Stochastic model predictive control for economic/environmental operation management of microgrids: An experimental case study
•A multi-objective stochastic optimization model for microgrids is developed.•The optimization model includes both thermal and electrical energy demand.•A stochastic MPC controller for microgrids minimizing the imbalances is designed.•Uncertainty due to demand and supply is incorporated in the contr...
Saved in:
| Published in: | Journal of process control Vol. 43; pp. 24 - 37 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.07.2016
|
| Subjects: | |
| ISSN: | 0959-1524, 1873-2771 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •A multi-objective stochastic optimization model for microgrids is developed.•The optimization model includes both thermal and electrical energy demand.•A stochastic MPC controller for microgrids minimizing the imbalances is designed.•Uncertainty due to demand and supply is incorporated in the controller.•The proposed method is applied to an experimental microgrid located in Greece.
Microgrids are subsystems of the distribution grid which comprises generation capacities, storage devices and flexible loads, operating as a single controllable system either connected or isolated from the utility grid. In this work, microgrid management system is developed in a stochastic framework. It is seen as a constraint-based system that employs forecasts and stochastic techniques to manage microgrid operations. Uncertainties due to fluctuating demand and generation from renewable energy sources are taken into account and a two-stage stochastic programming approach is applied to efficiently optimize microgrid operations while satisfying a time-varying request and operation constraints. At the first stage, before the realizations of the random variables are known, a decision on the microgrid operations has to be made. At the second stage, after random variables outcomes become known, correction actions must be taken, which have a cost. The proposed approach aims at minimizing the expected cost of correction actions. Mathematically, the stochastic optimization problem is stated as a mixed-integer linear programming problem, which is solved in an efficient way by using commercial solvers. The stochastic problem is incorporated in a model predictive control scheme to further compensate the uncertainty through the feedback mechanism. A case study of a microgrid is employed to assess the performance of the on-line optimization-based control strategy and the simulation results are discussed. The method is applied to an experimental microgrid: experimental results show the feasibility and the effectiveness of the proposed approach. |
|---|---|
| AbstractList | •A multi-objective stochastic optimization model for microgrids is developed.•The optimization model includes both thermal and electrical energy demand.•A stochastic MPC controller for microgrids minimizing the imbalances is designed.•Uncertainty due to demand and supply is incorporated in the controller.•The proposed method is applied to an experimental microgrid located in Greece.
Microgrids are subsystems of the distribution grid which comprises generation capacities, storage devices and flexible loads, operating as a single controllable system either connected or isolated from the utility grid. In this work, microgrid management system is developed in a stochastic framework. It is seen as a constraint-based system that employs forecasts and stochastic techniques to manage microgrid operations. Uncertainties due to fluctuating demand and generation from renewable energy sources are taken into account and a two-stage stochastic programming approach is applied to efficiently optimize microgrid operations while satisfying a time-varying request and operation constraints. At the first stage, before the realizations of the random variables are known, a decision on the microgrid operations has to be made. At the second stage, after random variables outcomes become known, correction actions must be taken, which have a cost. The proposed approach aims at minimizing the expected cost of correction actions. Mathematically, the stochastic optimization problem is stated as a mixed-integer linear programming problem, which is solved in an efficient way by using commercial solvers. The stochastic problem is incorporated in a model predictive control scheme to further compensate the uncertainty through the feedback mechanism. A case study of a microgrid is employed to assess the performance of the on-line optimization-based control strategy and the simulation results are discussed. The method is applied to an experimental microgrid: experimental results show the feasibility and the effectiveness of the proposed approach. |
| Author | Glielmo, Luigi Parisio, Alessandra Rikos, Evangelos |
| Author_xml | – sequence: 1 givenname: Alessandra surname: Parisio fullname: Parisio, Alessandra email: alessandra.parisio@manchester.ac.uk organization: School of Electrical and Electronic Engineering, The University of Manchester, Manchester, United Kingdom – sequence: 2 givenname: Evangelos surname: Rikos fullname: Rikos, Evangelos email: vrikos@cres.gr organization: Department of PVs and DER Systems, Center for Renewable Energy Sources and Saving (CRES), Pikermi, Athens, Greece – sequence: 3 givenname: Luigi surname: Glielmo fullname: Glielmo, Luigi email: gliemo@unisannio.it organization: Department of Engineering, Università degli Studi del Sannio, Benevento, Italy |
| BookMark | eNqFkMtKQzEQhoMoWKuvIHmBc8zlXHrEhVK8geBCXYd0MqemnCYliUUXvruprRs3XQ0zzPcz852QQ-cdEnLOWckZby4W5WIVPHiXSpH7klUlY5MDMuKTVhaibfkhGbGu7gpei-qYnMS4YIzJVjQj8v2SPLzrmCzQpTc40FVAYyHZNdJNZvAD7X2gmBu_tHCBbm2Dd0t0SQ_UrzDoZL2jS-30HDdj6nuaN4OfB2viJb1xFD_znt0xoCPSmD7M1yk56vUQ8WxXx-Tt7vZ1-lA8Pd8_Tm-eCpBcpKLumJZty0SHYEwnZdf0fDbhjaibyhgJNesn3ICsegact0K2GjuQUgBAw2dyTJptbj4qxoC9WuVrdPhSnKmNRLVQfxLVRqJilcoSM3j1DwSbfv9NQdthP369xTE_t7YYVASLDrLhgJCU8XZfxA8o75kA |
| CitedBy_id | crossref_primary_10_1016_j_ijepes_2020_105886 crossref_primary_10_1109_TSG_2018_2859821 crossref_primary_10_1109_TSG_2022_3211546 crossref_primary_10_3390_su12218969 crossref_primary_10_1016_j_conengprac_2025_106249 crossref_primary_10_1016_j_seta_2022_102886 crossref_primary_10_1109_TASE_2022_3148856 crossref_primary_10_3390_app10144833 crossref_primary_10_1109_TCST_2020_3038495 crossref_primary_10_1016_j_epsr_2019_106133 crossref_primary_10_1080_00207179_2022_2112622 crossref_primary_10_1016_j_apenergy_2019_113689 crossref_primary_10_1016_j_renene_2019_07_081 crossref_primary_10_3390_en12112098 crossref_primary_10_1088_1757_899X_428_1_012035 crossref_primary_10_3390_en17081963 crossref_primary_10_1016_j_ijepes_2018_06_016 crossref_primary_10_1016_j_jobe_2024_111377 crossref_primary_10_1016_j_apenergy_2020_114963 crossref_primary_10_1109_TASE_2019_2923986 crossref_primary_10_1016_j_ifacol_2017_08_1633 crossref_primary_10_1016_j_ifacol_2020_12_1192 crossref_primary_10_1016_j_trc_2017_08_014 crossref_primary_10_1515_ijeeps_2023_0102 crossref_primary_10_1016_j_segan_2023_101205 crossref_primary_10_3390_forecast6030032 crossref_primary_10_1016_j_enbuild_2023_112774 crossref_primary_10_1016_j_apenergy_2023_120657 crossref_primary_10_1016_j_energy_2018_08_072 crossref_primary_10_1177_10775463211028075 crossref_primary_10_1109_TVT_2023_3271656 crossref_primary_10_1016_j_energy_2019_04_151 crossref_primary_10_1016_j_est_2017_12_017 crossref_primary_10_3390_en11071884 crossref_primary_10_1016_j_jprocont_2017_06_004 crossref_primary_10_1016_j_renene_2019_05_060 crossref_primary_10_3390_en16010289 crossref_primary_10_1016_j_energy_2019_04_148 crossref_primary_10_1016_j_trpro_2017_05_007 crossref_primary_10_1016_j_ejcon_2020_02_004 crossref_primary_10_1016_j_ifacol_2017_08_004 crossref_primary_10_1016_j_ijhydene_2017_01_180 crossref_primary_10_1109_TPWRS_2021_3071867 crossref_primary_10_1007_s40313_018_0403_x crossref_primary_10_1016_j_scs_2018_05_044 crossref_primary_10_1109_ACCESS_2020_3021598 crossref_primary_10_1016_j_ijepes_2021_107804 crossref_primary_10_1109_TCST_2019_2945023 crossref_primary_10_3390_en11010193 crossref_primary_10_3390_electronics9060900 crossref_primary_10_3390_app8030389 crossref_primary_10_1016_j_apenergy_2021_118092 crossref_primary_10_1016_j_ijepes_2019_105800 crossref_primary_10_1016_j_segan_2024_101373 crossref_primary_10_1016_j_apenergy_2020_115581 crossref_primary_10_1016_j_jclepro_2018_04_137 crossref_primary_10_1109_TIA_2022_3145763 crossref_primary_10_1049_iet_gtd_2018_5834 crossref_primary_10_3390_pr13092883 crossref_primary_10_1016_j_enbuild_2017_06_041 crossref_primary_10_1109_TCST_2019_2929492 crossref_primary_10_1002_ese3_2095 crossref_primary_10_1016_j_ijepes_2021_107553 crossref_primary_10_1016_j_ifacol_2022_07_508 crossref_primary_10_1049_iet_rpg_2019_0487 crossref_primary_10_3390_en13153838 crossref_primary_10_1109_TCST_2022_3174968 crossref_primary_10_1016_j_apenergy_2022_118906 crossref_primary_10_1016_j_conengprac_2019_01_009 crossref_primary_10_1109_TSG_2017_2726941 crossref_primary_10_1109_TSTE_2018_2802922 crossref_primary_10_3390_en11092227 crossref_primary_10_1016_j_apenergy_2024_122752 crossref_primary_10_3390_electronics13142748 crossref_primary_10_1016_j_apenergy_2024_123564 crossref_primary_10_1016_j_egyr_2021_11_146 crossref_primary_10_1016_j_ijepes_2019_105753 crossref_primary_10_1016_j_rser_2021_110835 crossref_primary_10_1016_j_ifacol_2020_12_2132 crossref_primary_10_1109_TASE_2024_3512882 crossref_primary_10_3390_app132111744 crossref_primary_10_1016_j_apenergy_2018_06_087 crossref_primary_10_1049_cth2_12027 crossref_primary_10_1016_j_scs_2024_105759 crossref_primary_10_1049_iet_gtd_2017_2061 |
| Cites_doi | 10.1016/j.jprocont.2011.05.010 10.1016/j.apenergy.2014.04.024 10.1016/j.apenergy.2011.12.099 10.1109/MPER.2001.4311391 10.1007/s00158-003-0368-6 10.1016/j.ijepes.2011.09.006 10.1016/j.arcontrol.2010.02.002 10.1109/TCST.2013.2295737 10.1016/j.epsr.2014.02.021 10.1016/j.epsr.2011.09.024 10.1016/j.apenergy.2014.04.056 10.1016/j.tej.2012.09.010 10.1109/TIE.2012.2188873 10.1016/j.enconman.2013.06.051 10.1109/TPWRS.2006.876672 10.1016/j.rser.2011.07.033 10.1109/TPWRS.2007.901677 10.1016/S0005-1098(98)00178-2 10.1109/TSG.2012.2191580 10.1109/TPWRS.2013.2290006 10.1109/JPROC.2011.2109671 10.1016/j.ijepes.2014.07.064 10.1016/j.enconman.2014.07.068 10.1109/TCST.2010.2041930 10.1109/TSTE.2013.2255135 10.1109/TPWRS.2010.2070848 10.1109/TSG.2012.2197425 10.1016/j.ijepes.2014.03.017 10.1016/j.automatica.2009.09.032 10.1016/j.ijepes.2013.08.004 10.1109/TSG.2012.2231440 10.1016/j.ijepes.2013.11.015 10.1016/j.renene.2013.03.026 10.1016/j.ijepes.2013.09.006 10.1023/A:1021805924152 10.1109/TPWRS.2003.818693 10.1016/j.apenergy.2012.04.017 10.1109/TPWRS.2008.919246 10.1016/j.epsr.2014.08.020 10.1016/j.epsr.2013.05.005 10.1016/j.apenergy.2013.10.027 10.1016/j.camwa.2012.01.028 10.1109/TIE.2011.2116756 10.1016/j.ijepes.2014.01.018 10.1016/j.energy.2014.01.099 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Ltd |
| Copyright_xml | – notice: 2016 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.jprocont.2016.04.008 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1873-2771 |
| EndPage | 37 |
| ExternalDocumentID | 10_1016_j_jprocont_2016_04_008 S0959152416300324 |
| GrantInformation_xml | – fundername: Distributed Energy Resources Research Infrastructures – fundername: e-GOTHAM |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLY HVGLF HZ~ IHE J1W JJJVA KOM LX7 LY7 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCE SDF SDG SDP SES SET SEW SPC SPCBC SSG SST SSZ T5K UNMZH WUQ XFK ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c312t-590a377029ecdd93396f1b8162564dd3c50f81dc34f0c117237ae9c332ccc61b3 |
| ISICitedReferencesCount | 115 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000378191200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0959-1524 |
| IngestDate | Tue Nov 18 22:48:40 EST 2025 Sat Nov 29 05:09:53 EST 2025 Fri Feb 23 02:16:53 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Stochastic model predictive control Two stage stochastic programming Mixed integer linear programming Optimization Microgrids |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c312t-590a377029ecdd93396f1b8162564dd3c50f81dc34f0c117237ae9c332ccc61b3 |
| PageCount | 14 |
| ParticipantIDs | crossref_primary_10_1016_j_jprocont_2016_04_008 crossref_citationtrail_10_1016_j_jprocont_2016_04_008 elsevier_sciencedirect_doi_10_1016_j_jprocont_2016_04_008 |
| PublicationCentury | 2000 |
| PublicationDate | July 2016 2016-07-00 |
| PublicationDateYYYYMMDD | 2016-07-01 |
| PublicationDate_xml | – month: 07 year: 2016 text: July 2016 |
| PublicationDecade | 2010 |
| PublicationTitle | Journal of process control |
| PublicationYear | 2016 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Zakariazadeh, Jadid, Siano (bib0145) 2014; 111 Xu, Xie, Singh (bib0220) 2011 Heitsch, Römisch (bib0360) 2003; 24 Shayeghi, Sobhani (bib0195) 2014; 87 E.S. Programme (bib0370) 2002, March Bemporad, Morari (bib0290) 1999; 35 Mirkhani, Saboohi (bib0110) 2012; 93 Maciejowski (bib0260) 2002 Parisio, Glielmo (bib0305) 2014; 115 Otomega, Marinakis, Glavic, Cutsem (bib0200) 2007; 22 O’Neill, Dautel, Krall (bib0035) 2011, November Yue, Yafeng, Junjun, Chongli (bib0340) 2007 Camacho, Ramirez, Limon, de la Peña, Alamo (bib0395) 2010; 34 (bib0315) 2008, December Carrión, Arroyo (bib0320) 2006; 21 Sechilariu, Wang, Locment (bib0080) 2014; 58 Zhang, Gatsis, Giannakis (bib0175) 2013; 4 Hatziargyriou, Asano, Iravani, Marnay (bib0010) 2007 Bemporad (bib0325) 2007 Su, Wang, Roh (bib0180) 2013 Sharma, Sharma, Irwin, Shenoy (bib0335) 2011 Marzband, Ghadimi, Sumper, Dominguez-Garcia (bib0085) 2014; 128 . Ustun, Ozansoy, Zayegh (bib0020) 2011; 15 Kuznetsova, Li, Ruiz, Zio (bib0095) 2014; 129 Khodaei (bib0100) 2014; 29 Takeuchi, Hayashi, Nozaki, Shimakage (bib0070) 2012; 3 Osuna, Freund, Girosi (bib0345) 1997, March Chen, Gooi (bib0060) 2011; 58 Palma-Behnke, Benavides, Lanas, Severino, Reyes, Llanos, Saez (bib0230) 2013; 4 Cardoso, Stadler, Siddiqui, DeForest, Barbosa-Póvoa, Ferrão (bib0165) 2013; 103 Hooshmand, Poursaeidi, Mohammadpour, Malki, Grigoriads (bib0250) 2012 M. Kaut, S.W. Wallace, Evaluation of scenario-generation methods for stochastic programming. Su, Wang (bib0045) 2012 Kuznetsova, Ruiz, Li, Zio (bib0190) 2015; 64 Parisio, Rikos, Glielmo (bib0300) 2014; 22 Prodan, Zio (bib0225) 2014; 61 Sioshansi, O’Neill, Oren (bib0040) 2008; 23 Wang, Member, Chen, Wang, Member, Begovic, Chen (bib0135) 2014 ILOG (bib0375) 2010 Bemporad, de la Peña (bib0390) 2009; 45 Kennedy, Marden (bib0125) 2009 Mohamed, Koivo (bib0050) 2012; 42 Richard, How (bib0265) 2005 Floudas (bib0285) 1995 Hoffman, Kintner-Meyer, Sadovsky, DeSteese (bib0030) 2010, September Salani, Giusti, Caro, Rizzoli, Gambardella (bib0065) 2011 Qi, Liu, Chen, Christofides (bib0215) 2011; 19 Chaouachi, Kamel, Andoulsi, Nagasaka (bib0055) 2013; 60 Parisio, Glielmo (bib0295) 2013 Meibom, Barth, Hasche, Brand, Weber, O’Malley (bib0205) 2011; 26 Hooshmand, Malki, Mohammadpour (bib0210) 2012 Marler, Arora (bib0275) 2004; 26 Römisch, Vigerske (bib0350) 2010 Nezhad, Javadi, Rahimi (bib0140) 2014; 55 Mohammadi, Soleymani, Mozafari (bib0150) 2014; 54 Ji, Niu, Huang (bib0160) 2014; 67 Ilic, Prica, Rabiei, Goellner, Wilson, Shih, Egidi (bib0025) 2011, June Nemhauser, Wolsey (bib0280) 1988 Zucchini, MacDonald (bib0355) 2009 Shapiro, Dentcheva, Ruszczyński (bib0270) 2009 Bhattacharya, Zhong (bib0365) 2001; 21 Elaiw, Xia, Shehata (bib0240) 2012; 84 Hemmati, Amjady, Ehsan (bib0155) 2014; 56 Hytowitz, Hedman (bib0185) 2015; 119 Lasseter, Piagi (bib0005) 2004 Patrinos, Trimboli, Bemporad (bib0245) 2011 Bidram, Davoudi (bib0255) 2012; 3 Pelckmans, Suykens, VanGestel, DeBrabanter, Lukas, Hamers, DeMoor, Vandewalle (bib0380) 1998 Wu, Gu, Wang, Yuan, Liu (bib0310) 2011 Guo, Liu, Cai, Hong, Wang (bib0090) 2013; 74 Anderson, Boulanger, Powell, Scott (bib0115) 2011; 99 Niknam, Azizipanah-Abarghooee, Narimani (bib0130) 2012; 99 Stluka, Godbole, Samad (bib0075) 2011 Shengrong, Yu, Liu (bib0120) 2011 bib0385 Abido (bib0330) 2003; 18 Baziar, Kavousi-Fard (bib0170) 2013; 59 (bib0015) 2008 Qi, Liu, Christofides (bib0235) 2011; 21 Su (10.1016/j.jprocont.2016.04.008_bib0180) 2013 Mohammadi (10.1016/j.jprocont.2016.04.008_bib0150) 2014; 54 Stluka (10.1016/j.jprocont.2016.04.008_bib0075) 2011 Camacho (10.1016/j.jprocont.2016.04.008_bib0395) 2010; 34 Römisch (10.1016/j.jprocont.2016.04.008_bib0350) 2010 Floudas (10.1016/j.jprocont.2016.04.008_bib0285) 1995 Kennedy (10.1016/j.jprocont.2016.04.008_bib0125) 2009 Zakariazadeh (10.1016/j.jprocont.2016.04.008_bib0145) 2014; 111 Parisio (10.1016/j.jprocont.2016.04.008_bib0305) 2014; 115 Su (10.1016/j.jprocont.2016.04.008_bib0045) 2012 Heitsch (10.1016/j.jprocont.2016.04.008_bib0360) 2003; 24 Richard (10.1016/j.jprocont.2016.04.008_bib0265) 2005 Shapiro (10.1016/j.jprocont.2016.04.008_bib0270) 2009 Kuznetsova (10.1016/j.jprocont.2016.04.008_bib0095) 2014; 129 Ji (10.1016/j.jprocont.2016.04.008_bib0160) 2014; 67 Nezhad (10.1016/j.jprocont.2016.04.008_bib0140) 2014; 55 Guo (10.1016/j.jprocont.2016.04.008_bib0090) 2013; 74 Otomega (10.1016/j.jprocont.2016.04.008_bib0200) 2007; 22 Takeuchi (10.1016/j.jprocont.2016.04.008_bib0070) 2012; 3 Palma-Behnke (10.1016/j.jprocont.2016.04.008_bib0230) 2013; 4 Marler (10.1016/j.jprocont.2016.04.008_bib0275) 2004; 26 Marzband (10.1016/j.jprocont.2016.04.008_bib0085) 2014; 128 Sechilariu (10.1016/j.jprocont.2016.04.008_bib0080) 2014; 58 Mirkhani (10.1016/j.jprocont.2016.04.008_bib0110) 2012; 93 Prodan (10.1016/j.jprocont.2016.04.008_bib0225) 2014; 61 Salani (10.1016/j.jprocont.2016.04.008_bib0065) 2011 ILOG (10.1016/j.jprocont.2016.04.008_bib0375) 2010 Ilic (10.1016/j.jprocont.2016.04.008_bib0025) 2011 Shayeghi (10.1016/j.jprocont.2016.04.008_bib0195) 2014; 87 Maciejowski (10.1016/j.jprocont.2016.04.008_bib0260) 2002 Sioshansi (10.1016/j.jprocont.2016.04.008_bib0040) 2008; 23 Qi (10.1016/j.jprocont.2016.04.008_bib0235) 2011; 21 (10.1016/j.jprocont.2016.04.008_bib0315) 2008 Cardoso (10.1016/j.jprocont.2016.04.008_bib0165) 2013; 103 Anderson (10.1016/j.jprocont.2016.04.008_bib0115) 2011; 99 Xu (10.1016/j.jprocont.2016.04.008_bib0220) 2011 Hooshmand (10.1016/j.jprocont.2016.04.008_bib0250) 2012 Carrión (10.1016/j.jprocont.2016.04.008_bib0320) 2006; 21 Pelckmans (10.1016/j.jprocont.2016.04.008_bib0380) 1998 O’Neill (10.1016/j.jprocont.2016.04.008_bib0035) 2011 Hooshmand (10.1016/j.jprocont.2016.04.008_bib0210) 2012 Bemporad (10.1016/j.jprocont.2016.04.008_bib0390) 2009; 45 Parisio (10.1016/j.jprocont.2016.04.008_bib0295) 2013 Abido (10.1016/j.jprocont.2016.04.008_bib0330) 2003; 18 Hatziargyriou (10.1016/j.jprocont.2016.04.008_bib0010) 2007 Hytowitz (10.1016/j.jprocont.2016.04.008_bib0185) 2015; 119 Kuznetsova (10.1016/j.jprocont.2016.04.008_bib0190) 2015; 64 Bidram (10.1016/j.jprocont.2016.04.008_bib0255) 2012; 3 Lasseter (10.1016/j.jprocont.2016.04.008_bib0005) 2004 Khodaei (10.1016/j.jprocont.2016.04.008_bib0100) 2014; 29 Chaouachi (10.1016/j.jprocont.2016.04.008_bib0055) 2013; 60 Wang (10.1016/j.jprocont.2016.04.008_bib0135) 2014 Qi (10.1016/j.jprocont.2016.04.008_bib0215) 2011; 19 Yue (10.1016/j.jprocont.2016.04.008_bib0340) 2007 Elaiw (10.1016/j.jprocont.2016.04.008_bib0240) 2012; 84 Nemhauser (10.1016/j.jprocont.2016.04.008_bib0280) 1988 Zucchini (10.1016/j.jprocont.2016.04.008_bib0355) 2009 Bhattacharya (10.1016/j.jprocont.2016.04.008_bib0365) 2001; 21 Baziar (10.1016/j.jprocont.2016.04.008_bib0170) 2013; 59 Patrinos (10.1016/j.jprocont.2016.04.008_bib0245) 2011 Wu (10.1016/j.jprocont.2016.04.008_bib0310) 2011 Osuna (10.1016/j.jprocont.2016.04.008_bib0345) 1997 Mohamed (10.1016/j.jprocont.2016.04.008_bib0050) 2012; 42 E.S. Programme (10.1016/j.jprocont.2016.04.008_bib0370) 2002 10.1016/j.jprocont.2016.04.008_bib0105 Bemporad (10.1016/j.jprocont.2016.04.008_bib0325) 2007 Ustun (10.1016/j.jprocont.2016.04.008_bib0020) 2011; 15 Bemporad (10.1016/j.jprocont.2016.04.008_bib0290) 1999; 35 Niknam (10.1016/j.jprocont.2016.04.008_bib0130) 2012; 99 (10.1016/j.jprocont.2016.04.008_bib0015) 2008 Sharma (10.1016/j.jprocont.2016.04.008_bib0335) 2011 Zhang (10.1016/j.jprocont.2016.04.008_bib0175) 2013; 4 Chen (10.1016/j.jprocont.2016.04.008_bib0060) 2011; 58 Shengrong (10.1016/j.jprocont.2016.04.008_bib0120) 2011 Meibom (10.1016/j.jprocont.2016.04.008_bib0205) 2011; 26 Hoffman (10.1016/j.jprocont.2016.04.008_bib0030) 2010 Hemmati (10.1016/j.jprocont.2016.04.008_bib0155) 2014; 56 Parisio (10.1016/j.jprocont.2016.04.008_bib0300) 2014; 22 |
| References_xml | – start-page: 1 year: 2012 end-page: 7 ident: bib0250 article-title: Stochastic model predictive control method for microgrid management publication-title: IEEE Innovative Smart Grid Technologies (ISGT) – volume: 60 start-page: 1688 year: 2013 end-page: 1699 ident: bib0055 article-title: Multiobjective intelligent energy management for a microgrid publication-title: IEEE Trans. Ind. Electron. – volume: 42 start-page: 728 year: 2012 end-page: 735 ident: bib0050 article-title: Multiobjective optimization using mesh adaptive direct search for power dispatch problem of microgrid publication-title: Int. J. Electr. Power Energy Syst. – volume: 22 start-page: 1384 year: 2007 end-page: 1385 ident: bib0200 article-title: Model predictive control to alleviate thermal overloads publication-title: IEEE Trans. Power Syst. – volume: 35 start-page: 407 year: 1999 end-page: 427 ident: bib0290 article-title: Control of systems integrating logic, dynamics, and constraints publication-title: Automatica – start-page: 272 year: 2007 end-page: 276 ident: bib0340 article-title: Demand forecasting by using support vector machine publication-title: Third International Conference on Natural Computation, vol. 3 – start-page: 2014 year: 2013 end-page: 2019 ident: bib0295 article-title: Stochastic model predictive control for economic/environmental operation management of microgrids publication-title: 2013 European Control Conference (ECC) – year: 2012 ident: bib0210 article-title: Power flow management of microgrid networks using model predictive control publication-title: Comput. Math. Appl. – year: 2007 ident: bib0325 article-title: Model predictive control of hybrid systems publication-title: Advanced Process Control Applications for Industry Workshop – year: 2008 ident: bib0015 article-title: Strategic deployment document for Europe electricity networks of the future – volume: 103 start-page: 61 year: 2013 end-page: 69 ident: bib0165 article-title: Microgrid reliability modeling and battery scheduling using stochastic linear programming publication-title: Electr. Power Syst. Res. – volume: 87 start-page: 765 year: 2014 end-page: 777 ident: bib0195 article-title: Integrated offering strategy for profit enhancement of distributed resources and demand response in microgrids considering system uncertainties publication-title: Energy Convers. Manage. – start-page: 1 year: 2013 end-page: 8 ident: bib0180 article-title: Stochastic energy scheduling in microgrids with intermittent renewable energy resources publication-title: IEEE Trans. Smart Grid PP – volume: 128 start-page: 164 year: 2014 end-page: 174 ident: bib0085 article-title: Experimental validation of a real-time energy management system using multi-period gravitational search algorithm for microgrids in islanded mode publication-title: Appl. Energy – volume: 3 start-page: 1963 year: 2012 end-page: 1976 ident: bib0255 article-title: Hierarchical structure of microgrids control system publication-title: IEEE Trans. Smart Grid – volume: 24 start-page: 187 year: 2003 end-page: 206 ident: bib0360 article-title: Scenario reduction algorithms in stochastic programming publication-title: J. Comput. Optim. Appl. – year: 2010 ident: bib0375 article-title: CPLEX 12.0 Users Manual – year: 1988 ident: bib0280 article-title: Integer and Combinatorial Optimization – volume: 84 start-page: 31 year: 2012 end-page: 44 ident: bib0240 article-title: Application of model predictive control to optimal dynamic dispatch of generation with emission limitations publication-title: Electr. Power Syst. Res. – volume: 119 start-page: 111 year: 2015 end-page: 118 ident: bib0185 article-title: Managing solar uncertainty in microgrid systems with stochastic unit commitment publication-title: Electr. Power Syst. Res. – start-page: 1 year: 2011 end-page: 7 ident: bib0220 article-title: Optimal scheduling and operation of load aggregators with electric energy storage facing price and demand uncertainties publication-title: North American Power Symposium (NAPS) – volume: 55 start-page: 195 year: 2014 end-page: 204 ident: bib0140 article-title: Applying augmented publication-title: Int. J. Electr. Power Energy Syst. – volume: 64 start-page: 815 year: 2015 end-page: 832 ident: bib0190 article-title: Analysis of robust optimization for decentralized microgrid energy management under uncertainty publication-title: Int. J. Electr. Power Energy Syst. – year: 2010, September ident: bib0030 article-title: Analysis tools for sizing and placement of energy storage for grid applications – a literature review, Tech. rep., – volume: 18 start-page: 1529 year: 2003 end-page: 1537 ident: bib0330 article-title: Environmental/economic power dispatch using multiobjective evolutionary algorithms publication-title: IEEE Trans. Power Syst. – volume: 56 start-page: 349 year: 2014 end-page: 360 ident: bib0155 article-title: System modeling and optimization for islanded micro-grid using multi-cross learning-based chaotic differential evolution algorithm publication-title: Int. J. Electr. Power Energy Syst. – year: 2009 ident: bib0355 article-title: Hidden Markov Models for Time Series – volume: 45 start-page: 2823 year: 2009 end-page: 2830 ident: bib0390 article-title: Multi-objective model predictive control publication-title: Automatica – volume: 111 start-page: 156 year: 2014 end-page: 168 ident: bib0145 article-title: Stochastic multi-objective operational planning of smart distribution systems considering demand response programs publication-title: Electr. Power Syst. Res. – start-page: 4285 year: 2004 end-page: 4290 ident: bib0005 article-title: Microgrid: a conceptual solution publication-title: IEEE Annual Power Electron Specialists Conference – volume: 29 start-page: 1383 year: 2014 end-page: 1392 ident: bib0100 article-title: Microgrid optimal scheduling with multi-period islanding constraints publication-title: IEEE Trans. Power Syst. – year: 2011 ident: bib0335 article-title: Predicting solar generation from weather forecasts using machine learning publication-title: Proceedings of the Second IEEE International Conference on Smart Grid Communications (SmartGridComm) – volume: 59 start-page: 158 year: 2013 end-page: 166 ident: bib0170 article-title: Considering uncertainty in the optimal energy management of renewable micro-grids including storage devices publication-title: Renew. Energy – volume: 22 start-page: 1813 year: 2014 end-page: 1827 ident: bib0300 article-title: A model predictive control approach to microgrid operation optimization publication-title: IEEE Trans. Control Syst. Technol. – year: 1995 ident: bib0285 article-title: Nonlinear and Mixed-Integer Programming – Fundamentals and Applications – volume: 19 start-page: 199 year: 2011 end-page: 207 ident: bib0215 article-title: Supervisory predictive control of standalone wind/solar energy generation systems publication-title: IEEE Trans. Control Syst. Technol. – year: 2012 ident: bib0045 article-title: Energy management systems in microgrid operations publication-title: Electr. J. – volume: 4 start-page: 996 year: 2013 end-page: 1006 ident: bib0230 article-title: A microgrid energy management system based on the rolling horizon strategy publication-title: IEEE Trans. Smart Grid – year: 2009 ident: bib0270 article-title: Lectures on Stochastic Programming: Modeling and Theory, MPS-SIAM Series on Optimization – year: 1997, March ident: bib0345 article-title: Support vector machines: training and applications, Tech. Rep. AIM-1602, CBCL-144 – volume: 26 start-page: 1367 year: 2011 end-page: 1379 ident: bib0205 article-title: Stochastic optimization model to study the operational impacts of high wind penetrations in Ireland publication-title: IEEE Trans. Power Syst. – volume: 4 start-page: 944 year: 2013 end-page: 953 ident: bib0175 article-title: Robust energy management for microgrids with high-penetration renewables publication-title: IEEE Trans. Sustain. Energy – start-page: 307 year: 2011 end-page: 312 ident: bib0120 article-title: Stochastic unit commitment in smart grid communications publication-title: Computer Communications Workshops (INFOCOM WKSHPS) – volume: 58 start-page: 140 year: 2014 end-page: 149 ident: bib0080 article-title: Supervision control for optimal energy cost management in DC microgrid: design and simulation publication-title: Int. J. Electr. Power Energy Syst. – volume: 21 start-page: 1504 year: 2011 end-page: 1516 ident: bib0235 article-title: A distributed control framework for smart grid development: energy/water system optimal operation and electric grid integration publication-title: J. Process Control – year: 2002 ident: bib0260 article-title: Predictive Control with Constraints – volume: 23 start-page: 344 year: 2008 end-page: 352 ident: bib0040 article-title: Economic consequences of alternative solution methods for centralized unit commitment in day-ahead electricity markets publication-title: IEEE Trans. Power Syst. – start-page: 2676 year: 2005 end-page: 2683 ident: bib0265 article-title: Mixed-integer programming for control publication-title: American Control Conference, vol. 4 – year: 2011 ident: bib0245 article-title: Stochastic MPC for real-time market-based optimal power dispatch publication-title: IEEE Conference on Decision and Control – start-page: 177 year: 2010 end-page: 208 ident: bib0350 article-title: Recent progress in two-stage mixed-integer stochastic programming with applications to power production planning publication-title: Handbook of Power Systems I, Energy Systems – reference: M. Kaut, S.W. Wallace, Evaluation of scenario-generation methods for stochastic programming. – year: 2011, November ident: bib0035 article-title: Recent ISO software enhancements and future software and modeling plans. Staff report, Tech. rep. – volume: 3 start-page: 968 year: 2012 end-page: 974 ident: bib0070 article-title: Optimal scheduling using metaheuristics for energy networks publication-title: IEEE Trans. Smart Grid – year: 2008, December ident: bib0315 article-title: Catalog of CHP Technologies, Tech. rep., U.S. Environmental Protection Agency Combined Heat and Power Partnership – volume: 67 start-page: 186 year: 2014 end-page: 199 ident: bib0160 article-title: An inexact two-stage stochastic robust programming for residential micro-grid management-based on random demand publication-title: Energy – volume: 34 start-page: 21 year: 2010 end-page: 31 ident: bib0395 article-title: Model predictive control techniques for hybrid systems publication-title: Annu. Rev. Control – volume: 15 start-page: 4030 year: 2011 end-page: 4041 ident: bib0020 article-title: Recent developments in microgrids and example cases around the world. A review publication-title: Renew. Sustain. Energy Rev. – volume: 74 start-page: 433 year: 2013 end-page: 445 ident: bib0090 article-title: A two-stage optimal planning and design method for combined cooling, heat and power microgrid system publication-title: Energy Convers. Manage. – volume: 61 start-page: 399 year: 2014 end-page: 409 ident: bib0225 article-title: A model predictive control framework for reliable microgrid energy management publication-title: Int. J. Electr. Power Energy Syst. – volume: 58 year: 2011 ident: bib0060 article-title: Jump and shift method for multi-objective optimization publication-title: IEEE Trans. Ind. Electron. – start-page: 1 year: 2011 end-page: 8 ident: bib0065 article-title: Lexicographic multi-objective optimization for the unit commitment problem and economic dispatch in a microgrid publication-title: IEEE – PES International Conference on Smart Grid Technology (ISGT) – volume: 93 start-page: 668 year: 2012 end-page: 674 ident: bib0110 article-title: Stochastic modeling of the energy supply system with uncertain fuel price. A case of emerging technologies for distributed power generation publication-title: Appl. Energy – year: 2007 ident: bib0010 article-title: Microgrids publication-title: IEEE Power & Energy Magazine – reference: . – volume: 54 start-page: 525 year: 2014 end-page: 535 ident: bib0150 article-title: Scenario-based stochastic operation management of microgrid including wind, photovoltaic, micro-turbine, fuel cell and energy storage devices publication-title: Int. J. Electr. Power Energy Syst. – year: 1998 ident: bib0380 article-title: LS-SVMlab: a MATLAB/C toolbox for Least Squares Support Vector Machines – volume: 99 start-page: 1098 year: 2011 end-page: 1115 ident: bib0115 article-title: Adaptive stochastic control for the smart grid publication-title: Proc. IEEE – start-page: 1 year: 2009 end-page: 7 ident: bib0125 article-title: Reliability of islanded microgrids with stochastic generation and prioritized load publication-title: IEEE PowerTech – volume: 99 start-page: 455 year: 2012 end-page: 470 ident: bib0130 article-title: An efficient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation publication-title: Appl. Energy – volume: 129 start-page: 70 year: 2014 end-page: 88 ident: bib0095 article-title: An integrated framework of agent-based modelling and robust optimization for microgrid energy management publication-title: Appl. Energy – volume: 115 start-page: 37 year: 2014 end-page: 46 ident: bib0305 article-title: Use of model predictive control for experimental microgrid optimization publication-title: Appl. Energy – year: 2011 ident: bib0075 article-title: Energy management for buildings and microgrids publication-title: IEEE Conference on Decision and Control – volume: 21 start-page: 1371 year: 2006 end-page: 1378 ident: bib0320 article-title: A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem publication-title: IEEE Trans. Power Syst. – volume: 26 start-page: 369 year: 2004 end-page: 395 ident: bib0275 article-title: Survey of multi-objective optimization methods for engineering publication-title: Struct. Multidiscip. Optim. – volume: 21 start-page: 64 year: 2001 ident: bib0365 article-title: Reactive power as an ancillary service publication-title: IEEE Power Eng. Rev. – ident: bib0385 – year: 2011, June ident: bib0025 article-title: Technical and economic analysis of various power generation resources coupled with CAES systems, Tech. rep. – year: 2011 ident: bib0310 article-title: Economic optimal schedule of CHP microgrid system using chance constrained programming and particle swarm optimization publication-title: IEEE Power and Energy Society General Meeting – year: 2002, March ident: bib0370 article-title: Contract n XVII/4. 1031/P/99-159, EDUCOGEN The European Education Tool on Energy-Efficiency through the Use of Cogeneration, Tech. Rep. – start-page: 1 year: 2014 end-page: 9 ident: bib0135 article-title: Coordinated energy management of networked microgrids in distribution systems publication-title: IEEE Trans. Smart Grid PP – volume: 21 start-page: 1504 issue: 10 year: 2011 ident: 10.1016/j.jprocont.2016.04.008_bib0235 article-title: A distributed control framework for smart grid development: energy/water system optimal operation and electric grid integration publication-title: J. Process Control doi: 10.1016/j.jprocont.2011.05.010 – year: 1997 ident: 10.1016/j.jprocont.2016.04.008_bib0345 – year: 2010 ident: 10.1016/j.jprocont.2016.04.008_bib0030 – volume: 129 start-page: 70 year: 2014 ident: 10.1016/j.jprocont.2016.04.008_bib0095 article-title: An integrated framework of agent-based modelling and robust optimization for microgrid energy management publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.04.024 – volume: 93 start-page: 668 year: 2012 ident: 10.1016/j.jprocont.2016.04.008_bib0110 article-title: Stochastic modeling of the energy supply system with uncertain fuel price. A case of emerging technologies for distributed power generation publication-title: Appl. Energy doi: 10.1016/j.apenergy.2011.12.099 – volume: 21 start-page: 64 issue: 5 year: 2001 ident: 10.1016/j.jprocont.2016.04.008_bib0365 article-title: Reactive power as an ancillary service publication-title: IEEE Power Eng. Rev. doi: 10.1109/MPER.2001.4311391 – start-page: 1 year: 2009 ident: 10.1016/j.jprocont.2016.04.008_bib0125 article-title: Reliability of islanded microgrids with stochastic generation and prioritized load – volume: 26 start-page: 369 issue: 6 year: 2004 ident: 10.1016/j.jprocont.2016.04.008_bib0275 article-title: Survey of multi-objective optimization methods for engineering publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-003-0368-6 – volume: 42 start-page: 728 year: 2012 ident: 10.1016/j.jprocont.2016.04.008_bib0050 article-title: Multiobjective optimization using mesh adaptive direct search for power dispatch problem of microgrid publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2011.09.006 – year: 2011 ident: 10.1016/j.jprocont.2016.04.008_bib0335 article-title: Predicting solar generation from weather forecasts using machine learning – year: 2011 ident: 10.1016/j.jprocont.2016.04.008_bib0245 article-title: Stochastic MPC for real-time market-based optimal power dispatch – volume: 34 start-page: 21 issue: 1 year: 2010 ident: 10.1016/j.jprocont.2016.04.008_bib0395 article-title: Model predictive control techniques for hybrid systems publication-title: Annu. Rev. Control doi: 10.1016/j.arcontrol.2010.02.002 – volume: 22 start-page: 1813 issue: 5 year: 2014 ident: 10.1016/j.jprocont.2016.04.008_bib0300 article-title: A model predictive control approach to microgrid operation optimization publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2013.2295737 – year: 2008 ident: 10.1016/j.jprocont.2016.04.008_bib0315 – start-page: 1 issue: 99 year: 2014 ident: 10.1016/j.jprocont.2016.04.008_bib0135 article-title: Coordinated energy management of networked microgrids in distribution systems publication-title: IEEE Trans. Smart Grid PP – volume: 111 start-page: 156 year: 2014 ident: 10.1016/j.jprocont.2016.04.008_bib0145 article-title: Stochastic multi-objective operational planning of smart distribution systems considering demand response programs publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2014.02.021 – volume: 84 start-page: 31 issue: 1 year: 2012 ident: 10.1016/j.jprocont.2016.04.008_bib0240 article-title: Application of model predictive control to optimal dynamic dispatch of generation with emission limitations publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2011.09.024 – year: 2010 ident: 10.1016/j.jprocont.2016.04.008_bib0375 – volume: 128 start-page: 164 year: 2014 ident: 10.1016/j.jprocont.2016.04.008_bib0085 article-title: Experimental validation of a real-time energy management system using multi-period gravitational search algorithm for microgrids in islanded mode publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.04.056 – year: 2012 ident: 10.1016/j.jprocont.2016.04.008_bib0045 article-title: Energy management systems in microgrid operations publication-title: Electr. J. doi: 10.1016/j.tej.2012.09.010 – volume: 60 start-page: 1688 issue: 4 year: 2013 ident: 10.1016/j.jprocont.2016.04.008_bib0055 article-title: Multiobjective intelligent energy management for a microgrid publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2012.2188873 – volume: 74 start-page: 433 year: 2013 ident: 10.1016/j.jprocont.2016.04.008_bib0090 article-title: A two-stage optimal planning and design method for combined cooling, heat and power microgrid system publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2013.06.051 – year: 2002 ident: 10.1016/j.jprocont.2016.04.008_bib0370 – volume: 21 start-page: 1371 issue: 3 year: 2006 ident: 10.1016/j.jprocont.2016.04.008_bib0320 article-title: A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2006.876672 – year: 2007 ident: 10.1016/j.jprocont.2016.04.008_bib0325 article-title: Model predictive control of hybrid systems – year: 2011 ident: 10.1016/j.jprocont.2016.04.008_bib0310 article-title: Economic optimal schedule of CHP microgrid system using chance constrained programming and particle swarm optimization – volume: 15 start-page: 4030 issue: 8 year: 2011 ident: 10.1016/j.jprocont.2016.04.008_bib0020 article-title: Recent developments in microgrids and example cases around the world. A review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2011.07.033 – year: 2011 ident: 10.1016/j.jprocont.2016.04.008_bib0075 article-title: Energy management for buildings and microgrids – volume: 22 start-page: 1384 issue: 3 year: 2007 ident: 10.1016/j.jprocont.2016.04.008_bib0200 article-title: Model predictive control to alleviate thermal overloads publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2007.901677 – volume: 35 start-page: 407 issue: 3 year: 1999 ident: 10.1016/j.jprocont.2016.04.008_bib0290 article-title: Control of systems integrating logic, dynamics, and constraints publication-title: Automatica doi: 10.1016/S0005-1098(98)00178-2 – volume: 3 start-page: 968 issue: 2 year: 2012 ident: 10.1016/j.jprocont.2016.04.008_bib0070 article-title: Optimal scheduling using metaheuristics for energy networks publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2012.2191580 – volume: 29 start-page: 1383 issue: 3 year: 2014 ident: 10.1016/j.jprocont.2016.04.008_bib0100 article-title: Microgrid optimal scheduling with multi-period islanding constraints publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2013.2290006 – volume: 99 start-page: 1098 issue: 6 year: 2011 ident: 10.1016/j.jprocont.2016.04.008_bib0115 article-title: Adaptive stochastic control for the smart grid publication-title: Proc. IEEE doi: 10.1109/JPROC.2011.2109671 – start-page: 307 year: 2011 ident: 10.1016/j.jprocont.2016.04.008_bib0120 article-title: Stochastic unit commitment in smart grid communications – year: 2009 ident: 10.1016/j.jprocont.2016.04.008_bib0355 – volume: 64 start-page: 815 year: 2015 ident: 10.1016/j.jprocont.2016.04.008_bib0190 article-title: Analysis of robust optimization for decentralized microgrid energy management under uncertainty publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2014.07.064 – volume: 87 start-page: 765 year: 2014 ident: 10.1016/j.jprocont.2016.04.008_bib0195 article-title: Integrated offering strategy for profit enhancement of distributed resources and demand response in microgrids considering system uncertainties publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2014.07.068 – volume: 19 start-page: 199 issue: 1 year: 2011 ident: 10.1016/j.jprocont.2016.04.008_bib0215 article-title: Supervisory predictive control of standalone wind/solar energy generation systems publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2010.2041930 – start-page: 177 year: 2010 ident: 10.1016/j.jprocont.2016.04.008_bib0350 article-title: Recent progress in two-stage mixed-integer stochastic programming with applications to power production planning – volume: 4 start-page: 944 issue: 4 year: 2013 ident: 10.1016/j.jprocont.2016.04.008_bib0175 article-title: Robust energy management for microgrids with high-penetration renewables publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2013.2255135 – start-page: 1 year: 2012 ident: 10.1016/j.jprocont.2016.04.008_bib0250 article-title: Stochastic model predictive control method for microgrid management – volume: 26 start-page: 1367 issue: 3 year: 2011 ident: 10.1016/j.jprocont.2016.04.008_bib0205 article-title: Stochastic optimization model to study the operational impacts of high wind penetrations in Ireland publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2010.2070848 – year: 2007 ident: 10.1016/j.jprocont.2016.04.008_bib0010 article-title: Microgrids – year: 2011 ident: 10.1016/j.jprocont.2016.04.008_bib0025 – start-page: 272 year: 2007 ident: 10.1016/j.jprocont.2016.04.008_bib0340 article-title: Demand forecasting by using support vector machine – volume: 3 start-page: 1963 issue: 4 year: 2012 ident: 10.1016/j.jprocont.2016.04.008_bib0255 article-title: Hierarchical structure of microgrids control system publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2012.2197425 – volume: 61 start-page: 399 year: 2014 ident: 10.1016/j.jprocont.2016.04.008_bib0225 article-title: A model predictive control framework for reliable microgrid energy management publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2014.03.017 – volume: 45 start-page: 2823 issue: 12 year: 2009 ident: 10.1016/j.jprocont.2016.04.008_bib0390 article-title: Multi-objective model predictive control publication-title: Automatica doi: 10.1016/j.automatica.2009.09.032 – volume: 54 start-page: 525 year: 2014 ident: 10.1016/j.jprocont.2016.04.008_bib0150 article-title: Scenario-based stochastic operation management of microgrid including wind, photovoltaic, micro-turbine, fuel cell and energy storage devices publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2013.08.004 – volume: 4 start-page: 996 issue: 2 year: 2013 ident: 10.1016/j.jprocont.2016.04.008_bib0230 article-title: A microgrid energy management system based on the rolling horizon strategy publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2012.2231440 – volume: 56 start-page: 349 year: 2014 ident: 10.1016/j.jprocont.2016.04.008_bib0155 article-title: System modeling and optimization for islanded micro-grid using multi-cross learning-based chaotic differential evolution algorithm publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2013.11.015 – year: 2002 ident: 10.1016/j.jprocont.2016.04.008_bib0260 – year: 1995 ident: 10.1016/j.jprocont.2016.04.008_bib0285 – volume: 59 start-page: 158 year: 2013 ident: 10.1016/j.jprocont.2016.04.008_bib0170 article-title: Considering uncertainty in the optimal energy management of renewable micro-grids including storage devices publication-title: Renew. Energy doi: 10.1016/j.renene.2013.03.026 – start-page: 1 year: 2011 ident: 10.1016/j.jprocont.2016.04.008_bib0220 article-title: Optimal scheduling and operation of load aggregators with electric energy storage facing price and demand uncertainties – volume: 55 start-page: 195 year: 2014 ident: 10.1016/j.jprocont.2016.04.008_bib0140 article-title: Applying augmented ɛ-constraint approach and lexicographic optimization to solve multi-objective hydrothermal generation scheduling considering the impacts of pumped-storage units publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2013.09.006 – volume: 24 start-page: 187 issue: 2–3 year: 2003 ident: 10.1016/j.jprocont.2016.04.008_bib0360 article-title: Scenario reduction algorithms in stochastic programming publication-title: J. Comput. Optim. Appl. doi: 10.1023/A:1021805924152 – volume: 18 start-page: 1529 issue: 4 year: 2003 ident: 10.1016/j.jprocont.2016.04.008_bib0330 article-title: Environmental/economic power dispatch using multiobjective evolutionary algorithms publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2003.818693 – start-page: 1 year: 2011 ident: 10.1016/j.jprocont.2016.04.008_bib0065 article-title: Lexicographic multi-objective optimization for the unit commitment problem and economic dispatch in a microgrid – start-page: 1 issue: 99 year: 2013 ident: 10.1016/j.jprocont.2016.04.008_bib0180 article-title: Stochastic energy scheduling in microgrids with intermittent renewable energy resources publication-title: IEEE Trans. Smart Grid PP – volume: 99 start-page: 455 year: 2012 ident: 10.1016/j.jprocont.2016.04.008_bib0130 article-title: An efficient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.04.017 – year: 1998 ident: 10.1016/j.jprocont.2016.04.008_bib0380 – volume: 23 start-page: 344 issue: 2 year: 2008 ident: 10.1016/j.jprocont.2016.04.008_bib0040 article-title: Economic consequences of alternative solution methods for centralized unit commitment in day-ahead electricity markets publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2008.919246 – volume: 119 start-page: 111 year: 2015 ident: 10.1016/j.jprocont.2016.04.008_bib0185 article-title: Managing solar uncertainty in microgrid systems with stochastic unit commitment publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2014.08.020 – year: 2009 ident: 10.1016/j.jprocont.2016.04.008_bib0270 – volume: 103 start-page: 61 year: 2013 ident: 10.1016/j.jprocont.2016.04.008_bib0165 article-title: Microgrid reliability modeling and battery scheduling using stochastic linear programming publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2013.05.005 – volume: 115 start-page: 37 year: 2014 ident: 10.1016/j.jprocont.2016.04.008_bib0305 article-title: Use of model predictive control for experimental microgrid optimization publication-title: Appl. Energy doi: 10.1016/j.apenergy.2013.10.027 – year: 2008 ident: 10.1016/j.jprocont.2016.04.008_bib0015 – ident: 10.1016/j.jprocont.2016.04.008_bib0105 – start-page: 2676 year: 2005 ident: 10.1016/j.jprocont.2016.04.008_bib0265 article-title: Mixed-integer programming for control – start-page: 2014 year: 2013 ident: 10.1016/j.jprocont.2016.04.008_bib0295 article-title: Stochastic model predictive control for economic/environmental operation management of microgrids – start-page: 4285 year: 2004 ident: 10.1016/j.jprocont.2016.04.008_bib0005 article-title: Microgrid: a conceptual solution – year: 2012 ident: 10.1016/j.jprocont.2016.04.008_bib0210 article-title: Power flow management of microgrid networks using model predictive control publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2012.01.028 – year: 1988 ident: 10.1016/j.jprocont.2016.04.008_bib0280 – volume: 58 issue: 10 year: 2011 ident: 10.1016/j.jprocont.2016.04.008_bib0060 article-title: Jump and shift method for multi-objective optimization publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2011.2116756 – volume: 58 start-page: 140 year: 2014 ident: 10.1016/j.jprocont.2016.04.008_bib0080 article-title: Supervision control for optimal energy cost management in DC microgrid: design and simulation publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2014.01.018 – volume: 67 start-page: 186 year: 2014 ident: 10.1016/j.jprocont.2016.04.008_bib0160 article-title: An inexact two-stage stochastic robust programming for residential micro-grid management-based on random demand publication-title: Energy doi: 10.1016/j.energy.2014.01.099 – year: 2011 ident: 10.1016/j.jprocont.2016.04.008_bib0035 |
| SSID | ssj0003726 |
| Score | 2.5199366 |
| Snippet | •A multi-objective stochastic optimization model for microgrids is developed.•The optimization model includes both thermal and electrical energy demand.•A... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 24 |
| SubjectTerms | Microgrids Mixed integer linear programming Optimization Stochastic model predictive control Two stage stochastic programming |
| Title | Stochastic model predictive control for economic/environmental operation management of microgrids: An experimental case study |
| URI | https://dx.doi.org/10.1016/j.jprocont.2016.04.008 |
| Volume | 43 |
| WOSCitedRecordID | wos000378191200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-2771 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003726 issn: 0959-1524 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9MwGLZKxwEODAaIwUA-cA1L7CSOuVVoGyA0ITak3qLEcbqULq3SbtqF38Pf5PVnMm3SQIhLVFly6_R54vfxm_cDobcsgWcGhGhQwVk5iEVZBpwKHsQkqlVh5LSMSt1sgh0fZ9Mp_zoa_XK5MJcL1rbZ1RVf_VeoYQzAVqmzfwG3_1IYgM8AOlwBdrj-EfAnm6U4K1T5ZdPmRpUBqBq9rfnAdF3n26Yk6-X7bDelTVfS0uLcx8bo1_Aqdm_WNdXaehOvdQcQYA4HxWpv6t2VSUlwa-jfXXUqvd0m26zXRVt13lR8a36YMEAl-GdysfQngCPQzotzPe3LRTNrht6LKPWRrtal5tJq-hgm55sEYWE8DdLszBmjAWGmX4vbumM63HvjgRU3lWRu2Afjqpi_m6t7httVsX2prnUbZr1F9HGKJ2olaiGRqkwG2vMe2iIMhsZoa_LpYPrZG33KdGc_v_JBMvrtv3a7Dhpom9PH6JEFCU8MmZ6gkWx30LZr-IHt_r-DHg6qVz5FP3umYc003DMNW5QxMA07pu1f4xn2PMM9z_Cyxj3P3uNJi4csw4plWLPsGfp-eHD64WNgu3kEgkZkEyQ8LChjIeFSVBWnlKd1VGYRHMDTuKqoSMIaDk-CxnUoItDVlBWSC0qJECKNSvocjdtlK18gTJjMRMxZKWsKgrQoaCUTJiRoc1kQUuyixP23ubCl7lXHlUXuYhrnucMkV5jkYZwDJrto389bmWIvd87gDrrcSlYjRXNg3B1zX_7D3FfoQf807aHxpruQr9F9cblp1t0bS87fNuLILg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+model+predictive+control+for+economic%2Fenvironmental+operation+management+of+microgrids%3A+An+experimental+case+study&rft.jtitle=Journal+of+process+control&rft.au=Parisio%2C+Alessandra&rft.au=Rikos%2C+Evangelos&rft.au=Glielmo%2C+Luigi&rft.date=2016-07-01&rft.pub=Elsevier+Ltd&rft.issn=0959-1524&rft.eissn=1873-2771&rft.volume=43&rft.spage=24&rft.epage=37&rft_id=info:doi/10.1016%2Fj.jprocont.2016.04.008&rft.externalDocID=S0959152416300324 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-1524&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-1524&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-1524&client=summon |