Predicting water quality in municipal water management systems using a hybrid deep learning model

Increasing municipal waste generation puts more and more municipal water resources at high risk. Accurate prediction of water quality becomes critical for effective protection of the water resources. Due to the nonlinear and non-stationary characteristics of water quality data of the municipal water...

Full description

Saved in:
Bibliographic Details
Published in:Engineering applications of artificial intelligence Vol. 133; p. 108420
Main Authors: Luo, Wenxian, Huang, Leijun, Shu, Jiabin, Feng, Hailin, Guo, Wenjie, Xia, Kai, Fang, Kai, Wang, Wei
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.07.2024
Subjects:
ISSN:0952-1976, 1873-6769
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Increasing municipal waste generation puts more and more municipal water resources at high risk. Accurate prediction of water quality becomes critical for effective protection of the water resources. Due to the nonlinear and non-stationary characteristics of water quality data of the municipal water resources, it is challenging to achieve high prediction accuracy, especially for medium-term and long-term predictions. To address this issue, we propose a novel hybrid deep learning model to predict water quality multiple steps ahead. The proposed model adopts the encoder–decoder structure in the form of two long short-term memory (LSTM) networks, integrated with the attention mechanism and a convolutional neural network (CNN). The model extracts the complex correlation between multiple water quality features through the CNN, and uses the two LSTM networks to transfer historical information to predictions, with an attention layer assigning different weights to the different parts of the historical information. Using three years of water quality data collected from an urban river, we experimentally show that the proposed model outperforms the baseline models by 11%–34% in root mean squared error (RMSE) when predicting dissolved oxygen multiple steps ahead, and by 1%–7% when predicting total phosphorus. Similar improvement has also been found in Nash–Sutcliffeefficiency (NSE) and mean absolute error (MAE). The proposed model is a feasible solution for multi-step medium-term water quality prediction.
AbstractList Increasing municipal waste generation puts more and more municipal water resources at high risk. Accurate prediction of water quality becomes critical for effective protection of the water resources. Due to the nonlinear and non-stationary characteristics of water quality data of the municipal water resources, it is challenging to achieve high prediction accuracy, especially for medium-term and long-term predictions. To address this issue, we propose a novel hybrid deep learning model to predict water quality multiple steps ahead. The proposed model adopts the encoder–decoder structure in the form of two long short-term memory (LSTM) networks, integrated with the attention mechanism and a convolutional neural network (CNN). The model extracts the complex correlation between multiple water quality features through the CNN, and uses the two LSTM networks to transfer historical information to predictions, with an attention layer assigning different weights to the different parts of the historical information. Using three years of water quality data collected from an urban river, we experimentally show that the proposed model outperforms the baseline models by 11%–34% in root mean squared error (RMSE) when predicting dissolved oxygen multiple steps ahead, and by 1%–7% when predicting total phosphorus. Similar improvement has also been found in Nash–Sutcliffeefficiency (NSE) and mean absolute error (MAE). The proposed model is a feasible solution for multi-step medium-term water quality prediction.
ArticleNumber 108420
Author Shu, Jiabin
Huang, Leijun
Wang, Wei
Luo, Wenxian
Guo, Wenjie
Feng, Hailin
Xia, Kai
Fang, Kai
Author_xml – sequence: 1
  givenname: Wenxian
  surname: Luo
  fullname: Luo, Wenxian
  organization: Zhejiang A & F University, 666 Wusu Street, Hangzhou, Zhejiang, 311300, China
– sequence: 2
  givenname: Leijun
  orcidid: 0000-0002-4149-7098
  surname: Huang
  fullname: Huang, Leijun
  organization: Zhejiang A & F University, 666 Wusu Street, Hangzhou, Zhejiang, 311300, China
– sequence: 3
  givenname: Jiabin
  surname: Shu
  fullname: Shu, Jiabin
  organization: Quzhou Digital Rural Construction Center, 139 Fushi Road, Quzhou, Zhejiang, 324000, China
– sequence: 4
  givenname: Hailin
  surname: Feng
  fullname: Feng, Hailin
  email: hlfeng@zafu.edu.cn
  organization: Zhejiang A & F University, 666 Wusu Street, Hangzhou, Zhejiang, 311300, China
– sequence: 5
  givenname: Wenjie
  surname: Guo
  fullname: Guo, Wenjie
  organization: Zhejiang A & F University, 666 Wusu Street, Hangzhou, Zhejiang, 311300, China
– sequence: 6
  givenname: Kai
  surname: Xia
  fullname: Xia, Kai
  organization: Zhejiang A & F University, 666 Wusu Street, Hangzhou, Zhejiang, 311300, China
– sequence: 7
  givenname: Kai
  orcidid: 0000-0003-0419-1468
  surname: Fang
  fullname: Fang, Kai
  email: kaifang@zafu.edu.cn
  organization: Zhejiang A & F University, 666 Wusu Street, Hangzhou, Zhejiang, 311300, China
– sequence: 8
  givenname: Wei
  surname: Wang
  fullname: Wang, Wei
  organization: Guangdong-Hong Kong-Macao Joint Laboratory for Emotion Intelligence and Pervasive Computing, Artificial Intelligence Research Institute, Shenzhen MSU-BIT University, Shenzhen, Guangdong, 518172, China
BookMark eNqFkF1LwzAUhoNMcJv-Bckf6EzSLunAC2X4BQO90Otwmp7OjDatSab039uyeePNrg68h-eF95mRiWsdEnLN2YIzLm92C3Rb6DqwC8FENoR5JtgZmfJcpYlUcjUhU7ZaioSvlLwgsxB2jLE0z-SUwJvH0ppo3Zb-QERPv_ZQ29hT62izd9bYDurjqwEHW2zQRRr6ELEJdB9GEuhnX3hb0hKxozWCd2PctCXWl-S8gjrg1fHOycfjw_v6Odm8Pr2s7zeJSbmIydLwTIpcylJWkmEBPK2KlQKjCrGsUAkjmTBpbjIokBeYlaIAhlyBEmWmTDon8tBrfBuCx0p33jbge82ZHkXpnf4TpUdR-iBqAG__gcZGiLZ10YOtT-N3BxyHcd8WvQ7GojODVo8m6rK1pyp-ASd8jbE
CitedBy_id crossref_primary_10_1016_j_jconhyd_2025_104725
crossref_primary_10_1016_j_jwpe_2025_107439
crossref_primary_10_1016_j_jwpe_2025_107923
crossref_primary_10_1016_j_ecoinf_2025_103126
crossref_primary_10_1016_j_envsoft_2025_106412
crossref_primary_10_1007_s00477_025_02997_z
crossref_primary_10_1016_j_measurement_2025_117509
crossref_primary_10_1016_j_jenvman_2025_124361
crossref_primary_10_1016_j_nexres_2025_100597
crossref_primary_10_1016_j_jwpe_2025_108490
crossref_primary_10_1016_j_aej_2025_08_020
crossref_primary_10_1016_j_ecoinf_2025_103191
crossref_primary_10_1016_j_knosys_2025_114220
crossref_primary_10_3390_su162310634
Cites_doi 10.1007/s11356-022-22588-7
10.1016/j.watres.2022.118078
10.1007/s11356-021-13875-w
10.3390/app12031007
10.3390/w14101552
10.1007/s40899-022-00776-0
10.3390/e25081186
10.1162/neco_a_01199
10.1007/s11356-017-9243-7
10.1109/5.726791
10.1016/j.engappai.2023.106780
10.1016/j.envpol.2022.119136
10.2166/ws.2022.154
10.1016/j.jher.2014.09.006
10.1016/j.knosys.2018.06.015
10.3390/su142013231
10.1016/j.ijepes.2021.107818
10.1016/j.jwpe.2022.102920
10.1109/TVT.2018.2884525
10.1016/j.jenvman.2023.119613
10.1016/j.engappai.2023.106002
10.1007/s00477-020-01776-2
10.1016/j.ins.2019.01.076
10.1016/j.ecolind.2023.109882
10.1007/s10668-023-03280-3
10.1016/j.aquaeng.2020.102122
10.1016/j.jenvman.2022.115923
10.1016/j.engappai.2023.106335
10.1016/j.ins.2022.12.091
10.1016/0022-1694(70)90255-6
10.2166/ws.2021.303
10.1016/j.jhydrol.2021.127320
10.1016/j.jclepro.2022.131724
10.3390/su11072058
10.1016/j.envpol.2022.120870
10.1162/neco.1997.9.8.1735
10.1016/j.jenvman.2014.09.012
10.1016/j.ecoinf.2023.102125
10.1016/j.ecoinf.2023.102122
10.1016/j.comcom.2021.08.003
10.1016/j.envres.2022.112942
10.2166/ws.2022.038
10.1016/j.watres.2022.119171
10.1016/j.envres.2023.116938
10.1007/s42452-020-04005-1
10.1016/j.patcog.2017.10.013
10.1007/s40808-021-01266-6
10.1007/s11356-019-05116-y
10.1016/j.envres.2022.114723
10.1016/j.scitotenv.2022.153311
10.1007/s11356-023-30774-4
10.21629/JSEE.2017.01.18
10.1007/s11356-016-6905-9
10.1016/j.engappai.2022.105166
10.3390/s21217271
10.1007/s11783-023-1688-y
10.1007/s00477-021-02152-4
10.1007/s00477-014-0907-2
10.1109/JSEN.2019.2923982
10.1007/s11356-022-22758-7
10.1016/j.engappai.2022.105472
10.1007/s00477-016-1213-y
10.3390/su14031183
10.3390/w14040610
10.1109/MNET.001.2100754
10.1016/j.scitotenv.2023.162998
10.1016/j.csr.2021.104612
10.1109/TMM.2020.3007321
10.1016/j.psep.2022.11.073
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2024.108420
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
ExternalDocumentID 10_1016_j_engappai_2024_108420
S0952197624005785
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c312t-5c1462866d6f60eba13fb97ac7b25fe72c602c38c4abe1be4d2ba0e17a72d47c3
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001218894400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0952-1976
IngestDate Sat Nov 29 03:41:17 EST 2025
Tue Nov 18 22:18:59 EST 2025
Tue Jun 18 08:50:47 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Long short-term memory
Attention mechanism
Multi-step prediction
Convolutional neural network
Encoder–decoder structure
Water quality
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-5c1462866d6f60eba13fb97ac7b25fe72c602c38c4abe1be4d2ba0e17a72d47c3
ORCID 0000-0003-0419-1468
0000-0002-4149-7098
ParticipantIDs crossref_primary_10_1016_j_engappai_2024_108420
crossref_citationtrail_10_1016_j_engappai_2024_108420
elsevier_sciencedirect_doi_10_1016_j_engappai_2024_108420
PublicationCentury 2000
PublicationDate July 2024
2024-07-00
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July 2024
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhang, Li (b81) 2023; 30
Chen, Guo, Xu, Zhang, Teng, Chen, Woźniak, Wang (b12) 2023
Li, Qiao, Yu, Wang, Li, Liao, Zhu (b42) 2022; 211
Krizhevsky, Sutskever, Hinton (b34) 2012; Vol. 25
Ye, Yang, Chen, Wang (b77) 2019
Alqahtani, Shah, Aldrees, Javed (b3) 2022; 14
Yu, Kim, Li, Jong, Kim, Ryang (b78) 2022; 303
Zhao, Lu, Chen, Liu, Wu (b84) 2017; 28
Du, Qin, Zhang, Liu (b18) 2018; 160
Georgescu, Moldovanu, Iticescu, Calmuc, Calmuc, Topa, Moraru (b19) 2023; 879
Nash, Sutcliffe (b50) 1970; 10
Peng, Wu, Gao, Yi, Xiong, Yang, Cheng (b54) 2022; 225
Chen, Wu, Wang, Lin, Cai (b13) 2023; 146
Pourhosseini, Ebrahimi, Omid (b55) 2023; 126
Uddin, Nash, Diganta, Rahman, Olbert (b60) 2022; 321
Parmezan, Souza, Batista (b52) 2019; 484
Zamani, Nikoo, Jahanshahi, Barzegar, Meydani (b80) 2023; 30
Yan, Zhou, Shen (b75) 2023; 318
Han, Zhao, Leung, Ma, Wang (b23) 2019; 21
Patel, Kethavath, Kushwaha, Naorem, Jagadale, K.R., P.S. (b53) 2023; 123
Khoi, Quan, Linh, Nhi, Thuy (b30) 2022; 14
Heddam (b24) 2016; 23
Liu, Zhang, Song, Chen (b47) 2019; 165
Kim, Seo (b32) 2015; 9
Kushwaha, Rajput, Suna, Sena, Singh, Mishra, Sharma, Mani (b35) 2023; 75
Liu, Wang, Sangaiah, Xie, Yin (b46) 2019; 11
Prasad, Venkataramana, Kumar, Prasannamedha, Harshana, Srividya, Harrinei, Indraganti (b56) 2022; 821
Li, Yang, Yang, Wang (b43) 2023; 30
Uddin, Nash, Rahman, Olbert (b61) 2023; 169
Lin, Ma, Zhu, Cui (b44) 2022; 137
Baek, Pyo, Chun (b6) 2020; 12
Barzegar, Adamowski, Moghaddam (b9) 2016; 30
Wang, Wang, Wu (b70) 2023; 17
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b63) 2017; Vol. 30
Sun, Song, Yu, Chang, Du, Guizani (b58) 2019; 68
Khullar, Singh (b31) 2022; 29
Zheng, Ding, Weng, Wang (b85) 2023; 76
Chen, Yang, Fu, Zheng, Song, Fu, Wang, Liang, Yin, Liu, Jiang, Wang, Yang (b14) 2022; 14
Nasir, Kansal, Alshaltone, Barneih, Sameer, Shanableh, Al-Shamma’a (b51) 2022; 48
Wan, Li, Wang, Yi, Zhao, He, Wu, Huang (b66) 2022; 211
Wang, Li, Wei, Wang, Fang (b68) 2022; 36
Solanki, Agrawal, Khare (b57) 2015; 125
Yang, Jia, Guo, Shen, Li, Mou, Yu, Lin (b76) 2023; 121
Vinogradoff, Oliver (b65) 2015; 147
Juan, Li, Xu, Hao, Yang, Jianming, Bing (b28) 2022; 22
Bi, Zhang, Yuan, Zhang (b10) 2023; 625
Bahdanau, D., Cho, K., Bengio, Y., 2015. Neural Machine Translation by Jointly Learning to Align and Translate. In: International Conference on Learning Representations. ICLR.
Liu, Liu, Liu, Zhang, Liu (b45) 2023; 237
Zhang, Nong, Behzadian, Campos, Chen, Shao (b83) 2024; 350
Graves, Mohamed, Hinton (b21) 2013
Gu, Wang, Kuen, Ma, Shahroudy, Shuai, Liu, Wang, Wang, Cai (b22) 2018; 77
Li, Li (b41) 2023; 216
Hochreiter, Schmidhuber (b25) 1997; 9
Zhang, Li, Jiang, Sun, Zhao, Yan, Wang (b82) 2022; 354
Al Shehhi, Kaya (b1) 2021; 231
Zhou, Wang, Chen, Li, Xie (b86) 2021; 21
Dabrowski, Zhang, Rahman (b17) 2020
Yu, Si, Hu, Zhang (b79) 2019; 31
Gorgan-Mohammadi, Rajaee, Zounemat-Kermani (b20) 2023; 9
Veerendra, Kumaravel, Rao, Dey, Manoj (b64) 2023
Khan, Islam, Uddin, Islam, Nasir (b29) 2022; 34
Lee (b38) 2022; 12
Barzegar, Aalami, Adamowski (b8) 2020; 34
Cho, van Merrienboer, Gulcehre, Bougares, Schwenk, Bengio (b16) 2014
Lai, Khan, Nie, Sun, Shen, Shao (b36) 2021; 23
Chia, Chia, Koo, Huang (b15) 2022; 22
Valentini, dos Santos, Muller Vieira (b62) 2021; 3
Arya, Zhang (b4) 2015; 29
Lecun, Bottou, Bengio, Haffner (b37) 1998; 86
Wang, Peng, Liang (b69) 2022; 605
Wu, Wang (b72) 2022; 14
Mao, Xu, Jin, Wang, Fang (b48) 2021; 179
Lee, Lee, Lee, Lee, Kim, Hyung, Kim, Cha, Koo (b39) 2022; 22
McMillan, Varga (b49) 2022; 116
Islam, Newton, Rahman, Trevathan, Sattar (b26) 2022; 114
Wang, Zhou, Chen, Wang, Liu (b71) 2017
Li, Jiang, Xu, Lin, Guo, Wu (b40) 2019; 26
Sutskever, I., Vinyals, O., Le, Q.V., 2014. Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems. Vol. 27.
Alnahit, Mishra, Khan (b2) 2022; 36
Xu, Zhou, Sekula, Ding (b74) 2021; 6
Ji, Shang, Dahlgren, Zhang (b27) 2017; 24
Kogekar, Nayak, Pati (b33) 2021
Wang, Li, Qiao, Tavares, Liang (b67) 2023; 25
Wu, Zhang, Tan, Lan, Zhang, Xiao, Wang, Lin, Sun, Guo (b73) 2023; 74
Azrour, Mabrouki, Fattah, Guezzaz, Aziz (b5) 2022; 8
Cao, Liu, Wang, Liu, Duan (b11) 2020; 91
Wang (10.1016/j.engappai.2024.108420_b69) 2022; 605
Parmezan (10.1016/j.engappai.2024.108420_b52) 2019; 484
Liu (10.1016/j.engappai.2024.108420_b47) 2019; 165
Lecun (10.1016/j.engappai.2024.108420_b37) 1998; 86
Islam (10.1016/j.engappai.2024.108420_b26) 2022; 114
Hochreiter (10.1016/j.engappai.2024.108420_b25) 1997; 9
Lin (10.1016/j.engappai.2024.108420_b44) 2022; 137
Vaswani (10.1016/j.engappai.2024.108420_b63) 2017; Vol. 30
Prasad (10.1016/j.engappai.2024.108420_b56) 2022; 821
Yu (10.1016/j.engappai.2024.108420_b79) 2019; 31
Barzegar (10.1016/j.engappai.2024.108420_b9) 2016; 30
Zhang (10.1016/j.engappai.2024.108420_b82) 2022; 354
Baek (10.1016/j.engappai.2024.108420_b6) 2020; 12
Bi (10.1016/j.engappai.2024.108420_b10) 2023; 625
Khullar (10.1016/j.engappai.2024.108420_b31) 2022; 29
Sun (10.1016/j.engappai.2024.108420_b58) 2019; 68
Lee (10.1016/j.engappai.2024.108420_b38) 2022; 12
Valentini (10.1016/j.engappai.2024.108420_b62) 2021; 3
Wang (10.1016/j.engappai.2024.108420_b68) 2022; 36
Kim (10.1016/j.engappai.2024.108420_b32) 2015; 9
Li (10.1016/j.engappai.2024.108420_b42) 2022; 211
Dabrowski (10.1016/j.engappai.2024.108420_b17) 2020
Kushwaha (10.1016/j.engappai.2024.108420_b35) 2023; 75
Li (10.1016/j.engappai.2024.108420_b43) 2023; 30
Khoi (10.1016/j.engappai.2024.108420_b30) 2022; 14
Nasir (10.1016/j.engappai.2024.108420_b51) 2022; 48
Patel (10.1016/j.engappai.2024.108420_b53) 2023; 123
Yu (10.1016/j.engappai.2024.108420_b78) 2022; 303
Zhang (10.1016/j.engappai.2024.108420_b83) 2024; 350
Gu (10.1016/j.engappai.2024.108420_b22) 2018; 77
Alqahtani (10.1016/j.engappai.2024.108420_b3) 2022; 14
Krizhevsky (10.1016/j.engappai.2024.108420_b34) 2012; Vol. 25
McMillan (10.1016/j.engappai.2024.108420_b49) 2022; 116
Pourhosseini (10.1016/j.engappai.2024.108420_b55) 2023; 126
Cao (10.1016/j.engappai.2024.108420_b11) 2020; 91
Al Shehhi (10.1016/j.engappai.2024.108420_b1) 2021; 231
Liu (10.1016/j.engappai.2024.108420_b45) 2023; 237
Chia (10.1016/j.engappai.2024.108420_b15) 2022; 22
Cho (10.1016/j.engappai.2024.108420_b16) 2014
Barzegar (10.1016/j.engappai.2024.108420_b8) 2020; 34
Zheng (10.1016/j.engappai.2024.108420_b85) 2023; 76
Zhou (10.1016/j.engappai.2024.108420_b86) 2021; 21
Arya (10.1016/j.engappai.2024.108420_b4) 2015; 29
Heddam (10.1016/j.engappai.2024.108420_b24) 2016; 23
Yang (10.1016/j.engappai.2024.108420_b76) 2023; 121
Xu (10.1016/j.engappai.2024.108420_b74) 2021; 6
Chen (10.1016/j.engappai.2024.108420_b12) 2023
10.1016/j.engappai.2024.108420_b7
Wang (10.1016/j.engappai.2024.108420_b71) 2017
Ji (10.1016/j.engappai.2024.108420_b27) 2017; 24
Zamani (10.1016/j.engappai.2024.108420_b80) 2023; 30
Uddin (10.1016/j.engappai.2024.108420_b60) 2022; 321
Li (10.1016/j.engappai.2024.108420_b40) 2019; 26
Du (10.1016/j.engappai.2024.108420_b18) 2018; 160
Wan (10.1016/j.engappai.2024.108420_b66) 2022; 211
Nash (10.1016/j.engappai.2024.108420_b50) 1970; 10
Chen (10.1016/j.engappai.2024.108420_b14) 2022; 14
Lai (10.1016/j.engappai.2024.108420_b36) 2021; 23
Wang (10.1016/j.engappai.2024.108420_b70) 2023; 17
Mao (10.1016/j.engappai.2024.108420_b48) 2021; 179
Alnahit (10.1016/j.engappai.2024.108420_b2) 2022; 36
Lee (10.1016/j.engappai.2024.108420_b39) 2022; 22
Ye (10.1016/j.engappai.2024.108420_b77) 2019
Graves (10.1016/j.engappai.2024.108420_b21) 2013
Solanki (10.1016/j.engappai.2024.108420_b57) 2015; 125
Wu (10.1016/j.engappai.2024.108420_b73) 2023; 74
Azrour (10.1016/j.engappai.2024.108420_b5) 2022; 8
Wang (10.1016/j.engappai.2024.108420_b67) 2023; 25
10.1016/j.engappai.2024.108420_b59
Georgescu (10.1016/j.engappai.2024.108420_b19) 2023; 879
Zhao (10.1016/j.engappai.2024.108420_b84) 2017; 28
Gorgan-Mohammadi (10.1016/j.engappai.2024.108420_b20) 2023; 9
Vinogradoff (10.1016/j.engappai.2024.108420_b65) 2015; 147
Wu (10.1016/j.engappai.2024.108420_b72) 2022; 14
Uddin (10.1016/j.engappai.2024.108420_b61) 2023; 169
Khan (10.1016/j.engappai.2024.108420_b29) 2022; 34
Peng (10.1016/j.engappai.2024.108420_b54) 2022; 225
Liu (10.1016/j.engappai.2024.108420_b46) 2019; 11
Veerendra (10.1016/j.engappai.2024.108420_b64) 2023
Chen (10.1016/j.engappai.2024.108420_b13) 2023; 146
Yan (10.1016/j.engappai.2024.108420_b75) 2023; 318
Juan (10.1016/j.engappai.2024.108420_b28) 2022; 22
Zhang (10.1016/j.engappai.2024.108420_b81) 2023; 30
Han (10.1016/j.engappai.2024.108420_b23) 2019; 21
Kogekar (10.1016/j.engappai.2024.108420_b33) 2021
Li (10.1016/j.engappai.2024.108420_b41) 2023; 216
References_xml – volume: 10
  start-page: 282
  year: 1970
  end-page: 290
  ident: b50
  article-title: River flow forecasting through conceptual models part I — A discussion of principles
  publication-title: J. Hydrol.
– volume: 14
  start-page: 1552
  year: 2022
  ident: b30
  article-title: Using machine learning models for predicting the water quality index in the La Buong River, Vietnam
  publication-title: Water
– reference: Sutskever, I., Vinyals, O., Le, Q.V., 2014. Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems. Vol. 27.
– volume: 3
  start-page: 1
  year: 2021
  end-page: 11
  ident: b62
  article-title: Multiple linear regression analysis (MLR) applied for modeling a new WQI equation for monitoring the water quality of Mirim Lagoon, in the state of Rio Grande do Sul—Brazil
  publication-title: SN Appl. Sci.
– volume: 30
  start-page: 124316
  year: 2023
  end-page: 124340
  ident: b80
  article-title: Forecasting water quality variable using deep learning and weighted averaging ensemble models
  publication-title: Environ. Sci. Pollut. Res.
– volume: 36
  start-page: 2661
  year: 2022
  end-page: 2680
  ident: b2
  article-title: Stream water quality prediction using boosted regression tree and random forest models
  publication-title: Stoch. Environ. Res. Risk Assess.
– volume: 34
  start-page: 415
  year: 2020
  end-page: 433
  ident: b8
  article-title: Short-term water quality variable prediction using a hybrid CNN–LSTM deep learning model
  publication-title: Stoch. Environ. Res. Risk Assess.
– volume: 321
  year: 2022
  ident: b60
  article-title: Robust machine learning algorithms for predicting coastal water quality index
  publication-title: J. Environ. Manag.
– volume: 31
  start-page: 1235
  year: 2019
  end-page: 1270
  ident: b79
  article-title: A review of recurrent neural networks: LSTM cells and network architectures
  publication-title: Neural Comput.
– start-page: 6645
  year: 2013
  end-page: 6649
  ident: b21
  article-title: Speech recognition with deep recurrent neural networks
  publication-title: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing
– volume: 30
  start-page: 7914
  year: 2023
  end-page: 7929
  ident: b81
  article-title: Multi-input multi-output temporal convolutional network for predicting the long-term water quality of ocean ranches
  publication-title: Environ. Sci. Pollut. Res.
– start-page: 1
  year: 2021
  end-page: 6
  ident: b33
  article-title: A CNN-BiLSTM-SVR based deep hybrid model for water quality forecasting of the river Ganga
  publication-title: The 18th IEEE India Council International Conference
– volume: 160
  start-page: 61
  year: 2018
  end-page: 70
  ident: b18
  article-title: Multistep-ahead forecasting of chlorophyll a using a wavelet nonlinear autoregressive network
  publication-title: Knowl.-Based Syst.
– volume: 26
  start-page: 19879
  year: 2019
  end-page: 19896
  ident: b40
  article-title: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of Qiantang River, China
  publication-title: Environ. Sci. Pollut. Res.
– volume: 237
  year: 2023
  ident: b45
  article-title: Ensemble water quality forecasting based on decomposition, sub-model selection, and adaptive interval
  publication-title: Environ. Res.
– volume: 34
  start-page: 4773
  year: 2022
  end-page: 4781
  ident: b29
  article-title: Water quality prediction and classification based on principal component regression and gradient boosting classifier approach
  publication-title: J. King Saud Univ.-Comput. Inf. Sci.
– volume: 484
  start-page: 302
  year: 2019
  end-page: 337
  ident: b52
  article-title: Evaluation of statistical and machine learning models for time series prediction: Identifying the state-of-the-art and the best conditions for the use of each model
  publication-title: Inform. Sci.
– volume: 14
  start-page: 610
  year: 2022
  ident: b72
  article-title: A hybrid model for water quality prediction based on an artificial neural network, wavelet transform, and long short-term memory
  publication-title: Water
– volume: 76
  year: 2023
  ident: b85
  article-title: Research on a multiparameter water quality prediction method based on a hybrid model
  publication-title: Ecol. Inform.
– volume: 169
  start-page: 808
  year: 2023
  end-page: 828
  ident: b61
  article-title: Performance analysis of the water quality index model for predicting water state using machine learning techniques
  publication-title: Process Saf. Environ. Prot.
– volume: 303
  year: 2022
  ident: b78
  article-title: Water quality forecasting based on data decomposition, fuzzy clustering and deep learning neural network
  publication-title: Environ. Pollut.
– volume: 179
  start-page: 175
  year: 2021
  end-page: 182
  ident: b48
  article-title: A fast calibration algorithm for Non-Dispersive Infrared single channel carbon dioxide sensor based on deep learning
  publication-title: Comput. Commun.
– volume: 216
  year: 2023
  ident: b41
  article-title: Predicting ammonia nitrogen in surface water by a new attention-based deep learning hybrid model
  publication-title: Environ. Res.
– volume: 68
  start-page: 908
  year: 2019
  end-page: 922
  ident: b58
  article-title: V2V routing in a VANET based on the autoregressive integrated moving average model
  publication-title: IEEE Trans. Veh. Technol.
– volume: 123
  year: 2023
  ident: b53
  article-title: Review of artificial intelligence and internet of things technologies in land and water management research during 1991–2021: A bibliometric analysis
  publication-title: Eng. Appl. Artif. Intell.
– volume: 12
  start-page: 1007
  year: 2022
  ident: b38
  article-title: Research on the feasibility of applying GRU and attention mechanism combined with technical indicators in stock trading strategies
  publication-title: Appl. Sci.
– volume: 211
  year: 2022
  ident: b42
  article-title: Interpretable tree-based ensemble model for predicting beach water quality
  publication-title: Water Res.
– volume: 6
  year: 2021
  ident: b74
  article-title: Machine learning in construction: From shallow to deep learning
  publication-title: Dev. Built Environ.
– volume: 91
  year: 2020
  ident: b11
  article-title: Prediction of dissolved oxygen in pond culture water based on K-means clustering and gated recurrent unit neural network
  publication-title: Aquac. Eng.
– year: 2023
  ident: b12
  article-title: A robust deep learning framework based on spectrograms for heart sound classification
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
– volume: 25
  start-page: 1186
  year: 2023
  ident: b67
  article-title: Water quality prediction based on machine learning and comprehensive weighting methods
  publication-title: Entropy
– start-page: 579
  year: 2020
  end-page: 591
  ident: b17
  article-title: ForecastNet: A time-variant deep feed-forward neural network architecture for multi-step-ahead time-series forecasting
  publication-title: Neural Information Processing
– volume: 29
  start-page: 12875
  year: 2022
  end-page: 12889
  ident: b31
  article-title: Water quality assessment of a river using deep learning Bi-LSTM methodology: forecasting and validation
  publication-title: Environ. Sci. Pollut. Res.
– volume: 17
  start-page: 88
  year: 2023
  ident: b70
  article-title: A novel hybrid model for water quality prediction based on VMD and IGOA optimized for LSTM
  publication-title: Front. Environ. Sci. Eng.
– volume: 14
  start-page: 1183
  year: 2022
  ident: b3
  article-title: Comparative assessment of individual and ensemble machine learning models for efficient analysis of river water quality
  publication-title: Sustainability
– volume: 354
  year: 2022
  ident: b82
  article-title: Accurate prediction of water quality in urban drainage network with integrated EMD-LSTM model
  publication-title: J. Clean. Prod.
– volume: 625
  start-page: 65
  year: 2023
  end-page: 80
  ident: b10
  article-title: Multi-indicator water quality prediction with attention-assisted bidirectional LSTM and encoder-decoder
  publication-title: Inform. Sci.
– volume: 879
  year: 2023
  ident: b19
  article-title: Assessing and forecasting water quality in the Danube River by using neural network approaches
  publication-title: Sci. Total Environ.
– volume: Vol. 25
  year: 2012
  ident: b34
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– reference: Bahdanau, D., Cho, K., Bengio, Y., 2015. Neural Machine Translation by Jointly Learning to Align and Translate. In: International Conference on Learning Representations. ICLR.
– volume: 605
  year: 2022
  ident: b69
  article-title: Prediction of estuarine water quality using interpretable machine learning approach
  publication-title: J. Hydrol.
– volume: 121
  year: 2023
  ident: b76
  article-title: Prediction and control of water quality in Recirculating Aquaculture System based on hybrid neural network
  publication-title: Eng. Appl. Artif. Intell.
– volume: 147
  start-page: 81
  year: 2015
  end-page: 86
  ident: b65
  article-title: Should a water colour parameter be included in lake total phosphorus prediction models used for the Water Framework Directive?
  publication-title: J. Environ. Manag.
– year: 2023
  ident: b64
  article-title: Forecasting models for surface water quality using predictive analytics
  publication-title: Environ. Dev. Sustain.
– volume: 137
  year: 2022
  ident: b44
  article-title: Short-term load forecasting based on LSTM networks considering attention mechanism
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 165
  year: 2019
  ident: b47
  article-title: Attention-based recurrent neural networks for accurate short-term and long-term dissolved oxygen prediction
  publication-title: Comput. Electron. Agric.
– volume: 75
  year: 2023
  ident: b35
  article-title: Metaheuristic approaches for prediction of water quality indices with relief algorithm-based feature selection
  publication-title: Ecol. Inform.
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: b37
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
– volume: 211
  year: 2022
  ident: b66
  article-title: Water quality prediction model using Gaussian process regression based on deep learning for carbon neutrality in papermaking wastewater treatment system
  publication-title: Environ. Res.
– volume: 24
  start-page: 16062
  year: 2017
  end-page: 16076
  ident: b27
  article-title: Prediction of dissolved oxygen concentration in hypoxic river systems using support vector machine: a case study of Wen-Rui Tang River, China
  publication-title: Environ. Sci. Pollut. Res.
– volume: 231
  year: 2021
  ident: b1
  article-title: Time series and neural network to forecast water quality parameters using satellite data
  publication-title: Cont. Shelf Res.
– volume: 21
  start-page: 7833
  year: 2019
  end-page: 7848
  ident: b23
  article-title: A review of deep learning models for time series prediction
  publication-title: IEEE Sens. J.
– volume: 126
  year: 2023
  ident: b55
  article-title: Prediction of total dissolved solids, based on optimization of new hybrid SVM models
  publication-title: Eng. Appl. Artif. Intell.
– volume: 821
  year: 2022
  ident: b56
  article-title: Analysis and prediction of water quality using deep learning and auto deep learning techniques
  publication-title: Sci. Total Environ.
– volume: 318
  year: 2023
  ident: b75
  article-title: Prediction of long-term water quality using machine learning enhanced by Bayesian optimisation
  publication-title: Environ. Pollut.
– volume: 28
  start-page: 162
  year: 2017
  end-page: 169
  ident: b84
  article-title: Convolutional neural networks for time series classification
  publication-title: J. Syst. Eng. Electron.
– volume: 225
  year: 2022
  ident: b54
  article-title: TLT: Recurrent fine-tuning transfer learning for water quality long-term prediction
  publication-title: Water Res.
– volume: 77
  start-page: 354
  year: 2018
  end-page: 377
  ident: b22
  article-title: Recent advances in convolutional neural networks
  publication-title: Pattern Recognit.
– volume: 8
  start-page: 2793
  year: 2022
  end-page: 2801
  ident: b5
  article-title: Machine learning algorithms for efficient water quality prediction
  publication-title: Model. Earth Syst. Environ.
– start-page: 1
  year: 2017
  end-page: 5
  ident: b71
  article-title: Water quality prediction method based on LSTM neural network
  publication-title: The 12th International Conference on Intelligent Systems and Knowledge Engineering
– volume: 146
  year: 2023
  ident: b13
  article-title: A novel hybrid BPNN model based on adaptive evolutionary Artificial Bee Colony Algorithm for water quality index prediction
  publication-title: Ecol. Indic.
– volume: 125
  start-page: 29
  year: 2015
  end-page: 34
  ident: b57
  article-title: Predictive analysis of water quality parameters using deep learning
  publication-title: Int. J. Comput. Appl.
– volume: 11
  start-page: 2058
  year: 2019
  ident: b46
  article-title: Analysis and prediction of water quality using LSTM deep neural networks in IoT environment
  publication-title: Sustainability
– volume: 12
  year: 2020
  ident: b6
  article-title: Prediction of water level and water quality using a cnn-lstm combined deep learning approach
  publication-title: Water (Switzerland)
– volume: 22
  start-page: 4082
  year: 2022
  end-page: 4097
  ident: b39
  article-title: Development of a short-term water quality prediction model for urban rivers using real-time water quality data
  publication-title: Water Supply
– volume: 29
  start-page: 227
  year: 2015
  end-page: 239
  ident: b4
  article-title: Time series analysis of water quality parameters at Stillaguamish River using order series method
  publication-title: Stoch. Environ. Res. Risk Assess.
– volume: 48
  year: 2022
  ident: b51
  article-title: Water quality classification using machine learning algorithms
  publication-title: J. Water Process Eng.
– volume: Vol. 30
  year: 2017
  ident: b63
  article-title: Attention is all you need
  publication-title: Advances in Neural Information Processing Systems
– volume: 22
  start-page: 5480
  year: 2022
  end-page: 5493
  ident: b28
  article-title: Multi-step prediction of dissolved oxygen in river based on random forest missing value imputation and attention mechanism coupled with recurrent neural network
  publication-title: Water Supply
– volume: 116
  year: 2022
  ident: b49
  article-title: A review of the use of artificial intelligence methods in infrastructure systems
  publication-title: Eng. Appl. Artif. Intell.
– volume: 23
  start-page: 2086
  year: 2021
  end-page: 2099
  ident: b36
  article-title: Understanding more about human and machine attention in deep neural networks
  publication-title: IEEE Trans. Multimed.
– volume: 22
  start-page: 1951
  year: 2022
  end-page: 1963
  ident: b15
  article-title: Integration of advanced optimization algorithms into least-square support vector machine (LSSVM) for water quality index prediction
  publication-title: Water Supply
– year: 2014
  ident: b16
  article-title: Learning phrase representations using RNN encoder-decoder for statistical machine translation
  publication-title: Conference on Empirical Methods in Natural Language Processing
– volume: 74
  start-page: 67
  year: 2023
  end-page: 82
  ident: b73
  article-title: Application of time serial model in water quality predicting
  publication-title: Comput. Mater. Contin
– volume: 350
  year: 2024
  ident: b83
  article-title: A new framework for water quality forecasting coupling causal inference, time-frequency analysis and uncertainty quantification
  publication-title: J. Environ. Manag.
– volume: 9
  start-page: 1
  year: 2023
  ident: b20
  article-title: Decision tree models in predicting water quality parameters of dissolved oxygen and phosphorus in lake water
  publication-title: Sustain. Water Resour. Manag.
– volume: 9
  start-page: 325
  year: 2015
  end-page: 339
  ident: b32
  article-title: Artificial Neural Network ensemble modeling with conjunctive data clustering for water quality prediction in rivers
  publication-title: J. Hydro-Environ. Res.
– volume: 30
  start-page: 7498
  year: 2023
  end-page: 7509
  ident: b43
  article-title: Comparative analysis of water quality prediction performance based on LSTM in the Haihe River Basin, China
  publication-title: Environ. Sci. Pollut. Res.
– volume: 14
  start-page: 13231
  year: 2022
  ident: b14
  article-title: Water quality prediction based on LSTM and attention mechanism: A case study of the Burnett river, Australia
  publication-title: Sustainability
– volume: 36
  start-page: 236
  year: 2022
  end-page: 242
  ident: b68
  article-title: Deep-learning-based weak electromagnetic intrusion detection method for zero touch networks on industrial IoT
  publication-title: IEEE Netw.
– volume: 21
  start-page: 1
  year: 2021
  end-page: 16
  ident: b86
  article-title: Water quality prediction method based on multi-source transfer learning for water environmental IoT system
  publication-title: Sensors
– volume: 30
  start-page: 1797
  year: 2016
  end-page: 1819
  ident: b9
  article-title: Application of wavelet-artificial intelligence hybrid models for water quality prediction: a case study in Aji-Chay River, Iran
  publication-title: Stoch. Environ. Res. Risk Assess.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b25
  article-title: Long short-term memory
  publication-title: Neural Comput.
– start-page: 3024
  year: 2019
  end-page: 3028
  ident: b77
  article-title: River water quality parameters prediction method based on LSTM-RNN model
  publication-title: The 31st Chinese Control and Decision Conference
– volume: 23
  start-page: 17210
  year: 2016
  end-page: 17225
  ident: b24
  article-title: Multilayer perceptron neural network-based approach for modeling phycocyanin pigment concentrations: case study from lower Charles River buoy, USA
  publication-title: Environ. Sci. Pollut. Res.
– volume: 114
  year: 2022
  ident: b26
  article-title: Long range multi-step water quality forecasting using iterative ensembling
  publication-title: Eng. Appl. Artif. Intell.
– volume: 30
  start-page: 7914
  issue: 3
  year: 2023
  ident: 10.1016/j.engappai.2024.108420_b81
  article-title: Multi-input multi-output temporal convolutional network for predicting the long-term water quality of ocean ranches
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-022-22588-7
– year: 2014
  ident: 10.1016/j.engappai.2024.108420_b16
  article-title: Learning phrase representations using RNN encoder-decoder for statistical machine translation
– volume: 211
  year: 2022
  ident: 10.1016/j.engappai.2024.108420_b42
  article-title: Interpretable tree-based ensemble model for predicting beach water quality
  publication-title: Water Res.
  doi: 10.1016/j.watres.2022.118078
– start-page: 3024
  year: 2019
  ident: 10.1016/j.engappai.2024.108420_b77
  article-title: River water quality parameters prediction method based on LSTM-RNN model
– volume: 29
  start-page: 12875
  issue: 9
  year: 2022
  ident: 10.1016/j.engappai.2024.108420_b31
  article-title: Water quality assessment of a river using deep learning Bi-LSTM methodology: forecasting and validation
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-021-13875-w
– volume: 12
  start-page: 1007
  issue: 3
  year: 2022
  ident: 10.1016/j.engappai.2024.108420_b38
  article-title: Research on the feasibility of applying GRU and attention mechanism combined with technical indicators in stock trading strategies
  publication-title: Appl. Sci.
  doi: 10.3390/app12031007
– volume: 14
  start-page: 1552
  issue: 10
  year: 2022
  ident: 10.1016/j.engappai.2024.108420_b30
  article-title: Using machine learning models for predicting the water quality index in the La Buong River, Vietnam
  publication-title: Water
  doi: 10.3390/w14101552
– volume: 9
  start-page: 1
  issue: 1
  year: 2023
  ident: 10.1016/j.engappai.2024.108420_b20
  article-title: Decision tree models in predicting water quality parameters of dissolved oxygen and phosphorus in lake water
  publication-title: Sustain. Water Resour. Manag.
  doi: 10.1007/s40899-022-00776-0
– volume: 165
  issue: August
  year: 2019
  ident: 10.1016/j.engappai.2024.108420_b47
  article-title: Attention-based recurrent neural networks for accurate short-term and long-term dissolved oxygen prediction
  publication-title: Comput. Electron. Agric.
– volume: 25
  start-page: 1186
  issue: 8
  year: 2023
  ident: 10.1016/j.engappai.2024.108420_b67
  article-title: Water quality prediction based on machine learning and comprehensive weighting methods
  publication-title: Entropy
  doi: 10.3390/e25081186
– volume: 31
  start-page: 1235
  issue: 7
  year: 2019
  ident: 10.1016/j.engappai.2024.108420_b79
  article-title: A review of recurrent neural networks: LSTM cells and network architectures
  publication-title: Neural Comput.
  doi: 10.1162/neco_a_01199
– volume: 24
  start-page: 16062
  issue: 19
  year: 2017
  ident: 10.1016/j.engappai.2024.108420_b27
  article-title: Prediction of dissolved oxygen concentration in hypoxic river systems using support vector machine: a case study of Wen-Rui Tang River, China
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-017-9243-7
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 10.1016/j.engappai.2024.108420_b37
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 126
  year: 2023
  ident: 10.1016/j.engappai.2024.108420_b55
  article-title: Prediction of total dissolved solids, based on optimization of new hybrid SVM models
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.106780
– volume: 303
  year: 2022
  ident: 10.1016/j.engappai.2024.108420_b78
  article-title: Water quality forecasting based on data decomposition, fuzzy clustering and deep learning neural network
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2022.119136
– volume: 22
  start-page: 5480
  year: 2022
  ident: 10.1016/j.engappai.2024.108420_b28
  article-title: Multi-step prediction of dissolved oxygen in river based on random forest missing value imputation and attention mechanism coupled with recurrent neural network
  publication-title: Water Supply
  doi: 10.2166/ws.2022.154
– volume: 9
  start-page: 325
  issue: 3
  year: 2015
  ident: 10.1016/j.engappai.2024.108420_b32
  article-title: Artificial Neural Network ensemble modeling with conjunctive data clustering for water quality prediction in rivers
  publication-title: J. Hydro-Environ. Res.
  doi: 10.1016/j.jher.2014.09.006
– volume: 160
  start-page: 61
  year: 2018
  ident: 10.1016/j.engappai.2024.108420_b18
  article-title: Multistep-ahead forecasting of chlorophyll a using a wavelet nonlinear autoregressive network
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.06.015
– volume: 74
  start-page: 67
  year: 2023
  ident: 10.1016/j.engappai.2024.108420_b73
  article-title: Application of time serial model in water quality predicting
  publication-title: Comput. Mater. Contin
– volume: 14
  start-page: 13231
  issue: 20
  year: 2022
  ident: 10.1016/j.engappai.2024.108420_b14
  article-title: Water quality prediction based on LSTM and attention mechanism: A case study of the Burnett river, Australia
  publication-title: Sustainability
  doi: 10.3390/su142013231
– volume: 137
  year: 2022
  ident: 10.1016/j.engappai.2024.108420_b44
  article-title: Short-term load forecasting based on LSTM networks considering attention mechanism
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2021.107818
– volume: 125
  start-page: 29
  issue: 9
  year: 2015
  ident: 10.1016/j.engappai.2024.108420_b57
  article-title: Predictive analysis of water quality parameters using deep learning
  publication-title: Int. J. Comput. Appl.
– volume: 48
  year: 2022
  ident: 10.1016/j.engappai.2024.108420_b51
  article-title: Water quality classification using machine learning algorithms
  publication-title: J. Water Process Eng.
  doi: 10.1016/j.jwpe.2022.102920
– volume: 68
  start-page: 908
  issue: 1
  year: 2019
  ident: 10.1016/j.engappai.2024.108420_b58
  article-title: V2V routing in a VANET based on the autoregressive integrated moving average model
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2018.2884525
– volume: 350
  year: 2024
  ident: 10.1016/j.engappai.2024.108420_b83
  article-title: A new framework for water quality forecasting coupling causal inference, time-frequency analysis and uncertainty quantification
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2023.119613
– volume: 121
  year: 2023
  ident: 10.1016/j.engappai.2024.108420_b76
  article-title: Prediction and control of water quality in Recirculating Aquaculture System based on hybrid neural network
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.106002
– volume: 34
  start-page: 415
  issue: 2
  year: 2020
  ident: 10.1016/j.engappai.2024.108420_b8
  article-title: Short-term water quality variable prediction using a hybrid CNN–LSTM deep learning model
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-020-01776-2
– volume: 484
  start-page: 302
  year: 2019
  ident: 10.1016/j.engappai.2024.108420_b52
  article-title: Evaluation of statistical and machine learning models for time series prediction: Identifying the state-of-the-art and the best conditions for the use of each model
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2019.01.076
– volume: 146
  year: 2023
  ident: 10.1016/j.engappai.2024.108420_b13
  article-title: A novel hybrid BPNN model based on adaptive evolutionary Artificial Bee Colony Algorithm for water quality index prediction
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2023.109882
– start-page: 579
  year: 2020
  ident: 10.1016/j.engappai.2024.108420_b17
  article-title: ForecastNet: A time-variant deep feed-forward neural network architecture for multi-step-ahead time-series forecasting
– year: 2023
  ident: 10.1016/j.engappai.2024.108420_b64
  article-title: Forecasting models for surface water quality using predictive analytics
  publication-title: Environ. Dev. Sustain.
  doi: 10.1007/s10668-023-03280-3
– volume: 91
  year: 2020
  ident: 10.1016/j.engappai.2024.108420_b11
  article-title: Prediction of dissolved oxygen in pond culture water based on K-means clustering and gated recurrent unit neural network
  publication-title: Aquac. Eng.
  doi: 10.1016/j.aquaeng.2020.102122
– start-page: 1
  year: 2021
  ident: 10.1016/j.engappai.2024.108420_b33
  article-title: A CNN-BiLSTM-SVR based deep hybrid model for water quality forecasting of the river Ganga
– volume: 321
  year: 2022
  ident: 10.1016/j.engappai.2024.108420_b60
  article-title: Robust machine learning algorithms for predicting coastal water quality index
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2022.115923
– volume: 123
  year: 2023
  ident: 10.1016/j.engappai.2024.108420_b53
  article-title: Review of artificial intelligence and internet of things technologies in land and water management research during 1991–2021: A bibliometric analysis
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.106335
– start-page: 1
  year: 2017
  ident: 10.1016/j.engappai.2024.108420_b71
  article-title: Water quality prediction method based on LSTM neural network
– volume: 625
  start-page: 65
  year: 2023
  ident: 10.1016/j.engappai.2024.108420_b10
  article-title: Multi-indicator water quality prediction with attention-assisted bidirectional LSTM and encoder-decoder
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2022.12.091
– volume: 6
  year: 2021
  ident: 10.1016/j.engappai.2024.108420_b74
  article-title: Machine learning in construction: From shallow to deep learning
  publication-title: Dev. Built Environ.
– start-page: 6645
  year: 2013
  ident: 10.1016/j.engappai.2024.108420_b21
  article-title: Speech recognition with deep recurrent neural networks
– ident: 10.1016/j.engappai.2024.108420_b59
– volume: 10
  start-page: 282
  issue: 3
  year: 1970
  ident: 10.1016/j.engappai.2024.108420_b50
  article-title: River flow forecasting through conceptual models part I — A discussion of principles
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(70)90255-6
– volume: 22
  start-page: 1951
  issue: 2
  year: 2022
  ident: 10.1016/j.engappai.2024.108420_b15
  article-title: Integration of advanced optimization algorithms into least-square support vector machine (LSSVM) for water quality index prediction
  publication-title: Water Supply
  doi: 10.2166/ws.2021.303
– volume: 605
  year: 2022
  ident: 10.1016/j.engappai.2024.108420_b69
  article-title: Prediction of estuarine water quality using interpretable machine learning approach
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.127320
– volume: 354
  year: 2022
  ident: 10.1016/j.engappai.2024.108420_b82
  article-title: Accurate prediction of water quality in urban drainage network with integrated EMD-LSTM model
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.131724
– volume: 11
  start-page: 2058
  issue: 7
  year: 2019
  ident: 10.1016/j.engappai.2024.108420_b46
  article-title: Analysis and prediction of water quality using LSTM deep neural networks in IoT environment
  publication-title: Sustainability
  doi: 10.3390/su11072058
– volume: 318
  year: 2023
  ident: 10.1016/j.engappai.2024.108420_b75
  article-title: Prediction of long-term water quality using machine learning enhanced by Bayesian optimisation
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2022.120870
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.engappai.2024.108420_b25
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 147
  start-page: 81
  year: 2015
  ident: 10.1016/j.engappai.2024.108420_b65
  article-title: Should a water colour parameter be included in lake total phosphorus prediction models used for the Water Framework Directive?
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2014.09.012
– volume: 76
  year: 2023
  ident: 10.1016/j.engappai.2024.108420_b85
  article-title: Research on a multiparameter water quality prediction method based on a hybrid model
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2023.102125
– volume: 75
  year: 2023
  ident: 10.1016/j.engappai.2024.108420_b35
  article-title: Metaheuristic approaches for prediction of water quality indices with relief algorithm-based feature selection
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2023.102122
– volume: 12
  issue: 12
  year: 2020
  ident: 10.1016/j.engappai.2024.108420_b6
  article-title: Prediction of water level and water quality using a cnn-lstm combined deep learning approach
  publication-title: Water (Switzerland)
– volume: 179
  start-page: 175
  year: 2021
  ident: 10.1016/j.engappai.2024.108420_b48
  article-title: A fast calibration algorithm for Non-Dispersive Infrared single channel carbon dioxide sensor based on deep learning
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2021.08.003
– volume: 211
  year: 2022
  ident: 10.1016/j.engappai.2024.108420_b66
  article-title: Water quality prediction model using Gaussian process regression based on deep learning for carbon neutrality in papermaking wastewater treatment system
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2022.112942
– volume: 22
  start-page: 4082
  issue: 4
  year: 2022
  ident: 10.1016/j.engappai.2024.108420_b39
  article-title: Development of a short-term water quality prediction model for urban rivers using real-time water quality data
  publication-title: Water Supply
  doi: 10.2166/ws.2022.038
– volume: 225
  year: 2022
  ident: 10.1016/j.engappai.2024.108420_b54
  article-title: TLT: Recurrent fine-tuning transfer learning for water quality long-term prediction
  publication-title: Water Res.
  doi: 10.1016/j.watres.2022.119171
– volume: 237
  year: 2023
  ident: 10.1016/j.engappai.2024.108420_b45
  article-title: Ensemble water quality forecasting based on decomposition, sub-model selection, and adaptive interval
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2023.116938
– volume: 3
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.engappai.2024.108420_b62
  article-title: Multiple linear regression analysis (MLR) applied for modeling a new WQI equation for monitoring the water quality of Mirim Lagoon, in the state of Rio Grande do Sul—Brazil
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-020-04005-1
– volume: 77
  start-page: 354
  year: 2018
  ident: 10.1016/j.engappai.2024.108420_b22
  article-title: Recent advances in convolutional neural networks
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.10.013
– volume: 8
  start-page: 2793
  issue: 2
  year: 2022
  ident: 10.1016/j.engappai.2024.108420_b5
  article-title: Machine learning algorithms for efficient water quality prediction
  publication-title: Model. Earth Syst. Environ.
  doi: 10.1007/s40808-021-01266-6
– volume: 26
  start-page: 19879
  issue: 19
  year: 2019
  ident: 10.1016/j.engappai.2024.108420_b40
  article-title: Water quality prediction based on recurrent neural network and improved evidence theory: a case study of Qiantang River, China
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-019-05116-y
– volume: 216
  year: 2023
  ident: 10.1016/j.engappai.2024.108420_b41
  article-title: Predicting ammonia nitrogen in surface water by a new attention-based deep learning hybrid model
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2022.114723
– volume: 821
  year: 2022
  ident: 10.1016/j.engappai.2024.108420_b56
  article-title: Analysis and prediction of water quality using deep learning and auto deep learning techniques
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.153311
– volume: 30
  start-page: 124316
  year: 2023
  ident: 10.1016/j.engappai.2024.108420_b80
  article-title: Forecasting water quality variable using deep learning and weighted averaging ensemble models
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-023-30774-4
– volume: 28
  start-page: 162
  issue: 1
  year: 2017
  ident: 10.1016/j.engappai.2024.108420_b84
  article-title: Convolutional neural networks for time series classification
  publication-title: J. Syst. Eng. Electron.
  doi: 10.21629/JSEE.2017.01.18
– volume: 23
  start-page: 17210
  issue: 17
  year: 2016
  ident: 10.1016/j.engappai.2024.108420_b24
  article-title: Multilayer perceptron neural network-based approach for modeling phycocyanin pigment concentrations: case study from lower Charles River buoy, USA
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-016-6905-9
– volume: 114
  year: 2022
  ident: 10.1016/j.engappai.2024.108420_b26
  article-title: Long range multi-step water quality forecasting using iterative ensembling
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.105166
– volume: Vol. 25
  year: 2012
  ident: 10.1016/j.engappai.2024.108420_b34
  article-title: ImageNet classification with deep convolutional neural networks
– volume: 21
  start-page: 1
  issue: 21
  year: 2021
  ident: 10.1016/j.engappai.2024.108420_b86
  article-title: Water quality prediction method based on multi-source transfer learning for water environmental IoT system
  publication-title: Sensors
  doi: 10.3390/s21217271
– volume: 17
  start-page: 88
  issue: 7
  year: 2023
  ident: 10.1016/j.engappai.2024.108420_b70
  article-title: A novel hybrid model for water quality prediction based on VMD and IGOA optimized for LSTM
  publication-title: Front. Environ. Sci. Eng.
  doi: 10.1007/s11783-023-1688-y
– volume: 36
  start-page: 2661
  issue: 9
  year: 2022
  ident: 10.1016/j.engappai.2024.108420_b2
  article-title: Stream water quality prediction using boosted regression tree and random forest models
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-021-02152-4
– volume: 29
  start-page: 227
  issue: 1
  year: 2015
  ident: 10.1016/j.engappai.2024.108420_b4
  article-title: Time series analysis of water quality parameters at Stillaguamish River using order series method
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-014-0907-2
– volume: 21
  start-page: 7833
  issue: 6
  year: 2019
  ident: 10.1016/j.engappai.2024.108420_b23
  article-title: A review of deep learning models for time series prediction
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2923982
– ident: 10.1016/j.engappai.2024.108420_b7
– volume: 30
  start-page: 7498
  year: 2023
  ident: 10.1016/j.engappai.2024.108420_b43
  article-title: Comparative analysis of water quality prediction performance based on LSTM in the Haihe River Basin, China
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-022-22758-7
– volume: 116
  year: 2022
  ident: 10.1016/j.engappai.2024.108420_b49
  article-title: A review of the use of artificial intelligence methods in infrastructure systems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.105472
– volume: 30
  start-page: 1797
  issue: 7
  year: 2016
  ident: 10.1016/j.engappai.2024.108420_b9
  article-title: Application of wavelet-artificial intelligence hybrid models for water quality prediction: a case study in Aji-Chay River, Iran
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-016-1213-y
– volume: 34
  start-page: 4773
  issue: 8
  year: 2022
  ident: 10.1016/j.engappai.2024.108420_b29
  article-title: Water quality prediction and classification based on principal component regression and gradient boosting classifier approach
  publication-title: J. King Saud Univ.-Comput. Inf. Sci.
– volume: Vol. 30
  year: 2017
  ident: 10.1016/j.engappai.2024.108420_b63
  article-title: Attention is all you need
– volume: 14
  start-page: 1183
  issue: 3
  year: 2022
  ident: 10.1016/j.engappai.2024.108420_b3
  article-title: Comparative assessment of individual and ensemble machine learning models for efficient analysis of river water quality
  publication-title: Sustainability
  doi: 10.3390/su14031183
– volume: 14
  start-page: 610
  issue: 4
  year: 2022
  ident: 10.1016/j.engappai.2024.108420_b72
  article-title: A hybrid model for water quality prediction based on an artificial neural network, wavelet transform, and long short-term memory
  publication-title: Water
  doi: 10.3390/w14040610
– volume: 36
  start-page: 236
  issue: 6
  year: 2022
  ident: 10.1016/j.engappai.2024.108420_b68
  article-title: Deep-learning-based weak electromagnetic intrusion detection method for zero touch networks on industrial IoT
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.001.2100754
– volume: 879
  year: 2023
  ident: 10.1016/j.engappai.2024.108420_b19
  article-title: Assessing and forecasting water quality in the Danube River by using neural network approaches
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2023.162998
– volume: 231
  year: 2021
  ident: 10.1016/j.engappai.2024.108420_b1
  article-title: Time series and neural network to forecast water quality parameters using satellite data
  publication-title: Cont. Shelf Res.
  doi: 10.1016/j.csr.2021.104612
– year: 2023
  ident: 10.1016/j.engappai.2024.108420_b12
  article-title: A robust deep learning framework based on spectrograms for heart sound classification
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
– volume: 23
  start-page: 2086
  year: 2021
  ident: 10.1016/j.engappai.2024.108420_b36
  article-title: Understanding more about human and machine attention in deep neural networks
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2020.3007321
– volume: 169
  start-page: 808
  year: 2023
  ident: 10.1016/j.engappai.2024.108420_b61
  article-title: Performance analysis of the water quality index model for predicting water state using machine learning techniques
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2022.11.073
SSID ssj0003846
Score 2.507241
Snippet Increasing municipal waste generation puts more and more municipal water resources at high risk. Accurate prediction of water quality becomes critical for...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108420
SubjectTerms Attention mechanism
Convolutional neural network
Encoder–decoder structure
Long short-term memory
Multi-step prediction
Water quality
Title Predicting water quality in municipal water management systems using a hybrid deep learning model
URI https://dx.doi.org/10.1016/j.engappai.2024.108420
Volume 133
WOSCitedRecordID wos001218894400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMXKC9RXvKB2ypLbCexfaxQ0RahqhJF7C1yHIdmtQ2r3U1Z_kt_bB2_kkJF6YFLFE1iO8l8mdiT-WYAeJcmlURZlUYixirqSt1HDKEy4lQvnxGh2i4nptgEPT5msxk_GY0uPRfmYkGbhm23fPlfVa1lWtkddfYO6g6daoHe10rXW612vf0nxZ-sun8vJpr5p-hSIFrepOH3GS5IvdRqsYfOQ_CLS-m8HrfGeSDGZ786Lte4VGrpS0t8t3Vzrjnz-3SG4-G_cBNesDJxSKYqyCDxZwgBao2X9ptqtgOITlvnwP6s6nkbxF_OWoO3WhR1EOrHbk6dinrhpM5_gZMQ69o7InGEuK0CE2wyIQOrimKWGMrcnwbf-h7mEz2gvktRT7ohJn2D6xm2f_vyhXhEH-o2z30_eddPbvu5B3YxTbm2mbsHR4ezT-FLT5glgvk7GDDQb76imyc_gwnN6R546FYi8MAi6DEYqeYJeORWJdDZ_LUW-cIfXvYUiB5j0AAJOozBuoEBY-5QjzHoMAYNxqCAFmOwwxj0GIMGY8_A14-Hpx-mkavVEUmC8CZKJTIs56zMqixWhUCkKjgVkhY4rRTFMouxJEwmolCoUEmJCxErRAXFZUIleQ52mh-NegEgl5gxzgVjUiRSMUGIQCwuURljHhOyD1L_EHPpEtl39VQW-d_VuA_eh3ZLm8rl1hbc6yh3E1I70cw1_G5p-_LOo70CD_r34zXY2axa9Qbclxeber1667B3BawptLU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+water+quality+in+municipal+water+management+systems+using+a+hybrid+deep+learning+model&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Luo%2C+Wenxian&rft.au=Huang%2C+Leijun&rft.au=Shu%2C+Jiabin&rft.au=Feng%2C+Hailin&rft.date=2024-07-01&rft.issn=0952-1976&rft.volume=133&rft.spage=108420&rft_id=info:doi/10.1016%2Fj.engappai.2024.108420&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2024_108420
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon