Machine-learning methods for estimating compressive strength of high-performance alkali-activated concrete
High-performance alkali-activated concrete (HP-AAC) is acknowledged as a cementless and environmentally friendly material. It has recently received a substantial amount of interest not only due to the potential it has for being used instead of ordinary concrete but also owing to the concerns associa...
Saved in:
| Published in: | Engineering applications of artificial intelligence Vol. 136; p. 109053 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.10.2024
|
| Subjects: | |
| ISSN: | 0952-1976 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | High-performance alkali-activated concrete (HP-AAC) is acknowledged as a cementless and environmentally friendly material. It has recently received a substantial amount of interest not only due to the potential it has for being used instead of ordinary concrete but also owing to the concerns associated with climate change, sustainability, reduction of CO2 emissions, and energy consumption. The characteristics and amounts of the ingredients used to produce HP-AAC influence its compressive strength. This study performs a comparative analysis based on machine learning (ML) algorithms to present an ensemble model capable of predicting the compressive strength of HP-AAC. This is in response to the development of sophisticated prediction approaches that seek to lower the cost of experimental tools and labor. An extensive framework including 538 experimental datasets with 18 input parameters are extracted. In addition, stacked ML (SM) models are developed to provide their best base estimator combination with the highest capability. The results show that stacked model (SM-5) with score of 14, and prediction accuracy of 98% following by the largest experiment-to-predicted ratio, provide the best estimations of compressive strength of HP-AAC, which has the lowest error values compare to other 18 ML models. Thereafter, a graphical user interface (GUI) is provided and validated by extra experimental tests for estimating the compressive strength, cost, and carbon emission of HP-AAC. Overall, the significance of the current study highlight the outstanding performance of developed stacked ML and GUI for predicting the compressive strength of HP-ACC, which contribute for the on-going research in this area.
[Display omitted] |
|---|---|
| AbstractList | High-performance alkali-activated concrete (HP-AAC) is acknowledged as a cementless and environmentally friendly material. It has recently received a substantial amount of interest not only due to the potential it has for being used instead of ordinary concrete but also owing to the concerns associated with climate change, sustainability, reduction of CO2 emissions, and energy consumption. The characteristics and amounts of the ingredients used to produce HP-AAC influence its compressive strength. This study performs a comparative analysis based on machine learning (ML) algorithms to present an ensemble model capable of predicting the compressive strength of HP-AAC. This is in response to the development of sophisticated prediction approaches that seek to lower the cost of experimental tools and labor. An extensive framework including 538 experimental datasets with 18 input parameters are extracted. In addition, stacked ML (SM) models are developed to provide their best base estimator combination with the highest capability. The results show that stacked model (SM-5) with score of 14, and prediction accuracy of 98% following by the largest experiment-to-predicted ratio, provide the best estimations of compressive strength of HP-AAC, which has the lowest error values compare to other 18 ML models. Thereafter, a graphical user interface (GUI) is provided and validated by extra experimental tests for estimating the compressive strength, cost, and carbon emission of HP-AAC. Overall, the significance of the current study highlight the outstanding performance of developed stacked ML and GUI for predicting the compressive strength of HP-ACC, which contribute for the on-going research in this area.
[Display omitted] |
| ArticleNumber | 109053 |
| Author | Yoo, Doo-Yeol Kazemi, Farzin Shafighfard, Torkan Asgarkhani, Neda |
| Author_xml | – sequence: 1 givenname: Torkan orcidid: 0000-0002-4210-3150 surname: Shafighfard fullname: Shafighfard, Torkan organization: Institute of Fluid Flow Machinery, Polish Academy of Sciences, Generala Jozefa Fiszera 14, 80-231, Gdańsk, Poland – sequence: 2 givenname: Farzin orcidid: 0000-0002-2448-1465 surname: Kazemi fullname: Kazemi, Farzin email: Farzin.kazemi@pg.edu.pl organization: Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233, Gdańsk, Poland – sequence: 3 givenname: Neda orcidid: 0000-0002-0756-8438 surname: Asgarkhani fullname: Asgarkhani, Neda organization: Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233, Gdańsk, Poland – sequence: 4 givenname: Doo-Yeol surname: Yoo fullname: Yoo, Doo-Yeol email: dyyoo@yonsei.ac.kr organization: Department of Architecture and Architectural Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea |
| BookMark | eNqFkE1LAzEQhnOoYFv9C7J_YGuy2U0b8KAUv6DiRc9hmsx2s26TJQkF_70p1YuXngaGed7hfWZk4rxDQm4YXTDKxG2_QLeDcQS7qGhV56WkDZ-QKZVNVTK5FJdkFmNPKeWrWkxJ_wa6sw7LASE463bFHlPnTSxaHwqMye4hHdfa78eAMdoDFjGF_CZ1hW-Lzu66csSQz_fgNBYwfMFgS9DJHiChyaTTARNekYsWhojXv3NOPp8eP9Yv5eb9-XX9sCk1Z1UqGxBaMt2gaWRtViAraLhpuVwiLA3DRoqKs63Yck4ZpS1nbV0bzUCIldHI-ZyIU64OPsaArRpDbhG-FaPqaEn16s-SOlpSJ0sZvPsHaptye-9SADucx-9POOZyB4tBRW0xKzE2oE7KeHsu4gd7048Y |
| CitedBy_id | crossref_primary_10_3390_buildings15081338 crossref_primary_10_1016_j_asej_2025_103434 crossref_primary_10_1007_s41939_025_00833_z crossref_primary_10_1002_suco_70332 crossref_primary_10_1007_s43939_025_00262_2 crossref_primary_10_3390_buildings14123765 crossref_primary_10_1016_j_jobe_2025_113126 crossref_primary_10_1007_s43939_025_00307_6 crossref_primary_10_3390_buildings14103124 crossref_primary_10_1016_j_engappai_2024_109362 crossref_primary_10_21926_aeer_2404020 crossref_primary_10_3390_buildings15020226 crossref_primary_10_1002_suco_70179 crossref_primary_10_1016_j_jobe_2025_113133 crossref_primary_10_1016_j_conbuildmat_2025_141467 crossref_primary_10_1016_j_engappai_2025_110109 crossref_primary_10_13168_cs_2025_0027 crossref_primary_10_1016_j_mtcomm_2024_110667 crossref_primary_10_3934_matersci_2025041 crossref_primary_10_1007_s11831_025_10284_x crossref_primary_10_1016_j_engappai_2025_110469 crossref_primary_10_3390_buildings15081326 crossref_primary_10_1088_1742_6596_3076_1_012015 crossref_primary_10_1016_j_mtcomm_2025_112570 crossref_primary_10_1016_j_conbuildmat_2025_143082 crossref_primary_10_1016_j_jwpe_2025_108344 crossref_primary_10_3390_buildings14092673 crossref_primary_10_1016_j_prostr_2025_07_074 crossref_primary_10_3390_buildings14092675 crossref_primary_10_3390_ma17246280 crossref_primary_10_1016_j_compstruc_2025_107918 crossref_primary_10_1038_s44296_025_00058_8 crossref_primary_10_1016_j_engappai_2025_110512 crossref_primary_10_1016_j_engappai_2025_111843 crossref_primary_10_1016_j_mtcomm_2024_110813 crossref_primary_10_3390_buildings14113660 crossref_primary_10_1016_j_mtcomm_2025_112466 crossref_primary_10_1016_j_jobe_2024_111603 crossref_primary_10_1007_s10901_025_10220_2 crossref_primary_10_1016_j_engappai_2025_110123 crossref_primary_10_3390_ma18133182 crossref_primary_10_3390_buildings15071107 crossref_primary_10_3390_buildings15122113 crossref_primary_10_1016_j_engappai_2025_110527 crossref_primary_10_1016_j_cscm_2025_e04801 crossref_primary_10_3390_ma18122856 crossref_primary_10_1016_j_conbuildmat_2025_141883 crossref_primary_10_1016_j_cscm_2025_e04384 crossref_primary_10_3390_buildings15122082 crossref_primary_10_1016_j_envres_2025_122646 crossref_primary_10_1016_j_jobe_2025_111971 crossref_primary_10_1038_s41598_025_14687_5 crossref_primary_10_1016_j_engappai_2025_110377 crossref_primary_10_1016_j_engappai_2025_111983 crossref_primary_10_1016_j_rineng_2025_106589 crossref_primary_10_1016_j_engappai_2025_111066 crossref_primary_10_1016_j_engappai_2025_110779 crossref_primary_10_1016_j_engappai_2025_110933 crossref_primary_10_1016_j_asej_2025_103441 crossref_primary_10_1016_j_cscm_2024_e03822 crossref_primary_10_3390_buildings14113484 crossref_primary_10_1016_j_cscm_2025_e04754 crossref_primary_10_1016_j_jes_2025_07_014 crossref_primary_10_1016_j_conbuildmat_2025_142367 crossref_primary_10_1007_s11356_025_36276_9 crossref_primary_10_1016_j_asoc_2025_112783 crossref_primary_10_1016_j_engappai_2025_111234 crossref_primary_10_3390_buildings14124012 crossref_primary_10_1016_j_apmt_2025_102601 crossref_primary_10_1016_j_cscm_2024_e04109 crossref_primary_10_1016_j_engappai_2025_110544 crossref_primary_10_1016_j_engappai_2025_110943 crossref_primary_10_1016_j_rineng_2025_105260 crossref_primary_10_3390_ma18020312 crossref_primary_10_1016_j_jwpe_2024_106820 crossref_primary_10_1016_j_mtcomm_2025_112017 crossref_primary_10_1007_s43452_024_01067_5 crossref_primary_10_1007_s43452_025_01236_0 crossref_primary_10_1061_JSDCCC_SCENG_1843 crossref_primary_10_1016_j_engappai_2025_111250 crossref_primary_10_3390_buildings14124024 crossref_primary_10_1016_j_jwpe_2025_107577 crossref_primary_10_1016_j_jwpe_2025_107973 crossref_primary_10_3390_buildings14123851 crossref_primary_10_1016_j_rineng_2025_104980 crossref_primary_10_1016_j_rineng_2024_103110 crossref_primary_10_1007_s13369_024_09905_7 crossref_primary_10_1016_j_jwpe_2025_107888 crossref_primary_10_1016_j_mtcomm_2025_112028 crossref_primary_10_1016_j_hybadv_2025_100385 crossref_primary_10_1016_j_measurement_2025_117916 crossref_primary_10_1016_j_engappai_2025_111533 crossref_primary_10_1016_j_rineng_2025_104198 crossref_primary_10_1007_s00521_025_11576_w crossref_primary_10_1016_j_asoc_2025_112878 crossref_primary_10_1016_j_conbuildmat_2024_139853 crossref_primary_10_1016_j_rineng_2024_103421 crossref_primary_10_1016_j_engstruct_2025_120957 crossref_primary_10_1016_j_cscm_2025_e04729 crossref_primary_10_3390_buildings14113595 crossref_primary_10_3390_ma17184533 crossref_primary_10_1016_j_engstruct_2025_120276 crossref_primary_10_1016_j_istruc_2025_109531 crossref_primary_10_1016_j_istruc_2025_109497 crossref_primary_10_1016_j_engappai_2025_112086 crossref_primary_10_1016_j_rineng_2025_105326 crossref_primary_10_3390_buildings15030375 crossref_primary_10_1016_j_jobe_2025_112347 crossref_primary_10_1016_j_ces_2025_121832 crossref_primary_10_1016_j_conbuildmat_2024_139746 crossref_primary_10_1016_j_rineng_2025_104242 crossref_primary_10_3390_buildings14103316 crossref_primary_10_3390_infrastructures10030057 crossref_primary_10_1016_j_conbuildmat_2025_142886 crossref_primary_10_1016_j_engappai_2025_110735 crossref_primary_10_1016_j_mtcomm_2025_112679 crossref_primary_10_1002_pc_29648 crossref_primary_10_1016_j_mtcomm_2024_110759 crossref_primary_10_1016_j_compstruc_2025_107657 |
| Cites_doi | 10.1007/s43452-023-00631-9 10.1016/j.jclepro.2015.06.026 10.1016/j.conbuildmat.2015.04.039 10.1016/j.asoc.2020.106552 10.1016/S0008-8846(00)00365-3 10.1016/j.conbuildmat.2021.125110 10.1016/j.conbuildmat.2021.125313 10.1016/j.conbuildmat.2022.127828 10.1016/j.conbuildmat.2007.07.023 10.1007/s00521-023-08439-7 10.1007/s11831-023-10043-w 10.1016/j.jksues.2017.06.001 10.1016/j.jmrt.2022.10.153 10.1016/j.engstruct.2022.115447 10.1016/j.conbuildmat.2022.129600 10.1007/s43452-022-00595-2 10.1016/j.jclepro.2020.123697 10.1016/j.soildyn.2023.107761 10.1016/j.engappai.2023.107388 10.1016/j.asoc.2021.108182 10.1007/s11356-022-20863-1 10.1016/j.cemconcomp.2020.103863 10.1016/j.conbuildmat.2020.118533 10.1016/j.autcon.2020.103517 10.1016/j.conbuildmat.2023.131519 10.1016/j.jclepro.2022.135159 10.1016/j.jclepro.2022.132416 10.1016/j.jclepro.2017.07.225 10.1016/j.engstruct.2023.117345 10.3390/ma15196754 10.1016/j.compstruc.2023.107181 10.1016/j.conbuildmat.2023.131824 10.1016/j.jclepro.2023.138221 10.1016/j.ymssp.2023.110315 10.1016/j.jcou.2023.102551 10.1007/s00521-020-05525-y 10.1007/s00521-023-08378-3 10.1016/j.engstruct.2022.114953 10.1016/j.compstruc.2022.106886 10.1016/j.conbuildmat.2022.128737 10.1002/suco.202200718 10.1016/j.jclepro.2011.03.012 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.engappai.2024.109053 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| ExternalDocumentID | 10_1016_j_engappai_2024_109053 S0952197624012119 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN ABBOA ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SSH SST SSV SSZ T5K TN5 UHS WUQ ZMT ~G- 9DU AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c312t-5a6c91c5ed594d8a92a53df397ea7d1e596231b6b330100f31f44dc1a668dce33 |
| ISICitedReferencesCount | 129 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001288073900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0952-1976 |
| IngestDate | Tue Nov 18 22:39:08 EST 2025 Sat Nov 29 03:41:20 EST 2025 Sun Apr 06 06:54:37 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Steel fiber Machine learning algorithms Compressive strength Cost and carbon emission High-performance alkali-activated concrete |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c312t-5a6c91c5ed594d8a92a53df397ea7d1e596231b6b330100f31f44dc1a668dce33 |
| ORCID | 0000-0002-4210-3150 0000-0002-0756-8438 0000-0002-2448-1465 |
| ParticipantIDs | crossref_primary_10_1016_j_engappai_2024_109053 crossref_citationtrail_10_1016_j_engappai_2024_109053 elsevier_sciencedirect_doi_10_1016_j_engappai_2024_109053 |
| PublicationCentury | 2000 |
| PublicationDate | October 2024 2024-10-00 |
| PublicationDateYYYYMMDD | 2024-10-01 |
| PublicationDate_xml | – month: 10 year: 2024 text: October 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering applications of artificial intelligence |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Shen, Yue, Lin, Li, Lv, Feng, Ci (bib52) 2022; 360 Aıtcin (bib4) 2000; 30 Asgarkhani, Kazemi, Jakubczyk-Gałczyńska, Mohebi, Jankowski (bib11) 2024; 128 Kazemi, Shafighfard, Yoo (bib34) 2024; 31 Jaf, Abdalla, Mohammed, Abdulrahman, Kurda, Mohammed (bib28) 2024; 10 Shafighfard, Kazemi, Bagherzadeh, Mieloszyk, Yoo (bib49) 2024 Shah, Chen, Oderji, Haque, Ahmad (bib50) 2020; 246 Kazemi, Jankowski (bib32) 2023; 274 Huo, Zhu, Sun, Ma, Yang (bib25) 2022; 380 Kothari (bib37) 2017 Akan, Dhavale, Joseph (bib5) 2017; 167 Pan, Zhang (bib45) 2021; 122 Ibrahim, Dhahir, Mohammed, Omar, Sedo (bib26) 2023; 23 Kazemi, Asgarkhani, Shafighfard, Jankowski, Yoo (bib35) 2024 Keulen (bib36) 2018 Shafighfard, Bagherzadeh, Rizi, Yoo (bib48) 2022; 21 Bang, Choi, Hong, Jung, Kim, Yang (bib15) 2023; 74 Kazemi, Asgarkhani, Jankowski (bib31) 2023; 166 Piro, Mohammed, Hamad, Kurda (bib46) 2023; 35 Sierra (bib53) 2015 Zhang, Yu, Zhang, Shui (bib61) 2022; 363 Standard (bib54) 2008 Ahmed, Mohammed, Mohammed (bib2) 2022; 29 Gomaa, Han, ElGawady, Huang, Kumar (bib20) 2021; 115 Mohammed, Burhan, Ghafor, Sarwar, Mahmood (bib43) 2021; 33 Abuodeh, Abdalla, Hawileh (bib1) 2020; 95 Jaf, Abdulrahman, Mohammed, Kurda, Qaidi, Asteris (bib27) 2023; 400 Mithun, Narasimhan (bib42) 2016; 112 Kumar, Rithuparna, Senthilkumar, Bahurudeen (bib38) 2023; 391 Asgarkhani, Kazemi, Jankowski (bib12) 2024 El-Hassan, Elkholy (bib16) 2021; 311 Ahmed, Mohammed, Faraj, Abdalla, Qaidi, Sor, Mohammed (bib3) 2023; 35 Emad, Mohammed, Bras, Asteris, Kurda, Muhammed, Sihag (bib17) 2022; 349 Kazemi, Mohebi, Asgarkhani (bib33) 2023 Hiew, Bin Teoh, Raman, Kong, Hafezolghorani (bib24) 2023; 277 Bagherzadeh, Shafighfard, Khan, Szczuko, Mieloszyk (bib14) 2023; 195 Mahjoubi, Meng, Yi (bib41) 2022; 115 Shahmansouri, Yazdani, Ghanbari, Habib, Jafari, Ghatte (bib51) 2021; 279 Li, Shen, Lin, Li (bib39) 2023; 75 Asgarkhani, Kazemi, Jankowski (bib10) 2023; 289 Segura, Ranjbar, Damø, Jensen, Canut, Jensen (bib47) 2023; 9 Nguyen, Abellán-García, Lee, Garcia-Castano, Vo (bib44) 2022; 52 Habert, Jb DEspinose, Roussel (bib21) 2011; 19 Amran, Fediuk, Abdelgader, Murali, Ozbakkaloglu, Lee, Yong Lee (bib8) 2022; 45 Thomas, Peethamparan (bib58) 2015; 93 Al-Otaibi (bib6) 2008; 22 Sun, Du, Shan, Shi, Qu (bib55) 2022; 17 Teymouri, Behfarnia, Shabani, Saadatian (bib57) 2022; 15 Gomaa, Simon, Kashosi, Mohamed (bib19) 2017; 29 Hamidia, Kaboodkhani, Bayesteh (bib22) 2024; 301 Kazemi, Asgarkhani, Jankowski (bib29) 2023; 274 Ali, Muayad, Ahmed, Asteris (bib7) 2023; 24 Sun, Cheng, Zhang, Mohan, Ye, De Schutter (bib56) 2023; 385 Kazemi, Asgarkhani, Jankowski (bib30) 2023; 23 Ghosh, Ransinchung (bib18) 2022; 341 Xu, Yuan, Liu, Pan, Liu, Su, Li, Wu (bib60) 2021; 308 Bagherzadeh, Shafighfard (bib13) 2022; 17 Völker, Torres, Rug, Firdous, Zia, Lüders, Scaffino (bib59) 2023 Ibrahim (10.1016/j.engappai.2024.109053_bib26) 2023; 23 Kazemi (10.1016/j.engappai.2024.109053_bib32) 2023; 274 Nguyen (10.1016/j.engappai.2024.109053_bib44) 2022; 52 Shafighfard (10.1016/j.engappai.2024.109053_bib48) 2022; 21 Asgarkhani (10.1016/j.engappai.2024.109053_bib12) 2024 Standard (10.1016/j.engappai.2024.109053_bib54) 2008 Al-Otaibi (10.1016/j.engappai.2024.109053_bib6) 2008; 22 Akan (10.1016/j.engappai.2024.109053_bib5) 2017; 167 Kazemi (10.1016/j.engappai.2024.109053_bib30) 2023; 23 Huo (10.1016/j.engappai.2024.109053_bib25) 2022; 380 Kazemi (10.1016/j.engappai.2024.109053_bib34) 2024; 31 Shen (10.1016/j.engappai.2024.109053_bib52) 2022; 360 Hamidia (10.1016/j.engappai.2024.109053_bib22) 2024; 301 Shafighfard (10.1016/j.engappai.2024.109053_bib49) 2024 Kothari (10.1016/j.engappai.2024.109053_bib37) 2017 Sun (10.1016/j.engappai.2024.109053_bib56) 2023; 385 Ali (10.1016/j.engappai.2024.109053_bib7) 2023; 24 Ghosh (10.1016/j.engappai.2024.109053_bib18) 2022; 341 Gomaa (10.1016/j.engappai.2024.109053_bib20) 2021; 115 Bagherzadeh (10.1016/j.engappai.2024.109053_bib13) 2022; 17 Aıtcin (10.1016/j.engappai.2024.109053_bib4) 2000; 30 Asgarkhani (10.1016/j.engappai.2024.109053_bib10) 2023; 289 Teymouri (10.1016/j.engappai.2024.109053_bib57) 2022; 15 Völker (10.1016/j.engappai.2024.109053_bib59) 2023 Segura (10.1016/j.engappai.2024.109053_bib47) 2023; 9 Habert (10.1016/j.engappai.2024.109053_bib21) 2011; 19 Kazemi (10.1016/j.engappai.2024.109053_bib35) 2024 Emad (10.1016/j.engappai.2024.109053_bib17) 2022; 349 Ahmed (10.1016/j.engappai.2024.109053_bib2) 2022; 29 Shahmansouri (10.1016/j.engappai.2024.109053_bib51) 2021; 279 Amran (10.1016/j.engappai.2024.109053_bib8) 2022; 45 Jaf (10.1016/j.engappai.2024.109053_bib27) 2023; 400 Keulen (10.1016/j.engappai.2024.109053_bib36) 2018 Piro (10.1016/j.engappai.2024.109053_bib46) 2023; 35 Sun (10.1016/j.engappai.2024.109053_bib55) 2022; 17 Mithun (10.1016/j.engappai.2024.109053_bib42) 2016; 112 Kazemi (10.1016/j.engappai.2024.109053_bib29) 2023; 274 Ahmed (10.1016/j.engappai.2024.109053_bib3) 2023; 35 Jaf (10.1016/j.engappai.2024.109053_bib28) 2024; 10 Li (10.1016/j.engappai.2024.109053_bib39) 2023; 75 Shah (10.1016/j.engappai.2024.109053_bib50) 2020; 246 Asgarkhani (10.1016/j.engappai.2024.109053_bib11) 2024; 128 Kazemi (10.1016/j.engappai.2024.109053_bib33) 2023 Thomas (10.1016/j.engappai.2024.109053_bib58) 2015; 93 Hiew (10.1016/j.engappai.2024.109053_bib24) 2023; 277 Gomaa (10.1016/j.engappai.2024.109053_bib19) 2017; 29 Sierra (10.1016/j.engappai.2024.109053_bib53) 2015 Bagherzadeh (10.1016/j.engappai.2024.109053_bib14) 2023; 195 Pan (10.1016/j.engappai.2024.109053_bib45) 2021; 122 El-Hassan (10.1016/j.engappai.2024.109053_bib16) 2021; 311 Mahjoubi (10.1016/j.engappai.2024.109053_bib41) 2022; 115 Xu (10.1016/j.engappai.2024.109053_bib60) 2021; 308 Kumar (10.1016/j.engappai.2024.109053_bib38) 2023; 391 Mohammed (10.1016/j.engappai.2024.109053_bib43) 2021; 33 Bang (10.1016/j.engappai.2024.109053_bib15) 2023; 74 Zhang (10.1016/j.engappai.2024.109053_bib61) 2022; 363 Abuodeh (10.1016/j.engappai.2024.109053_bib1) 2020; 95 Kazemi (10.1016/j.engappai.2024.109053_bib31) 2023; 166 |
| References_xml | – volume: 391 year: 2023 ident: bib38 article-title: Cleaner production of waste-derived alkali activators from industrial and agricultural by-products for sustainable alkali activated binders publication-title: Construct. Build. Mater. – year: 2018 ident: bib36 article-title: Performance of Admixture and Secondary Minerals in Alkali Activated Concrete: Sustaining a Concrete Future – volume: 349 year: 2022 ident: bib17 article-title: Metamodel techniques to estimate the compressive strength of UHPFRC using various mix proportions and a high range of curing temperatures publication-title: Construct. Build. Mater. – volume: 385 year: 2023 ident: bib56 article-title: Prediction & optimization of alkali-activated concrete based on the random forest machine learning algorithm publication-title: Construct. Build. Mater. – volume: 19 start-page: 1229 year: 2011 end-page: 1238 ident: bib21 article-title: An environmental evaluation of geopolymer based concrete production: reviewing current research trends publication-title: J. Clean. Prod. – volume: 166 year: 2023 ident: bib31 article-title: Machine learning-based seismic fragility and seismic vulnerability assessment of reinforced concrete structures publication-title: Soil Dynam. Earthq. Eng. – volume: 277 year: 2023 ident: bib24 article-title: Prediction of ultimate conditions and stress–strain behaviour of steel-confined ultra-high-performance concrete using sequential deep feed-forward neural network modelling strategy publication-title: Eng. Struct. – volume: 363 year: 2022 ident: bib61 article-title: A low-carbon alkali activated slag based ultra-high performance concrete (UHPC): reaction kinetics and microstructure development publication-title: J. Clean. Prod. – volume: 29 start-page: 356 year: 2017 end-page: 364 ident: bib19 article-title: Fresh properties and compressive strength of high calcium alkali activated fly ash mortar publication-title: Journal of King Saud University-Engineering Sciences – volume: 360 year: 2022 ident: bib52 article-title: Prediction of compressive strength of alkali-activated construction demolition waste geopolymers using ensemble machine learning publication-title: Construct. Build. Mater. – volume: 21 start-page: 3777 year: 2022 end-page: 3794 ident: bib48 article-title: Data-driven compressive strength prediction of steel fiber reinforced concrete (SFRC) subjected to elevated temperatures using stacked machine learning algorithms publication-title: J. Mater. Res. Technol. – volume: 311 year: 2021 ident: bib16 article-title: Enhancing the performance of Alkali-Activated Slag-Fly ash blended concrete through hybrid steel fiber reinforcement publication-title: Construct. Build. Mater. – volume: 274 year: 2023 ident: bib29 article-title: Predicting seismic response of SMRFs founded on different soil types using machine learning techniques publication-title: Eng. Struct. – volume: 95 year: 2020 ident: bib1 article-title: Assessment of compressive strength of Ultra-high Performance Concrete using deep machine learning techniques publication-title: Appl. Soft Comput. – year: 2024 ident: bib49 article-title: Chained machine learning model for predicting load capacity and ductility of steel fiber–reinforced concrete beams publication-title: Computer‐Aided Civil and Infrastructure Engineering – start-page: 1 year: 2024 end-page: 33 ident: bib35 article-title: Machine-learning methods for estimating performance of structural concrete members reinforced with fiber-reinforced polymers publication-title: Arch. Comput. Methods Eng. – volume: 301 year: 2024 ident: bib22 article-title: Vision-oriented machine learning-assisted seismic energy dissipation estimation for damaged RC beam-column connections publication-title: Eng. Struct. – start-page: 477 year: 2023 end-page: 486 ident: bib33 article-title: Estimating seismic behavior of buckling-restrained braced frames using machine learning algorithms publication-title: International Conference on Nonlinear Dynamics and Applications – volume: 17 year: 2022 ident: bib55 article-title: Ultra-high performance concrete design method based on machine learning model and steel slag powder publication-title: Case Stud. Constr. Mater. – volume: 45 year: 2022 ident: bib8 article-title: Fiber-reinforced alkali-activated concrete: a review publication-title: J. Build. Eng. – year: 2023 ident: bib59 article-title: Data driven design of alkali-activated concrete using sequential learning publication-title: J. Clean. Prod. – volume: 75 year: 2023 ident: bib39 article-title: Optimization design for alkali-activated slag-fly ash geopolymer concrete based on artificial intelligence considering compressive strength, cost, and carbon emission publication-title: J. Build. Eng. – volume: 23 start-page: 61 year: 2023 ident: bib26 article-title: The effectiveness of surrogate models in predicting the long-term behavior of varying compressive strength ranges of recycled concrete aggregate for a variety of shapes and sizes of specimens publication-title: Arch. Civ. Mech. Eng. – volume: 15 start-page: 6754 year: 2022 ident: bib57 article-title: The effect of mixture proportion on the performance of alkali-activated slag concrete subjected to sulfuric acid attack publication-title: Materials – volume: 279 year: 2021 ident: bib51 article-title: Artificial neural network model to predict the compressive strength of eco-friendly geopolymer concrete incorporating silica fume and natural zeolite publication-title: J. Clean. Prod. – volume: 246 year: 2020 ident: bib50 article-title: Improvement of early strength of fly ash-slag based one-part alkali activated mortar publication-title: Construct. Build. Mater. – volume: 341 year: 2022 ident: bib18 article-title: Application of machine learning algorithm to assess the efficacy of varying industrial wastes and curing methods on strength development of geopolymer concrete publication-title: Construct. Build. Mater. – start-page: 470 year: 2024 end-page: 478 ident: bib12 article-title: Active learning on ensemble machine-learning model to retrofit buildings under seismic mainshock-aftershock sequence publication-title: International Conference on Computational Science – volume: 52 year: 2022 ident: bib44 article-title: Efficient estimating compressive strength of ultra-high performance concrete using XGBoost model publication-title: J. Build. Eng. – volume: 30 start-page: 1349 year: 2000 end-page: 1359 ident: bib4 article-title: Cements of yesterday and today: concrete of tomorrow publication-title: Cement Concr. Res. – volume: 112 start-page: 837 year: 2016 end-page: 844 ident: bib42 article-title: Performance of alkali activated slag concrete mixes incorporating copper slag as fine aggregate publication-title: J. Clean. Prod. – volume: 400 year: 2023 ident: bib27 article-title: Machine learning techniques and multi-scale models to evaluate the impact of silicon dioxide (SiO2) and calcium oxide (CaO) in fly ash on the compressive strength of green concrete publication-title: Construct. Build. Mater. – volume: 31 start-page: 2049 year: 2024 end-page: 2078 ident: bib34 article-title: Data-driven modeling of mechanical properties of fiber-reinforced concrete: a critical review publication-title: Arch. Comput. Methods Eng. – volume: 115 year: 2021 ident: bib20 article-title: Machine learning to predict properties of fresh and hardened alkali-activated concrete publication-title: Cement Concr. Compos. – volume: 33 start-page: 7851 year: 2021 end-page: 7873 ident: bib43 article-title: Artificial neural network (ANN), M5P-tree, and regression analyses to predict the early age compression strength of concrete modified with DBC-21 and VK-98 polymers publication-title: Neural Comput. Appl. – volume: 22 start-page: 2059 year: 2008 end-page: 2067 ident: bib6 article-title: Durability of concrete incorporating GGBS activated by water-glass publication-title: Construct. Build. Mater. – volume: 167 start-page: 1195 year: 2017 end-page: 1207 ident: bib5 article-title: Greenhouse gas emissions in the construction industry: an analysis and evaluation of a concrete supply chain publication-title: J. Clean. Prod. – volume: 274 year: 2023 ident: bib32 article-title: Machine learning-based prediction of seismic limit-state capacity of steel moment-resisting frames considering soil-structure interaction publication-title: Comput. Struct. – volume: 122 year: 2021 ident: bib45 article-title: Roles of artificial intelligence in construction engineering and management: a critical review and future trends publication-title: Autom. ConStruct. – volume: 10 year: 2024 ident: bib28 article-title: Hybrid nonlinear regression model versus MARS, MEP, and ANN to evaluate the effect of the size and content of waste tire rubber on the compressive strength of concrete publication-title: Heliyon – volume: 308 year: 2021 ident: bib60 article-title: Development and preliminary mix design of ultra-high-performance concrete based on geopolymer publication-title: Construct. Build. Mater. – volume: 24 start-page: 4161 year: 2023 end-page: 4184 ident: bib7 article-title: Analysis and prediction of the effect of Nanosilica on the compressive strength of concrete with different mix proportions and specimen sizes using various numerical approaches publication-title: Struct. Concr. – volume: 289 year: 2023 ident: bib10 article-title: Machine learning-based prediction of residual drift and seismic risk assessment of steel moment-resisting frames considering soil-structure interaction publication-title: Comput. Struct. – volume: 9 year: 2023 ident: bib47 article-title: A review: Alkali-activated cement and concrete production technologies available in the industry publication-title: Heliyon – volume: 74 year: 2023 ident: bib15 article-title: Influences of binder composition and carbonation curing condition on the compressive strength of alkali-activated cementitious materials: a review publication-title: J. CO2 Util. – volume: 35 start-page: 13293 year: 2023 end-page: 13319 ident: bib46 article-title: Artificial neural networks (ANN), MARS, and adaptive network-based fuzzy inference system (ANFIS) to predict the stress at the failure of concrete with waste steel slag coarse aggregate replacement publication-title: Neural Comput. Appl. – volume: 93 start-page: 49 year: 2015 end-page: 56 ident: bib58 article-title: Alkali-activated concrete: engineering properties and stress–strain behavior publication-title: Construct. Build. Mater. – year: 2008 ident: bib54 article-title: ASTM C109-Standard Test Method for Compressive Strength of Hydraulic Cement Mortars – volume: 380 year: 2022 ident: bib25 article-title: Development of machine learning models for the prediction of the compressive strength of calcium-based geopolymers publication-title: J. Clean. Prod. – volume: 29 start-page: 71232 year: 2022 end-page: 71256 ident: bib2 article-title: Proposing several model techniques including ANN and M5P-tree to predict the compressive strength of geopolymer concretes incorporated with nano-silica publication-title: Environ. Sci. Pollut. Control Ser. – year: 2017 ident: bib37 article-title: Effects of Fly Ash on the Properties of Alkali Activated Slag Concrete – volume: 115 year: 2022 ident: bib41 article-title: Auto-tune learning framework for prediction of flowability, mechanical properties, and porosity of ultra-high-performance concrete (UHPC) publication-title: Appl. Soft Comput. – volume: 128 year: 2024 ident: bib11 article-title: Seismic response and performance prediction of steel buckling-restrained braced frames using machine-learning methods publication-title: Eng. Appl. Artif. Intell. – volume: 17 year: 2022 ident: bib13 article-title: Ensemble Machine Learning approach for evaluating the material characterization of carbon nanotube-reinforced cementitious composites publication-title: Case Stud. Constr. Mater. – volume: 35 start-page: 12453 year: 2023 end-page: 12479 ident: bib3 article-title: Innovative modeling techniques including MEP, ANN and FQ to forecast the compressive strength of geopolymer concrete modified with nanoparticles publication-title: Neural Comput. Appl. – volume: 23 start-page: 94 year: 2023 ident: bib30 article-title: Machine learning-based seismic response and performance assessment of reinforced concrete buildings publication-title: Arch. Civ. Mech. Eng. – volume: 195 year: 2023 ident: bib14 article-title: Prediction of maximum tensile stress in plain-weave composite laminates with interacting holes via stacked machine learning algorithms: a comparative study publication-title: Mech. Syst. Signal Process. – year: 2015 ident: bib53 article-title: Alkali-Activated Fly Ash Binders: Feasibility as a Sustainable Alternative to Ordinary Portland Cement for PreCast Systems – volume: 23 start-page: 94 issue: 2 year: 2023 ident: 10.1016/j.engappai.2024.109053_bib30 article-title: Machine learning-based seismic response and performance assessment of reinforced concrete buildings publication-title: Arch. Civ. Mech. Eng. doi: 10.1007/s43452-023-00631-9 – volume: 112 start-page: 837 year: 2016 ident: 10.1016/j.engappai.2024.109053_bib42 article-title: Performance of alkali activated slag concrete mixes incorporating copper slag as fine aggregate publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2015.06.026 – year: 2017 ident: 10.1016/j.engappai.2024.109053_bib37 – volume: 93 start-page: 49 year: 2015 ident: 10.1016/j.engappai.2024.109053_bib58 article-title: Alkali-activated concrete: engineering properties and stress–strain behavior publication-title: Construct. Build. Mater. doi: 10.1016/j.conbuildmat.2015.04.039 – volume: 95 year: 2020 ident: 10.1016/j.engappai.2024.109053_bib1 article-title: Assessment of compressive strength of Ultra-high Performance Concrete using deep machine learning techniques publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106552 – volume: 30 start-page: 1349 issue: 9 year: 2000 ident: 10.1016/j.engappai.2024.109053_bib4 article-title: Cements of yesterday and today: concrete of tomorrow publication-title: Cement Concr. Res. doi: 10.1016/S0008-8846(00)00365-3 – volume: 308 year: 2021 ident: 10.1016/j.engappai.2024.109053_bib60 article-title: Development and preliminary mix design of ultra-high-performance concrete based on geopolymer publication-title: Construct. Build. Mater. doi: 10.1016/j.conbuildmat.2021.125110 – volume: 17 year: 2022 ident: 10.1016/j.engappai.2024.109053_bib13 article-title: Ensemble Machine Learning approach for evaluating the material characterization of carbon nanotube-reinforced cementitious composites publication-title: Case Stud. Constr. Mater. – volume: 75 year: 2023 ident: 10.1016/j.engappai.2024.109053_bib39 article-title: Optimization design for alkali-activated slag-fly ash geopolymer concrete based on artificial intelligence considering compressive strength, cost, and carbon emission publication-title: J. Build. Eng. – volume: 311 year: 2021 ident: 10.1016/j.engappai.2024.109053_bib16 article-title: Enhancing the performance of Alkali-Activated Slag-Fly ash blended concrete through hybrid steel fiber reinforcement publication-title: Construct. Build. Mater. doi: 10.1016/j.conbuildmat.2021.125313 – volume: 341 year: 2022 ident: 10.1016/j.engappai.2024.109053_bib18 article-title: Application of machine learning algorithm to assess the efficacy of varying industrial wastes and curing methods on strength development of geopolymer concrete publication-title: Construct. Build. Mater. doi: 10.1016/j.conbuildmat.2022.127828 – volume: 22 start-page: 2059 issue: 10 year: 2008 ident: 10.1016/j.engappai.2024.109053_bib6 article-title: Durability of concrete incorporating GGBS activated by water-glass publication-title: Construct. Build. Mater. doi: 10.1016/j.conbuildmat.2007.07.023 – volume: 35 start-page: 13293 issue: 18 year: 2023 ident: 10.1016/j.engappai.2024.109053_bib46 article-title: Artificial neural networks (ANN), MARS, and adaptive network-based fuzzy inference system (ANFIS) to predict the stress at the failure of concrete with waste steel slag coarse aggregate replacement publication-title: Neural Comput. Appl. doi: 10.1007/s00521-023-08439-7 – volume: 31 start-page: 2049 issue: 4 year: 2024 ident: 10.1016/j.engappai.2024.109053_bib34 article-title: Data-driven modeling of mechanical properties of fiber-reinforced concrete: a critical review publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-023-10043-w – volume: 29 start-page: 356 issue: 4 year: 2017 ident: 10.1016/j.engappai.2024.109053_bib19 article-title: Fresh properties and compressive strength of high calcium alkali activated fly ash mortar publication-title: Journal of King Saud University-Engineering Sciences doi: 10.1016/j.jksues.2017.06.001 – volume: 21 start-page: 3777 year: 2022 ident: 10.1016/j.engappai.2024.109053_bib48 article-title: Data-driven compressive strength prediction of steel fiber reinforced concrete (SFRC) subjected to elevated temperatures using stacked machine learning algorithms publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2022.10.153 – year: 2018 ident: 10.1016/j.engappai.2024.109053_bib36 – volume: 277 year: 2023 ident: 10.1016/j.engappai.2024.109053_bib24 article-title: Prediction of ultimate conditions and stress–strain behaviour of steel-confined ultra-high-performance concrete using sequential deep feed-forward neural network modelling strategy publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2022.115447 – volume: 360 year: 2022 ident: 10.1016/j.engappai.2024.109053_bib52 article-title: Prediction of compressive strength of alkali-activated construction demolition waste geopolymers using ensemble machine learning publication-title: Construct. Build. Mater. doi: 10.1016/j.conbuildmat.2022.129600 – volume: 9 issue: 5 year: 2023 ident: 10.1016/j.engappai.2024.109053_bib47 article-title: A review: Alkali-activated cement and concrete production technologies available in the industry publication-title: Heliyon – volume: 23 start-page: 61 issue: 1 year: 2023 ident: 10.1016/j.engappai.2024.109053_bib26 article-title: The effectiveness of surrogate models in predicting the long-term behavior of varying compressive strength ranges of recycled concrete aggregate for a variety of shapes and sizes of specimens publication-title: Arch. Civ. Mech. Eng. doi: 10.1007/s43452-022-00595-2 – volume: 279 year: 2021 ident: 10.1016/j.engappai.2024.109053_bib51 article-title: Artificial neural network model to predict the compressive strength of eco-friendly geopolymer concrete incorporating silica fume and natural zeolite publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.123697 – year: 2008 ident: 10.1016/j.engappai.2024.109053_bib54 – volume: 166 year: 2023 ident: 10.1016/j.engappai.2024.109053_bib31 article-title: Machine learning-based seismic fragility and seismic vulnerability assessment of reinforced concrete structures publication-title: Soil Dynam. Earthq. Eng. doi: 10.1016/j.soildyn.2023.107761 – year: 2024 ident: 10.1016/j.engappai.2024.109053_bib49 article-title: Chained machine learning model for predicting load capacity and ductility of steel fiber–reinforced concrete beams – volume: 17 year: 2022 ident: 10.1016/j.engappai.2024.109053_bib55 article-title: Ultra-high performance concrete design method based on machine learning model and steel slag powder publication-title: Case Stud. Constr. Mater. – volume: 128 year: 2024 ident: 10.1016/j.engappai.2024.109053_bib11 article-title: Seismic response and performance prediction of steel buckling-restrained braced frames using machine-learning methods publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.107388 – start-page: 477 year: 2023 ident: 10.1016/j.engappai.2024.109053_bib33 article-title: Estimating seismic behavior of buckling-restrained braced frames using machine learning algorithms – volume: 115 year: 2022 ident: 10.1016/j.engappai.2024.109053_bib41 article-title: Auto-tune learning framework for prediction of flowability, mechanical properties, and porosity of ultra-high-performance concrete (UHPC) publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.108182 – volume: 29 start-page: 71232 issue: 47 year: 2022 ident: 10.1016/j.engappai.2024.109053_bib2 article-title: Proposing several model techniques including ANN and M5P-tree to predict the compressive strength of geopolymer concretes incorporated with nano-silica publication-title: Environ. Sci. Pollut. Control Ser. doi: 10.1007/s11356-022-20863-1 – volume: 115 year: 2021 ident: 10.1016/j.engappai.2024.109053_bib20 article-title: Machine learning to predict properties of fresh and hardened alkali-activated concrete publication-title: Cement Concr. Compos. doi: 10.1016/j.cemconcomp.2020.103863 – volume: 52 year: 2022 ident: 10.1016/j.engappai.2024.109053_bib44 article-title: Efficient estimating compressive strength of ultra-high performance concrete using XGBoost model publication-title: J. Build. Eng. – volume: 246 year: 2020 ident: 10.1016/j.engappai.2024.109053_bib50 article-title: Improvement of early strength of fly ash-slag based one-part alkali activated mortar publication-title: Construct. Build. Mater. doi: 10.1016/j.conbuildmat.2020.118533 – volume: 122 year: 2021 ident: 10.1016/j.engappai.2024.109053_bib45 article-title: Roles of artificial intelligence in construction engineering and management: a critical review and future trends publication-title: Autom. ConStruct. doi: 10.1016/j.autcon.2020.103517 – year: 2015 ident: 10.1016/j.engappai.2024.109053_bib53 – volume: 385 year: 2023 ident: 10.1016/j.engappai.2024.109053_bib56 article-title: Prediction & optimization of alkali-activated concrete based on the random forest machine learning algorithm publication-title: Construct. Build. Mater. doi: 10.1016/j.conbuildmat.2023.131519 – start-page: 470 year: 2024 ident: 10.1016/j.engappai.2024.109053_bib12 article-title: Active learning on ensemble machine-learning model to retrofit buildings under seismic mainshock-aftershock sequence – volume: 380 year: 2022 ident: 10.1016/j.engappai.2024.109053_bib25 article-title: Development of machine learning models for the prediction of the compressive strength of calcium-based geopolymers publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.135159 – volume: 400 year: 2023 ident: 10.1016/j.engappai.2024.109053_bib27 article-title: Machine learning techniques and multi-scale models to evaluate the impact of silicon dioxide (SiO2) and calcium oxide (CaO) in fly ash on the compressive strength of green concrete publication-title: Construct. Build. Mater. – volume: 363 year: 2022 ident: 10.1016/j.engappai.2024.109053_bib61 article-title: A low-carbon alkali activated slag based ultra-high performance concrete (UHPC): reaction kinetics and microstructure development publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.132416 – volume: 167 start-page: 1195 year: 2017 ident: 10.1016/j.engappai.2024.109053_bib5 article-title: Greenhouse gas emissions in the construction industry: an analysis and evaluation of a concrete supply chain publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.07.225 – volume: 301 year: 2024 ident: 10.1016/j.engappai.2024.109053_bib22 article-title: Vision-oriented machine learning-assisted seismic energy dissipation estimation for damaged RC beam-column connections publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2023.117345 – volume: 10 issue: 4 year: 2024 ident: 10.1016/j.engappai.2024.109053_bib28 article-title: Hybrid nonlinear regression model versus MARS, MEP, and ANN to evaluate the effect of the size and content of waste tire rubber on the compressive strength of concrete publication-title: Heliyon – volume: 15 start-page: 6754 issue: 19 year: 2022 ident: 10.1016/j.engappai.2024.109053_bib57 article-title: The effect of mixture proportion on the performance of alkali-activated slag concrete subjected to sulfuric acid attack publication-title: Materials doi: 10.3390/ma15196754 – volume: 45 year: 2022 ident: 10.1016/j.engappai.2024.109053_bib8 article-title: Fiber-reinforced alkali-activated concrete: a review publication-title: J. Build. Eng. – volume: 289 year: 2023 ident: 10.1016/j.engappai.2024.109053_bib10 article-title: Machine learning-based prediction of residual drift and seismic risk assessment of steel moment-resisting frames considering soil-structure interaction publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2023.107181 – start-page: 1 year: 2024 ident: 10.1016/j.engappai.2024.109053_bib35 article-title: Machine-learning methods for estimating performance of structural concrete members reinforced with fiber-reinforced polymers publication-title: Arch. Comput. Methods Eng. – volume: 391 year: 2023 ident: 10.1016/j.engappai.2024.109053_bib38 article-title: Cleaner production of waste-derived alkali activators from industrial and agricultural by-products for sustainable alkali activated binders publication-title: Construct. Build. Mater. doi: 10.1016/j.conbuildmat.2023.131824 – year: 2023 ident: 10.1016/j.engappai.2024.109053_bib59 article-title: Data driven design of alkali-activated concrete using sequential learning publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2023.138221 – volume: 195 year: 2023 ident: 10.1016/j.engappai.2024.109053_bib14 article-title: Prediction of maximum tensile stress in plain-weave composite laminates with interacting holes via stacked machine learning algorithms: a comparative study publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2023.110315 – volume: 74 year: 2023 ident: 10.1016/j.engappai.2024.109053_bib15 article-title: Influences of binder composition and carbonation curing condition on the compressive strength of alkali-activated cementitious materials: a review publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2023.102551 – volume: 33 start-page: 7851 issue: 13 year: 2021 ident: 10.1016/j.engappai.2024.109053_bib43 article-title: Artificial neural network (ANN), M5P-tree, and regression analyses to predict the early age compression strength of concrete modified with DBC-21 and VK-98 polymers publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05525-y – volume: 35 start-page: 12453 issue: 17 year: 2023 ident: 10.1016/j.engappai.2024.109053_bib3 article-title: Innovative modeling techniques including MEP, ANN and FQ to forecast the compressive strength of geopolymer concrete modified with nanoparticles publication-title: Neural Comput. Appl. doi: 10.1007/s00521-023-08378-3 – volume: 274 year: 2023 ident: 10.1016/j.engappai.2024.109053_bib29 article-title: Predicting seismic response of SMRFs founded on different soil types using machine learning techniques publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2022.114953 – volume: 274 year: 2023 ident: 10.1016/j.engappai.2024.109053_bib32 article-title: Machine learning-based prediction of seismic limit-state capacity of steel moment-resisting frames considering soil-structure interaction publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2022.106886 – volume: 349 year: 2022 ident: 10.1016/j.engappai.2024.109053_bib17 article-title: Metamodel techniques to estimate the compressive strength of UHPFRC using various mix proportions and a high range of curing temperatures publication-title: Construct. Build. Mater. doi: 10.1016/j.conbuildmat.2022.128737 – volume: 24 start-page: 4161 issue: 3 year: 2023 ident: 10.1016/j.engappai.2024.109053_bib7 article-title: Analysis and prediction of the effect of Nanosilica on the compressive strength of concrete with different mix proportions and specimen sizes using various numerical approaches publication-title: Struct. Concr. doi: 10.1002/suco.202200718 – volume: 19 start-page: 1229 issue: 11 year: 2011 ident: 10.1016/j.engappai.2024.109053_bib21 article-title: An environmental evaluation of geopolymer based concrete production: reviewing current research trends publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2011.03.012 |
| SSID | ssj0003846 |
| Score | 2.6709006 |
| Snippet | High-performance alkali-activated concrete (HP-AAC) is acknowledged as a cementless and environmentally friendly material. It has recently received a... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 109053 |
| SubjectTerms | Compressive strength Cost and carbon emission High-performance alkali-activated concrete Machine learning algorithms Steel fiber |
| Title | Machine-learning methods for estimating compressive strength of high-performance alkali-activated concrete |
| URI | https://dx.doi.org/10.1016/j.engappai.2024.109053 |
| Volume | 136 |
| WOSCitedRecordID | wos001288073900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0952-1976 databaseCode: AIEXJ dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0003846 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECVcp4deuhdNuoCH3gq6piRa5NEoEnRBgx5cwDkJFEXFiyoZsmoE-a38YEeiKDFu0DSHXgSDAElL80Q-jt7MIPROenKiYFsnMmCCBEEiCU-ZIjymmnORMiF5U2wiPD3l87n4Phhc2ViYXRbmOb-4EJv_ampoA2PXobN3MHc3KDTAbzA6XMHscP0nw39r5JGaZNbpYYpEb01yb3ija45qIm2NCHanm4iR_LxaNNQRjutk48YTZGsg66SOgNjJmqDCERq4ZnVNROTkNXzvfhRvdAZlI0hqyoM4GUA7585CpjBnKo3KflaU6x6yX-Wl_tkoDk5kebns2qfbc1muF6YiFSzVvWPhrCjMyaAgZ7rIXLeGF3QCud4_6REqTHGYbqn23cW21pSaTMN_7APGJbEawbODe5bLUT3FqO9wPfH23obYyRStAm4V2XGiepzIjHMPHXghE3yIDqafj-dfOgLgcxMfZu_ACUy_-R_dzIkcnjN7jB62BxQ8NcB6ggY6f4oetYcV3G4FW2iy9UBs2zO02ocebqGHAUu4hx52oIct9HCR4n3o4X3oYQu95-jHyfHs4yfS1vIgyqdeRRgsCYIqphMmgoRL4UnmJymwYS3DhOq6CJRP40nsw44zHqc-TWHhUFROJjxR2vdfoGFe5PolwqGIOR3DsDrhgeJCShULrVXI42QcM3WImH2akWoT3df1VrLo7_Y8RB-6fhuT6uXWHsIaK2oJqyGiEeDwlr5Hd57tFXrQvyiv0bAqf-k36L7aVctt-bYF4W-WocMQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine-learning+methods+for+estimating+compressive+strength+of+high-performance+alkali-activated+concrete&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Shafighfard%2C+Torkan&rft.au=Kazemi%2C+Farzin&rft.au=Asgarkhani%2C+Neda&rft.au=Yoo%2C+Doo-Yeol&rft.date=2024-10-01&rft.issn=0952-1976&rft.volume=136&rft.spage=109053&rft_id=info:doi/10.1016%2Fj.engappai.2024.109053&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2024_109053 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |