dirichlet allocation and clustering based theme identification of bibliography
  publication-title: Eng. Appl. Artif. Intell.
– start-page: 2312
  year: 2012
  end-page: 2319
  ident: b45
  article-title: Affinity learning via self-diffusion for image segmentation and clustering
  publication-title: 2012 IEEE Conference on Computer Vision and Pattern Recognition
– volume: 41
  start-page: 1939
  year: 2008
  end-page: 1947
  ident: b15
  article-title: A convergence theorem for the fuzzy subspace clustering (FSC) algorithm
  publication-title: Pattern Recognit
– year: 2021
  ident: b43
  article-title: A deep semantic segmentation-based algorithm to segment crops and weeds in agronomic color images
  publication-title: Inf. Process. Agric.
– volume: 33
  start-page: 898
  year: 2010
  end-page: 916
  ident: b3
  article-title: Contour detection and hierarchical image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell
– volume: 27
  start-page: 1753
  year: 2018
  end-page: 1766
  ident: b29
  article-title: Superpixel-based fast fuzzy C-means clustering for color image segmentation
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 39
  start-page: 128
  year: 2016
  end-page: 140
  ident: b40
  article-title: Multiscale combinatorial grouping for image segmentation and object proposal generation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell
– volume: 52
  start-page: 2565
  year: 2013
  end-page: 2574
  ident: b17
  article-title: Spectral–spatial classification of hyperspectral images based on hidden Markov random fields
  publication-title: IEEE Trans. Geosci. Remote Sens
– volume: 26
  start-page: 1216
  year: 2016
  end-page: 1230
  ident: b35
  article-title: Unsupervised multi-class co-segmentation via joint-cut over
  publication-title: IEEE Trans. Image Process
– volume: 70
  start-page: 665
  year: 2007
  end-page: 671
  ident: b20
  article-title: An improved ant colony algorithm for fuzzy clustering in image segmentation
  publication-title: Neurocomputing
– volume: 40
  start-page: 825
  year: 2007
  end-page: 838
  ident: b8
  article-title: Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation
  publication-title: Pattern Recognit
– volume: 19
  start-page: 1328
  year: 2010
  end-page: 1337
  ident: b26
  article-title: A robust fuzzy local information C-means clustering algorithm
  publication-title: IEEE Trans. Image Process
– volume: 25
  start-page: 442
  year: 1983
  ident: b39
  article-title: Pattern recognition with fuzzy objective function algorithms (James C. Bezdek)
  publication-title: SIAM Rev
– start-page: 1
  year: 2006
  end-page: 15
  ident: b42
  article-title: Textonboost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation
  publication-title: European Conference on Computer Vision
– volume: 19
  start-page: 403
  year: 2006
  end-page: 410
  ident: b30
  article-title: Automatic clinical image segmentation using pathological modeling
  publication-title: PCA and SVM. Eng. Appl. Artif. Intell
– volume: 34
  start-page: 1907
  year: 2004
  end-page: 1916
  ident: b10
  article-title: Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure
  publication-title: IEEE Trans. Syst. Man, Cybern. Part B
– volume: 168
  year: 2020
  ident: b14
  article-title: BCEFCM_S: Bias correction embedded fuzzy c-means with spatial constraint to segment multiple spectral images with intensity inhomogeneities and noises
  publication-title: Signal Process.
– volume: 21
  start-page: 193
  year: 2002
  end-page: 199
  ident: b1
  article-title: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data
  publication-title: IEEE Trans. Med. Imaging
– volume: 22
  start-page: 573
  year: 2012
  end-page: 584
  ident: b18
  article-title: Fuzzy c-means clustering with local information and kernel metric for image segmentation
  publication-title: IEEE Trans. Image Process
– volume: 46
  start-page: 3259
  year: 2015
  end-page: 3271
  ident: b4
  article-title: Infrared ship target segmentation based on spatial information improved FCM
  publication-title: IEEE Trans. Cybern.
– volume: 101
  year: 2021
  ident: b49
  article-title: An image segmentation method based on a modified local-information weighted intuitionistic fuzzy C-means clustering and gold-panning algorithm
  publication-title: Eng. Appl. Artif. Intell.
– volume: 24
  start-page: 3990
  year: 2015
  end-page: 4000
  ident: b32
  article-title: Incorporating adaptive local information into fuzzy clustering for image segmentation
  publication-title: IEEE Trans. Image Process
– volume: 105
  year: 2021
  ident: b47
  article-title: Fuzzy image clustering incorporating local and region-level information with median memberships
  publication-title: Appl. Soft Comput
– volume: 92
  year: 2020
  ident: b48
  article-title: Robust fuzzy c-means clustering algorithm with adaptive spatial & intensity constraint and membership linking for noise image segmentation
  publication-title: Appl. Soft Comput
– volume: 10
  start-page: 272
  year: 2016
  end-page: 279
  ident: b19
  article-title: Adaptive fuzzy c-means algorithm based on local noise detecting for image segmentation
  publication-title: IET Image Process
– volume: 14
  start-page: 6544
  year: 2021
  end-page: 6558
  ident: b23
  article-title: An extraction method for glacial lakes based on landsat-8 imagery using an improved U-net network
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens
– volume: 8
  start-page: 150
  year: 2014
  end-page: 161
  ident: b55
  article-title: Neighbourhood weighted fuzzy c-means clustering algorithm for image segmentation
  publication-title: IET Image Process
– start-page: 724
  year: 2003
  end-page: 726
  ident: b44
  article-title: MR brain image segmentation using an enhanced fuzzy c-means algorithm
  publication-title: Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No. 03CH37439)
– volume: 85
  start-page: 49
  year: 2017
  end-page: 55
  ident: b62
  article-title: A fuzzy clustering image segmentation algorithm based on hidden Markov random field models and voronoi tessellation
  publication-title: Pattern Recognit. Lett
– volume: 340
  start-page: 91
  year: 2018
  end-page: 108
  ident: b36
  article-title: Generalised kernel weighted fuzzy C-means clustering algorithm with local information
  publication-title: Fuzzy Sets Syst
– volume: 2015
  year: 2015
  ident: b13
  article-title: Segmentation of brain tissues from magnetic resonance images using adaptively regularized kernel-based fuzzy-means clustering
  publication-title: Comput. Math. Methods Med.
– volume: 125
  year: 2021
  ident: b31
  article-title: Ecological risks of geological disasters and the patterns of the urban agglomeration in the Fujian Delta region
  publication-title: Ecol. Indic
– start-page: 1649
  year: 2004
  end-page: 1654
  ident: b51
  article-title: Construction of fuzzy signature from data: an example of SARS pre-clinical diagnosis system
  publication-title: 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No. 04CH37542)
– volume: 130
  year: 2021
  ident: b25
  article-title: Digital twin and its implementations in the civil engineering sector
  publication-title: Autom. Constr
– reference: Bai, M., Urtasun, R., 2017. Deep watershed transform for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5221–5229.
– volume: 25
  start-page: 1097
  year: 2012
  end-page: 1105
  ident: b27
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 26
  start-page: 1671
  year: 2017
  end-page: 1687
  ident: b56
  article-title: A unified collaborative multikernel fuzzy clustering for multiview data
  publication-title: IEEE Trans. Fuzzy Syst.
– reference: Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440.
– volume: 106
  start-page: 115
  year: 2013
  end-page: 125
  ident: b60
  article-title: Fuzzy clustering algorithms with self-tuning non-local spatial information for image segmentation
  publication-title: Neurocomputing
– volume: 14
  start-page: 1929
  year: 2020
  end-page: 1936
  ident: b37
  article-title: Novel fuzzy clustering-based bias field correction technique for brain magnetic resonance images
  publication-title: IET Image Process
– start-page: 271
  year: 2006
  end-page: 278
  ident: b16
  article-title: A fuzzy subspace algorithm for clustering high dimensional data
  publication-title: International Conference on Advanced Data Mining and Applications
– volume: 11
  start-page: 2896
  year: 2018
  end-page: 2910
  ident: b57
  article-title: Enhanced spatially constrained remotely sensed imagery classification using a fuzzy local double neighborhood information c-means clustering algorithm
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens
– volume: 76
  start-page: 123
  year: 2008
  end-page: 139
  ident: b7
  article-title: Nonlocal image and movie denoising
  publication-title: Int. J. Comput. Vis
– volume: 17
  start-page: 285
  year: 2019
  end-page: 308
  ident: b2
  article-title: Results and challenges of artificial neural networks used for decision-making and control in medical applications
  publication-title: Facta Univ. Ser. Mech. Eng
– volume: 19
  start-page: 403
  issue: 4
  year: 2006
  ident: 10.1016/j.engappai.2022.104672_b30
  article-title: Automatic clinical image segmentation using pathological modeling
  publication-title: PCA and SVM. Eng. Appl. Artif. Intell
  doi: 10.1016/j.engappai.2006.01.011
– year: 2021
  ident: 10.1016/j.engappai.2022.104672_b43
  article-title: A deep semantic segmentation-based algorithm to segment crops and weeds in agronomic color images
  publication-title: Inf. Process. Agric.
– start-page: 1649
  year: 2004
  ident: 10.1016/j.engappai.2022.104672_b51
  article-title: Construction of fuzzy signature from data: an example of SARS pre-clinical diagnosis system
– volume: 214
  year: 2021
  ident: 10.1016/j.engappai.2022.104672_b6
  article-title: A unified form of fuzzy C-means and K-means algorithms and its partitional implementation
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106731
– volume: 104
  year: 2021
  ident: 10.1016/j.engappai.2022.104672_b50
  article-title: A new active contour model driven by pre-fitting bias field estimation and clustering technique for image segmentation
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2021.104299
– volume: 68
  start-page: 245
  year: 2017
  ident: 10.1016/j.engappai.2022.104672_b54
  article-title: Unsupervised hierarchical image segmentation through fuzzy entropy maximization
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2017.03.012
– year: 2021
  ident: 10.1016/j.engappai.2022.104672_b38
  article-title: CGFFCM: Cluster-weight and group-local feature-weight learning in fuzzy C-means clustering algorithm for color image segmentation
  publication-title: Appl. Soft Comput.
– volume: 130
  year: 2021
  ident: 10.1016/j.engappai.2022.104672_b25
  article-title: Digital twin and its implementations in the civil engineering sector
  publication-title: Autom. Constr
  doi: 10.1016/j.autcon.2021.103838
– volume: 11
  start-page: 753
  issue: 6
  year: 2019
  ident: 10.1016/j.engappai.2022.104672_b58
  article-title: Kernel-based robust bias-correction fuzzy weighted C-ordered-means clustering algorithm
  publication-title: Symmetry (Basel)
  doi: 10.3390/sym11060753
– volume: 76
  start-page: 123
  issue: 2
  year: 2008
  ident: 10.1016/j.engappai.2022.104672_b7
  article-title: Nonlocal image and movie denoising
  publication-title: Int. J. Comput. Vis
  doi: 10.1007/s11263-007-0052-1
– volume: 17
  start-page: 285
  issue: 3
  year: 2019
  ident: 10.1016/j.engappai.2022.104672_b2
  article-title: Results and challenges of artificial neural networks used for decision-making and control in medical applications
  publication-title: Facta Univ. Ser. Mech. Eng
– volume: 22
  start-page: 573
  issue: 2
  year: 2012
  ident: 10.1016/j.engappai.2022.104672_b18
  article-title: Fuzzy c-means clustering with local information and kernel metric for image segmentation
  publication-title: IEEE Trans. Image Process
  doi: 10.1109/TIP.2012.2219547
– volume: 103
  year: 2021
  ident: 10.1016/j.engappai.2022.104672_b24
  article-title: Industry 4.0: Latent Dirichlet allocation and clustering based theme identification of bibliography
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2021.104280
– volume: 125
  year: 2021
  ident: 10.1016/j.engappai.2022.104672_b31
  article-title: Ecological risks of geological disasters and the patterns of the urban agglomeration in the Fujian Delta region
  publication-title: Ecol. Indic
  doi: 10.1016/j.ecolind.2021.107475
– volume: 10
  start-page: 272
  issue: 4
  year: 2016
  ident: 10.1016/j.engappai.2022.104672_b19
  article-title: Adaptive fuzzy c-means algorithm based on local noise detecting for image segmentation
  publication-title: IET Image Process
  doi: 10.1049/iet-ipr.2015.0236
– volume: 26
  start-page: 1671
  issue: 3
  year: 2017
  ident: 10.1016/j.engappai.2022.104672_b56
  article-title: A unified collaborative multikernel fuzzy clustering for multiview data
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2017.2743679
– volume: 106
  start-page: 115
  year: 2013
  ident: 10.1016/j.engappai.2022.104672_b60
  article-title: Fuzzy clustering algorithms with self-tuning non-local spatial information for image segmentation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.10.022
– volume: 27
  start-page: 1753
  issue: 9
  year: 2018
  ident: 10.1016/j.engappai.2022.104672_b29
  article-title: Superpixel-based fast fuzzy C-means clustering for color image segmentation
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2018.2889018
– volume: 33
  start-page: 898
  issue: 5
  year: 2010
  ident: 10.1016/j.engappai.2022.104672_b3
  article-title: Contour detection and hierarchical image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell
  doi: 10.1109/TPAMI.2010.161
– volume: 26
  start-page: 1216
  issue: 3
  year: 2016
  ident: 10.1016/j.engappai.2022.104672_b35
  article-title: Unsupervised multi-class co-segmentation via joint-cut over L1-manifold hyper-graph of discriminative image regions
  publication-title: IEEE Trans. Image Process
  doi: 10.1109/TIP.2016.2631883
– volume: 18
  start-page: 51
  issue: 2
  year: 2020
  ident: 10.1016/j.engappai.2022.104672_b21
  article-title: AB2C: artificial bee colony for clustering
  publication-title: Int. J. Artif. Intell
– volume: 340
  start-page: 91
  year: 2018
  ident: 10.1016/j.engappai.2022.104672_b36
  article-title: Generalised kernel weighted fuzzy C-means clustering algorithm with local information
  publication-title: Fuzzy Sets Syst
  doi: 10.1016/j.fss.2018.01.019
– ident: 10.1016/j.engappai.2022.104672_b34
  doi: 10.1109/CVPR.2015.7298965
– volume: 39
  start-page: 128
  issue: 1
  year: 2016
  ident: 10.1016/j.engappai.2022.104672_b40
  article-title: Multiscale combinatorial grouping for image segmentation and object proposal generation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell
  doi: 10.1109/TPAMI.2016.2537320
– volume: 78
  start-page: 324
  year: 2019
  ident: 10.1016/j.engappai.2022.104672_b22
  article-title: New fuzzy C-means clustering method based on feature-weight and cluster-weight learning
  publication-title: Appl. Soft Comput
  doi: 10.1016/j.asoc.2019.02.038
– volume: 46
  start-page: 3259
  issue: 12
  year: 2015
  ident: 10.1016/j.engappai.2022.104672_b4
  article-title: Infrared ship target segmentation based on spatial information improved FCM
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2501848
– volume: 40
  start-page: 825
  issue: 3
  year: 2007
  ident: 10.1016/j.engappai.2022.104672_b8
  article-title: Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2006.07.011
– volume: 43
  start-page: 767
  issue: 3
  year: 2010
  ident: 10.1016/j.engappai.2022.104672_b12
  article-title: Enhanced soft subspace clustering integrating within-cluster and between-cluster information
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2009.09.010
– volume: 92
  year: 2020
  ident: 10.1016/j.engappai.2022.104672_b48
  article-title: Robust fuzzy c-means clustering algorithm with adaptive spatial & intensity constraint and membership linking for noise image segmentation
  publication-title: Appl. Soft Comput
  doi: 10.1016/j.asoc.2020.106318
– start-page: 2312
  year: 2012
  ident: 10.1016/j.engappai.2022.104672_b45
  article-title: Affinity learning via self-diffusion for image segmentation and clustering
– volume: 246
  start-page: 133
  year: 2013
  ident: 10.1016/j.engappai.2022.104672_b46
  article-title: Fuzzy partition based soft subspace clustering and its applications in high dimensional data
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2013.05.029
– volume: 24
  start-page: 3990
  issue: 11
  year: 2015
  ident: 10.1016/j.engappai.2022.104672_b32
  article-title: Incorporating adaptive local information into fuzzy clustering for image segmentation
  publication-title: IEEE Trans. Image Process
  doi: 10.1109/TIP.2015.2456505
– volume: 2015
  year: 2015
  ident: 10.1016/j.engappai.2022.104672_b13
  article-title: Segmentation of brain tissues from magnetic resonance images using adaptively regularized kernel-based fuzzy-means clustering
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2015/485495
– volume: 19
  start-page: 1328
  issue: 5
  year: 2010
  ident: 10.1016/j.engappai.2022.104672_b26
  article-title: A robust fuzzy local information C-means clustering algorithm
  publication-title: IEEE Trans. Image Process
  doi: 10.1109/TIP.2010.2040763
– volume: 34
  start-page: 1907
  issue: 4
  year: 2004
  ident: 10.1016/j.engappai.2022.104672_b10
  article-title: Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure
  publication-title: IEEE Trans. Syst. Man, Cybern. Part B
  doi: 10.1109/TSMCB.2004.831165
– volume: 25
  start-page: 1097
  year: 2012
  ident: 10.1016/j.engappai.2022.104672_b27
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 724
  year: 2003
  ident: 10.1016/j.engappai.2022.104672_b44
  article-title: MR brain image segmentation using an enhanced fuzzy c-means algorithm
– volume: 11
  start-page: 2896
  issue: 8
  year: 2018
  ident: 10.1016/j.engappai.2022.104672_b57
  article-title: Enhanced spatially constrained remotely sensed imagery classification using a fuzzy local double neighborhood information c-means clustering algorithm
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens
  doi: 10.1109/JSTARS.2018.2846603
– volume: 55
  start-page: 3965
  issue: 7
  year: 2017
  ident: 10.1016/j.engappai.2022.104672_b53
  article-title: AID: A benchmark data set for performance evaluation of aerial scene classification
  publication-title: IEEE Trans. Geosci. Remote Sens
  doi: 10.1109/TGRS.2017.2685945
– volume: 70
  start-page: 665
  issue: 4–6
  year: 2007
  ident: 10.1016/j.engappai.2022.104672_b20
  article-title: An improved ant colony algorithm for fuzzy clustering in image segmentation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2006.10.022
– volume: 11
  start-page: 21
  issue: 2
  year: 2014
  ident: 10.1016/j.engappai.2022.104672_b41
  article-title: Applications of signatures to expert systems modelling
  publication-title: Acta Polytech. Hungarica
– volume: 52
  start-page: 2565
  issue: 5
  year: 2013
  ident: 10.1016/j.engappai.2022.104672_b17
  article-title: Spectral–spatial classification of hyperspectral images based on hidden Markov random fields
  publication-title: IEEE Trans. Geosci. Remote Sens
  doi: 10.1109/TGRS.2013.2263282
– volume: 168
  year: 2020
  ident: 10.1016/j.engappai.2022.104672_b14
  article-title: BCEFCM_S: Bias correction embedded fuzzy c-means with spatial constraint to segment multiple spectral images with intensity inhomogeneities and noises
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2019.107347
– volume: 41
  start-page: 1939
  issue: 6
  year: 2008
  ident: 10.1016/j.engappai.2022.104672_b15
  article-title: A convergence theorem for the fuzzy subspace clustering (FSC) algorithm
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2007.11.011
– volume: 85
  start-page: 49
  year: 2017
  ident: 10.1016/j.engappai.2022.104672_b62
  article-title: A fuzzy clustering image segmentation algorithm based on hidden Markov random field models and voronoi tessellation
  publication-title: Pattern Recognit. Lett
  doi: 10.1016/j.patrec.2016.11.019
– volume: 5
  start-page: 45
  issue: 1
  year: 2011
  ident: 10.1016/j.engappai.2022.104672_b61
  article-title: Fuzzy c-means clustering with non local spatial information for noisy image segmentation
  publication-title: Front. Comput. Sci. China
  doi: 10.1007/s11704-010-0393-8
– volume: 14
  start-page: 6544
  year: 2021
  ident: 10.1016/j.engappai.2022.104672_b23
  article-title: An extraction method for glacial lakes based on landsat-8 imagery using an improved U-net network
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens
  doi: 10.1109/JSTARS.2021.3085397
– start-page: 1
  year: 2006
  ident: 10.1016/j.engappai.2022.104672_b42
  article-title: Textonboost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation
– volume: 26
  start-page: 3027
  issue: 5
  year: 2018
  ident: 10.1016/j.engappai.2022.104672_b28
  article-title: Significantly fast and robust fuzzy c-means clustering algorithm based on morphological reconstruction and membership filtering
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2018.2796074
– ident: 10.1016/j.engappai.2022.104672_b5
  doi: 10.1109/CVPR.2017.305
– volume: 25
  start-page: 442
  issue: 3
  year: 1983
  ident: 10.1016/j.engappai.2022.104672_b39
  article-title: Pattern recognition with fuzzy objective function algorithms (James C. Bezdek)
  publication-title: SIAM Rev
  doi: 10.1137/1025116
– volume: 26
  start-page: 639
  issue: 5
  year: 2005
  ident: 10.1016/j.engappai.2022.104672_b52
  article-title: A novel fuzzy clustering algorithm based on a fuzzy scatter matrix with optimality tests
  publication-title: Pattern Recognit. Lett
  doi: 10.1016/j.patrec.2004.09.016
– volume: 12
  start-page: 1770
  issue: 8
  year: 2015
  ident: 10.1016/j.engappai.2022.104672_b33
  article-title: Image fuzzy clustering based on the region-level Markov random field model
  publication-title: IEEE Geosci. Remote Sens. Lett
  doi: 10.1109/LGRS.2015.2425225
– volume: 55
  start-page: 5057
  issue: 9
  year: 2017
  ident: 10.1016/j.engappai.2022.104672_b59
  article-title: A novel adaptive fuzzy local information c-means clustering algorithm for remotely sensed imagery classification
  publication-title: IEEE Trans. Geosci. Remote Sens
  doi: 10.1109/TGRS.2017.2702061
– year: 1997
  ident: 10.1016/j.engappai.2022.104672_b11
  article-title: Brainweb: Online interface to a 3D MRI simulated brain database
– volume: 101
  year: 2021
  ident: 10.1016/j.engappai.2022.104672_b49
  article-title: An image segmentation method based on a modified local-information weighted intuitionistic fuzzy C-means clustering and gold-panning algorithm
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2021.104209
– volume: 105
  year: 2021
  ident: 10.1016/j.engappai.2022.104672_b47
  article-title: Fuzzy image clustering incorporating local and region-level information with median memberships
  publication-title: Appl. Soft Comput
  doi: 10.1016/j.asoc.2021.107245
– volume: 8
  start-page: 150
  issue: 3
  year: 2014
  ident: 10.1016/j.engappai.2022.104672_b55
  article-title: Neighbourhood weighted fuzzy c-means clustering algorithm for image segmentation
  publication-title: IET Image Process
  doi: 10.1049/iet-ipr.2011.0128
– start-page: 271
  year: 2006
  ident: 10.1016/j.engappai.2022.104672_b16
  article-title: A fuzzy subspace algorithm for clustering high dimensional data
– volume: 21
  start-page: 193
  issue: 3
  year: 2002
  ident: 10.1016/j.engappai.2022.104672_b1
  article-title: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.996338
– volume: 16
  start-page: 1351
  issue: 5
  year: 2008
  ident: 10.1016/j.engappai.2022.104672_b9
  article-title: A fuzzy clustering approach toward hidden Markov random field models for enhanced spatially constrained image segmentation
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2008.2005008
– volume: 14
  start-page: 1929
  issue: 9
  year: 2020
  ident: 10.1016/j.engappai.2022.104672_b37
  article-title: Novel fuzzy clustering-based bias field correction technique for brain magnetic resonance images
  publication-title: IET Image Process
  doi: 10.1049/iet-ipr.2019.0942
SSID ssj0003846
Score 2.5452125
Snippet The Fuzzy C-means (FCM) clustering algorithm is an effective method for image segmentation. Non-local spatial information considers more redundant information...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104672
SubjectTerms Fuzzy subspace clustering
Mean membership linking
Noise image segmentation
Robustness
Title Fuzzy subspace clustering noisy image segmentation algorithm with adaptive local variance & non-local information and mean membership linking
URI https://dx.doi.org/10.1016/j.engappai.2022.104672
Volume 110
WOSCitedRecordID wos000753705600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMX3ohSQHNAXCwHx_FrjxVqBQhVHIIUcbE263XiKnaixIma_gf-WH8Vsy_bhYrSAxcrGnl37cznncfOg5B3U2l0ePghhYwJN8iF705RjLsiT9jU5yzjQnH6a3x2lkwm9Fuvd2VzYXaLuKqSiwu6-q-sRhoyW6bO3oHdzaRIwN_IdLwi2_H6T4w_3V5e7p0NbghoDguHL7ayFoL0CFTLYrN3ilKG6WzErDRpR5XDFrPluqjnpUl1y9hKRRQpQefs0JxWiQUSJdWycjXZlFytbTxzKX36pZANRlQEmOnKcM313xY_dLon5yoYYa2illQPkU6Z0PbkSIUdjJfVbF-0pwB6p5oUTHYBmzXRRYWmVlUjdH7Mt8rRO8fb9szcarwdaCi3QTLWbem7Q6p7xjQ7uImM1XuwPLXW7YD-EA_aU3E-wKXwLVkxkEsM2gHX63H_Jieb6EUbGHee2nlSOU-q57lHDvw4pEmfHBx_Ppl8afSCUaLTxuwbdPLVb36im1WljvozfkweGrsFjjXenpCeqJ6SR8aGASMhNkiybUIs7Rn5qRAJFpHQIhIUIkEhErqIhAaRIBEJFpGgoAcWkfAeGjxCB4-AeASJR2jxCAaPz8n305Pxx0-u6QLi8tHQr90wp3GOZq_HYh5nSEpC2dKV5jycco9lkfSJ84R6-Qi1dSaSTGQiiDLUxIMozL3RC9LHZxEvCaAy6yU04swPwmCYyw7IaH1kUaxUuZAektD-4Sk3JfJlp5ZF-neWH5IPzbiVLhJz6whq-ZkaVVersClC9Zaxr-682hF50H5Lr0m_Xm_FG3Kf7-pis35rcPoL0IHWVQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuzzy+subspace+clustering+noisy+image+segmentation+algorithm+with+adaptive+local+variance+%26+non-local+information+and+mean+membership+linking&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Wei%2C+Tongyi&rft.au=Wang%2C+Xiaopeng&rft.au=Li%2C+Xinna&rft.au=Zhu%2C+Shengyang&rft.date=2022-04-01&rft.issn=0952-1976&rft.volume=110&rft.spage=104672&rft_id=info:doi/10.1016%2Fj.engappai.2022.104672&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2022_104672
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon