An enhanced Archimedes optimization algorithm based on Local escaping operator and Orthogonal learning for PEM fuel cell parameter identification
Meta-heuristic optimization algorithms aim to tackle real world problems through maximizing some specific criteria such as performance, profit, and quality or minimizing others such as cost, time, and error. Accordingly, this paper introduces an improved version of a well-known optimization algorith...
Saved in:
| Published in: | Engineering applications of artificial intelligence Vol. 103; p. 104309 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.08.2021
|
| Subjects: | |
| ISSN: | 0952-1976, 1873-6769 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Meta-heuristic optimization algorithms aim to tackle real world problems through maximizing some specific criteria such as performance, profit, and quality or minimizing others such as cost, time, and error. Accordingly, this paper introduces an improved version of a well-known optimization algorithm namely Archimedes optimization algorithm (AOA). The enhanced version combines two efficient strategies namely Local escaping operator (LEO) and Orthogonal learning (OL) to introduce the (I-AOA) optimization algorithm. Moreover, the performance of the proposed I-AOA has been evaluated on the CEC’2020 test suite, and three engineering design problems. Furthermore, I-AOA is applied to determine the optimal parameters of polymer electrolyte membrane (PEM) fuel cell (FC). Two commercial types of PEM fuel cells: 250W PEMFC and BCS 500W are considered to prove the superiority of the proposed optimizer. During the optimization procedure, the seven unknown parameters (ξ1, ξ2, ξ3, ξ4, λ, RC, and b) of PEM fuel cell are assigned to be the decision variables. Whereas the cost function that required to be in a minimum state is represented by the RMSE between the estimated cell voltage and the measured data. The obtained results by the I-AOA are compared to other well-known optimizers such as Whale Optimization Algorithm (WOA), Moth-Flame Optimization Algorithm (MFO), Sine Cosine Algorithm (SCA), Particle Swarm Optimization Algorithm (PSO), Harris hawks optimization (HHO), Tunicate Swarm Algorithm (TSA) and original AOA. The comparison confirmed the superiority of the suggested algorithm in identifying the optimum PEM fuel cell parameters considering various operating conditions compared to the other optimization algorithms. |
|---|---|
| AbstractList | Meta-heuristic optimization algorithms aim to tackle real world problems through maximizing some specific criteria such as performance, profit, and quality or minimizing others such as cost, time, and error. Accordingly, this paper introduces an improved version of a well-known optimization algorithm namely Archimedes optimization algorithm (AOA). The enhanced version combines two efficient strategies namely Local escaping operator (LEO) and Orthogonal learning (OL) to introduce the (I-AOA) optimization algorithm. Moreover, the performance of the proposed I-AOA has been evaluated on the CEC’2020 test suite, and three engineering design problems. Furthermore, I-AOA is applied to determine the optimal parameters of polymer electrolyte membrane (PEM) fuel cell (FC). Two commercial types of PEM fuel cells: 250W PEMFC and BCS 500W are considered to prove the superiority of the proposed optimizer. During the optimization procedure, the seven unknown parameters (ξ1, ξ2, ξ3, ξ4, λ, RC, and b) of PEM fuel cell are assigned to be the decision variables. Whereas the cost function that required to be in a minimum state is represented by the RMSE between the estimated cell voltage and the measured data. The obtained results by the I-AOA are compared to other well-known optimizers such as Whale Optimization Algorithm (WOA), Moth-Flame Optimization Algorithm (MFO), Sine Cosine Algorithm (SCA), Particle Swarm Optimization Algorithm (PSO), Harris hawks optimization (HHO), Tunicate Swarm Algorithm (TSA) and original AOA. The comparison confirmed the superiority of the suggested algorithm in identifying the optimum PEM fuel cell parameters considering various operating conditions compared to the other optimization algorithms. |
| ArticleNumber | 104309 |
| Author | Helmy, Bahaa El-din Nassef, Ahmed M. Houssein, Essam H. Rezk, Hegazy |
| Author_xml | – sequence: 1 givenname: Essam H. orcidid: 0000-0002-8127-7233 surname: Houssein fullname: Houssein, Essam H. email: essam.halim@mu.edu.eg organization: Faculty of Computers and Information, Minia University, Minia, Egypt – sequence: 2 givenname: Bahaa El-din orcidid: 0000-0002-1254-0456 surname: Helmy fullname: Helmy, Bahaa El-din email: bahaa_helmy@fcis.bsu.edu.eg organization: Faculty of Computers and Artificial Intelligence, Beni-Suef University, Egypt – sequence: 3 givenname: Hegazy surname: Rezk fullname: Rezk, Hegazy email: hr.hussien@psau.edu.sa organization: College of Engineering at Wadi Addawaser, Prince Sattam Bin Abdulaziz University, 11911 Al-Kharj, Saudi Arabia – sequence: 4 givenname: Ahmed M. orcidid: 0000-0001-9604-5737 surname: Nassef fullname: Nassef, Ahmed M. email: ahmed_nassef2004@yahoo.co.uk organization: College of Engineering at Wadi Addawaser, Prince Sattam Bin Abdulaziz University, 11911 Al-Kharj, Saudi Arabia |
| BookMark | eNqFkE1u2zAQhYkiAeo4uULAC8glRYuSgC5qGGkbwIW7SNbEmBraY0ikQLIF2lv0xpXtZJNNVgO8eW9-vht25YNHxu6lWEgh9afjAv0exhFoUYpSTuJSifYDm8mmVoWudXvFZqKtykK2tf7IblI6CiFUs9Qz9m_lOfoDeIsdX0V7oAE7TDyMmQb6C5mC59DvQ6R8GPgO0uSbpE2w0HNMFkby-8mOEXKIHHzHtzEfwj74ydAjRH8yuKn38-EHd7-w5xb7no8QYcCMkVOHPpMje952y64d9AnvXuqcPX99eFp_Lzbbb4_r1aawSpa5qFRX6aZphLMOla0EgJBY15VDqC3oplTQgBNKatWiVMuurnZWy11XuRYaVHP2-TLXxpBSRGcs5fMFOQL1RgpzwmuO5hWvOeE1F7xTXL-Jj5EGiH_eD365BHF67jdhNMkSnvhTRJtNF-i9Ef8BfZ-e7Q |
| CitedBy_id | crossref_primary_10_3390_electronics10222834 crossref_primary_10_1007_s11356_023_29498_2 crossref_primary_10_1109_ACCESS_2025_3567556 crossref_primary_10_1016_j_energy_2024_132352 crossref_primary_10_1007_s41870_022_01031_7 crossref_primary_10_1016_j_rineng_2024_103357 crossref_primary_10_3390_math10183287 crossref_primary_10_1007_s42235_023_00408_z crossref_primary_10_1016_j_energy_2022_124363 crossref_primary_10_1016_j_asoc_2025_113943 crossref_primary_10_1007_s00521_023_08743_2 crossref_primary_10_1007_s00500_022_07115_7 crossref_primary_10_1016_j_swevo_2025_102048 crossref_primary_10_1007_s13042_022_01617_4 crossref_primary_10_1007_s10965_023_03787_3 crossref_primary_10_1016_j_measurement_2024_115302 crossref_primary_10_1049_gtd2_13164 crossref_primary_10_1016_j_renene_2024_120211 crossref_primary_10_1016_j_energy_2024_130600 crossref_primary_10_1038_s41598_024_80073_2 crossref_primary_10_1007_s12530_022_09425_5 crossref_primary_10_1007_s00521_022_07391_2 crossref_primary_10_1016_j_jclepro_2022_132709 crossref_primary_10_1002_dac_70216 crossref_primary_10_1016_j_bspc_2021_103401 crossref_primary_10_1016_j_egyr_2022_05_231 crossref_primary_10_3390_su142214766 crossref_primary_10_3390_su15064982 crossref_primary_10_3390_biomimetics9010001 crossref_primary_10_1093_ce_zkac010 crossref_primary_10_1007_s11581_025_06566_w crossref_primary_10_3390_math9182313 crossref_primary_10_3390_math9212821 crossref_primary_10_4018_IJSIR_349907 crossref_primary_10_1038_s41598_025_93162_7 crossref_primary_10_1007_s00521_024_10484_9 crossref_primary_10_1016_j_egyr_2021_10_073 crossref_primary_10_1038_s41598_024_71995_y crossref_primary_10_1016_j_engappai_2022_104920 crossref_primary_10_1016_j_ijhydene_2023_03_081 crossref_primary_10_1080_15567036_2022_2025954 crossref_primary_10_1007_s00521_023_08769_6 crossref_primary_10_1016_j_aei_2022_101761 crossref_primary_10_1038_s41598_025_87695_0 crossref_primary_10_1109_ACCESS_2023_3276264 crossref_primary_10_1016_j_asoc_2023_111109 crossref_primary_10_1016_j_tust_2023_105508 crossref_primary_10_1007_s41939_023_00318_x crossref_primary_10_1007_s42235_023_00400_7 crossref_primary_10_3390_en14217115 crossref_primary_10_1016_j_applthermaleng_2023_121141 crossref_primary_10_1016_j_energy_2022_124901 crossref_primary_10_1109_ACCESS_2022_3202894 crossref_primary_10_1016_j_engappai_2022_104952 crossref_primary_10_1016_j_rineng_2024_102437 crossref_primary_10_3233_JIFS_221039 crossref_primary_10_1007_s10489_022_04435_x crossref_primary_10_1016_j_future_2022_12_040 crossref_primary_10_1016_j_measurement_2025_116678 crossref_primary_10_1007_s11831_022_09876_8 crossref_primary_10_1016_j_eswa_2024_125601 crossref_primary_10_1007_s00521_024_09461_z crossref_primary_10_1186_s40537_025_01129_2 crossref_primary_10_1016_j_matcom_2021_08_013 crossref_primary_10_1007_s10489_023_04962_1 crossref_primary_10_1016_j_egyr_2025_01_040 crossref_primary_10_1007_s00202_024_02935_2 crossref_primary_10_1007_s10586_024_04382_x crossref_primary_10_1007_s40313_023_01033_1 crossref_primary_10_1007_s12530_023_09495_z crossref_primary_10_1016_j_matcom_2023_11_019 crossref_primary_10_1002_ese3_1238 crossref_primary_10_3390_pr10061072 crossref_primary_10_1007_s00500_022_07668_7 crossref_primary_10_1016_j_eswa_2022_116931 crossref_primary_10_3390_biomimetics10090581 crossref_primary_10_1016_j_energy_2024_130391 crossref_primary_10_1016_j_ijleo_2023_171465 crossref_primary_10_3390_pr10020366 |
| Cites_doi | 10.1016/j.energy.2018.10.038 10.1016/j.future.2019.07.015 10.1109/MPAE.2006.1578531 10.1016/j.enconman.2018.12.057 10.1007/s11071-019-05217-w 10.1016/j.advengsoft.2016.01.008 10.1016/j.knosys.2019.104966 10.1016/j.egyr.2020.05.024 10.1007/s10845-017-1294-6 10.1007/s10462-017-9605-z 10.1016/j.engappai.2020.103483 10.1016/j.energy.2020.118326 10.1016/j.energy.2020.117976 10.1016/j.eswa.2020.113364 10.1016/j.ins.2020.06.037 10.1016/j.pecs.2019.100805 10.1016/j.engappai.2020.103541 10.1016/j.knosys.2018.11.024 10.1080/03052150310001624403 10.1016/j.asoc.2019.106018 10.1007/s40747-018-0066-z 10.1016/j.advengsoft.2017.05.014 10.1016/j.knosys.2015.07.006 10.3390/su12145601 10.1016/j.renene.2019.08.046 10.1016/j.energy.2017.11.014 10.1109/TSMCB.2012.2222373 10.1016/j.ijhydene.2013.12.110 10.1145/2480741.2480752 10.1109/ACCESS.2020.2968981 10.1016/j.asoc.2012.11.026 10.1016/j.swevo.2021.100841 10.1016/j.ijhydene.2013.01.058 10.3390/su12020608 10.1016/j.future.2019.02.028 10.1016/j.knosys.2015.12.022 10.1016/j.engappai.2019.103294 10.1016/j.enconman.2020.112764 10.1016/j.jpowsour.2004.01.012 10.1016/j.eswa.2021.114689 10.1016/j.renene.2019.01.072 10.1007/s10664-013-9249-9 10.1038/s41598-020-71502-z 10.1109/4235.585893 10.3390/a13110283 10.1016/j.engappai.2021.104155 10.1016/j.swevo.2020.100671 10.1016/j.swevo.2016.12.005 10.1109/TFUZZ.2019.2928509 10.1007/s00521-019-04611-0 10.1016/j.engappai.2020.103731 10.1002/er.1170 10.1016/j.eswa.2020.113282 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd |
| Copyright_xml | – notice: 2021 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.engappai.2021.104309 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISSN | 1873-6769 |
| ExternalDocumentID | 10_1016_j_engappai_2021_104309 S0952197621001573 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS WUQ ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c312t-53d568880fcfe3c50aa01e775fea7ca6823a8af031639e134d75bc61bd5f9a8e3 |
| ISICitedReferencesCount | 87 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000659848800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0952-1976 |
| IngestDate | Sat Nov 29 07:06:52 EST 2025 Tue Nov 18 22:18:59 EST 2025 Fri Feb 23 02:44:51 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Local escaping operator Orthogonal learning Energy efficiency Archimedes optimization algorithm (AOA) Meta-heuristic optimization algorithms Fuel cell |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c312t-53d568880fcfe3c50aa01e775fea7ca6823a8af031639e134d75bc61bd5f9a8e3 |
| ORCID | 0000-0001-9604-5737 0000-0002-8127-7233 0000-0002-1254-0456 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_engappai_2021_104309 crossref_primary_10_1016_j_engappai_2021_104309 elsevier_sciencedirect_doi_10_1016_j_engappai_2021_104309 |
| PublicationCentury | 2000 |
| PublicationDate | August 2021 2021-08-00 |
| PublicationDateYYYYMMDD | 2021-08-01 |
| PublicationDate_xml | – month: 08 year: 2021 text: August 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering applications of artificial intelligence |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Ahmadianfar, Bozorg-Haddad, Chu (b4) 2020; 540 Črepinšek, Liu, Mernik (b10) 2013; 45 Hussain, Salleh, Cheng, Shi (b32) 2019; 52 Dhiman, Kumar (b12) 2019; 165 Arcuri, Fraser (b5) 2013; 18 Mohammadzadeh, Kayacan (b45) 2020; 90 Fathy, Rezk, Ramadan (b17) 2020; 207 Nassef, Fathy, Sayed, Abdelkareem, Rezk, Tanveer, Olabi (b49) 2019; 138 Houssein, Helmy, Oliva, Elngar, Shaban (b25) 2020 Nehrir, Wang, Shaw (b51) 2006; 4 Gao, Liu, Huang (b18) 2013; 43 Ahmadianfar, Bozorg-Haddad, Chu (b3) 2020 Hashim, Houssein, Mabrouk, Al-Atabany, Mirjalili (b20) 2019; 101 Xu, Hu, Heidari, Wang, Zhao, Chen, Cai (b62) 2020; 150 Houssein, Mahdy, Eldin, Shebl, Mohamed, Abdel-Aty (b28) 2020 Zhang, Wang, Yang (b65) 2013; 38 Mirjalili (b38) 2016; 96 Houssein, Saad, Hashim, Shaban, Hassaballah (b30) 2020; 94 Mirjalili (b37) 2015; 89 Tanveer, Rezk, Nassef, Abdelkareem, Kolosz, Karuppasamy, Aslam, Gilani (b60) 2020; 204 Hassan, Houssein, Mahdy, Kamel (b22) 2021; 100 Sabzalian, Mohammadzadeh, Lin, Zhang (b55) 2019; 98 Mohamed, Hadi, Mohamed, Awad (b43) 2020 Mohammadzadeh, Sabzalian, Zhang (b46) 2019; 28 Shi, Li, Zafetti (b58) 2020; 6 Sadollah, Bahreininejad, Eskandar, Hamdi (b56) 2013; 13 Houssein, Mina, Aboul (b29) 2019 Abdelkareem, Sayed, Mohamed, Obaid, Rezk, Chae (b2) 2020; 77 Houssein, Gad, Wazery, Suganthan (b24) 2021 Niu, Zhang, Li (b52) 2014; 39 Mohamed, Hadi, Mohamed (b42) 2020 Houssein, Hosney, Elhoseny, Oliva, Mohamed, Hassaballah (b26) 2020; 10 Zhang, Heidari, Wang, Zhang, Chen, Li (b64) 2020; 211 Rezk, Fathy (b54) 2020; 12 Neggaz, Houssein, Hussain (b50) 2020 Fathy, Rezk (b16) 2018; 143 Mirjalili, Lewis (b39) 2016; 95 Binitha, Sathya (b7) 2012; 2 Barshandeh, Haghzadeh (b6) 2020 Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (b23) 2019; 97 Hashim, Hussain, Houssein, Mabrouk, Al-Atabany (b21) 2020 Mavrovouniotis, Li, Yang (b36) 2017; 33 Mustafa, Gomaa, Al-Dhaifallah, Rezk (b48) 2020; 12 Kamboj, Nandi, Bhadoria, Sehgal (b33) 2020; 89 Mohamed (b41) 2018; 29 Xu, Yang, Li, Kang, Yang (b63) 2020; 188 Fathy, Abd Elaziz, Alharbi (b14) 2020; 146 Ab Wahab, Nefti-Meziani, Atyabi (b1) 2015; 10 Stanovov, Akhmedova, Semenkin (b59) 2020; 13 Wolpert, Macready (b61) 1997; 1 Chakraborty, Kumar, Nair, Tiwari (b9) 2003; 35 Mohamed, Jenkins (b44) 2004; 131 Dhiman, Kumar (b11) 2017; 114 Houssein, Saad, Hussain, Zhu, Shaban, Hassaballah (b31) 2020; 8 Rao, Shao, Ahangarnejad, Gholamalizadeh, Sobhani (b53) 2019; 182 Hashim, Houssein, Hussain, Mabrouk, Al-Atabany (b19) 2020; 32 Kaur, Awasthi, Sangal, Dhiman (b34) 2020; 90 Sayed, Hassanien (b57) 2018; 4 El-Hay, El-Hameed, El-Fergany (b13) 2019; 166 Mo, Zhu, Wei, Cao (b40) 2006; 30 Kennedy, Eberhart (b35) 1995 Houssein, Mahdy, Blondin, Shebl, Mohamed (b27) 2021; 174 Çelik (b8) 2020; 87 Morales-Castañeda, Zaldivar, Cuevas, Fausto, Rodríguez (b47) 2020 Fathy, Abdelkareem, Olabi, Rezk (b15) 2020 Houssein (10.1016/j.engappai.2021.104309_b25) 2020 Fathy (10.1016/j.engappai.2021.104309_b16) 2018; 143 Fathy (10.1016/j.engappai.2021.104309_b17) 2020; 207 Houssein (10.1016/j.engappai.2021.104309_b30) 2020; 94 Rao (10.1016/j.engappai.2021.104309_b53) 2019; 182 Mohamed (10.1016/j.engappai.2021.104309_b42) 2020 Mavrovouniotis (10.1016/j.engappai.2021.104309_b36) 2017; 33 Arcuri (10.1016/j.engappai.2021.104309_b5) 2013; 18 Mohamed (10.1016/j.engappai.2021.104309_b41) 2018; 29 Houssein (10.1016/j.engappai.2021.104309_b26) 2020; 10 Houssein (10.1016/j.engappai.2021.104309_b28) 2020 Mirjalili (10.1016/j.engappai.2021.104309_b39) 2016; 95 Heidari (10.1016/j.engappai.2021.104309_b23) 2019; 97 Zhang (10.1016/j.engappai.2021.104309_b65) 2013; 38 Rezk (10.1016/j.engappai.2021.104309_b54) 2020; 12 Mustafa (10.1016/j.engappai.2021.104309_b48) 2020; 12 Stanovov (10.1016/j.engappai.2021.104309_b59) 2020; 13 Hassan (10.1016/j.engappai.2021.104309_b22) 2021; 100 Fathy (10.1016/j.engappai.2021.104309_b15) 2020 Kamboj (10.1016/j.engappai.2021.104309_b33) 2020; 89 Niu (10.1016/j.engappai.2021.104309_b52) 2014; 39 Nehrir (10.1016/j.engappai.2021.104309_b51) 2006; 4 Hashim (10.1016/j.engappai.2021.104309_b20) 2019; 101 Mohamed (10.1016/j.engappai.2021.104309_b43) 2020 Mohamed (10.1016/j.engappai.2021.104309_b44) 2004; 131 Houssein (10.1016/j.engappai.2021.104309_b29) 2019 Chakraborty (10.1016/j.engappai.2021.104309_b9) 2003; 35 Tanveer (10.1016/j.engappai.2021.104309_b60) 2020; 204 Binitha (10.1016/j.engappai.2021.104309_b7) 2012; 2 Zhang (10.1016/j.engappai.2021.104309_b64) 2020; 211 Wolpert (10.1016/j.engappai.2021.104309_b61) 1997; 1 Barshandeh (10.1016/j.engappai.2021.104309_b6) 2020 Mirjalili (10.1016/j.engappai.2021.104309_b38) 2016; 96 Shi (10.1016/j.engappai.2021.104309_b58) 2020; 6 Neggaz (10.1016/j.engappai.2021.104309_b50) 2020 Abdelkareem (10.1016/j.engappai.2021.104309_b2) 2020; 77 Sadollah (10.1016/j.engappai.2021.104309_b56) 2013; 13 Houssein (10.1016/j.engappai.2021.104309_b31) 2020; 8 Xu (10.1016/j.engappai.2021.104309_b62) 2020; 150 Ahmadianfar (10.1016/j.engappai.2021.104309_b4) 2020; 540 Kennedy (10.1016/j.engappai.2021.104309_b35) 1995 Fathy (10.1016/j.engappai.2021.104309_b14) 2020; 146 Dhiman (10.1016/j.engappai.2021.104309_b12) 2019; 165 Ahmadianfar (10.1016/j.engappai.2021.104309_b3) 2020 Houssein (10.1016/j.engappai.2021.104309_b27) 2021; 174 Kaur (10.1016/j.engappai.2021.104309_b34) 2020; 90 Çelik (10.1016/j.engappai.2021.104309_b8) 2020; 87 Hussain (10.1016/j.engappai.2021.104309_b32) 2019; 52 Xu (10.1016/j.engappai.2021.104309_b63) 2020; 188 Nassef (10.1016/j.engappai.2021.104309_b49) 2019; 138 Sayed (10.1016/j.engappai.2021.104309_b57) 2018; 4 Ab Wahab (10.1016/j.engappai.2021.104309_b1) 2015; 10 Hashim (10.1016/j.engappai.2021.104309_b21) 2020 Sabzalian (10.1016/j.engappai.2021.104309_b55) 2019; 98 Morales-Castañeda (10.1016/j.engappai.2021.104309_b47) 2020 Mirjalili (10.1016/j.engappai.2021.104309_b37) 2015; 89 Mo (10.1016/j.engappai.2021.104309_b40) 2006; 30 Črepinšek (10.1016/j.engappai.2021.104309_b10) 2013; 45 Dhiman (10.1016/j.engappai.2021.104309_b11) 2017; 114 Mohammadzadeh (10.1016/j.engappai.2021.104309_b45) 2020; 90 Mohammadzadeh (10.1016/j.engappai.2021.104309_b46) 2019; 28 Gao (10.1016/j.engappai.2021.104309_b18) 2013; 43 El-Hay (10.1016/j.engappai.2021.104309_b13) 2019; 166 Houssein (10.1016/j.engappai.2021.104309_b24) 2021 Hashim (10.1016/j.engappai.2021.104309_b19) 2020; 32 |
| References_xml | – volume: 38 start-page: 5796 year: 2013 end-page: 5806 ident: b65 article-title: Hybrid artificial bee colony algorithm for parameter estimation of proton exchange membrane fuel cell publication-title: Int. J. Hydrogen Energy – volume: 12 start-page: 608 year: 2020 ident: b48 article-title: Environmental impacts on the performance of solar photovoltaic systems publication-title: Sustainability – volume: 10 start-page: 1 year: 2020 end-page: 22 ident: b26 article-title: Hybrid Harris hawks optimization with cuckoo search for drug design and discovery in chemoinformatics publication-title: Sci. Rep. – volume: 45 start-page: 1 year: 2013 end-page: 33 ident: b10 article-title: Exploration and exploitation in evolutionary algorithms: A survey publication-title: ACM Comput. Surv. – volume: 97 start-page: 849 year: 2019 end-page: 872 ident: b23 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Gener. Comput. Syst. – volume: 150 year: 2020 ident: b62 article-title: Orthogonally-designed adapted grasshopper optimization: A comprehensive analysis publication-title: Expert Syst. Appl. – volume: 174 year: 2021 ident: b27 article-title: Hybrid slime mould algorithm with adaptive guided differential evolution algorithm for combinatorial and global optimization problems publication-title: Expert Syst. Appl. – volume: 90 year: 2020 ident: b45 article-title: A novel fractional-order type-2 fuzzy control method for online frequency regulation in ac microgrid publication-title: Eng. Appl. Artif. Intell. – volume: 211 year: 2020 ident: b64 article-title: Orthogonal Nelder-Mead moth flame method for parameters identification of photovoltaic modules publication-title: Energy Convers. Manage. – volume: 138 start-page: 458 year: 2019 end-page: 464 ident: b49 article-title: Maximizing SOFC performance through optimal parameters identification by modern optimization algorithms publication-title: Renew. Energy – year: 2020 ident: b47 article-title: A better balance in metaheuristic algorithms: Does it exist? publication-title: Swarm Evol. Comput. – start-page: 1 year: 2020 end-page: 8 ident: b43 article-title: Evaluating the performance of adaptive gainingsharing knowledge based algorithm on CEC 2020 benchmark problems publication-title: 2020 IEEE Congress on Evolutionary Computation (CEC) – volume: 32 start-page: 10759 year: 2020 end-page: 10771 ident: b19 article-title: A modified Henry gas solubility optimization for solving motif discovery problem publication-title: Neural Comput. Appl. – volume: 166 start-page: 451 year: 2019 end-page: 461 ident: b13 article-title: Optimized parameters of SOFC for steady state and transient simulations using interior search algorithm publication-title: Energy – start-page: 391 year: 2020 end-page: 396 ident: b42 article-title: Generalized adaptive differential evolution algorithm for solving CEC 2020 benchmark problems publication-title: 2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES) – volume: 143 start-page: 634 year: 2018 end-page: 644 ident: b16 article-title: Multi-verse optimizer for identifying the optimal parameters of PEMFC model publication-title: Energy – volume: 2 start-page: 137 year: 2012 end-page: 151 ident: b7 article-title: A survey of bio inspired optimization algorithms publication-title: Int. J. Soft Comput. Eng. – year: 2020 ident: b15 article-title: A novel strategy based on salp swarm algorithm for extracting the maximum power of proton exchange membrane fuel cell publication-title: Int. J. Hydrogen Energy – volume: 8 start-page: 19381 year: 2020 end-page: 19397 ident: b31 article-title: Optimal sink node placement in large scale wireless sensor networks based on Harris’ hawk optimization algorithm publication-title: IEEE Access – volume: 101 start-page: 646 year: 2019 end-page: 667 ident: b20 article-title: Henry gas solubility optimization: A novel physics-based algorithm publication-title: Future Gener. Comput. Syst. – volume: 90 year: 2020 ident: b34 article-title: Tunicate swarm algorithm: A new bio-inspired based metaheuristic paradigm for global optimization publication-title: Eng. Appl. Artif. Intell. – volume: 33 start-page: 1 year: 2017 end-page: 17 ident: b36 article-title: A survey of swarm intelligence for dynamic optimization: Algorithms and applications publication-title: Swarm Evol. Comput. – volume: 18 start-page: 594 year: 2013 end-page: 623 ident: b5 article-title: Parameter tuning or default values? An empirical investigation in search-based software engineering publication-title: Empir. Softw. Eng. – volume: 43 start-page: 1011 year: 2013 end-page: 1024 ident: b18 article-title: A novel artificial bee colony algorithm based on modified search equation and orthogonal learning publication-title: IEEE Trans. Cybern. – volume: 94 year: 2020 ident: b30 article-title: Lévy flight distribution: A new metaheuristic algorithm for solving engineering optimization problems publication-title: Eng. Appl. Artif. Intell. – volume: 165 start-page: 169 year: 2019 end-page: 196 ident: b12 article-title: Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems publication-title: Knowl.-Based Syst. – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: b61 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. – volume: 96 start-page: 120 year: 2016 end-page: 133 ident: b38 article-title: SCA: a sine cosine algorithm for solving optimization problems publication-title: Knowl.-Based Syst. – volume: 207 year: 2020 ident: b17 article-title: Recent moth-flame optimizer for enhanced solid oxide fuel cell output power via optimal parameters extraction process publication-title: Energy – volume: 100 year: 2021 ident: b22 article-title: An improved manta ray foraging optimizer for cost-effective emission dispatch problems publication-title: Eng. Appl. Artif. Intell. – volume: 39 start-page: 3837 year: 2014 end-page: 3854 ident: b52 article-title: An improved TLBO with elite strategy for parameters identification of PEM fuel cell and solar cell models publication-title: Int. J. Hydrogen Energy – start-page: 1 year: 2020 end-page: 44 ident: b6 article-title: A new hybrid chaotic atom search optimization based on tree-seed algorithm and Levy flight for solving optimization problems publication-title: Eng. Comput. – year: 2021 ident: b24 article-title: Task scheduling in cloud computing based on meta-heuristics: Review, taxonomy, open challenges, and future trends publication-title: Swarm Evol. Comput. – year: 2020 ident: b28 article-title: Optimizing quantum cloning circuit parameters based on adaptive guided differential evolution algorithm publication-title: J. Adv. Res. – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: b39 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. – volume: 89 year: 2020 ident: b33 article-title: An intensify Harris Hawks optimizer for numerical and engineering optimization problems publication-title: Appl. Soft Comput. – volume: 87 year: 2020 ident: b8 article-title: A powerful variant of symbiotic organisms search algorithm for global optimization publication-title: Eng. Appl. Artif. Intell. – volume: 114 start-page: 48 year: 2017 end-page: 70 ident: b11 article-title: Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications publication-title: Adv. Eng. Softw. – start-page: 1 year: 2020 end-page: 21 ident: b21 article-title: Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems publication-title: Appl. Intell. – volume: 131 start-page: 142 year: 2004 end-page: 146 ident: b44 article-title: Proton exchange membrane (PEM) fuel cell stack configuration using genetic algorithms publication-title: J. Power Sources – volume: 188 year: 2020 ident: b63 article-title: Dynamic opposite learning enhanced teaching–learning-based optimization publication-title: Knowl.-Based Syst. – volume: 182 start-page: 1 year: 2019 end-page: 8 ident: b53 article-title: Shark smell optimizer applied to identify the optimal parameters of the proton exchange membrane fuel cell model publication-title: Energy Convers. Manage. – year: 2020 ident: b25 article-title: A novel black widow optimization algorithm for multilevel thresholding image segmentation publication-title: Expert Syst. Appl. – volume: 13 start-page: 283 year: 2020 ident: b59 article-title: Differential evolution with linear bias reduction in parameter adaptation publication-title: Algorithms – volume: 204 year: 2020 ident: b60 article-title: Improving fuel cell performance via optimal parameters identification through fuzzy logic based-modeling and optimization publication-title: Energy – start-page: 1942 year: 1995 end-page: 1948 ident: b35 article-title: Particle swarm optimization publication-title: Proceedings of ICNN’95-International Conference on Neural Networks, Vol. 4 – year: 2020 ident: b3 article-title: Gradient-based optimizer: A new metaheuristic optimization algorithm publication-title: Inform. Sci. – volume: 28 start-page: 1940 year: 2019 end-page: 1950 ident: b46 article-title: An interval type-3 fuzzy system and a new online fractional-order learning algorithm: theory and practice publication-title: IEEE Trans. Fuzzy Syst. – volume: 89 start-page: 228 year: 2015 end-page: 249 ident: b37 article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm publication-title: Knowl.-Based Syst. – volume: 540 start-page: 131 year: 2020 end-page: 159 ident: b4 article-title: Gradient-based optimizer: A new metaheuristic optimization algorithm publication-title: Inform. Sci. – volume: 6 start-page: 1428 year: 2020 end-page: 1437 ident: b58 article-title: New optimized technique for unknown parameters selection of SOFC using converged grass fibrous root optimization algorithm publication-title: Energy Rep. – volume: 29 start-page: 659 year: 2018 end-page: 692 ident: b41 article-title: A novel differential evolution algorithm for solving constrained engineering optimization problems publication-title: J. Intell. Manuf. – start-page: 1 year: 2019 ident: b29 article-title: Nature-inspired algorithms: A comprehensive review publication-title: Hybrid Computational Intelligence: Research and Applications – volume: 4 start-page: 195 year: 2018 end-page: 212 ident: b57 article-title: A hybrid SA-MFO algorithm for function optimization and engineering design problems publication-title: Complex Intell. Syst. – volume: 10 year: 2015 ident: b1 article-title: A comprehensive review of swarm optimization algorithms publication-title: PLoS One – volume: 12 start-page: 5601 year: 2020 ident: b54 article-title: Performance improvement of PEM fuel cell using variable step-size incremental resistance MPPT technique publication-title: Sustainability – volume: 52 start-page: 2191 year: 2019 end-page: 2233 ident: b32 article-title: Metaheuristic research: a comprehensive survey publication-title: Artif. Intell. Rev. – volume: 146 start-page: 1833 year: 2020 end-page: 1845 ident: b14 article-title: A novel approach based on hybrid vortex search algorithm and differential evolution for identifying the optimal parameters of PEM fuel cell publication-title: Renew. Energy – volume: 98 start-page: 2375 year: 2019 end-page: 2385 ident: b55 article-title: Robust fuzzy control for fractional-order systems with estimated fraction-order publication-title: Nonlinear Dynam. – year: 2020 ident: b50 article-title: An efficient henry gas solubility optimization for feature selection publication-title: Expert Syst. Appl. – volume: 30 start-page: 585 year: 2006 end-page: 597 ident: b40 article-title: Parameter optimization for a PEMFC model with a hybrid genetic algorithm publication-title: Int. J. Energy Res. – volume: 77 year: 2020 ident: b2 article-title: Nonprecious anodic catalysts for low-molecular-hydrocarbon fuel cells: Theoretical consideration and current progress publication-title: Prog. Energy Combust. Sci. – volume: 35 start-page: 649 year: 2003 end-page: 659 ident: b9 article-title: Rolling element bearing design through genetic algorithms publication-title: Eng. Optim. – volume: 4 start-page: 47 year: 2006 end-page: 53 ident: b51 article-title: Fuel cells: promising devices for distributed generation publication-title: IEEE Power Energy Mag. – volume: 13 start-page: 2592 year: 2013 end-page: 2612 ident: b56 article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems publication-title: Appl. Soft Comput. – volume: 166 start-page: 451 year: 2019 ident: 10.1016/j.engappai.2021.104309_b13 article-title: Optimized parameters of SOFC for steady state and transient simulations using interior search algorithm publication-title: Energy doi: 10.1016/j.energy.2018.10.038 – volume: 101 start-page: 646 year: 2019 ident: 10.1016/j.engappai.2021.104309_b20 article-title: Henry gas solubility optimization: A novel physics-based algorithm publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.07.015 – volume: 4 start-page: 47 issue: 1 year: 2006 ident: 10.1016/j.engappai.2021.104309_b51 article-title: Fuel cells: promising devices for distributed generation publication-title: IEEE Power Energy Mag. doi: 10.1109/MPAE.2006.1578531 – volume: 182 start-page: 1 year: 2019 ident: 10.1016/j.engappai.2021.104309_b53 article-title: Shark smell optimizer applied to identify the optimal parameters of the proton exchange membrane fuel cell model publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2018.12.057 – volume: 98 start-page: 2375 issue: 3 year: 2019 ident: 10.1016/j.engappai.2021.104309_b55 article-title: Robust fuzzy control for fractional-order systems with estimated fraction-order publication-title: Nonlinear Dynam. doi: 10.1007/s11071-019-05217-w – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.engappai.2021.104309_b39 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 188 year: 2020 ident: 10.1016/j.engappai.2021.104309_b63 article-title: Dynamic opposite learning enhanced teaching–learning-based optimization publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.104966 – start-page: 1942 year: 1995 ident: 10.1016/j.engappai.2021.104309_b35 article-title: Particle swarm optimization – volume: 6 start-page: 1428 year: 2020 ident: 10.1016/j.engappai.2021.104309_b58 article-title: New optimized technique for unknown parameters selection of SOFC using converged grass fibrous root optimization algorithm publication-title: Energy Rep. doi: 10.1016/j.egyr.2020.05.024 – volume: 29 start-page: 659 issue: 3 year: 2018 ident: 10.1016/j.engappai.2021.104309_b41 article-title: A novel differential evolution algorithm for solving constrained engineering optimization problems publication-title: J. Intell. Manuf. doi: 10.1007/s10845-017-1294-6 – volume: 52 start-page: 2191 issue: 4 year: 2019 ident: 10.1016/j.engappai.2021.104309_b32 article-title: Metaheuristic research: a comprehensive survey publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-017-9605-z – volume: 90 year: 2020 ident: 10.1016/j.engappai.2021.104309_b45 article-title: A novel fractional-order type-2 fuzzy control method for online frequency regulation in ac microgrid publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103483 – volume: 207 year: 2020 ident: 10.1016/j.engappai.2021.104309_b17 article-title: Recent moth-flame optimizer for enhanced solid oxide fuel cell output power via optimal parameters extraction process publication-title: Energy doi: 10.1016/j.energy.2020.118326 – volume: 204 year: 2020 ident: 10.1016/j.engappai.2021.104309_b60 article-title: Improving fuel cell performance via optimal parameters identification through fuzzy logic based-modeling and optimization publication-title: Energy doi: 10.1016/j.energy.2020.117976 – year: 2020 ident: 10.1016/j.engappai.2021.104309_b50 article-title: An efficient henry gas solubility optimization for feature selection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113364 – volume: 540 start-page: 131 year: 2020 ident: 10.1016/j.engappai.2021.104309_b4 article-title: Gradient-based optimizer: A new metaheuristic optimization algorithm publication-title: Inform. Sci. doi: 10.1016/j.ins.2020.06.037 – volume: 77 year: 2020 ident: 10.1016/j.engappai.2021.104309_b2 article-title: Nonprecious anodic catalysts for low-molecular-hydrocarbon fuel cells: Theoretical consideration and current progress publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2019.100805 – volume: 90 year: 2020 ident: 10.1016/j.engappai.2021.104309_b34 article-title: Tunicate swarm algorithm: A new bio-inspired based metaheuristic paradigm for global optimization publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103541 – volume: 165 start-page: 169 year: 2019 ident: 10.1016/j.engappai.2021.104309_b12 article-title: Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.11.024 – volume: 35 start-page: 649 issue: 6 year: 2003 ident: 10.1016/j.engappai.2021.104309_b9 article-title: Rolling element bearing design through genetic algorithms publication-title: Eng. Optim. doi: 10.1080/03052150310001624403 – volume: 89 year: 2020 ident: 10.1016/j.engappai.2021.104309_b33 article-title: An intensify Harris Hawks optimizer for numerical and engineering optimization problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.106018 – volume: 4 start-page: 195 issue: 3 year: 2018 ident: 10.1016/j.engappai.2021.104309_b57 article-title: A hybrid SA-MFO algorithm for function optimization and engineering design problems publication-title: Complex Intell. Syst. doi: 10.1007/s40747-018-0066-z – volume: 114 start-page: 48 year: 2017 ident: 10.1016/j.engappai.2021.104309_b11 article-title: Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.05.014 – volume: 89 start-page: 228 year: 2015 ident: 10.1016/j.engappai.2021.104309_b37 article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.07.006 – volume: 12 start-page: 5601 issue: 14 year: 2020 ident: 10.1016/j.engappai.2021.104309_b54 article-title: Performance improvement of PEM fuel cell using variable step-size incremental resistance MPPT technique publication-title: Sustainability doi: 10.3390/su12145601 – start-page: 1 year: 2020 ident: 10.1016/j.engappai.2021.104309_b6 article-title: A new hybrid chaotic atom search optimization based on tree-seed algorithm and Levy flight for solving optimization problems publication-title: Eng. Comput. – volume: 146 start-page: 1833 year: 2020 ident: 10.1016/j.engappai.2021.104309_b14 article-title: A novel approach based on hybrid vortex search algorithm and differential evolution for identifying the optimal parameters of PEM fuel cell publication-title: Renew. Energy doi: 10.1016/j.renene.2019.08.046 – volume: 143 start-page: 634 year: 2018 ident: 10.1016/j.engappai.2021.104309_b16 article-title: Multi-verse optimizer for identifying the optimal parameters of PEMFC model publication-title: Energy doi: 10.1016/j.energy.2017.11.014 – volume: 10 issue: 5 year: 2015 ident: 10.1016/j.engappai.2021.104309_b1 article-title: A comprehensive review of swarm optimization algorithms publication-title: PLoS One – start-page: 1 year: 2019 ident: 10.1016/j.engappai.2021.104309_b29 article-title: Nature-inspired algorithms: A comprehensive review – year: 2020 ident: 10.1016/j.engappai.2021.104309_b15 article-title: A novel strategy based on salp swarm algorithm for extracting the maximum power of proton exchange membrane fuel cell publication-title: Int. J. Hydrogen Energy – volume: 43 start-page: 1011 issue: 3 year: 2013 ident: 10.1016/j.engappai.2021.104309_b18 article-title: A novel artificial bee colony algorithm based on modified search equation and orthogonal learning publication-title: IEEE Trans. Cybern. doi: 10.1109/TSMCB.2012.2222373 – start-page: 1 year: 2020 ident: 10.1016/j.engappai.2021.104309_b43 article-title: Evaluating the performance of adaptive gainingsharing knowledge based algorithm on CEC 2020 benchmark problems – volume: 39 start-page: 3837 issue: 8 year: 2014 ident: 10.1016/j.engappai.2021.104309_b52 article-title: An improved TLBO with elite strategy for parameters identification of PEM fuel cell and solar cell models publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2013.12.110 – year: 2020 ident: 10.1016/j.engappai.2021.104309_b3 article-title: Gradient-based optimizer: A new metaheuristic optimization algorithm publication-title: Inform. Sci. doi: 10.1016/j.ins.2020.06.037 – start-page: 1 year: 2020 ident: 10.1016/j.engappai.2021.104309_b21 article-title: Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems publication-title: Appl. Intell. – volume: 45 start-page: 1 issue: 3 year: 2013 ident: 10.1016/j.engappai.2021.104309_b10 article-title: Exploration and exploitation in evolutionary algorithms: A survey publication-title: ACM Comput. Surv. doi: 10.1145/2480741.2480752 – volume: 8 start-page: 19381 year: 2020 ident: 10.1016/j.engappai.2021.104309_b31 article-title: Optimal sink node placement in large scale wireless sensor networks based on Harris’ hawk optimization algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2968981 – volume: 13 start-page: 2592 issue: 5 year: 2013 ident: 10.1016/j.engappai.2021.104309_b56 article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.11.026 – year: 2021 ident: 10.1016/j.engappai.2021.104309_b24 article-title: Task scheduling in cloud computing based on meta-heuristics: Review, taxonomy, open challenges, and future trends publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2021.100841 – volume: 38 start-page: 5796 issue: 14 year: 2013 ident: 10.1016/j.engappai.2021.104309_b65 article-title: Hybrid artificial bee colony algorithm for parameter estimation of proton exchange membrane fuel cell publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2013.01.058 – volume: 12 start-page: 608 issue: 2 year: 2020 ident: 10.1016/j.engappai.2021.104309_b48 article-title: Environmental impacts on the performance of solar photovoltaic systems publication-title: Sustainability doi: 10.3390/su12020608 – volume: 97 start-page: 849 year: 2019 ident: 10.1016/j.engappai.2021.104309_b23 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.02.028 – volume: 96 start-page: 120 year: 2016 ident: 10.1016/j.engappai.2021.104309_b38 article-title: SCA: a sine cosine algorithm for solving optimization problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.12.022 – volume: 87 year: 2020 ident: 10.1016/j.engappai.2021.104309_b8 article-title: A powerful variant of symbiotic organisms search algorithm for global optimization publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.103294 – volume: 211 year: 2020 ident: 10.1016/j.engappai.2021.104309_b64 article-title: Orthogonal Nelder-Mead moth flame method for parameters identification of photovoltaic modules publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2020.112764 – volume: 131 start-page: 142 issue: 1–2 year: 2004 ident: 10.1016/j.engappai.2021.104309_b44 article-title: Proton exchange membrane (PEM) fuel cell stack configuration using genetic algorithms publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2004.01.012 – volume: 2 start-page: 137 issue: 2 year: 2012 ident: 10.1016/j.engappai.2021.104309_b7 article-title: A survey of bio inspired optimization algorithms publication-title: Int. J. Soft Comput. Eng. – volume: 174 year: 2021 ident: 10.1016/j.engappai.2021.104309_b27 article-title: Hybrid slime mould algorithm with adaptive guided differential evolution algorithm for combinatorial and global optimization problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.114689 – volume: 138 start-page: 458 year: 2019 ident: 10.1016/j.engappai.2021.104309_b49 article-title: Maximizing SOFC performance through optimal parameters identification by modern optimization algorithms publication-title: Renew. Energy doi: 10.1016/j.renene.2019.01.072 – year: 2020 ident: 10.1016/j.engappai.2021.104309_b25 article-title: A novel black widow optimization algorithm for multilevel thresholding image segmentation publication-title: Expert Syst. Appl. – volume: 18 start-page: 594 issue: 3 year: 2013 ident: 10.1016/j.engappai.2021.104309_b5 article-title: Parameter tuning or default values? An empirical investigation in search-based software engineering publication-title: Empir. Softw. Eng. doi: 10.1007/s10664-013-9249-9 – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.engappai.2021.104309_b26 article-title: Hybrid Harris hawks optimization with cuckoo search for drug design and discovery in chemoinformatics publication-title: Sci. Rep. doi: 10.1038/s41598-020-71502-z – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 10.1016/j.engappai.2021.104309_b61 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – year: 2020 ident: 10.1016/j.engappai.2021.104309_b28 article-title: Optimizing quantum cloning circuit parameters based on adaptive guided differential evolution algorithm publication-title: J. Adv. Res. – volume: 13 start-page: 283 issue: 11 year: 2020 ident: 10.1016/j.engappai.2021.104309_b59 article-title: Differential evolution with linear bias reduction in parameter adaptation publication-title: Algorithms doi: 10.3390/a13110283 – volume: 100 year: 2021 ident: 10.1016/j.engappai.2021.104309_b22 article-title: An improved manta ray foraging optimizer for cost-effective emission dispatch problems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2021.104155 – year: 2020 ident: 10.1016/j.engappai.2021.104309_b47 article-title: A better balance in metaheuristic algorithms: Does it exist? publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2020.100671 – volume: 33 start-page: 1 year: 2017 ident: 10.1016/j.engappai.2021.104309_b36 article-title: A survey of swarm intelligence for dynamic optimization: Algorithms and applications publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2016.12.005 – volume: 28 start-page: 1940 issue: 9 year: 2019 ident: 10.1016/j.engappai.2021.104309_b46 article-title: An interval type-3 fuzzy system and a new online fractional-order learning algorithm: theory and practice publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2019.2928509 – volume: 32 start-page: 10759 issue: 14 year: 2020 ident: 10.1016/j.engappai.2021.104309_b19 article-title: A modified Henry gas solubility optimization for solving motif discovery problem publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04611-0 – volume: 94 year: 2020 ident: 10.1016/j.engappai.2021.104309_b30 article-title: Lévy flight distribution: A new metaheuristic algorithm for solving engineering optimization problems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103731 – volume: 30 start-page: 585 issue: 8 year: 2006 ident: 10.1016/j.engappai.2021.104309_b40 article-title: Parameter optimization for a PEMFC model with a hybrid genetic algorithm publication-title: Int. J. Energy Res. doi: 10.1002/er.1170 – start-page: 391 year: 2020 ident: 10.1016/j.engappai.2021.104309_b42 article-title: Generalized adaptive differential evolution algorithm for solving CEC 2020 benchmark problems – volume: 150 year: 2020 ident: 10.1016/j.engappai.2021.104309_b62 article-title: Orthogonally-designed adapted grasshopper optimization: A comprehensive analysis publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113282 |
| SSID | ssj0003846 |
| Score | 2.571982 |
| Snippet | Meta-heuristic optimization algorithms aim to tackle real world problems through maximizing some specific criteria such as performance, profit, and quality or... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 104309 |
| SubjectTerms | Archimedes optimization algorithm (AOA) Energy efficiency Fuel cell Local escaping operator Meta-heuristic optimization algorithms Orthogonal learning |
| Title | An enhanced Archimedes optimization algorithm based on Local escaping operator and Orthogonal learning for PEM fuel cell parameter identification |
| URI | https://dx.doi.org/10.1016/j.engappai.2021.104309 |
| Volume | 103 |
| WOSCitedRecordID | wos000659848800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKxgMv3BHjJj_wZqU0SR07jxUqGoiVSQypb5FrO21HmlZNO037F_w0_hHHsZ1kYtJAiJeosuS48vnic3wu30HobSJoxCV831LxQWDoWwKeJzRI8kQPUmXoR2yzCTaZ8Ok0Pe31fvpamIuClSW_vEw3_1XUMAbCNqWzfyHu5qUwAL9B6PAEscPzjwQ_KokuFzawX_PKgr4zzLJwNqxc0SURxXy9Xe4WK2K0mDIRg89GqRFdSVFXUK03ug7A18GFL9vdYj2vfYaFd6WY9MTT8QnJ97ogxv1PDIv4ymTXkKVyOUit2L3zv6U_JN3YeZ2OsK3n1F1EOkShDfDW-6pyrTnHVSVW5LjfenKLle2YLRZCkHERqGVb4qavvlsNOxdXTQRhArcGbRkpF7BD5KTfdYBEYZN-57xyvjKnTYOy7s0oCFPmaLbt4c5ZHJiU3munf02x8LsmsU6N874u57AdYtk3S5uIeDxIW93ZZDR-NQua9SJDakVZfAcdRoymcNAejj6Op58a8yDmtnrM_8FO2frNq91sMXWsoLOH6L67vuCRhd0j1NPlY_TAXWWwUxQVDPluIX7sCfoxKrEHJm6BibvAxA0wcQ1MDEM1MLEHJvbAxABM3AITe2BiACYGYGIDTGyAiRtg4uvAfIq-fRifvT8OXEOQQMZhtAtorGjC4fjIZa5jSQdCDELNGM21YFIkPIoFFznoKbC7dRgPFaMzmYQzRfNUcB0_QwflutTPEQ5ZoiIaUy6TaMhUONOp1LM8Z5EcKqHkEaJ-0zPp2PJN05Yi82mR55kXVmaElVlhHaF3zbyN5Yu5dUbqZZo5q9dasxlA8Za5L_5h7kt0r_2aXqGD3XavX6O78mK3rLZvHGp_Adds3SU |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+enhanced+Archimedes+optimization+algorithm+based+on+Local+escaping+operator+and+Orthogonal+learning+for+PEM+fuel+cell+parameter+identification&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Houssein%2C+Essam+H.&rft.au=Helmy%2C+Bahaa+El-din&rft.au=Rezk%2C+Hegazy&rft.au=Nassef%2C+Ahmed+M.&rft.date=2021-08-01&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.eissn=1873-6769&rft.volume=103&rft_id=info:doi/10.1016%2Fj.engappai.2021.104309&rft.externalDocID=S0952197621001573 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |