Machine-learning methods for estimating compressive strength of high-performance alkali-activated concrete

High-performance alkali-activated concrete (HP-AAC) is acknowledged as a cementless and environmentally friendly material. It has recently received a substantial amount of interest not only due to the potential it has for being used instead of ordinary concrete but also owing to the concerns associa...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Engineering applications of artificial intelligence Ročník 136; s. 109053
Hlavní autoři: Shafighfard, Torkan, Kazemi, Farzin, Asgarkhani, Neda, Yoo, Doo-Yeol
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.10.2024
Témata:
ISSN:0952-1976
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract High-performance alkali-activated concrete (HP-AAC) is acknowledged as a cementless and environmentally friendly material. It has recently received a substantial amount of interest not only due to the potential it has for being used instead of ordinary concrete but also owing to the concerns associated with climate change, sustainability, reduction of CO2 emissions, and energy consumption. The characteristics and amounts of the ingredients used to produce HP-AAC influence its compressive strength. This study performs a comparative analysis based on machine learning (ML) algorithms to present an ensemble model capable of predicting the compressive strength of HP-AAC. This is in response to the development of sophisticated prediction approaches that seek to lower the cost of experimental tools and labor. An extensive framework including 538 experimental datasets with 18 input parameters are extracted. In addition, stacked ML (SM) models are developed to provide their best base estimator combination with the highest capability. The results show that stacked model (SM-5) with score of 14, and prediction accuracy of 98% following by the largest experiment-to-predicted ratio, provide the best estimations of compressive strength of HP-AAC, which has the lowest error values compare to other 18 ML models. Thereafter, a graphical user interface (GUI) is provided and validated by extra experimental tests for estimating the compressive strength, cost, and carbon emission of HP-AAC. Overall, the significance of the current study highlight the outstanding performance of developed stacked ML and GUI for predicting the compressive strength of HP-ACC, which contribute for the on-going research in this area. [Display omitted]
AbstractList High-performance alkali-activated concrete (HP-AAC) is acknowledged as a cementless and environmentally friendly material. It has recently received a substantial amount of interest not only due to the potential it has for being used instead of ordinary concrete but also owing to the concerns associated with climate change, sustainability, reduction of CO2 emissions, and energy consumption. The characteristics and amounts of the ingredients used to produce HP-AAC influence its compressive strength. This study performs a comparative analysis based on machine learning (ML) algorithms to present an ensemble model capable of predicting the compressive strength of HP-AAC. This is in response to the development of sophisticated prediction approaches that seek to lower the cost of experimental tools and labor. An extensive framework including 538 experimental datasets with 18 input parameters are extracted. In addition, stacked ML (SM) models are developed to provide their best base estimator combination with the highest capability. The results show that stacked model (SM-5) with score of 14, and prediction accuracy of 98% following by the largest experiment-to-predicted ratio, provide the best estimations of compressive strength of HP-AAC, which has the lowest error values compare to other 18 ML models. Thereafter, a graphical user interface (GUI) is provided and validated by extra experimental tests for estimating the compressive strength, cost, and carbon emission of HP-AAC. Overall, the significance of the current study highlight the outstanding performance of developed stacked ML and GUI for predicting the compressive strength of HP-ACC, which contribute for the on-going research in this area. [Display omitted]
ArticleNumber 109053
Author Yoo, Doo-Yeol
Kazemi, Farzin
Shafighfard, Torkan
Asgarkhani, Neda
Author_xml – sequence: 1
  givenname: Torkan
  orcidid: 0000-0002-4210-3150
  surname: Shafighfard
  fullname: Shafighfard, Torkan
  organization: Institute of Fluid Flow Machinery, Polish Academy of Sciences, Generala Jozefa Fiszera 14, 80-231, Gdańsk, Poland
– sequence: 2
  givenname: Farzin
  orcidid: 0000-0002-2448-1465
  surname: Kazemi
  fullname: Kazemi, Farzin
  email: Farzin.kazemi@pg.edu.pl
  organization: Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233, Gdańsk, Poland
– sequence: 3
  givenname: Neda
  orcidid: 0000-0002-0756-8438
  surname: Asgarkhani
  fullname: Asgarkhani, Neda
  organization: Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233, Gdańsk, Poland
– sequence: 4
  givenname: Doo-Yeol
  surname: Yoo
  fullname: Yoo, Doo-Yeol
  email: dyyoo@yonsei.ac.kr
  organization: Department of Architecture and Architectural Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
BookMark eNqFkE1LAzEQhnOoYFv9C7J_YGuy2U0b8KAUv6DiRc9hmsx2s26TJQkF_70p1YuXngaGed7hfWZk4rxDQm4YXTDKxG2_QLeDcQS7qGhV56WkDZ-QKZVNVTK5FJdkFmNPKeWrWkxJ_wa6sw7LASE463bFHlPnTSxaHwqMye4hHdfa78eAMdoDFjGF_CZ1hW-Lzu66csSQz_fgNBYwfMFgS9DJHiChyaTTARNekYsWhojXv3NOPp8eP9Yv5eb9-XX9sCk1Z1UqGxBaMt2gaWRtViAraLhpuVwiLA3DRoqKs63Yck4ZpS1nbV0bzUCIldHI-ZyIU64OPsaArRpDbhG-FaPqaEn16s-SOlpSJ0sZvPsHaptye-9SADucx-9POOZyB4tBRW0xKzE2oE7KeHsu4gd7048Y
CitedBy_id crossref_primary_10_3390_buildings15081338
crossref_primary_10_1016_j_asej_2025_103434
crossref_primary_10_1007_s41939_025_00833_z
crossref_primary_10_1002_suco_70332
crossref_primary_10_1007_s43939_025_00262_2
crossref_primary_10_3390_buildings14123765
crossref_primary_10_1016_j_jobe_2025_113126
crossref_primary_10_1007_s43939_025_00307_6
crossref_primary_10_3390_buildings14103124
crossref_primary_10_1016_j_engappai_2024_109362
crossref_primary_10_21926_aeer_2404020
crossref_primary_10_3390_buildings15020226
crossref_primary_10_1002_suco_70179
crossref_primary_10_1016_j_jobe_2025_113133
crossref_primary_10_1016_j_conbuildmat_2025_141467
crossref_primary_10_1016_j_engappai_2025_110109
crossref_primary_10_13168_cs_2025_0027
crossref_primary_10_1016_j_mtcomm_2024_110667
crossref_primary_10_3934_matersci_2025041
crossref_primary_10_1007_s11831_025_10284_x
crossref_primary_10_1016_j_engappai_2025_110469
crossref_primary_10_3390_buildings15081326
crossref_primary_10_1088_1742_6596_3076_1_012015
crossref_primary_10_1016_j_mtcomm_2025_112570
crossref_primary_10_1016_j_conbuildmat_2025_143082
crossref_primary_10_1016_j_jwpe_2025_108344
crossref_primary_10_3390_buildings14092673
crossref_primary_10_1016_j_prostr_2025_07_074
crossref_primary_10_3390_buildings14092675
crossref_primary_10_3390_ma17246280
crossref_primary_10_1016_j_compstruc_2025_107918
crossref_primary_10_1038_s44296_025_00058_8
crossref_primary_10_1016_j_engappai_2025_110512
crossref_primary_10_1016_j_engappai_2025_111843
crossref_primary_10_1016_j_mtcomm_2024_110813
crossref_primary_10_3390_buildings14113660
crossref_primary_10_1016_j_mtcomm_2025_112466
crossref_primary_10_1016_j_jobe_2024_111603
crossref_primary_10_1007_s10901_025_10220_2
crossref_primary_10_1016_j_engappai_2025_110123
crossref_primary_10_3390_ma18133182
crossref_primary_10_3390_buildings15071107
crossref_primary_10_3390_buildings15122113
crossref_primary_10_1016_j_engappai_2025_110527
crossref_primary_10_1016_j_cscm_2025_e04801
crossref_primary_10_3390_ma18122856
crossref_primary_10_1016_j_conbuildmat_2025_141883
crossref_primary_10_1016_j_cscm_2025_e04384
crossref_primary_10_3390_buildings15122082
crossref_primary_10_1016_j_envres_2025_122646
crossref_primary_10_1016_j_jobe_2025_111971
crossref_primary_10_1038_s41598_025_14687_5
crossref_primary_10_1016_j_engappai_2025_110377
crossref_primary_10_1016_j_engappai_2025_111983
crossref_primary_10_1016_j_rineng_2025_106589
crossref_primary_10_1016_j_engappai_2025_111066
crossref_primary_10_1016_j_engappai_2025_110779
crossref_primary_10_1016_j_engappai_2025_110933
crossref_primary_10_1016_j_asej_2025_103441
crossref_primary_10_1016_j_cscm_2024_e03822
crossref_primary_10_3390_buildings14113484
crossref_primary_10_1016_j_cscm_2025_e04754
crossref_primary_10_1016_j_jes_2025_07_014
crossref_primary_10_1016_j_conbuildmat_2025_142367
crossref_primary_10_1007_s11356_025_36276_9
crossref_primary_10_1016_j_asoc_2025_112783
crossref_primary_10_1016_j_engappai_2025_111234
crossref_primary_10_3390_buildings14124012
crossref_primary_10_1016_j_apmt_2025_102601
crossref_primary_10_1016_j_cscm_2024_e04109
crossref_primary_10_1016_j_engappai_2025_110544
crossref_primary_10_1016_j_engappai_2025_110943
crossref_primary_10_1016_j_rineng_2025_105260
crossref_primary_10_3390_ma18020312
crossref_primary_10_1016_j_jwpe_2024_106820
crossref_primary_10_1016_j_mtcomm_2025_112017
crossref_primary_10_1007_s43452_024_01067_5
crossref_primary_10_1007_s43452_025_01236_0
crossref_primary_10_1061_JSDCCC_SCENG_1843
crossref_primary_10_1016_j_engappai_2025_111250
crossref_primary_10_3390_buildings14124024
crossref_primary_10_1016_j_jwpe_2025_107577
crossref_primary_10_1016_j_jwpe_2025_107973
crossref_primary_10_3390_buildings14123851
crossref_primary_10_1016_j_rineng_2025_104980
crossref_primary_10_1016_j_rineng_2024_103110
crossref_primary_10_1007_s13369_024_09905_7
crossref_primary_10_1016_j_jwpe_2025_107888
crossref_primary_10_1016_j_mtcomm_2025_112028
crossref_primary_10_1016_j_hybadv_2025_100385
crossref_primary_10_1016_j_measurement_2025_117916
crossref_primary_10_1016_j_engappai_2025_111533
crossref_primary_10_1016_j_rineng_2025_104198
crossref_primary_10_1007_s00521_025_11576_w
crossref_primary_10_1016_j_asoc_2025_112878
crossref_primary_10_1016_j_conbuildmat_2024_139853
crossref_primary_10_1016_j_rineng_2024_103421
crossref_primary_10_1016_j_engstruct_2025_120957
crossref_primary_10_1016_j_cscm_2025_e04729
crossref_primary_10_3390_buildings14113595
crossref_primary_10_3390_ma17184533
crossref_primary_10_1016_j_engstruct_2025_120276
crossref_primary_10_1016_j_istruc_2025_109531
crossref_primary_10_1016_j_istruc_2025_109497
crossref_primary_10_1016_j_engappai_2025_112086
crossref_primary_10_1016_j_rineng_2025_105326
crossref_primary_10_3390_buildings15030375
crossref_primary_10_1016_j_jobe_2025_112347
crossref_primary_10_1016_j_ces_2025_121832
crossref_primary_10_1016_j_conbuildmat_2024_139746
crossref_primary_10_1016_j_rineng_2025_104242
crossref_primary_10_3390_buildings14103316
crossref_primary_10_3390_infrastructures10030057
crossref_primary_10_1016_j_conbuildmat_2025_142886
crossref_primary_10_1016_j_engappai_2025_110735
crossref_primary_10_1016_j_mtcomm_2025_112679
crossref_primary_10_1002_pc_29648
crossref_primary_10_1016_j_mtcomm_2024_110759
crossref_primary_10_1016_j_compstruc_2025_107657
Cites_doi 10.1007/s43452-023-00631-9
10.1016/j.jclepro.2015.06.026
10.1016/j.conbuildmat.2015.04.039
10.1016/j.asoc.2020.106552
10.1016/S0008-8846(00)00365-3
10.1016/j.conbuildmat.2021.125110
10.1016/j.conbuildmat.2021.125313
10.1016/j.conbuildmat.2022.127828
10.1016/j.conbuildmat.2007.07.023
10.1007/s00521-023-08439-7
10.1007/s11831-023-10043-w
10.1016/j.jksues.2017.06.001
10.1016/j.jmrt.2022.10.153
10.1016/j.engstruct.2022.115447
10.1016/j.conbuildmat.2022.129600
10.1007/s43452-022-00595-2
10.1016/j.jclepro.2020.123697
10.1016/j.soildyn.2023.107761
10.1016/j.engappai.2023.107388
10.1016/j.asoc.2021.108182
10.1007/s11356-022-20863-1
10.1016/j.cemconcomp.2020.103863
10.1016/j.conbuildmat.2020.118533
10.1016/j.autcon.2020.103517
10.1016/j.conbuildmat.2023.131519
10.1016/j.jclepro.2022.135159
10.1016/j.jclepro.2022.132416
10.1016/j.jclepro.2017.07.225
10.1016/j.engstruct.2023.117345
10.3390/ma15196754
10.1016/j.compstruc.2023.107181
10.1016/j.conbuildmat.2023.131824
10.1016/j.jclepro.2023.138221
10.1016/j.ymssp.2023.110315
10.1016/j.jcou.2023.102551
10.1007/s00521-020-05525-y
10.1007/s00521-023-08378-3
10.1016/j.engstruct.2022.114953
10.1016/j.compstruc.2022.106886
10.1016/j.conbuildmat.2022.128737
10.1002/suco.202200718
10.1016/j.jclepro.2011.03.012
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2024.109053
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
ExternalDocumentID 10_1016_j_engappai_2024_109053
S0952197624012119
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
9DU
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c312t-5a6c91c5ed594d8a92a53df397ea7d1e596231b6b330100f31f44dc1a668dce33
ISICitedReferencesCount 129
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001288073900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0952-1976
IngestDate Tue Nov 18 22:39:08 EST 2025
Sat Nov 29 03:41:20 EST 2025
Sun Apr 06 06:54:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Steel fiber
Machine learning algorithms
Compressive strength
Cost and carbon emission
High-performance alkali-activated concrete
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-5a6c91c5ed594d8a92a53df397ea7d1e596231b6b330100f31f44dc1a668dce33
ORCID 0000-0002-4210-3150
0000-0002-0756-8438
0000-0002-2448-1465
ParticipantIDs crossref_primary_10_1016_j_engappai_2024_109053
crossref_citationtrail_10_1016_j_engappai_2024_109053
elsevier_sciencedirect_doi_10_1016_j_engappai_2024_109053
PublicationCentury 2000
PublicationDate October 2024
2024-10-00
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: October 2024
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Shen, Yue, Lin, Li, Lv, Feng, Ci (bib52) 2022; 360
Aıtcin (bib4) 2000; 30
Asgarkhani, Kazemi, Jakubczyk-Gałczyńska, Mohebi, Jankowski (bib11) 2024; 128
Kazemi, Shafighfard, Yoo (bib34) 2024; 31
Jaf, Abdalla, Mohammed, Abdulrahman, Kurda, Mohammed (bib28) 2024; 10
Shafighfard, Kazemi, Bagherzadeh, Mieloszyk, Yoo (bib49) 2024
Shah, Chen, Oderji, Haque, Ahmad (bib50) 2020; 246
Kazemi, Jankowski (bib32) 2023; 274
Huo, Zhu, Sun, Ma, Yang (bib25) 2022; 380
Kothari (bib37) 2017
Akan, Dhavale, Joseph (bib5) 2017; 167
Pan, Zhang (bib45) 2021; 122
Ibrahim, Dhahir, Mohammed, Omar, Sedo (bib26) 2023; 23
Kazemi, Asgarkhani, Shafighfard, Jankowski, Yoo (bib35) 2024
Keulen (bib36) 2018
Shafighfard, Bagherzadeh, Rizi, Yoo (bib48) 2022; 21
Bang, Choi, Hong, Jung, Kim, Yang (bib15) 2023; 74
Kazemi, Asgarkhani, Jankowski (bib31) 2023; 166
Piro, Mohammed, Hamad, Kurda (bib46) 2023; 35
Sierra (bib53) 2015
Zhang, Yu, Zhang, Shui (bib61) 2022; 363
Standard (bib54) 2008
Ahmed, Mohammed, Mohammed (bib2) 2022; 29
Gomaa, Han, ElGawady, Huang, Kumar (bib20) 2021; 115
Mohammed, Burhan, Ghafor, Sarwar, Mahmood (bib43) 2021; 33
Abuodeh, Abdalla, Hawileh (bib1) 2020; 95
Jaf, Abdulrahman, Mohammed, Kurda, Qaidi, Asteris (bib27) 2023; 400
Mithun, Narasimhan (bib42) 2016; 112
Kumar, Rithuparna, Senthilkumar, Bahurudeen (bib38) 2023; 391
Asgarkhani, Kazemi, Jankowski (bib12) 2024
El-Hassan, Elkholy (bib16) 2021; 311
Ahmed, Mohammed, Faraj, Abdalla, Qaidi, Sor, Mohammed (bib3) 2023; 35
Emad, Mohammed, Bras, Asteris, Kurda, Muhammed, Sihag (bib17) 2022; 349
Kazemi, Mohebi, Asgarkhani (bib33) 2023
Hiew, Bin Teoh, Raman, Kong, Hafezolghorani (bib24) 2023; 277
Bagherzadeh, Shafighfard, Khan, Szczuko, Mieloszyk (bib14) 2023; 195
Mahjoubi, Meng, Yi (bib41) 2022; 115
Shahmansouri, Yazdani, Ghanbari, Habib, Jafari, Ghatte (bib51) 2021; 279
Li, Shen, Lin, Li (bib39) 2023; 75
Asgarkhani, Kazemi, Jankowski (bib10) 2023; 289
Segura, Ranjbar, Damø, Jensen, Canut, Jensen (bib47) 2023; 9
Nguyen, Abellán-García, Lee, Garcia-Castano, Vo (bib44) 2022; 52
Habert, Jb DEspinose, Roussel (bib21) 2011; 19
Amran, Fediuk, Abdelgader, Murali, Ozbakkaloglu, Lee, Yong Lee (bib8) 2022; 45
Thomas, Peethamparan (bib58) 2015; 93
Al-Otaibi (bib6) 2008; 22
Sun, Du, Shan, Shi, Qu (bib55) 2022; 17
Teymouri, Behfarnia, Shabani, Saadatian (bib57) 2022; 15
Gomaa, Simon, Kashosi, Mohamed (bib19) 2017; 29
Hamidia, Kaboodkhani, Bayesteh (bib22) 2024; 301
Kazemi, Asgarkhani, Jankowski (bib29) 2023; 274
Ali, Muayad, Ahmed, Asteris (bib7) 2023; 24
Sun, Cheng, Zhang, Mohan, Ye, De Schutter (bib56) 2023; 385
Kazemi, Asgarkhani, Jankowski (bib30) 2023; 23
Ghosh, Ransinchung (bib18) 2022; 341
Xu, Yuan, Liu, Pan, Liu, Su, Li, Wu (bib60) 2021; 308
Bagherzadeh, Shafighfard (bib13) 2022; 17
Völker, Torres, Rug, Firdous, Zia, Lüders, Scaffino (bib59) 2023
Ibrahim (10.1016/j.engappai.2024.109053_bib26) 2023; 23
Kazemi (10.1016/j.engappai.2024.109053_bib32) 2023; 274
Nguyen (10.1016/j.engappai.2024.109053_bib44) 2022; 52
Shafighfard (10.1016/j.engappai.2024.109053_bib48) 2022; 21
Asgarkhani (10.1016/j.engappai.2024.109053_bib12) 2024
Standard (10.1016/j.engappai.2024.109053_bib54) 2008
Al-Otaibi (10.1016/j.engappai.2024.109053_bib6) 2008; 22
Akan (10.1016/j.engappai.2024.109053_bib5) 2017; 167
Kazemi (10.1016/j.engappai.2024.109053_bib30) 2023; 23
Huo (10.1016/j.engappai.2024.109053_bib25) 2022; 380
Kazemi (10.1016/j.engappai.2024.109053_bib34) 2024; 31
Shen (10.1016/j.engappai.2024.109053_bib52) 2022; 360
Hamidia (10.1016/j.engappai.2024.109053_bib22) 2024; 301
Shafighfard (10.1016/j.engappai.2024.109053_bib49) 2024
Kothari (10.1016/j.engappai.2024.109053_bib37) 2017
Sun (10.1016/j.engappai.2024.109053_bib56) 2023; 385
Ali (10.1016/j.engappai.2024.109053_bib7) 2023; 24
Ghosh (10.1016/j.engappai.2024.109053_bib18) 2022; 341
Gomaa (10.1016/j.engappai.2024.109053_bib20) 2021; 115
Bagherzadeh (10.1016/j.engappai.2024.109053_bib13) 2022; 17
Aıtcin (10.1016/j.engappai.2024.109053_bib4) 2000; 30
Asgarkhani (10.1016/j.engappai.2024.109053_bib10) 2023; 289
Teymouri (10.1016/j.engappai.2024.109053_bib57) 2022; 15
Völker (10.1016/j.engappai.2024.109053_bib59) 2023
Segura (10.1016/j.engappai.2024.109053_bib47) 2023; 9
Habert (10.1016/j.engappai.2024.109053_bib21) 2011; 19
Kazemi (10.1016/j.engappai.2024.109053_bib35) 2024
Emad (10.1016/j.engappai.2024.109053_bib17) 2022; 349
Ahmed (10.1016/j.engappai.2024.109053_bib2) 2022; 29
Shahmansouri (10.1016/j.engappai.2024.109053_bib51) 2021; 279
Amran (10.1016/j.engappai.2024.109053_bib8) 2022; 45
Jaf (10.1016/j.engappai.2024.109053_bib27) 2023; 400
Keulen (10.1016/j.engappai.2024.109053_bib36) 2018
Piro (10.1016/j.engappai.2024.109053_bib46) 2023; 35
Sun (10.1016/j.engappai.2024.109053_bib55) 2022; 17
Mithun (10.1016/j.engappai.2024.109053_bib42) 2016; 112
Kazemi (10.1016/j.engappai.2024.109053_bib29) 2023; 274
Ahmed (10.1016/j.engappai.2024.109053_bib3) 2023; 35
Jaf (10.1016/j.engappai.2024.109053_bib28) 2024; 10
Li (10.1016/j.engappai.2024.109053_bib39) 2023; 75
Shah (10.1016/j.engappai.2024.109053_bib50) 2020; 246
Asgarkhani (10.1016/j.engappai.2024.109053_bib11) 2024; 128
Kazemi (10.1016/j.engappai.2024.109053_bib33) 2023
Thomas (10.1016/j.engappai.2024.109053_bib58) 2015; 93
Hiew (10.1016/j.engappai.2024.109053_bib24) 2023; 277
Gomaa (10.1016/j.engappai.2024.109053_bib19) 2017; 29
Sierra (10.1016/j.engappai.2024.109053_bib53) 2015
Bagherzadeh (10.1016/j.engappai.2024.109053_bib14) 2023; 195
Pan (10.1016/j.engappai.2024.109053_bib45) 2021; 122
El-Hassan (10.1016/j.engappai.2024.109053_bib16) 2021; 311
Mahjoubi (10.1016/j.engappai.2024.109053_bib41) 2022; 115
Xu (10.1016/j.engappai.2024.109053_bib60) 2021; 308
Kumar (10.1016/j.engappai.2024.109053_bib38) 2023; 391
Mohammed (10.1016/j.engappai.2024.109053_bib43) 2021; 33
Bang (10.1016/j.engappai.2024.109053_bib15) 2023; 74
Zhang (10.1016/j.engappai.2024.109053_bib61) 2022; 363
Abuodeh (10.1016/j.engappai.2024.109053_bib1) 2020; 95
Kazemi (10.1016/j.engappai.2024.109053_bib31) 2023; 166
References_xml – volume: 391
  year: 2023
  ident: bib38
  article-title: Cleaner production of waste-derived alkali activators from industrial and agricultural by-products for sustainable alkali activated binders
  publication-title: Construct. Build. Mater.
– year: 2018
  ident: bib36
  article-title: Performance of Admixture and Secondary Minerals in Alkali Activated Concrete: Sustaining a Concrete Future
– volume: 349
  year: 2022
  ident: bib17
  article-title: Metamodel techniques to estimate the compressive strength of UHPFRC using various mix proportions and a high range of curing temperatures
  publication-title: Construct. Build. Mater.
– volume: 385
  year: 2023
  ident: bib56
  article-title: Prediction & optimization of alkali-activated concrete based on the random forest machine learning algorithm
  publication-title: Construct. Build. Mater.
– volume: 19
  start-page: 1229
  year: 2011
  end-page: 1238
  ident: bib21
  article-title: An environmental evaluation of geopolymer based concrete production: reviewing current research trends
  publication-title: J. Clean. Prod.
– volume: 166
  year: 2023
  ident: bib31
  article-title: Machine learning-based seismic fragility and seismic vulnerability assessment of reinforced concrete structures
  publication-title: Soil Dynam. Earthq. Eng.
– volume: 277
  year: 2023
  ident: bib24
  article-title: Prediction of ultimate conditions and stress–strain behaviour of steel-confined ultra-high-performance concrete using sequential deep feed-forward neural network modelling strategy
  publication-title: Eng. Struct.
– volume: 363
  year: 2022
  ident: bib61
  article-title: A low-carbon alkali activated slag based ultra-high performance concrete (UHPC): reaction kinetics and microstructure development
  publication-title: J. Clean. Prod.
– volume: 29
  start-page: 356
  year: 2017
  end-page: 364
  ident: bib19
  article-title: Fresh properties and compressive strength of high calcium alkali activated fly ash mortar
  publication-title: Journal of King Saud University-Engineering Sciences
– volume: 360
  year: 2022
  ident: bib52
  article-title: Prediction of compressive strength of alkali-activated construction demolition waste geopolymers using ensemble machine learning
  publication-title: Construct. Build. Mater.
– volume: 21
  start-page: 3777
  year: 2022
  end-page: 3794
  ident: bib48
  article-title: Data-driven compressive strength prediction of steel fiber reinforced concrete (SFRC) subjected to elevated temperatures using stacked machine learning algorithms
  publication-title: J. Mater. Res. Technol.
– volume: 311
  year: 2021
  ident: bib16
  article-title: Enhancing the performance of Alkali-Activated Slag-Fly ash blended concrete through hybrid steel fiber reinforcement
  publication-title: Construct. Build. Mater.
– volume: 274
  year: 2023
  ident: bib29
  article-title: Predicting seismic response of SMRFs founded on different soil types using machine learning techniques
  publication-title: Eng. Struct.
– volume: 95
  year: 2020
  ident: bib1
  article-title: Assessment of compressive strength of Ultra-high Performance Concrete using deep machine learning techniques
  publication-title: Appl. Soft Comput.
– year: 2024
  ident: bib49
  article-title: Chained machine learning model for predicting load capacity and ductility of steel fiber–reinforced concrete beams
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– start-page: 1
  year: 2024
  end-page: 33
  ident: bib35
  article-title: Machine-learning methods for estimating performance of structural concrete members reinforced with fiber-reinforced polymers
  publication-title: Arch. Comput. Methods Eng.
– volume: 301
  year: 2024
  ident: bib22
  article-title: Vision-oriented machine learning-assisted seismic energy dissipation estimation for damaged RC beam-column connections
  publication-title: Eng. Struct.
– start-page: 477
  year: 2023
  end-page: 486
  ident: bib33
  article-title: Estimating seismic behavior of buckling-restrained braced frames using machine learning algorithms
  publication-title: International Conference on Nonlinear Dynamics and Applications
– volume: 17
  year: 2022
  ident: bib55
  article-title: Ultra-high performance concrete design method based on machine learning model and steel slag powder
  publication-title: Case Stud. Constr. Mater.
– volume: 45
  year: 2022
  ident: bib8
  article-title: Fiber-reinforced alkali-activated concrete: a review
  publication-title: J. Build. Eng.
– year: 2023
  ident: bib59
  article-title: Data driven design of alkali-activated concrete using sequential learning
  publication-title: J. Clean. Prod.
– volume: 75
  year: 2023
  ident: bib39
  article-title: Optimization design for alkali-activated slag-fly ash geopolymer concrete based on artificial intelligence considering compressive strength, cost, and carbon emission
  publication-title: J. Build. Eng.
– volume: 23
  start-page: 61
  year: 2023
  ident: bib26
  article-title: The effectiveness of surrogate models in predicting the long-term behavior of varying compressive strength ranges of recycled concrete aggregate for a variety of shapes and sizes of specimens
  publication-title: Arch. Civ. Mech. Eng.
– volume: 15
  start-page: 6754
  year: 2022
  ident: bib57
  article-title: The effect of mixture proportion on the performance of alkali-activated slag concrete subjected to sulfuric acid attack
  publication-title: Materials
– volume: 279
  year: 2021
  ident: bib51
  article-title: Artificial neural network model to predict the compressive strength of eco-friendly geopolymer concrete incorporating silica fume and natural zeolite
  publication-title: J. Clean. Prod.
– volume: 246
  year: 2020
  ident: bib50
  article-title: Improvement of early strength of fly ash-slag based one-part alkali activated mortar
  publication-title: Construct. Build. Mater.
– volume: 341
  year: 2022
  ident: bib18
  article-title: Application of machine learning algorithm to assess the efficacy of varying industrial wastes and curing methods on strength development of geopolymer concrete
  publication-title: Construct. Build. Mater.
– start-page: 470
  year: 2024
  end-page: 478
  ident: bib12
  article-title: Active learning on ensemble machine-learning model to retrofit buildings under seismic mainshock-aftershock sequence
  publication-title: International Conference on Computational Science
– volume: 52
  year: 2022
  ident: bib44
  article-title: Efficient estimating compressive strength of ultra-high performance concrete using XGBoost model
  publication-title: J. Build. Eng.
– volume: 30
  start-page: 1349
  year: 2000
  end-page: 1359
  ident: bib4
  article-title: Cements of yesterday and today: concrete of tomorrow
  publication-title: Cement Concr. Res.
– volume: 112
  start-page: 837
  year: 2016
  end-page: 844
  ident: bib42
  article-title: Performance of alkali activated slag concrete mixes incorporating copper slag as fine aggregate
  publication-title: J. Clean. Prod.
– volume: 400
  year: 2023
  ident: bib27
  article-title: Machine learning techniques and multi-scale models to evaluate the impact of silicon dioxide (SiO2) and calcium oxide (CaO) in fly ash on the compressive strength of green concrete
  publication-title: Construct. Build. Mater.
– volume: 31
  start-page: 2049
  year: 2024
  end-page: 2078
  ident: bib34
  article-title: Data-driven modeling of mechanical properties of fiber-reinforced concrete: a critical review
  publication-title: Arch. Comput. Methods Eng.
– volume: 115
  year: 2021
  ident: bib20
  article-title: Machine learning to predict properties of fresh and hardened alkali-activated concrete
  publication-title: Cement Concr. Compos.
– volume: 33
  start-page: 7851
  year: 2021
  end-page: 7873
  ident: bib43
  article-title: Artificial neural network (ANN), M5P-tree, and regression analyses to predict the early age compression strength of concrete modified with DBC-21 and VK-98 polymers
  publication-title: Neural Comput. Appl.
– volume: 22
  start-page: 2059
  year: 2008
  end-page: 2067
  ident: bib6
  article-title: Durability of concrete incorporating GGBS activated by water-glass
  publication-title: Construct. Build. Mater.
– volume: 167
  start-page: 1195
  year: 2017
  end-page: 1207
  ident: bib5
  article-title: Greenhouse gas emissions in the construction industry: an analysis and evaluation of a concrete supply chain
  publication-title: J. Clean. Prod.
– volume: 274
  year: 2023
  ident: bib32
  article-title: Machine learning-based prediction of seismic limit-state capacity of steel moment-resisting frames considering soil-structure interaction
  publication-title: Comput. Struct.
– volume: 122
  year: 2021
  ident: bib45
  article-title: Roles of artificial intelligence in construction engineering and management: a critical review and future trends
  publication-title: Autom. ConStruct.
– volume: 10
  year: 2024
  ident: bib28
  article-title: Hybrid nonlinear regression model versus MARS, MEP, and ANN to evaluate the effect of the size and content of waste tire rubber on the compressive strength of concrete
  publication-title: Heliyon
– volume: 308
  year: 2021
  ident: bib60
  article-title: Development and preliminary mix design of ultra-high-performance concrete based on geopolymer
  publication-title: Construct. Build. Mater.
– volume: 24
  start-page: 4161
  year: 2023
  end-page: 4184
  ident: bib7
  article-title: Analysis and prediction of the effect of Nanosilica on the compressive strength of concrete with different mix proportions and specimen sizes using various numerical approaches
  publication-title: Struct. Concr.
– volume: 289
  year: 2023
  ident: bib10
  article-title: Machine learning-based prediction of residual drift and seismic risk assessment of steel moment-resisting frames considering soil-structure interaction
  publication-title: Comput. Struct.
– volume: 9
  year: 2023
  ident: bib47
  article-title: A review: Alkali-activated cement and concrete production technologies available in the industry
  publication-title: Heliyon
– volume: 74
  year: 2023
  ident: bib15
  article-title: Influences of binder composition and carbonation curing condition on the compressive strength of alkali-activated cementitious materials: a review
  publication-title: J. CO2 Util.
– volume: 35
  start-page: 13293
  year: 2023
  end-page: 13319
  ident: bib46
  article-title: Artificial neural networks (ANN), MARS, and adaptive network-based fuzzy inference system (ANFIS) to predict the stress at the failure of concrete with waste steel slag coarse aggregate replacement
  publication-title: Neural Comput. Appl.
– volume: 93
  start-page: 49
  year: 2015
  end-page: 56
  ident: bib58
  article-title: Alkali-activated concrete: engineering properties and stress–strain behavior
  publication-title: Construct. Build. Mater.
– year: 2008
  ident: bib54
  article-title: ASTM C109-Standard Test Method for Compressive Strength of Hydraulic Cement Mortars
– volume: 380
  year: 2022
  ident: bib25
  article-title: Development of machine learning models for the prediction of the compressive strength of calcium-based geopolymers
  publication-title: J. Clean. Prod.
– volume: 29
  start-page: 71232
  year: 2022
  end-page: 71256
  ident: bib2
  article-title: Proposing several model techniques including ANN and M5P-tree to predict the compressive strength of geopolymer concretes incorporated with nano-silica
  publication-title: Environ. Sci. Pollut. Control Ser.
– year: 2017
  ident: bib37
  article-title: Effects of Fly Ash on the Properties of Alkali Activated Slag Concrete
– volume: 115
  year: 2022
  ident: bib41
  article-title: Auto-tune learning framework for prediction of flowability, mechanical properties, and porosity of ultra-high-performance concrete (UHPC)
  publication-title: Appl. Soft Comput.
– volume: 128
  year: 2024
  ident: bib11
  article-title: Seismic response and performance prediction of steel buckling-restrained braced frames using machine-learning methods
  publication-title: Eng. Appl. Artif. Intell.
– volume: 17
  year: 2022
  ident: bib13
  article-title: Ensemble Machine Learning approach for evaluating the material characterization of carbon nanotube-reinforced cementitious composites
  publication-title: Case Stud. Constr. Mater.
– volume: 35
  start-page: 12453
  year: 2023
  end-page: 12479
  ident: bib3
  article-title: Innovative modeling techniques including MEP, ANN and FQ to forecast the compressive strength of geopolymer concrete modified with nanoparticles
  publication-title: Neural Comput. Appl.
– volume: 23
  start-page: 94
  year: 2023
  ident: bib30
  article-title: Machine learning-based seismic response and performance assessment of reinforced concrete buildings
  publication-title: Arch. Civ. Mech. Eng.
– volume: 195
  year: 2023
  ident: bib14
  article-title: Prediction of maximum tensile stress in plain-weave composite laminates with interacting holes via stacked machine learning algorithms: a comparative study
  publication-title: Mech. Syst. Signal Process.
– year: 2015
  ident: bib53
  article-title: Alkali-Activated Fly Ash Binders: Feasibility as a Sustainable Alternative to Ordinary Portland Cement for PreCast Systems
– volume: 23
  start-page: 94
  issue: 2
  year: 2023
  ident: 10.1016/j.engappai.2024.109053_bib30
  article-title: Machine learning-based seismic response and performance assessment of reinforced concrete buildings
  publication-title: Arch. Civ. Mech. Eng.
  doi: 10.1007/s43452-023-00631-9
– volume: 112
  start-page: 837
  year: 2016
  ident: 10.1016/j.engappai.2024.109053_bib42
  article-title: Performance of alkali activated slag concrete mixes incorporating copper slag as fine aggregate
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2015.06.026
– year: 2017
  ident: 10.1016/j.engappai.2024.109053_bib37
– volume: 93
  start-page: 49
  year: 2015
  ident: 10.1016/j.engappai.2024.109053_bib58
  article-title: Alkali-activated concrete: engineering properties and stress–strain behavior
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2015.04.039
– volume: 95
  year: 2020
  ident: 10.1016/j.engappai.2024.109053_bib1
  article-title: Assessment of compressive strength of Ultra-high Performance Concrete using deep machine learning techniques
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106552
– volume: 30
  start-page: 1349
  issue: 9
  year: 2000
  ident: 10.1016/j.engappai.2024.109053_bib4
  article-title: Cements of yesterday and today: concrete of tomorrow
  publication-title: Cement Concr. Res.
  doi: 10.1016/S0008-8846(00)00365-3
– volume: 308
  year: 2021
  ident: 10.1016/j.engappai.2024.109053_bib60
  article-title: Development and preliminary mix design of ultra-high-performance concrete based on geopolymer
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.125110
– volume: 17
  year: 2022
  ident: 10.1016/j.engappai.2024.109053_bib13
  article-title: Ensemble Machine Learning approach for evaluating the material characterization of carbon nanotube-reinforced cementitious composites
  publication-title: Case Stud. Constr. Mater.
– volume: 75
  year: 2023
  ident: 10.1016/j.engappai.2024.109053_bib39
  article-title: Optimization design for alkali-activated slag-fly ash geopolymer concrete based on artificial intelligence considering compressive strength, cost, and carbon emission
  publication-title: J. Build. Eng.
– volume: 311
  year: 2021
  ident: 10.1016/j.engappai.2024.109053_bib16
  article-title: Enhancing the performance of Alkali-Activated Slag-Fly ash blended concrete through hybrid steel fiber reinforcement
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.125313
– volume: 341
  year: 2022
  ident: 10.1016/j.engappai.2024.109053_bib18
  article-title: Application of machine learning algorithm to assess the efficacy of varying industrial wastes and curing methods on strength development of geopolymer concrete
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2022.127828
– volume: 22
  start-page: 2059
  issue: 10
  year: 2008
  ident: 10.1016/j.engappai.2024.109053_bib6
  article-title: Durability of concrete incorporating GGBS activated by water-glass
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2007.07.023
– volume: 35
  start-page: 13293
  issue: 18
  year: 2023
  ident: 10.1016/j.engappai.2024.109053_bib46
  article-title: Artificial neural networks (ANN), MARS, and adaptive network-based fuzzy inference system (ANFIS) to predict the stress at the failure of concrete with waste steel slag coarse aggregate replacement
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-023-08439-7
– volume: 31
  start-page: 2049
  issue: 4
  year: 2024
  ident: 10.1016/j.engappai.2024.109053_bib34
  article-title: Data-driven modeling of mechanical properties of fiber-reinforced concrete: a critical review
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-023-10043-w
– volume: 29
  start-page: 356
  issue: 4
  year: 2017
  ident: 10.1016/j.engappai.2024.109053_bib19
  article-title: Fresh properties and compressive strength of high calcium alkali activated fly ash mortar
  publication-title: Journal of King Saud University-Engineering Sciences
  doi: 10.1016/j.jksues.2017.06.001
– volume: 21
  start-page: 3777
  year: 2022
  ident: 10.1016/j.engappai.2024.109053_bib48
  article-title: Data-driven compressive strength prediction of steel fiber reinforced concrete (SFRC) subjected to elevated temperatures using stacked machine learning algorithms
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2022.10.153
– year: 2018
  ident: 10.1016/j.engappai.2024.109053_bib36
– volume: 277
  year: 2023
  ident: 10.1016/j.engappai.2024.109053_bib24
  article-title: Prediction of ultimate conditions and stress–strain behaviour of steel-confined ultra-high-performance concrete using sequential deep feed-forward neural network modelling strategy
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2022.115447
– volume: 360
  year: 2022
  ident: 10.1016/j.engappai.2024.109053_bib52
  article-title: Prediction of compressive strength of alkali-activated construction demolition waste geopolymers using ensemble machine learning
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2022.129600
– volume: 9
  issue: 5
  year: 2023
  ident: 10.1016/j.engappai.2024.109053_bib47
  article-title: A review: Alkali-activated cement and concrete production technologies available in the industry
  publication-title: Heliyon
– volume: 23
  start-page: 61
  issue: 1
  year: 2023
  ident: 10.1016/j.engappai.2024.109053_bib26
  article-title: The effectiveness of surrogate models in predicting the long-term behavior of varying compressive strength ranges of recycled concrete aggregate for a variety of shapes and sizes of specimens
  publication-title: Arch. Civ. Mech. Eng.
  doi: 10.1007/s43452-022-00595-2
– volume: 279
  year: 2021
  ident: 10.1016/j.engappai.2024.109053_bib51
  article-title: Artificial neural network model to predict the compressive strength of eco-friendly geopolymer concrete incorporating silica fume and natural zeolite
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.123697
– year: 2008
  ident: 10.1016/j.engappai.2024.109053_bib54
– volume: 166
  year: 2023
  ident: 10.1016/j.engappai.2024.109053_bib31
  article-title: Machine learning-based seismic fragility and seismic vulnerability assessment of reinforced concrete structures
  publication-title: Soil Dynam. Earthq. Eng.
  doi: 10.1016/j.soildyn.2023.107761
– year: 2024
  ident: 10.1016/j.engappai.2024.109053_bib49
  article-title: Chained machine learning model for predicting load capacity and ductility of steel fiber–reinforced concrete beams
– volume: 17
  year: 2022
  ident: 10.1016/j.engappai.2024.109053_bib55
  article-title: Ultra-high performance concrete design method based on machine learning model and steel slag powder
  publication-title: Case Stud. Constr. Mater.
– volume: 128
  year: 2024
  ident: 10.1016/j.engappai.2024.109053_bib11
  article-title: Seismic response and performance prediction of steel buckling-restrained braced frames using machine-learning methods
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.107388
– start-page: 477
  year: 2023
  ident: 10.1016/j.engappai.2024.109053_bib33
  article-title: Estimating seismic behavior of buckling-restrained braced frames using machine learning algorithms
– volume: 115
  year: 2022
  ident: 10.1016/j.engappai.2024.109053_bib41
  article-title: Auto-tune learning framework for prediction of flowability, mechanical properties, and porosity of ultra-high-performance concrete (UHPC)
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.108182
– volume: 29
  start-page: 71232
  issue: 47
  year: 2022
  ident: 10.1016/j.engappai.2024.109053_bib2
  article-title: Proposing several model techniques including ANN and M5P-tree to predict the compressive strength of geopolymer concretes incorporated with nano-silica
  publication-title: Environ. Sci. Pollut. Control Ser.
  doi: 10.1007/s11356-022-20863-1
– volume: 115
  year: 2021
  ident: 10.1016/j.engappai.2024.109053_bib20
  article-title: Machine learning to predict properties of fresh and hardened alkali-activated concrete
  publication-title: Cement Concr. Compos.
  doi: 10.1016/j.cemconcomp.2020.103863
– volume: 52
  year: 2022
  ident: 10.1016/j.engappai.2024.109053_bib44
  article-title: Efficient estimating compressive strength of ultra-high performance concrete using XGBoost model
  publication-title: J. Build. Eng.
– volume: 246
  year: 2020
  ident: 10.1016/j.engappai.2024.109053_bib50
  article-title: Improvement of early strength of fly ash-slag based one-part alkali activated mortar
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.118533
– volume: 122
  year: 2021
  ident: 10.1016/j.engappai.2024.109053_bib45
  article-title: Roles of artificial intelligence in construction engineering and management: a critical review and future trends
  publication-title: Autom. ConStruct.
  doi: 10.1016/j.autcon.2020.103517
– year: 2015
  ident: 10.1016/j.engappai.2024.109053_bib53
– volume: 385
  year: 2023
  ident: 10.1016/j.engappai.2024.109053_bib56
  article-title: Prediction & optimization of alkali-activated concrete based on the random forest machine learning algorithm
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2023.131519
– start-page: 470
  year: 2024
  ident: 10.1016/j.engappai.2024.109053_bib12
  article-title: Active learning on ensemble machine-learning model to retrofit buildings under seismic mainshock-aftershock sequence
– volume: 380
  year: 2022
  ident: 10.1016/j.engappai.2024.109053_bib25
  article-title: Development of machine learning models for the prediction of the compressive strength of calcium-based geopolymers
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.135159
– volume: 400
  year: 2023
  ident: 10.1016/j.engappai.2024.109053_bib27
  article-title: Machine learning techniques and multi-scale models to evaluate the impact of silicon dioxide (SiO2) and calcium oxide (CaO) in fly ash on the compressive strength of green concrete
  publication-title: Construct. Build. Mater.
– volume: 363
  year: 2022
  ident: 10.1016/j.engappai.2024.109053_bib61
  article-title: A low-carbon alkali activated slag based ultra-high performance concrete (UHPC): reaction kinetics and microstructure development
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.132416
– volume: 167
  start-page: 1195
  year: 2017
  ident: 10.1016/j.engappai.2024.109053_bib5
  article-title: Greenhouse gas emissions in the construction industry: an analysis and evaluation of a concrete supply chain
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.07.225
– volume: 301
  year: 2024
  ident: 10.1016/j.engappai.2024.109053_bib22
  article-title: Vision-oriented machine learning-assisted seismic energy dissipation estimation for damaged RC beam-column connections
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2023.117345
– volume: 10
  issue: 4
  year: 2024
  ident: 10.1016/j.engappai.2024.109053_bib28
  article-title: Hybrid nonlinear regression model versus MARS, MEP, and ANN to evaluate the effect of the size and content of waste tire rubber on the compressive strength of concrete
  publication-title: Heliyon
– volume: 15
  start-page: 6754
  issue: 19
  year: 2022
  ident: 10.1016/j.engappai.2024.109053_bib57
  article-title: The effect of mixture proportion on the performance of alkali-activated slag concrete subjected to sulfuric acid attack
  publication-title: Materials
  doi: 10.3390/ma15196754
– volume: 45
  year: 2022
  ident: 10.1016/j.engappai.2024.109053_bib8
  article-title: Fiber-reinforced alkali-activated concrete: a review
  publication-title: J. Build. Eng.
– volume: 289
  year: 2023
  ident: 10.1016/j.engappai.2024.109053_bib10
  article-title: Machine learning-based prediction of residual drift and seismic risk assessment of steel moment-resisting frames considering soil-structure interaction
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2023.107181
– start-page: 1
  year: 2024
  ident: 10.1016/j.engappai.2024.109053_bib35
  article-title: Machine-learning methods for estimating performance of structural concrete members reinforced with fiber-reinforced polymers
  publication-title: Arch. Comput. Methods Eng.
– volume: 391
  year: 2023
  ident: 10.1016/j.engappai.2024.109053_bib38
  article-title: Cleaner production of waste-derived alkali activators from industrial and agricultural by-products for sustainable alkali activated binders
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2023.131824
– year: 2023
  ident: 10.1016/j.engappai.2024.109053_bib59
  article-title: Data driven design of alkali-activated concrete using sequential learning
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2023.138221
– volume: 195
  year: 2023
  ident: 10.1016/j.engappai.2024.109053_bib14
  article-title: Prediction of maximum tensile stress in plain-weave composite laminates with interacting holes via stacked machine learning algorithms: a comparative study
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2023.110315
– volume: 74
  year: 2023
  ident: 10.1016/j.engappai.2024.109053_bib15
  article-title: Influences of binder composition and carbonation curing condition on the compressive strength of alkali-activated cementitious materials: a review
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2023.102551
– volume: 33
  start-page: 7851
  issue: 13
  year: 2021
  ident: 10.1016/j.engappai.2024.109053_bib43
  article-title: Artificial neural network (ANN), M5P-tree, and regression analyses to predict the early age compression strength of concrete modified with DBC-21 and VK-98 polymers
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05525-y
– volume: 35
  start-page: 12453
  issue: 17
  year: 2023
  ident: 10.1016/j.engappai.2024.109053_bib3
  article-title: Innovative modeling techniques including MEP, ANN and FQ to forecast the compressive strength of geopolymer concrete modified with nanoparticles
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-023-08378-3
– volume: 274
  year: 2023
  ident: 10.1016/j.engappai.2024.109053_bib29
  article-title: Predicting seismic response of SMRFs founded on different soil types using machine learning techniques
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2022.114953
– volume: 274
  year: 2023
  ident: 10.1016/j.engappai.2024.109053_bib32
  article-title: Machine learning-based prediction of seismic limit-state capacity of steel moment-resisting frames considering soil-structure interaction
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2022.106886
– volume: 349
  year: 2022
  ident: 10.1016/j.engappai.2024.109053_bib17
  article-title: Metamodel techniques to estimate the compressive strength of UHPFRC using various mix proportions and a high range of curing temperatures
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2022.128737
– volume: 24
  start-page: 4161
  issue: 3
  year: 2023
  ident: 10.1016/j.engappai.2024.109053_bib7
  article-title: Analysis and prediction of the effect of Nanosilica on the compressive strength of concrete with different mix proportions and specimen sizes using various numerical approaches
  publication-title: Struct. Concr.
  doi: 10.1002/suco.202200718
– volume: 19
  start-page: 1229
  issue: 11
  year: 2011
  ident: 10.1016/j.engappai.2024.109053_bib21
  article-title: An environmental evaluation of geopolymer based concrete production: reviewing current research trends
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2011.03.012
SSID ssj0003846
Score 2.6709006
Snippet High-performance alkali-activated concrete (HP-AAC) is acknowledged as a cementless and environmentally friendly material. It has recently received a...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109053
SubjectTerms Compressive strength
Cost and carbon emission
High-performance alkali-activated concrete
Machine learning algorithms
Steel fiber
Title Machine-learning methods for estimating compressive strength of high-performance alkali-activated concrete
URI https://dx.doi.org/10.1016/j.engappai.2024.109053
Volume 136
WOSCitedRecordID wos001288073900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0952-1976
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0003846
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMX3ojlJR-4IS9xEqf2sUK74rlCokjdU-Qk9vYRkioN1Wr_Bn-YcRwnoay0IMQlikaynWa-2N9M54HQS5r5UqRUklQlpoVZqIjkSUa0SDwuIs4Tmyj8cXJ6yudz8Xk0-uFyYXb5pCj4xYXY_FdVgwyUbVJn_0Ld3aQggHtQOlxB7XD9I8V_asIjFcmd08M2id7a4t7wRRuOajNtbRDsTjUZI8V5vWioI5jrZDPMJ8jXQNaJyYDYSUNQwYQGrln_EkQ0qGv4avineBNnUDUBSU17kEEF0M65s5Aa1tTSRtnPymrdQ_aDvFTfmoiDE1ldLjv5dHsuq_XCdqSCrbp3LJyVpbUMSnKmynzo1vDDLkCu9bW5fJs-uMk6LX1Che0Y0-3ftoLKb2eBdUusjuD9we-WyyOzjCmf5dnyxHt1tr-Yyc3cwHGaunc30IE_YYKP0cH03fH8fXfAB9zmf7mHGSSeX73a1ZxnwGNmd9Ht1gDBUwuce2ikivvoTmuM4Har34LI9ftwsgdotQ8t3EILA1ZwDy08gBZ20MKlxvvQwvvQwg5aD9HXk-PZm7ek7dVB0oD6NWEySgVNmcqYCDMuhS9ZkGlgu0pOMqpMk6eAJlESwInieTqgOgwz2CSiiGepCoJHaFyUhXqMMJO-9GjCWKSTMA250AHTkmU6koHSNDxEzL3NOG0L2Zt-KnnsIhZXsdNCbLQQWy0cotfduI0t5XLtCOGUFbeE1BLNGDB2zdgn_zD2KbrVfxLP0Liuvqvn6Ga6q5fb6kULx5_xF7y2
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine-learning+methods+for+estimating+compressive+strength+of+high-performance+alkali-activated+concrete&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Shafighfard%2C+Torkan&rft.au=Kazemi%2C+Farzin&rft.au=Asgarkhani%2C+Neda&rft.au=Yoo%2C+Doo-Yeol&rft.date=2024-10-01&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.volume=136&rft_id=info:doi/10.1016%2Fj.engappai.2024.109053&rft.externalDocID=S0952197624012119
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon