Stochastic model predictive control for economic/environmental operation management of microgrids: An experimental case study

•A multi-objective stochastic optimization model for microgrids is developed.•The optimization model includes both thermal and electrical energy demand.•A stochastic MPC controller for microgrids minimizing the imbalances is designed.•Uncertainty due to demand and supply is incorporated in the contr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of process control Vol. 43; pp. 24 - 37
Main Authors: Parisio, Alessandra, Rikos, Evangelos, Glielmo, Luigi
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.07.2016
Subjects:
ISSN:0959-1524, 1873-2771
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A multi-objective stochastic optimization model for microgrids is developed.•The optimization model includes both thermal and electrical energy demand.•A stochastic MPC controller for microgrids minimizing the imbalances is designed.•Uncertainty due to demand and supply is incorporated in the controller.•The proposed method is applied to an experimental microgrid located in Greece. Microgrids are subsystems of the distribution grid which comprises generation capacities, storage devices and flexible loads, operating as a single controllable system either connected or isolated from the utility grid. In this work, microgrid management system is developed in a stochastic framework. It is seen as a constraint-based system that employs forecasts and stochastic techniques to manage microgrid operations. Uncertainties due to fluctuating demand and generation from renewable energy sources are taken into account and a two-stage stochastic programming approach is applied to efficiently optimize microgrid operations while satisfying a time-varying request and operation constraints. At the first stage, before the realizations of the random variables are known, a decision on the microgrid operations has to be made. At the second stage, after random variables outcomes become known, correction actions must be taken, which have a cost. The proposed approach aims at minimizing the expected cost of correction actions. Mathematically, the stochastic optimization problem is stated as a mixed-integer linear programming problem, which is solved in an efficient way by using commercial solvers. The stochastic problem is incorporated in a model predictive control scheme to further compensate the uncertainty through the feedback mechanism. A case study of a microgrid is employed to assess the performance of the on-line optimization-based control strategy and the simulation results are discussed. The method is applied to an experimental microgrid: experimental results show the feasibility and the effectiveness of the proposed approach.
AbstractList •A multi-objective stochastic optimization model for microgrids is developed.•The optimization model includes both thermal and electrical energy demand.•A stochastic MPC controller for microgrids minimizing the imbalances is designed.•Uncertainty due to demand and supply is incorporated in the controller.•The proposed method is applied to an experimental microgrid located in Greece. Microgrids are subsystems of the distribution grid which comprises generation capacities, storage devices and flexible loads, operating as a single controllable system either connected or isolated from the utility grid. In this work, microgrid management system is developed in a stochastic framework. It is seen as a constraint-based system that employs forecasts and stochastic techniques to manage microgrid operations. Uncertainties due to fluctuating demand and generation from renewable energy sources are taken into account and a two-stage stochastic programming approach is applied to efficiently optimize microgrid operations while satisfying a time-varying request and operation constraints. At the first stage, before the realizations of the random variables are known, a decision on the microgrid operations has to be made. At the second stage, after random variables outcomes become known, correction actions must be taken, which have a cost. The proposed approach aims at minimizing the expected cost of correction actions. Mathematically, the stochastic optimization problem is stated as a mixed-integer linear programming problem, which is solved in an efficient way by using commercial solvers. The stochastic problem is incorporated in a model predictive control scheme to further compensate the uncertainty through the feedback mechanism. A case study of a microgrid is employed to assess the performance of the on-line optimization-based control strategy and the simulation results are discussed. The method is applied to an experimental microgrid: experimental results show the feasibility and the effectiveness of the proposed approach.
Author Glielmo, Luigi
Parisio, Alessandra
Rikos, Evangelos
Author_xml – sequence: 1
  givenname: Alessandra
  surname: Parisio
  fullname: Parisio, Alessandra
  email: alessandra.parisio@manchester.ac.uk
  organization: School of Electrical and Electronic Engineering, The University of Manchester, Manchester, United Kingdom
– sequence: 2
  givenname: Evangelos
  surname: Rikos
  fullname: Rikos, Evangelos
  email: vrikos@cres.gr
  organization: Department of PVs and DER Systems, Center for Renewable Energy Sources and Saving (CRES), Pikermi, Athens, Greece
– sequence: 3
  givenname: Luigi
  surname: Glielmo
  fullname: Glielmo, Luigi
  email: gliemo@unisannio.it
  organization: Department of Engineering, Università degli Studi del Sannio, Benevento, Italy
BookMark eNqFkMtKQzEQhoMoWKuvIHmBc8zlXHrEhVK8geBCXYd0MqemnCYliUUXvruprRs3XQ0zzPcz852QQ-cdEnLOWckZby4W5WIVPHiXSpH7klUlY5MDMuKTVhaibfkhGbGu7gpei-qYnMS4YIzJVjQj8v2SPLzrmCzQpTc40FVAYyHZNdJNZvAD7X2gmBu_tHCBbm2Dd0t0SQ_UrzDoZL2jS-30HDdj6nuaN4OfB2viJb1xFD_znt0xoCPSmD7M1yk56vUQ8WxXx-Tt7vZ1-lA8Pd8_Tm-eCpBcpKLumJZty0SHYEwnZdf0fDbhjaibyhgJNesn3ICsegact0K2GjuQUgBAw2dyTJptbj4qxoC9WuVrdPhSnKmNRLVQfxLVRqJilcoSM3j1DwSbfv9NQdthP369xTE_t7YYVASLDrLhgJCU8XZfxA8o75kA
CitedBy_id crossref_primary_10_1016_j_ijepes_2020_105886
crossref_primary_10_1109_TSG_2018_2859821
crossref_primary_10_1109_TSG_2022_3211546
crossref_primary_10_3390_su12218969
crossref_primary_10_1016_j_conengprac_2025_106249
crossref_primary_10_1016_j_seta_2022_102886
crossref_primary_10_1109_TASE_2022_3148856
crossref_primary_10_3390_app10144833
crossref_primary_10_1109_TCST_2020_3038495
crossref_primary_10_1016_j_epsr_2019_106133
crossref_primary_10_1080_00207179_2022_2112622
crossref_primary_10_1016_j_apenergy_2019_113689
crossref_primary_10_1016_j_renene_2019_07_081
crossref_primary_10_3390_en12112098
crossref_primary_10_1088_1757_899X_428_1_012035
crossref_primary_10_3390_en17081963
crossref_primary_10_1016_j_ijepes_2018_06_016
crossref_primary_10_1016_j_jobe_2024_111377
crossref_primary_10_1016_j_apenergy_2020_114963
crossref_primary_10_1109_TASE_2019_2923986
crossref_primary_10_1016_j_ifacol_2017_08_1633
crossref_primary_10_1016_j_ifacol_2020_12_1192
crossref_primary_10_1016_j_trc_2017_08_014
crossref_primary_10_1515_ijeeps_2023_0102
crossref_primary_10_1016_j_segan_2023_101205
crossref_primary_10_3390_forecast6030032
crossref_primary_10_1016_j_enbuild_2023_112774
crossref_primary_10_1016_j_apenergy_2023_120657
crossref_primary_10_1016_j_energy_2018_08_072
crossref_primary_10_1177_10775463211028075
crossref_primary_10_1109_TVT_2023_3271656
crossref_primary_10_1016_j_energy_2019_04_151
crossref_primary_10_1016_j_est_2017_12_017
crossref_primary_10_3390_en11071884
crossref_primary_10_1016_j_jprocont_2017_06_004
crossref_primary_10_1016_j_renene_2019_05_060
crossref_primary_10_3390_en16010289
crossref_primary_10_1016_j_energy_2019_04_148
crossref_primary_10_1016_j_trpro_2017_05_007
crossref_primary_10_1016_j_ejcon_2020_02_004
crossref_primary_10_1016_j_ifacol_2017_08_004
crossref_primary_10_1016_j_ijhydene_2017_01_180
crossref_primary_10_1109_TPWRS_2021_3071867
crossref_primary_10_1007_s40313_018_0403_x
crossref_primary_10_1016_j_scs_2018_05_044
crossref_primary_10_1109_ACCESS_2020_3021598
crossref_primary_10_1016_j_ijepes_2021_107804
crossref_primary_10_1109_TCST_2019_2945023
crossref_primary_10_3390_en11010193
crossref_primary_10_3390_electronics9060900
crossref_primary_10_3390_app8030389
crossref_primary_10_1016_j_apenergy_2021_118092
crossref_primary_10_1016_j_ijepes_2019_105800
crossref_primary_10_1016_j_segan_2024_101373
crossref_primary_10_1016_j_apenergy_2020_115581
crossref_primary_10_1016_j_jclepro_2018_04_137
crossref_primary_10_1109_TIA_2022_3145763
crossref_primary_10_1049_iet_gtd_2018_5834
crossref_primary_10_3390_pr13092883
crossref_primary_10_1016_j_enbuild_2017_06_041
crossref_primary_10_1109_TCST_2019_2929492
crossref_primary_10_1002_ese3_2095
crossref_primary_10_1016_j_ijepes_2021_107553
crossref_primary_10_1016_j_ifacol_2022_07_508
crossref_primary_10_1049_iet_rpg_2019_0487
crossref_primary_10_3390_en13153838
crossref_primary_10_1109_TCST_2022_3174968
crossref_primary_10_1016_j_apenergy_2022_118906
crossref_primary_10_1016_j_conengprac_2019_01_009
crossref_primary_10_1109_TSG_2017_2726941
crossref_primary_10_1109_TSTE_2018_2802922
crossref_primary_10_3390_en11092227
crossref_primary_10_1016_j_apenergy_2024_122752
crossref_primary_10_3390_electronics13142748
crossref_primary_10_1016_j_apenergy_2024_123564
crossref_primary_10_1016_j_egyr_2021_11_146
crossref_primary_10_1016_j_ijepes_2019_105753
crossref_primary_10_1016_j_rser_2021_110835
crossref_primary_10_1016_j_ifacol_2020_12_2132
crossref_primary_10_1109_TASE_2024_3512882
crossref_primary_10_3390_app132111744
crossref_primary_10_1016_j_apenergy_2018_06_087
crossref_primary_10_1049_cth2_12027
crossref_primary_10_1016_j_scs_2024_105759
crossref_primary_10_1049_iet_gtd_2017_2061
Cites_doi 10.1016/j.jprocont.2011.05.010
10.1016/j.apenergy.2014.04.024
10.1016/j.apenergy.2011.12.099
10.1109/MPER.2001.4311391
10.1007/s00158-003-0368-6
10.1016/j.ijepes.2011.09.006
10.1016/j.arcontrol.2010.02.002
10.1109/TCST.2013.2295737
10.1016/j.epsr.2014.02.021
10.1016/j.epsr.2011.09.024
10.1016/j.apenergy.2014.04.056
10.1016/j.tej.2012.09.010
10.1109/TIE.2012.2188873
10.1016/j.enconman.2013.06.051
10.1109/TPWRS.2006.876672
10.1016/j.rser.2011.07.033
10.1109/TPWRS.2007.901677
10.1016/S0005-1098(98)00178-2
10.1109/TSG.2012.2191580
10.1109/TPWRS.2013.2290006
10.1109/JPROC.2011.2109671
10.1016/j.ijepes.2014.07.064
10.1016/j.enconman.2014.07.068
10.1109/TCST.2010.2041930
10.1109/TSTE.2013.2255135
10.1109/TPWRS.2010.2070848
10.1109/TSG.2012.2197425
10.1016/j.ijepes.2014.03.017
10.1016/j.automatica.2009.09.032
10.1016/j.ijepes.2013.08.004
10.1109/TSG.2012.2231440
10.1016/j.ijepes.2013.11.015
10.1016/j.renene.2013.03.026
10.1016/j.ijepes.2013.09.006
10.1023/A:1021805924152
10.1109/TPWRS.2003.818693
10.1016/j.apenergy.2012.04.017
10.1109/TPWRS.2008.919246
10.1016/j.epsr.2014.08.020
10.1016/j.epsr.2013.05.005
10.1016/j.apenergy.2013.10.027
10.1016/j.camwa.2012.01.028
10.1109/TIE.2011.2116756
10.1016/j.ijepes.2014.01.018
10.1016/j.energy.2014.01.099
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.jprocont.2016.04.008
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1873-2771
EndPage 37
ExternalDocumentID 10_1016_j_jprocont_2016_04_008
S0959152416300324
GrantInformation_xml – fundername: Distributed Energy Resources Research Infrastructures
– fundername: e-GOTHAM
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LX7
LY7
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCE
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SST
SSZ
T5K
UNMZH
WUQ
XFK
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c312t-590a377029ecdd93396f1b8162564dd3c50f81dc34f0c117237ae9c332ccc61b3
ISICitedReferencesCount 115
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000378191200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0959-1524
IngestDate Tue Nov 18 22:48:40 EST 2025
Sat Nov 29 05:09:53 EST 2025
Fri Feb 23 02:16:53 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Stochastic model predictive control
Two stage stochastic programming
Mixed integer linear programming
Optimization
Microgrids
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-590a377029ecdd93396f1b8162564dd3c50f81dc34f0c117237ae9c332ccc61b3
PageCount 14
ParticipantIDs crossref_primary_10_1016_j_jprocont_2016_04_008
crossref_citationtrail_10_1016_j_jprocont_2016_04_008
elsevier_sciencedirect_doi_10_1016_j_jprocont_2016_04_008
PublicationCentury 2000
PublicationDate July 2016
2016-07-00
PublicationDateYYYYMMDD 2016-07-01
PublicationDate_xml – month: 07
  year: 2016
  text: July 2016
PublicationDecade 2010
PublicationTitle Journal of process control
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zakariazadeh, Jadid, Siano (bib0145) 2014; 111
Xu, Xie, Singh (bib0220) 2011
Heitsch, Römisch (bib0360) 2003; 24
Shayeghi, Sobhani (bib0195) 2014; 87
E.S. Programme (bib0370) 2002, March
Bemporad, Morari (bib0290) 1999; 35
Mirkhani, Saboohi (bib0110) 2012; 93
Maciejowski (bib0260) 2002
Parisio, Glielmo (bib0305) 2014; 115
Otomega, Marinakis, Glavic, Cutsem (bib0200) 2007; 22
O’Neill, Dautel, Krall (bib0035) 2011, November
Yue, Yafeng, Junjun, Chongli (bib0340) 2007
Camacho, Ramirez, Limon, de la Peña, Alamo (bib0395) 2010; 34
(bib0315) 2008, December
Carrión, Arroyo (bib0320) 2006; 21
Sechilariu, Wang, Locment (bib0080) 2014; 58
Zhang, Gatsis, Giannakis (bib0175) 2013; 4
Hatziargyriou, Asano, Iravani, Marnay (bib0010) 2007
Bemporad (bib0325) 2007
Su, Wang, Roh (bib0180) 2013
Sharma, Sharma, Irwin, Shenoy (bib0335) 2011
Marzband, Ghadimi, Sumper, Dominguez-Garcia (bib0085) 2014; 128
.
Ustun, Ozansoy, Zayegh (bib0020) 2011; 15
Kuznetsova, Li, Ruiz, Zio (bib0095) 2014; 129
Khodaei (bib0100) 2014; 29
Takeuchi, Hayashi, Nozaki, Shimakage (bib0070) 2012; 3
Osuna, Freund, Girosi (bib0345) 1997, March
Chen, Gooi (bib0060) 2011; 58
Palma-Behnke, Benavides, Lanas, Severino, Reyes, Llanos, Saez (bib0230) 2013; 4
Cardoso, Stadler, Siddiqui, DeForest, Barbosa-Póvoa, Ferrão (bib0165) 2013; 103
Hooshmand, Poursaeidi, Mohammadpour, Malki, Grigoriads (bib0250) 2012
M. Kaut, S.W. Wallace, Evaluation of scenario-generation methods for stochastic programming.
Su, Wang (bib0045) 2012
Kuznetsova, Ruiz, Li, Zio (bib0190) 2015; 64
Parisio, Rikos, Glielmo (bib0300) 2014; 22
Prodan, Zio (bib0225) 2014; 61
Sioshansi, O’Neill, Oren (bib0040) 2008; 23
Wang, Member, Chen, Wang, Member, Begovic, Chen (bib0135) 2014
ILOG (bib0375) 2010
Bemporad, de la Peña (bib0390) 2009; 45
Kennedy, Marden (bib0125) 2009
Mohamed, Koivo (bib0050) 2012; 42
Richard, How (bib0265) 2005
Floudas (bib0285) 1995
Hoffman, Kintner-Meyer, Sadovsky, DeSteese (bib0030) 2010, September
Salani, Giusti, Caro, Rizzoli, Gambardella (bib0065) 2011
Qi, Liu, Chen, Christofides (bib0215) 2011; 19
Chaouachi, Kamel, Andoulsi, Nagasaka (bib0055) 2013; 60
Parisio, Glielmo (bib0295) 2013
Meibom, Barth, Hasche, Brand, Weber, O’Malley (bib0205) 2011; 26
Hooshmand, Malki, Mohammadpour (bib0210) 2012
Marler, Arora (bib0275) 2004; 26
Römisch, Vigerske (bib0350) 2010
Nezhad, Javadi, Rahimi (bib0140) 2014; 55
Mohammadi, Soleymani, Mozafari (bib0150) 2014; 54
Ji, Niu, Huang (bib0160) 2014; 67
Ilic, Prica, Rabiei, Goellner, Wilson, Shih, Egidi (bib0025) 2011, June
Nemhauser, Wolsey (bib0280) 1988
Zucchini, MacDonald (bib0355) 2009
Shapiro, Dentcheva, Ruszczyński (bib0270) 2009
Bhattacharya, Zhong (bib0365) 2001; 21
Elaiw, Xia, Shehata (bib0240) 2012; 84
Hemmati, Amjady, Ehsan (bib0155) 2014; 56
Hytowitz, Hedman (bib0185) 2015; 119
Lasseter, Piagi (bib0005) 2004
Patrinos, Trimboli, Bemporad (bib0245) 2011
Bidram, Davoudi (bib0255) 2012; 3
Pelckmans, Suykens, VanGestel, DeBrabanter, Lukas, Hamers, DeMoor, Vandewalle (bib0380) 1998
Wu, Gu, Wang, Yuan, Liu (bib0310) 2011
Guo, Liu, Cai, Hong, Wang (bib0090) 2013; 74
Anderson, Boulanger, Powell, Scott (bib0115) 2011; 99
Niknam, Azizipanah-Abarghooee, Narimani (bib0130) 2012; 99
Stluka, Godbole, Samad (bib0075) 2011
Shengrong, Yu, Liu (bib0120) 2011
bib0385
Abido (bib0330) 2003; 18
Baziar, Kavousi-Fard (bib0170) 2013; 59
(bib0015) 2008
Qi, Liu, Christofides (bib0235) 2011; 21
Su (10.1016/j.jprocont.2016.04.008_bib0180) 2013
Mohammadi (10.1016/j.jprocont.2016.04.008_bib0150) 2014; 54
Stluka (10.1016/j.jprocont.2016.04.008_bib0075) 2011
Camacho (10.1016/j.jprocont.2016.04.008_bib0395) 2010; 34
Römisch (10.1016/j.jprocont.2016.04.008_bib0350) 2010
Floudas (10.1016/j.jprocont.2016.04.008_bib0285) 1995
Kennedy (10.1016/j.jprocont.2016.04.008_bib0125) 2009
Zakariazadeh (10.1016/j.jprocont.2016.04.008_bib0145) 2014; 111
Parisio (10.1016/j.jprocont.2016.04.008_bib0305) 2014; 115
Su (10.1016/j.jprocont.2016.04.008_bib0045) 2012
Heitsch (10.1016/j.jprocont.2016.04.008_bib0360) 2003; 24
Richard (10.1016/j.jprocont.2016.04.008_bib0265) 2005
Shapiro (10.1016/j.jprocont.2016.04.008_bib0270) 2009
Kuznetsova (10.1016/j.jprocont.2016.04.008_bib0095) 2014; 129
Ji (10.1016/j.jprocont.2016.04.008_bib0160) 2014; 67
Nezhad (10.1016/j.jprocont.2016.04.008_bib0140) 2014; 55
Guo (10.1016/j.jprocont.2016.04.008_bib0090) 2013; 74
Otomega (10.1016/j.jprocont.2016.04.008_bib0200) 2007; 22
Takeuchi (10.1016/j.jprocont.2016.04.008_bib0070) 2012; 3
Palma-Behnke (10.1016/j.jprocont.2016.04.008_bib0230) 2013; 4
Marler (10.1016/j.jprocont.2016.04.008_bib0275) 2004; 26
Marzband (10.1016/j.jprocont.2016.04.008_bib0085) 2014; 128
Sechilariu (10.1016/j.jprocont.2016.04.008_bib0080) 2014; 58
Mirkhani (10.1016/j.jprocont.2016.04.008_bib0110) 2012; 93
Prodan (10.1016/j.jprocont.2016.04.008_bib0225) 2014; 61
Salani (10.1016/j.jprocont.2016.04.008_bib0065) 2011
ILOG (10.1016/j.jprocont.2016.04.008_bib0375) 2010
Ilic (10.1016/j.jprocont.2016.04.008_bib0025) 2011
Shayeghi (10.1016/j.jprocont.2016.04.008_bib0195) 2014; 87
Maciejowski (10.1016/j.jprocont.2016.04.008_bib0260) 2002
Sioshansi (10.1016/j.jprocont.2016.04.008_bib0040) 2008; 23
Qi (10.1016/j.jprocont.2016.04.008_bib0235) 2011; 21
(10.1016/j.jprocont.2016.04.008_bib0315) 2008
Cardoso (10.1016/j.jprocont.2016.04.008_bib0165) 2013; 103
Anderson (10.1016/j.jprocont.2016.04.008_bib0115) 2011; 99
Xu (10.1016/j.jprocont.2016.04.008_bib0220) 2011
Hooshmand (10.1016/j.jprocont.2016.04.008_bib0250) 2012
Carrión (10.1016/j.jprocont.2016.04.008_bib0320) 2006; 21
Pelckmans (10.1016/j.jprocont.2016.04.008_bib0380) 1998
O’Neill (10.1016/j.jprocont.2016.04.008_bib0035) 2011
Hooshmand (10.1016/j.jprocont.2016.04.008_bib0210) 2012
Bemporad (10.1016/j.jprocont.2016.04.008_bib0390) 2009; 45
Parisio (10.1016/j.jprocont.2016.04.008_bib0295) 2013
Abido (10.1016/j.jprocont.2016.04.008_bib0330) 2003; 18
Hatziargyriou (10.1016/j.jprocont.2016.04.008_bib0010) 2007
Hytowitz (10.1016/j.jprocont.2016.04.008_bib0185) 2015; 119
Kuznetsova (10.1016/j.jprocont.2016.04.008_bib0190) 2015; 64
Bidram (10.1016/j.jprocont.2016.04.008_bib0255) 2012; 3
Lasseter (10.1016/j.jprocont.2016.04.008_bib0005) 2004
Khodaei (10.1016/j.jprocont.2016.04.008_bib0100) 2014; 29
Chaouachi (10.1016/j.jprocont.2016.04.008_bib0055) 2013; 60
Wang (10.1016/j.jprocont.2016.04.008_bib0135) 2014
Qi (10.1016/j.jprocont.2016.04.008_bib0215) 2011; 19
Yue (10.1016/j.jprocont.2016.04.008_bib0340) 2007
Elaiw (10.1016/j.jprocont.2016.04.008_bib0240) 2012; 84
Nemhauser (10.1016/j.jprocont.2016.04.008_bib0280) 1988
Zucchini (10.1016/j.jprocont.2016.04.008_bib0355) 2009
Bhattacharya (10.1016/j.jprocont.2016.04.008_bib0365) 2001; 21
Baziar (10.1016/j.jprocont.2016.04.008_bib0170) 2013; 59
Patrinos (10.1016/j.jprocont.2016.04.008_bib0245) 2011
Wu (10.1016/j.jprocont.2016.04.008_bib0310) 2011
Osuna (10.1016/j.jprocont.2016.04.008_bib0345) 1997
Mohamed (10.1016/j.jprocont.2016.04.008_bib0050) 2012; 42
E.S. Programme (10.1016/j.jprocont.2016.04.008_bib0370) 2002
10.1016/j.jprocont.2016.04.008_bib0105
Bemporad (10.1016/j.jprocont.2016.04.008_bib0325) 2007
Ustun (10.1016/j.jprocont.2016.04.008_bib0020) 2011; 15
Bemporad (10.1016/j.jprocont.2016.04.008_bib0290) 1999; 35
Niknam (10.1016/j.jprocont.2016.04.008_bib0130) 2012; 99
(10.1016/j.jprocont.2016.04.008_bib0015) 2008
Sharma (10.1016/j.jprocont.2016.04.008_bib0335) 2011
Zhang (10.1016/j.jprocont.2016.04.008_bib0175) 2013; 4
Chen (10.1016/j.jprocont.2016.04.008_bib0060) 2011; 58
Shengrong (10.1016/j.jprocont.2016.04.008_bib0120) 2011
Meibom (10.1016/j.jprocont.2016.04.008_bib0205) 2011; 26
Hoffman (10.1016/j.jprocont.2016.04.008_bib0030) 2010
Hemmati (10.1016/j.jprocont.2016.04.008_bib0155) 2014; 56
Parisio (10.1016/j.jprocont.2016.04.008_bib0300) 2014; 22
References_xml – start-page: 1
  year: 2012
  end-page: 7
  ident: bib0250
  article-title: Stochastic model predictive control method for microgrid management
  publication-title: IEEE Innovative Smart Grid Technologies (ISGT)
– volume: 60
  start-page: 1688
  year: 2013
  end-page: 1699
  ident: bib0055
  article-title: Multiobjective intelligent energy management for a microgrid
  publication-title: IEEE Trans. Ind. Electron.
– volume: 42
  start-page: 728
  year: 2012
  end-page: 735
  ident: bib0050
  article-title: Multiobjective optimization using mesh adaptive direct search for power dispatch problem of microgrid
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 22
  start-page: 1384
  year: 2007
  end-page: 1385
  ident: bib0200
  article-title: Model predictive control to alleviate thermal overloads
  publication-title: IEEE Trans. Power Syst.
– volume: 35
  start-page: 407
  year: 1999
  end-page: 427
  ident: bib0290
  article-title: Control of systems integrating logic, dynamics, and constraints
  publication-title: Automatica
– start-page: 272
  year: 2007
  end-page: 276
  ident: bib0340
  article-title: Demand forecasting by using support vector machine
  publication-title: Third International Conference on Natural Computation, vol. 3
– start-page: 2014
  year: 2013
  end-page: 2019
  ident: bib0295
  article-title: Stochastic model predictive control for economic/environmental operation management of microgrids
  publication-title: 2013 European Control Conference (ECC)
– year: 2012
  ident: bib0210
  article-title: Power flow management of microgrid networks using model predictive control
  publication-title: Comput. Math. Appl.
– year: 2007
  ident: bib0325
  article-title: Model predictive control of hybrid systems
  publication-title: Advanced Process Control Applications for Industry Workshop
– year: 2008
  ident: bib0015
  article-title: Strategic deployment document for Europe electricity networks of the future
– volume: 103
  start-page: 61
  year: 2013
  end-page: 69
  ident: bib0165
  article-title: Microgrid reliability modeling and battery scheduling using stochastic linear programming
  publication-title: Electr. Power Syst. Res.
– volume: 87
  start-page: 765
  year: 2014
  end-page: 777
  ident: bib0195
  article-title: Integrated offering strategy for profit enhancement of distributed resources and demand response in microgrids considering system uncertainties
  publication-title: Energy Convers. Manage.
– start-page: 1
  year: 2013
  end-page: 8
  ident: bib0180
  article-title: Stochastic energy scheduling in microgrids with intermittent renewable energy resources
  publication-title: IEEE Trans. Smart Grid PP
– volume: 128
  start-page: 164
  year: 2014
  end-page: 174
  ident: bib0085
  article-title: Experimental validation of a real-time energy management system using multi-period gravitational search algorithm for microgrids in islanded mode
  publication-title: Appl. Energy
– volume: 3
  start-page: 1963
  year: 2012
  end-page: 1976
  ident: bib0255
  article-title: Hierarchical structure of microgrids control system
  publication-title: IEEE Trans. Smart Grid
– volume: 24
  start-page: 187
  year: 2003
  end-page: 206
  ident: bib0360
  article-title: Scenario reduction algorithms in stochastic programming
  publication-title: J. Comput. Optim. Appl.
– year: 2010
  ident: bib0375
  article-title: CPLEX 12.0 Users Manual
– year: 1988
  ident: bib0280
  article-title: Integer and Combinatorial Optimization
– volume: 84
  start-page: 31
  year: 2012
  end-page: 44
  ident: bib0240
  article-title: Application of model predictive control to optimal dynamic dispatch of generation with emission limitations
  publication-title: Electr. Power Syst. Res.
– volume: 119
  start-page: 111
  year: 2015
  end-page: 118
  ident: bib0185
  article-title: Managing solar uncertainty in microgrid systems with stochastic unit commitment
  publication-title: Electr. Power Syst. Res.
– start-page: 1
  year: 2011
  end-page: 7
  ident: bib0220
  article-title: Optimal scheduling and operation of load aggregators with electric energy storage facing price and demand uncertainties
  publication-title: North American Power Symposium (NAPS)
– volume: 55
  start-page: 195
  year: 2014
  end-page: 204
  ident: bib0140
  article-title: Applying augmented
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 64
  start-page: 815
  year: 2015
  end-page: 832
  ident: bib0190
  article-title: Analysis of robust optimization for decentralized microgrid energy management under uncertainty
  publication-title: Int. J. Electr. Power Energy Syst.
– year: 2010, September
  ident: bib0030
  article-title: Analysis tools for sizing and placement of energy storage for grid applications – a literature review, Tech. rep.,
– volume: 18
  start-page: 1529
  year: 2003
  end-page: 1537
  ident: bib0330
  article-title: Environmental/economic power dispatch using multiobjective evolutionary algorithms
  publication-title: IEEE Trans. Power Syst.
– volume: 56
  start-page: 349
  year: 2014
  end-page: 360
  ident: bib0155
  article-title: System modeling and optimization for islanded micro-grid using multi-cross learning-based chaotic differential evolution algorithm
  publication-title: Int. J. Electr. Power Energy Syst.
– year: 2009
  ident: bib0355
  article-title: Hidden Markov Models for Time Series
– volume: 45
  start-page: 2823
  year: 2009
  end-page: 2830
  ident: bib0390
  article-title: Multi-objective model predictive control
  publication-title: Automatica
– volume: 111
  start-page: 156
  year: 2014
  end-page: 168
  ident: bib0145
  article-title: Stochastic multi-objective operational planning of smart distribution systems considering demand response programs
  publication-title: Electr. Power Syst. Res.
– start-page: 4285
  year: 2004
  end-page: 4290
  ident: bib0005
  article-title: Microgrid: a conceptual solution
  publication-title: IEEE Annual Power Electron Specialists Conference
– volume: 29
  start-page: 1383
  year: 2014
  end-page: 1392
  ident: bib0100
  article-title: Microgrid optimal scheduling with multi-period islanding constraints
  publication-title: IEEE Trans. Power Syst.
– year: 2011
  ident: bib0335
  article-title: Predicting solar generation from weather forecasts using machine learning
  publication-title: Proceedings of the Second IEEE International Conference on Smart Grid Communications (SmartGridComm)
– volume: 59
  start-page: 158
  year: 2013
  end-page: 166
  ident: bib0170
  article-title: Considering uncertainty in the optimal energy management of renewable micro-grids including storage devices
  publication-title: Renew. Energy
– volume: 22
  start-page: 1813
  year: 2014
  end-page: 1827
  ident: bib0300
  article-title: A model predictive control approach to microgrid operation optimization
  publication-title: IEEE Trans. Control Syst. Technol.
– year: 1995
  ident: bib0285
  article-title: Nonlinear and Mixed-Integer Programming – Fundamentals and Applications
– volume: 19
  start-page: 199
  year: 2011
  end-page: 207
  ident: bib0215
  article-title: Supervisory predictive control of standalone wind/solar energy generation systems
  publication-title: IEEE Trans. Control Syst. Technol.
– year: 2012
  ident: bib0045
  article-title: Energy management systems in microgrid operations
  publication-title: Electr. J.
– volume: 4
  start-page: 996
  year: 2013
  end-page: 1006
  ident: bib0230
  article-title: A microgrid energy management system based on the rolling horizon strategy
  publication-title: IEEE Trans. Smart Grid
– year: 2009
  ident: bib0270
  article-title: Lectures on Stochastic Programming: Modeling and Theory, MPS-SIAM Series on Optimization
– year: 1997, March
  ident: bib0345
  article-title: Support vector machines: training and applications, Tech. Rep. AIM-1602, CBCL-144
– volume: 26
  start-page: 1367
  year: 2011
  end-page: 1379
  ident: bib0205
  article-title: Stochastic optimization model to study the operational impacts of high wind penetrations in Ireland
  publication-title: IEEE Trans. Power Syst.
– volume: 4
  start-page: 944
  year: 2013
  end-page: 953
  ident: bib0175
  article-title: Robust energy management for microgrids with high-penetration renewables
  publication-title: IEEE Trans. Sustain. Energy
– start-page: 307
  year: 2011
  end-page: 312
  ident: bib0120
  article-title: Stochastic unit commitment in smart grid communications
  publication-title: Computer Communications Workshops (INFOCOM WKSHPS)
– volume: 58
  start-page: 140
  year: 2014
  end-page: 149
  ident: bib0080
  article-title: Supervision control for optimal energy cost management in DC microgrid: design and simulation
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 21
  start-page: 1504
  year: 2011
  end-page: 1516
  ident: bib0235
  article-title: A distributed control framework for smart grid development: energy/water system optimal operation and electric grid integration
  publication-title: J. Process Control
– year: 2002
  ident: bib0260
  article-title: Predictive Control with Constraints
– volume: 23
  start-page: 344
  year: 2008
  end-page: 352
  ident: bib0040
  article-title: Economic consequences of alternative solution methods for centralized unit commitment in day-ahead electricity markets
  publication-title: IEEE Trans. Power Syst.
– start-page: 2676
  year: 2005
  end-page: 2683
  ident: bib0265
  article-title: Mixed-integer programming for control
  publication-title: American Control Conference, vol. 4
– year: 2011
  ident: bib0245
  article-title: Stochastic MPC for real-time market-based optimal power dispatch
  publication-title: IEEE Conference on Decision and Control
– start-page: 177
  year: 2010
  end-page: 208
  ident: bib0350
  article-title: Recent progress in two-stage mixed-integer stochastic programming with applications to power production planning
  publication-title: Handbook of Power Systems I, Energy Systems
– reference: M. Kaut, S.W. Wallace, Evaluation of scenario-generation methods for stochastic programming.
– year: 2011, November
  ident: bib0035
  article-title: Recent ISO software enhancements and future software and modeling plans. Staff report, Tech. rep.
– volume: 3
  start-page: 968
  year: 2012
  end-page: 974
  ident: bib0070
  article-title: Optimal scheduling using metaheuristics for energy networks
  publication-title: IEEE Trans. Smart Grid
– year: 2008, December
  ident: bib0315
  article-title: Catalog of CHP Technologies, Tech. rep., U.S. Environmental Protection Agency Combined Heat and Power Partnership
– volume: 67
  start-page: 186
  year: 2014
  end-page: 199
  ident: bib0160
  article-title: An inexact two-stage stochastic robust programming for residential micro-grid management-based on random demand
  publication-title: Energy
– volume: 34
  start-page: 21
  year: 2010
  end-page: 31
  ident: bib0395
  article-title: Model predictive control techniques for hybrid systems
  publication-title: Annu. Rev. Control
– volume: 15
  start-page: 4030
  year: 2011
  end-page: 4041
  ident: bib0020
  article-title: Recent developments in microgrids and example cases around the world. A review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 74
  start-page: 433
  year: 2013
  end-page: 445
  ident: bib0090
  article-title: A two-stage optimal planning and design method for combined cooling, heat and power microgrid system
  publication-title: Energy Convers. Manage.
– volume: 61
  start-page: 399
  year: 2014
  end-page: 409
  ident: bib0225
  article-title: A model predictive control framework for reliable microgrid energy management
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 58
  year: 2011
  ident: bib0060
  article-title: Jump and shift method for multi-objective optimization
  publication-title: IEEE Trans. Ind. Electron.
– start-page: 1
  year: 2011
  end-page: 8
  ident: bib0065
  article-title: Lexicographic multi-objective optimization for the unit commitment problem and economic dispatch in a microgrid
  publication-title: IEEE – PES International Conference on Smart Grid Technology (ISGT)
– volume: 93
  start-page: 668
  year: 2012
  end-page: 674
  ident: bib0110
  article-title: Stochastic modeling of the energy supply system with uncertain fuel price. A case of emerging technologies for distributed power generation
  publication-title: Appl. Energy
– year: 2007
  ident: bib0010
  article-title: Microgrids
  publication-title: IEEE Power & Energy Magazine
– reference: .
– volume: 54
  start-page: 525
  year: 2014
  end-page: 535
  ident: bib0150
  article-title: Scenario-based stochastic operation management of microgrid including wind, photovoltaic, micro-turbine, fuel cell and energy storage devices
  publication-title: Int. J. Electr. Power Energy Syst.
– year: 1998
  ident: bib0380
  article-title: LS-SVMlab: a MATLAB/C toolbox for Least Squares Support Vector Machines
– volume: 99
  start-page: 1098
  year: 2011
  end-page: 1115
  ident: bib0115
  article-title: Adaptive stochastic control for the smart grid
  publication-title: Proc. IEEE
– start-page: 1
  year: 2009
  end-page: 7
  ident: bib0125
  article-title: Reliability of islanded microgrids with stochastic generation and prioritized load
  publication-title: IEEE PowerTech
– volume: 99
  start-page: 455
  year: 2012
  end-page: 470
  ident: bib0130
  article-title: An efficient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation
  publication-title: Appl. Energy
– volume: 129
  start-page: 70
  year: 2014
  end-page: 88
  ident: bib0095
  article-title: An integrated framework of agent-based modelling and robust optimization for microgrid energy management
  publication-title: Appl. Energy
– volume: 115
  start-page: 37
  year: 2014
  end-page: 46
  ident: bib0305
  article-title: Use of model predictive control for experimental microgrid optimization
  publication-title: Appl. Energy
– year: 2011
  ident: bib0075
  article-title: Energy management for buildings and microgrids
  publication-title: IEEE Conference on Decision and Control
– volume: 21
  start-page: 1371
  year: 2006
  end-page: 1378
  ident: bib0320
  article-title: A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem
  publication-title: IEEE Trans. Power Syst.
– volume: 26
  start-page: 369
  year: 2004
  end-page: 395
  ident: bib0275
  article-title: Survey of multi-objective optimization methods for engineering
  publication-title: Struct. Multidiscip. Optim.
– volume: 21
  start-page: 64
  year: 2001
  ident: bib0365
  article-title: Reactive power as an ancillary service
  publication-title: IEEE Power Eng. Rev.
– ident: bib0385
– year: 2011, June
  ident: bib0025
  article-title: Technical and economic analysis of various power generation resources coupled with CAES systems, Tech. rep.
– year: 2011
  ident: bib0310
  article-title: Economic optimal schedule of CHP microgrid system using chance constrained programming and particle swarm optimization
  publication-title: IEEE Power and Energy Society General Meeting
– year: 2002, March
  ident: bib0370
  article-title: Contract n XVII/4. 1031/P/99-159, EDUCOGEN The European Education Tool on Energy-Efficiency through the Use of Cogeneration, Tech. Rep.
– start-page: 1
  year: 2014
  end-page: 9
  ident: bib0135
  article-title: Coordinated energy management of networked microgrids in distribution systems
  publication-title: IEEE Trans. Smart Grid PP
– volume: 21
  start-page: 1504
  issue: 10
  year: 2011
  ident: 10.1016/j.jprocont.2016.04.008_bib0235
  article-title: A distributed control framework for smart grid development: energy/water system optimal operation and electric grid integration
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2011.05.010
– year: 1997
  ident: 10.1016/j.jprocont.2016.04.008_bib0345
– year: 2010
  ident: 10.1016/j.jprocont.2016.04.008_bib0030
– volume: 129
  start-page: 70
  year: 2014
  ident: 10.1016/j.jprocont.2016.04.008_bib0095
  article-title: An integrated framework of agent-based modelling and robust optimization for microgrid energy management
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.04.024
– volume: 93
  start-page: 668
  year: 2012
  ident: 10.1016/j.jprocont.2016.04.008_bib0110
  article-title: Stochastic modeling of the energy supply system with uncertain fuel price. A case of emerging technologies for distributed power generation
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2011.12.099
– volume: 21
  start-page: 64
  issue: 5
  year: 2001
  ident: 10.1016/j.jprocont.2016.04.008_bib0365
  article-title: Reactive power as an ancillary service
  publication-title: IEEE Power Eng. Rev.
  doi: 10.1109/MPER.2001.4311391
– start-page: 1
  year: 2009
  ident: 10.1016/j.jprocont.2016.04.008_bib0125
  article-title: Reliability of islanded microgrids with stochastic generation and prioritized load
– volume: 26
  start-page: 369
  issue: 6
  year: 2004
  ident: 10.1016/j.jprocont.2016.04.008_bib0275
  article-title: Survey of multi-objective optimization methods for engineering
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-003-0368-6
– volume: 42
  start-page: 728
  year: 2012
  ident: 10.1016/j.jprocont.2016.04.008_bib0050
  article-title: Multiobjective optimization using mesh adaptive direct search for power dispatch problem of microgrid
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2011.09.006
– year: 2011
  ident: 10.1016/j.jprocont.2016.04.008_bib0335
  article-title: Predicting solar generation from weather forecasts using machine learning
– year: 2011
  ident: 10.1016/j.jprocont.2016.04.008_bib0245
  article-title: Stochastic MPC for real-time market-based optimal power dispatch
– volume: 34
  start-page: 21
  issue: 1
  year: 2010
  ident: 10.1016/j.jprocont.2016.04.008_bib0395
  article-title: Model predictive control techniques for hybrid systems
  publication-title: Annu. Rev. Control
  doi: 10.1016/j.arcontrol.2010.02.002
– volume: 22
  start-page: 1813
  issue: 5
  year: 2014
  ident: 10.1016/j.jprocont.2016.04.008_bib0300
  article-title: A model predictive control approach to microgrid operation optimization
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2013.2295737
– year: 2008
  ident: 10.1016/j.jprocont.2016.04.008_bib0315
– start-page: 1
  issue: 99
  year: 2014
  ident: 10.1016/j.jprocont.2016.04.008_bib0135
  article-title: Coordinated energy management of networked microgrids in distribution systems
  publication-title: IEEE Trans. Smart Grid PP
– volume: 111
  start-page: 156
  year: 2014
  ident: 10.1016/j.jprocont.2016.04.008_bib0145
  article-title: Stochastic multi-objective operational planning of smart distribution systems considering demand response programs
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2014.02.021
– volume: 84
  start-page: 31
  issue: 1
  year: 2012
  ident: 10.1016/j.jprocont.2016.04.008_bib0240
  article-title: Application of model predictive control to optimal dynamic dispatch of generation with emission limitations
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2011.09.024
– year: 2010
  ident: 10.1016/j.jprocont.2016.04.008_bib0375
– volume: 128
  start-page: 164
  year: 2014
  ident: 10.1016/j.jprocont.2016.04.008_bib0085
  article-title: Experimental validation of a real-time energy management system using multi-period gravitational search algorithm for microgrids in islanded mode
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.04.056
– year: 2012
  ident: 10.1016/j.jprocont.2016.04.008_bib0045
  article-title: Energy management systems in microgrid operations
  publication-title: Electr. J.
  doi: 10.1016/j.tej.2012.09.010
– volume: 60
  start-page: 1688
  issue: 4
  year: 2013
  ident: 10.1016/j.jprocont.2016.04.008_bib0055
  article-title: Multiobjective intelligent energy management for a microgrid
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2012.2188873
– volume: 74
  start-page: 433
  year: 2013
  ident: 10.1016/j.jprocont.2016.04.008_bib0090
  article-title: A two-stage optimal planning and design method for combined cooling, heat and power microgrid system
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2013.06.051
– year: 2002
  ident: 10.1016/j.jprocont.2016.04.008_bib0370
– volume: 21
  start-page: 1371
  issue: 3
  year: 2006
  ident: 10.1016/j.jprocont.2016.04.008_bib0320
  article-title: A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2006.876672
– year: 2007
  ident: 10.1016/j.jprocont.2016.04.008_bib0325
  article-title: Model predictive control of hybrid systems
– year: 2011
  ident: 10.1016/j.jprocont.2016.04.008_bib0310
  article-title: Economic optimal schedule of CHP microgrid system using chance constrained programming and particle swarm optimization
– volume: 15
  start-page: 4030
  issue: 8
  year: 2011
  ident: 10.1016/j.jprocont.2016.04.008_bib0020
  article-title: Recent developments in microgrids and example cases around the world. A review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2011.07.033
– year: 2011
  ident: 10.1016/j.jprocont.2016.04.008_bib0075
  article-title: Energy management for buildings and microgrids
– volume: 22
  start-page: 1384
  issue: 3
  year: 2007
  ident: 10.1016/j.jprocont.2016.04.008_bib0200
  article-title: Model predictive control to alleviate thermal overloads
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2007.901677
– volume: 35
  start-page: 407
  issue: 3
  year: 1999
  ident: 10.1016/j.jprocont.2016.04.008_bib0290
  article-title: Control of systems integrating logic, dynamics, and constraints
  publication-title: Automatica
  doi: 10.1016/S0005-1098(98)00178-2
– volume: 3
  start-page: 968
  issue: 2
  year: 2012
  ident: 10.1016/j.jprocont.2016.04.008_bib0070
  article-title: Optimal scheduling using metaheuristics for energy networks
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2012.2191580
– volume: 29
  start-page: 1383
  issue: 3
  year: 2014
  ident: 10.1016/j.jprocont.2016.04.008_bib0100
  article-title: Microgrid optimal scheduling with multi-period islanding constraints
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2013.2290006
– volume: 99
  start-page: 1098
  issue: 6
  year: 2011
  ident: 10.1016/j.jprocont.2016.04.008_bib0115
  article-title: Adaptive stochastic control for the smart grid
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2011.2109671
– start-page: 307
  year: 2011
  ident: 10.1016/j.jprocont.2016.04.008_bib0120
  article-title: Stochastic unit commitment in smart grid communications
– year: 2009
  ident: 10.1016/j.jprocont.2016.04.008_bib0355
– volume: 64
  start-page: 815
  year: 2015
  ident: 10.1016/j.jprocont.2016.04.008_bib0190
  article-title: Analysis of robust optimization for decentralized microgrid energy management under uncertainty
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2014.07.064
– volume: 87
  start-page: 765
  year: 2014
  ident: 10.1016/j.jprocont.2016.04.008_bib0195
  article-title: Integrated offering strategy for profit enhancement of distributed resources and demand response in microgrids considering system uncertainties
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2014.07.068
– volume: 19
  start-page: 199
  issue: 1
  year: 2011
  ident: 10.1016/j.jprocont.2016.04.008_bib0215
  article-title: Supervisory predictive control of standalone wind/solar energy generation systems
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2010.2041930
– start-page: 177
  year: 2010
  ident: 10.1016/j.jprocont.2016.04.008_bib0350
  article-title: Recent progress in two-stage mixed-integer stochastic programming with applications to power production planning
– volume: 4
  start-page: 944
  issue: 4
  year: 2013
  ident: 10.1016/j.jprocont.2016.04.008_bib0175
  article-title: Robust energy management for microgrids with high-penetration renewables
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2013.2255135
– start-page: 1
  year: 2012
  ident: 10.1016/j.jprocont.2016.04.008_bib0250
  article-title: Stochastic model predictive control method for microgrid management
– volume: 26
  start-page: 1367
  issue: 3
  year: 2011
  ident: 10.1016/j.jprocont.2016.04.008_bib0205
  article-title: Stochastic optimization model to study the operational impacts of high wind penetrations in Ireland
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2010.2070848
– year: 2007
  ident: 10.1016/j.jprocont.2016.04.008_bib0010
  article-title: Microgrids
– year: 2011
  ident: 10.1016/j.jprocont.2016.04.008_bib0025
– start-page: 272
  year: 2007
  ident: 10.1016/j.jprocont.2016.04.008_bib0340
  article-title: Demand forecasting by using support vector machine
– volume: 3
  start-page: 1963
  issue: 4
  year: 2012
  ident: 10.1016/j.jprocont.2016.04.008_bib0255
  article-title: Hierarchical structure of microgrids control system
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2012.2197425
– volume: 61
  start-page: 399
  year: 2014
  ident: 10.1016/j.jprocont.2016.04.008_bib0225
  article-title: A model predictive control framework for reliable microgrid energy management
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2014.03.017
– volume: 45
  start-page: 2823
  issue: 12
  year: 2009
  ident: 10.1016/j.jprocont.2016.04.008_bib0390
  article-title: Multi-objective model predictive control
  publication-title: Automatica
  doi: 10.1016/j.automatica.2009.09.032
– volume: 54
  start-page: 525
  year: 2014
  ident: 10.1016/j.jprocont.2016.04.008_bib0150
  article-title: Scenario-based stochastic operation management of microgrid including wind, photovoltaic, micro-turbine, fuel cell and energy storage devices
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2013.08.004
– volume: 4
  start-page: 996
  issue: 2
  year: 2013
  ident: 10.1016/j.jprocont.2016.04.008_bib0230
  article-title: A microgrid energy management system based on the rolling horizon strategy
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2012.2231440
– volume: 56
  start-page: 349
  year: 2014
  ident: 10.1016/j.jprocont.2016.04.008_bib0155
  article-title: System modeling and optimization for islanded micro-grid using multi-cross learning-based chaotic differential evolution algorithm
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2013.11.015
– year: 2002
  ident: 10.1016/j.jprocont.2016.04.008_bib0260
– year: 1995
  ident: 10.1016/j.jprocont.2016.04.008_bib0285
– volume: 59
  start-page: 158
  year: 2013
  ident: 10.1016/j.jprocont.2016.04.008_bib0170
  article-title: Considering uncertainty in the optimal energy management of renewable micro-grids including storage devices
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2013.03.026
– start-page: 1
  year: 2011
  ident: 10.1016/j.jprocont.2016.04.008_bib0220
  article-title: Optimal scheduling and operation of load aggregators with electric energy storage facing price and demand uncertainties
– volume: 55
  start-page: 195
  year: 2014
  ident: 10.1016/j.jprocont.2016.04.008_bib0140
  article-title: Applying augmented ɛ-constraint approach and lexicographic optimization to solve multi-objective hydrothermal generation scheduling considering the impacts of pumped-storage units
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2013.09.006
– volume: 24
  start-page: 187
  issue: 2–3
  year: 2003
  ident: 10.1016/j.jprocont.2016.04.008_bib0360
  article-title: Scenario reduction algorithms in stochastic programming
  publication-title: J. Comput. Optim. Appl.
  doi: 10.1023/A:1021805924152
– volume: 18
  start-page: 1529
  issue: 4
  year: 2003
  ident: 10.1016/j.jprocont.2016.04.008_bib0330
  article-title: Environmental/economic power dispatch using multiobjective evolutionary algorithms
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2003.818693
– start-page: 1
  year: 2011
  ident: 10.1016/j.jprocont.2016.04.008_bib0065
  article-title: Lexicographic multi-objective optimization for the unit commitment problem and economic dispatch in a microgrid
– start-page: 1
  issue: 99
  year: 2013
  ident: 10.1016/j.jprocont.2016.04.008_bib0180
  article-title: Stochastic energy scheduling in microgrids with intermittent renewable energy resources
  publication-title: IEEE Trans. Smart Grid PP
– volume: 99
  start-page: 455
  year: 2012
  ident: 10.1016/j.jprocont.2016.04.008_bib0130
  article-title: An efficient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.04.017
– year: 1998
  ident: 10.1016/j.jprocont.2016.04.008_bib0380
– volume: 23
  start-page: 344
  issue: 2
  year: 2008
  ident: 10.1016/j.jprocont.2016.04.008_bib0040
  article-title: Economic consequences of alternative solution methods for centralized unit commitment in day-ahead electricity markets
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2008.919246
– volume: 119
  start-page: 111
  year: 2015
  ident: 10.1016/j.jprocont.2016.04.008_bib0185
  article-title: Managing solar uncertainty in microgrid systems with stochastic unit commitment
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2014.08.020
– year: 2009
  ident: 10.1016/j.jprocont.2016.04.008_bib0270
– volume: 103
  start-page: 61
  year: 2013
  ident: 10.1016/j.jprocont.2016.04.008_bib0165
  article-title: Microgrid reliability modeling and battery scheduling using stochastic linear programming
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2013.05.005
– volume: 115
  start-page: 37
  year: 2014
  ident: 10.1016/j.jprocont.2016.04.008_bib0305
  article-title: Use of model predictive control for experimental microgrid optimization
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.10.027
– year: 2008
  ident: 10.1016/j.jprocont.2016.04.008_bib0015
– ident: 10.1016/j.jprocont.2016.04.008_bib0105
– start-page: 2676
  year: 2005
  ident: 10.1016/j.jprocont.2016.04.008_bib0265
  article-title: Mixed-integer programming for control
– start-page: 2014
  year: 2013
  ident: 10.1016/j.jprocont.2016.04.008_bib0295
  article-title: Stochastic model predictive control for economic/environmental operation management of microgrids
– start-page: 4285
  year: 2004
  ident: 10.1016/j.jprocont.2016.04.008_bib0005
  article-title: Microgrid: a conceptual solution
– year: 2012
  ident: 10.1016/j.jprocont.2016.04.008_bib0210
  article-title: Power flow management of microgrid networks using model predictive control
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2012.01.028
– year: 1988
  ident: 10.1016/j.jprocont.2016.04.008_bib0280
– volume: 58
  issue: 10
  year: 2011
  ident: 10.1016/j.jprocont.2016.04.008_bib0060
  article-title: Jump and shift method for multi-objective optimization
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2011.2116756
– volume: 58
  start-page: 140
  year: 2014
  ident: 10.1016/j.jprocont.2016.04.008_bib0080
  article-title: Supervision control for optimal energy cost management in DC microgrid: design and simulation
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2014.01.018
– volume: 67
  start-page: 186
  year: 2014
  ident: 10.1016/j.jprocont.2016.04.008_bib0160
  article-title: An inexact two-stage stochastic robust programming for residential micro-grid management-based on random demand
  publication-title: Energy
  doi: 10.1016/j.energy.2014.01.099
– year: 2011
  ident: 10.1016/j.jprocont.2016.04.008_bib0035
SSID ssj0003726
Score 2.5199366
Snippet •A multi-objective stochastic optimization model for microgrids is developed.•The optimization model includes both thermal and electrical energy demand.•A...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 24
SubjectTerms Microgrids
Mixed integer linear programming
Optimization
Stochastic model predictive control
Two stage stochastic programming
Title Stochastic model predictive control for economic/environmental operation management of microgrids: An experimental case study
URI https://dx.doi.org/10.1016/j.jprocont.2016.04.008
Volume 43
WOSCitedRecordID wos000378191200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2771
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003726
  issn: 0959-1524
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9MwGLZKxwEODAaIwUA-cA1L7CSOuVVoGyA0ITak3qLEcbqULq3SbtqF38Pf5PVnMm3SQIhLVFly6_R54vfxm_cDobcsgWcGhGhQwVk5iEVZBpwKHsQkqlVh5LSMSt1sgh0fZ9Mp_zoa_XK5MJcL1rbZ1RVf_VeoYQzAVqmzfwG3_1IYgM8AOlwBdrj-EfAnm6U4K1T5ZdPmRpUBqBq9rfnAdF3n26Yk6-X7bDelTVfS0uLcx8bo1_Aqdm_WNdXaehOvdQcQYA4HxWpv6t2VSUlwa-jfXXUqvd0m26zXRVt13lR8a36YMEAl-GdysfQngCPQzotzPe3LRTNrht6LKPWRrtal5tJq-hgm55sEYWE8DdLszBmjAWGmX4vbumM63HvjgRU3lWRu2Afjqpi_m6t7httVsX2prnUbZr1F9HGKJ2olaiGRqkwG2vMe2iIMhsZoa_LpYPrZG33KdGc_v_JBMvrtv3a7Dhpom9PH6JEFCU8MmZ6gkWx30LZr-IHt_r-DHg6qVz5FP3umYc003DMNW5QxMA07pu1f4xn2PMM9z_Cyxj3P3uNJi4csw4plWLPsGfp-eHD64WNgu3kEgkZkEyQ8LChjIeFSVBWnlKd1VGYRHMDTuKqoSMIaDk-CxnUoItDVlBWSC0qJECKNSvocjdtlK18gTJjMRMxZKWsKgrQoaCUTJiRoc1kQUuyixP23ubCl7lXHlUXuYhrnucMkV5jkYZwDJrto389bmWIvd87gDrrcSlYjRXNg3B1zX_7D3FfoQf807aHxpruQr9F9cblp1t0bS87fNuLILg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+model+predictive+control+for+economic%2Fenvironmental+operation+management+of+microgrids%3A+An+experimental+case+study&rft.jtitle=Journal+of+process+control&rft.au=Parisio%2C+Alessandra&rft.au=Rikos%2C+Evangelos&rft.au=Glielmo%2C+Luigi&rft.date=2016-07-01&rft.pub=Elsevier+Ltd&rft.issn=0959-1524&rft.eissn=1873-2771&rft.volume=43&rft.spage=24&rft.epage=37&rft_id=info:doi/10.1016%2Fj.jprocont.2016.04.008&rft.externalDocID=S0959152416300324
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-1524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-1524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-1524&client=summon