An enhanced Archimedes optimization algorithm based on Local escaping operator and Orthogonal learning for PEM fuel cell parameter identification

Meta-heuristic optimization algorithms aim to tackle real world problems through maximizing some specific criteria such as performance, profit, and quality or minimizing others such as cost, time, and error. Accordingly, this paper introduces an improved version of a well-known optimization algorith...

Full description

Saved in:
Bibliographic Details
Published in:Engineering applications of artificial intelligence Vol. 103; p. 104309
Main Authors: Houssein, Essam H., Helmy, Bahaa El-din, Rezk, Hegazy, Nassef, Ahmed M.
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.08.2021
Subjects:
ISSN:0952-1976, 1873-6769
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Meta-heuristic optimization algorithms aim to tackle real world problems through maximizing some specific criteria such as performance, profit, and quality or minimizing others such as cost, time, and error. Accordingly, this paper introduces an improved version of a well-known optimization algorithm namely Archimedes optimization algorithm (AOA). The enhanced version combines two efficient strategies namely Local escaping operator (LEO) and Orthogonal learning (OL) to introduce the (I-AOA) optimization algorithm. Moreover, the performance of the proposed I-AOA has been evaluated on the CEC’2020 test suite, and three engineering design problems. Furthermore, I-AOA is applied to determine the optimal parameters of polymer electrolyte membrane (PEM) fuel cell (FC). Two commercial types of PEM fuel cells: 250W PEMFC and BCS 500W are considered to prove the superiority of the proposed optimizer. During the optimization procedure, the seven unknown parameters (ξ1, ξ2, ξ3, ξ4, λ, RC, and b) of PEM fuel cell are assigned to be the decision variables. Whereas the cost function that required to be in a minimum state is represented by the RMSE between the estimated cell voltage and the measured data. The obtained results by the I-AOA are compared to other well-known optimizers such as Whale Optimization Algorithm (WOA), Moth-Flame Optimization Algorithm (MFO), Sine Cosine Algorithm (SCA), Particle Swarm Optimization Algorithm (PSO), Harris hawks optimization (HHO), Tunicate Swarm Algorithm (TSA) and original AOA. The comparison confirmed the superiority of the suggested algorithm in identifying the optimum PEM fuel cell parameters considering various operating conditions compared to the other optimization algorithms.
AbstractList Meta-heuristic optimization algorithms aim to tackle real world problems through maximizing some specific criteria such as performance, profit, and quality or minimizing others such as cost, time, and error. Accordingly, this paper introduces an improved version of a well-known optimization algorithm namely Archimedes optimization algorithm (AOA). The enhanced version combines two efficient strategies namely Local escaping operator (LEO) and Orthogonal learning (OL) to introduce the (I-AOA) optimization algorithm. Moreover, the performance of the proposed I-AOA has been evaluated on the CEC’2020 test suite, and three engineering design problems. Furthermore, I-AOA is applied to determine the optimal parameters of polymer electrolyte membrane (PEM) fuel cell (FC). Two commercial types of PEM fuel cells: 250W PEMFC and BCS 500W are considered to prove the superiority of the proposed optimizer. During the optimization procedure, the seven unknown parameters (ξ1, ξ2, ξ3, ξ4, λ, RC, and b) of PEM fuel cell are assigned to be the decision variables. Whereas the cost function that required to be in a minimum state is represented by the RMSE between the estimated cell voltage and the measured data. The obtained results by the I-AOA are compared to other well-known optimizers such as Whale Optimization Algorithm (WOA), Moth-Flame Optimization Algorithm (MFO), Sine Cosine Algorithm (SCA), Particle Swarm Optimization Algorithm (PSO), Harris hawks optimization (HHO), Tunicate Swarm Algorithm (TSA) and original AOA. The comparison confirmed the superiority of the suggested algorithm in identifying the optimum PEM fuel cell parameters considering various operating conditions compared to the other optimization algorithms.
ArticleNumber 104309
Author Helmy, Bahaa El-din
Nassef, Ahmed M.
Houssein, Essam H.
Rezk, Hegazy
Author_xml – sequence: 1
  givenname: Essam H.
  orcidid: 0000-0002-8127-7233
  surname: Houssein
  fullname: Houssein, Essam H.
  email: essam.halim@mu.edu.eg
  organization: Faculty of Computers and Information, Minia University, Minia, Egypt
– sequence: 2
  givenname: Bahaa El-din
  orcidid: 0000-0002-1254-0456
  surname: Helmy
  fullname: Helmy, Bahaa El-din
  email: bahaa_helmy@fcis.bsu.edu.eg
  organization: Faculty of Computers and Artificial Intelligence, Beni-Suef University, Egypt
– sequence: 3
  givenname: Hegazy
  surname: Rezk
  fullname: Rezk, Hegazy
  email: hr.hussien@psau.edu.sa
  organization: College of Engineering at Wadi Addawaser, Prince Sattam Bin Abdulaziz University, 11911 Al-Kharj, Saudi Arabia
– sequence: 4
  givenname: Ahmed M.
  orcidid: 0000-0001-9604-5737
  surname: Nassef
  fullname: Nassef, Ahmed M.
  email: ahmed_nassef2004@yahoo.co.uk
  organization: College of Engineering at Wadi Addawaser, Prince Sattam Bin Abdulaziz University, 11911 Al-Kharj, Saudi Arabia
BookMark eNqFkE1u2zAQhYkiAeo4uULAC8glRYuSgC5qGGkbwIW7SNbEmBraY0ikQLIF2lv0xpXtZJNNVgO8eW9-vht25YNHxu6lWEgh9afjAv0exhFoUYpSTuJSifYDm8mmVoWudXvFZqKtykK2tf7IblI6CiFUs9Qz9m_lOfoDeIsdX0V7oAE7TDyMmQb6C5mC59DvQ6R8GPgO0uSbpE2w0HNMFkby-8mOEXKIHHzHtzEfwj74ydAjRH8yuKn38-EHd7-w5xb7no8QYcCMkVOHPpMje952y64d9AnvXuqcPX99eFp_Lzbbb4_r1aawSpa5qFRX6aZphLMOla0EgJBY15VDqC3oplTQgBNKatWiVMuurnZWy11XuRYaVHP2-TLXxpBSRGcs5fMFOQL1RgpzwmuO5hWvOeE1F7xTXL-Jj5EGiH_eD365BHF67jdhNMkSnvhTRJtNF-i9Ef8BfZ-e7Q
CitedBy_id crossref_primary_10_3390_electronics10222834
crossref_primary_10_1007_s11356_023_29498_2
crossref_primary_10_1109_ACCESS_2025_3567556
crossref_primary_10_1016_j_energy_2024_132352
crossref_primary_10_1007_s41870_022_01031_7
crossref_primary_10_1016_j_rineng_2024_103357
crossref_primary_10_3390_math10183287
crossref_primary_10_1007_s42235_023_00408_z
crossref_primary_10_1016_j_energy_2022_124363
crossref_primary_10_1016_j_asoc_2025_113943
crossref_primary_10_1007_s00521_023_08743_2
crossref_primary_10_1007_s00500_022_07115_7
crossref_primary_10_1016_j_swevo_2025_102048
crossref_primary_10_1007_s13042_022_01617_4
crossref_primary_10_1007_s10965_023_03787_3
crossref_primary_10_1016_j_measurement_2024_115302
crossref_primary_10_1049_gtd2_13164
crossref_primary_10_1016_j_renene_2024_120211
crossref_primary_10_1016_j_energy_2024_130600
crossref_primary_10_1038_s41598_024_80073_2
crossref_primary_10_1007_s12530_022_09425_5
crossref_primary_10_1007_s00521_022_07391_2
crossref_primary_10_1016_j_jclepro_2022_132709
crossref_primary_10_1002_dac_70216
crossref_primary_10_1016_j_bspc_2021_103401
crossref_primary_10_1016_j_egyr_2022_05_231
crossref_primary_10_3390_su142214766
crossref_primary_10_3390_su15064982
crossref_primary_10_3390_biomimetics9010001
crossref_primary_10_1093_ce_zkac010
crossref_primary_10_1007_s11581_025_06566_w
crossref_primary_10_3390_math9182313
crossref_primary_10_3390_math9212821
crossref_primary_10_4018_IJSIR_349907
crossref_primary_10_1038_s41598_025_93162_7
crossref_primary_10_1007_s00521_024_10484_9
crossref_primary_10_1016_j_egyr_2021_10_073
crossref_primary_10_1038_s41598_024_71995_y
crossref_primary_10_1016_j_engappai_2022_104920
crossref_primary_10_1016_j_ijhydene_2023_03_081
crossref_primary_10_1080_15567036_2022_2025954
crossref_primary_10_1007_s00521_023_08769_6
crossref_primary_10_1016_j_aei_2022_101761
crossref_primary_10_1038_s41598_025_87695_0
crossref_primary_10_1109_ACCESS_2023_3276264
crossref_primary_10_1016_j_asoc_2023_111109
crossref_primary_10_1016_j_tust_2023_105508
crossref_primary_10_1007_s41939_023_00318_x
crossref_primary_10_1007_s42235_023_00400_7
crossref_primary_10_3390_en14217115
crossref_primary_10_1016_j_applthermaleng_2023_121141
crossref_primary_10_1016_j_energy_2022_124901
crossref_primary_10_1109_ACCESS_2022_3202894
crossref_primary_10_1016_j_engappai_2022_104952
crossref_primary_10_1016_j_rineng_2024_102437
crossref_primary_10_3233_JIFS_221039
crossref_primary_10_1007_s10489_022_04435_x
crossref_primary_10_1016_j_future_2022_12_040
crossref_primary_10_1016_j_measurement_2025_116678
crossref_primary_10_1007_s11831_022_09876_8
crossref_primary_10_1016_j_eswa_2024_125601
crossref_primary_10_1007_s00521_024_09461_z
crossref_primary_10_1186_s40537_025_01129_2
crossref_primary_10_1016_j_matcom_2021_08_013
crossref_primary_10_1007_s10489_023_04962_1
crossref_primary_10_1016_j_egyr_2025_01_040
crossref_primary_10_1007_s00202_024_02935_2
crossref_primary_10_1007_s10586_024_04382_x
crossref_primary_10_1007_s40313_023_01033_1
crossref_primary_10_1007_s12530_023_09495_z
crossref_primary_10_1016_j_matcom_2023_11_019
crossref_primary_10_1002_ese3_1238
crossref_primary_10_3390_pr10061072
crossref_primary_10_1007_s00500_022_07668_7
crossref_primary_10_1016_j_eswa_2022_116931
crossref_primary_10_3390_biomimetics10090581
crossref_primary_10_1016_j_energy_2024_130391
crossref_primary_10_1016_j_ijleo_2023_171465
crossref_primary_10_3390_pr10020366
Cites_doi 10.1016/j.energy.2018.10.038
10.1016/j.future.2019.07.015
10.1109/MPAE.2006.1578531
10.1016/j.enconman.2018.12.057
10.1007/s11071-019-05217-w
10.1016/j.advengsoft.2016.01.008
10.1016/j.knosys.2019.104966
10.1016/j.egyr.2020.05.024
10.1007/s10845-017-1294-6
10.1007/s10462-017-9605-z
10.1016/j.engappai.2020.103483
10.1016/j.energy.2020.118326
10.1016/j.energy.2020.117976
10.1016/j.eswa.2020.113364
10.1016/j.ins.2020.06.037
10.1016/j.pecs.2019.100805
10.1016/j.engappai.2020.103541
10.1016/j.knosys.2018.11.024
10.1080/03052150310001624403
10.1016/j.asoc.2019.106018
10.1007/s40747-018-0066-z
10.1016/j.advengsoft.2017.05.014
10.1016/j.knosys.2015.07.006
10.3390/su12145601
10.1016/j.renene.2019.08.046
10.1016/j.energy.2017.11.014
10.1109/TSMCB.2012.2222373
10.1016/j.ijhydene.2013.12.110
10.1145/2480741.2480752
10.1109/ACCESS.2020.2968981
10.1016/j.asoc.2012.11.026
10.1016/j.swevo.2021.100841
10.1016/j.ijhydene.2013.01.058
10.3390/su12020608
10.1016/j.future.2019.02.028
10.1016/j.knosys.2015.12.022
10.1016/j.engappai.2019.103294
10.1016/j.enconman.2020.112764
10.1016/j.jpowsour.2004.01.012
10.1016/j.eswa.2021.114689
10.1016/j.renene.2019.01.072
10.1007/s10664-013-9249-9
10.1038/s41598-020-71502-z
10.1109/4235.585893
10.3390/a13110283
10.1016/j.engappai.2021.104155
10.1016/j.swevo.2020.100671
10.1016/j.swevo.2016.12.005
10.1109/TFUZZ.2019.2928509
10.1007/s00521-019-04611-0
10.1016/j.engappai.2020.103731
10.1002/er.1170
10.1016/j.eswa.2020.113282
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2021.104309
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
ExternalDocumentID 10_1016_j_engappai_2021_104309
S0952197621001573
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c312t-53d568880fcfe3c50aa01e775fea7ca6823a8af031639e134d75bc61bd5f9a8e3
ISICitedReferencesCount 87
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000659848800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0952-1976
IngestDate Sat Nov 29 07:06:52 EST 2025
Tue Nov 18 22:18:59 EST 2025
Fri Feb 23 02:44:51 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Local escaping operator
Orthogonal learning
Energy efficiency
Archimedes optimization algorithm (AOA)
Meta-heuristic optimization algorithms
Fuel cell
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-53d568880fcfe3c50aa01e775fea7ca6823a8af031639e134d75bc61bd5f9a8e3
ORCID 0000-0001-9604-5737
0000-0002-8127-7233
0000-0002-1254-0456
ParticipantIDs crossref_citationtrail_10_1016_j_engappai_2021_104309
crossref_primary_10_1016_j_engappai_2021_104309
elsevier_sciencedirect_doi_10_1016_j_engappai_2021_104309
PublicationCentury 2000
PublicationDate August 2021
2021-08-00
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: August 2021
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ahmadianfar, Bozorg-Haddad, Chu (b4) 2020; 540
Črepinšek, Liu, Mernik (b10) 2013; 45
Hussain, Salleh, Cheng, Shi (b32) 2019; 52
Dhiman, Kumar (b12) 2019; 165
Arcuri, Fraser (b5) 2013; 18
Mohammadzadeh, Kayacan (b45) 2020; 90
Fathy, Rezk, Ramadan (b17) 2020; 207
Nassef, Fathy, Sayed, Abdelkareem, Rezk, Tanveer, Olabi (b49) 2019; 138
Houssein, Helmy, Oliva, Elngar, Shaban (b25) 2020
Nehrir, Wang, Shaw (b51) 2006; 4
Gao, Liu, Huang (b18) 2013; 43
Ahmadianfar, Bozorg-Haddad, Chu (b3) 2020
Hashim, Houssein, Mabrouk, Al-Atabany, Mirjalili (b20) 2019; 101
Xu, Hu, Heidari, Wang, Zhao, Chen, Cai (b62) 2020; 150
Houssein, Mahdy, Eldin, Shebl, Mohamed, Abdel-Aty (b28) 2020
Zhang, Wang, Yang (b65) 2013; 38
Mirjalili (b38) 2016; 96
Houssein, Saad, Hashim, Shaban, Hassaballah (b30) 2020; 94
Mirjalili (b37) 2015; 89
Tanveer, Rezk, Nassef, Abdelkareem, Kolosz, Karuppasamy, Aslam, Gilani (b60) 2020; 204
Hassan, Houssein, Mahdy, Kamel (b22) 2021; 100
Sabzalian, Mohammadzadeh, Lin, Zhang (b55) 2019; 98
Mohamed, Hadi, Mohamed, Awad (b43) 2020
Mohammadzadeh, Sabzalian, Zhang (b46) 2019; 28
Shi, Li, Zafetti (b58) 2020; 6
Sadollah, Bahreininejad, Eskandar, Hamdi (b56) 2013; 13
Houssein, Mina, Aboul (b29) 2019
Abdelkareem, Sayed, Mohamed, Obaid, Rezk, Chae (b2) 2020; 77
Houssein, Gad, Wazery, Suganthan (b24) 2021
Niu, Zhang, Li (b52) 2014; 39
Mohamed, Hadi, Mohamed (b42) 2020
Houssein, Hosney, Elhoseny, Oliva, Mohamed, Hassaballah (b26) 2020; 10
Zhang, Heidari, Wang, Zhang, Chen, Li (b64) 2020; 211
Rezk, Fathy (b54) 2020; 12
Neggaz, Houssein, Hussain (b50) 2020
Fathy, Rezk (b16) 2018; 143
Mirjalili, Lewis (b39) 2016; 95
Binitha, Sathya (b7) 2012; 2
Barshandeh, Haghzadeh (b6) 2020
Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (b23) 2019; 97
Hashim, Hussain, Houssein, Mabrouk, Al-Atabany (b21) 2020
Mavrovouniotis, Li, Yang (b36) 2017; 33
Mustafa, Gomaa, Al-Dhaifallah, Rezk (b48) 2020; 12
Kamboj, Nandi, Bhadoria, Sehgal (b33) 2020; 89
Mohamed (b41) 2018; 29
Xu, Yang, Li, Kang, Yang (b63) 2020; 188
Fathy, Abd Elaziz, Alharbi (b14) 2020; 146
Ab Wahab, Nefti-Meziani, Atyabi (b1) 2015; 10
Stanovov, Akhmedova, Semenkin (b59) 2020; 13
Wolpert, Macready (b61) 1997; 1
Chakraborty, Kumar, Nair, Tiwari (b9) 2003; 35
Mohamed, Jenkins (b44) 2004; 131
Dhiman, Kumar (b11) 2017; 114
Houssein, Saad, Hussain, Zhu, Shaban, Hassaballah (b31) 2020; 8
Rao, Shao, Ahangarnejad, Gholamalizadeh, Sobhani (b53) 2019; 182
Hashim, Houssein, Hussain, Mabrouk, Al-Atabany (b19) 2020; 32
Kaur, Awasthi, Sangal, Dhiman (b34) 2020; 90
Sayed, Hassanien (b57) 2018; 4
El-Hay, El-Hameed, El-Fergany (b13) 2019; 166
Mo, Zhu, Wei, Cao (b40) 2006; 30
Kennedy, Eberhart (b35) 1995
Houssein, Mahdy, Blondin, Shebl, Mohamed (b27) 2021; 174
Çelik (b8) 2020; 87
Morales-Castañeda, Zaldivar, Cuevas, Fausto, Rodríguez (b47) 2020
Fathy, Abdelkareem, Olabi, Rezk (b15) 2020
Houssein (10.1016/j.engappai.2021.104309_b25) 2020
Fathy (10.1016/j.engappai.2021.104309_b16) 2018; 143
Fathy (10.1016/j.engappai.2021.104309_b17) 2020; 207
Houssein (10.1016/j.engappai.2021.104309_b30) 2020; 94
Rao (10.1016/j.engappai.2021.104309_b53) 2019; 182
Mohamed (10.1016/j.engappai.2021.104309_b42) 2020
Mavrovouniotis (10.1016/j.engappai.2021.104309_b36) 2017; 33
Arcuri (10.1016/j.engappai.2021.104309_b5) 2013; 18
Mohamed (10.1016/j.engappai.2021.104309_b41) 2018; 29
Houssein (10.1016/j.engappai.2021.104309_b26) 2020; 10
Houssein (10.1016/j.engappai.2021.104309_b28) 2020
Mirjalili (10.1016/j.engappai.2021.104309_b39) 2016; 95
Heidari (10.1016/j.engappai.2021.104309_b23) 2019; 97
Zhang (10.1016/j.engappai.2021.104309_b65) 2013; 38
Rezk (10.1016/j.engappai.2021.104309_b54) 2020; 12
Mustafa (10.1016/j.engappai.2021.104309_b48) 2020; 12
Stanovov (10.1016/j.engappai.2021.104309_b59) 2020; 13
Hassan (10.1016/j.engappai.2021.104309_b22) 2021; 100
Fathy (10.1016/j.engappai.2021.104309_b15) 2020
Kamboj (10.1016/j.engappai.2021.104309_b33) 2020; 89
Niu (10.1016/j.engappai.2021.104309_b52) 2014; 39
Nehrir (10.1016/j.engappai.2021.104309_b51) 2006; 4
Hashim (10.1016/j.engappai.2021.104309_b20) 2019; 101
Mohamed (10.1016/j.engappai.2021.104309_b43) 2020
Mohamed (10.1016/j.engappai.2021.104309_b44) 2004; 131
Houssein (10.1016/j.engappai.2021.104309_b29) 2019
Chakraborty (10.1016/j.engappai.2021.104309_b9) 2003; 35
Tanveer (10.1016/j.engappai.2021.104309_b60) 2020; 204
Binitha (10.1016/j.engappai.2021.104309_b7) 2012; 2
Zhang (10.1016/j.engappai.2021.104309_b64) 2020; 211
Wolpert (10.1016/j.engappai.2021.104309_b61) 1997; 1
Barshandeh (10.1016/j.engappai.2021.104309_b6) 2020
Mirjalili (10.1016/j.engappai.2021.104309_b38) 2016; 96
Shi (10.1016/j.engappai.2021.104309_b58) 2020; 6
Neggaz (10.1016/j.engappai.2021.104309_b50) 2020
Abdelkareem (10.1016/j.engappai.2021.104309_b2) 2020; 77
Sadollah (10.1016/j.engappai.2021.104309_b56) 2013; 13
Houssein (10.1016/j.engappai.2021.104309_b31) 2020; 8
Xu (10.1016/j.engappai.2021.104309_b62) 2020; 150
Ahmadianfar (10.1016/j.engappai.2021.104309_b4) 2020; 540
Kennedy (10.1016/j.engappai.2021.104309_b35) 1995
Fathy (10.1016/j.engappai.2021.104309_b14) 2020; 146
Dhiman (10.1016/j.engappai.2021.104309_b12) 2019; 165
Ahmadianfar (10.1016/j.engappai.2021.104309_b3) 2020
Houssein (10.1016/j.engappai.2021.104309_b27) 2021; 174
Kaur (10.1016/j.engappai.2021.104309_b34) 2020; 90
Çelik (10.1016/j.engappai.2021.104309_b8) 2020; 87
Hussain (10.1016/j.engappai.2021.104309_b32) 2019; 52
Xu (10.1016/j.engappai.2021.104309_b63) 2020; 188
Nassef (10.1016/j.engappai.2021.104309_b49) 2019; 138
Sayed (10.1016/j.engappai.2021.104309_b57) 2018; 4
Ab Wahab (10.1016/j.engappai.2021.104309_b1) 2015; 10
Hashim (10.1016/j.engappai.2021.104309_b21) 2020
Sabzalian (10.1016/j.engappai.2021.104309_b55) 2019; 98
Morales-Castañeda (10.1016/j.engappai.2021.104309_b47) 2020
Mirjalili (10.1016/j.engappai.2021.104309_b37) 2015; 89
Mo (10.1016/j.engappai.2021.104309_b40) 2006; 30
Črepinšek (10.1016/j.engappai.2021.104309_b10) 2013; 45
Dhiman (10.1016/j.engappai.2021.104309_b11) 2017; 114
Mohammadzadeh (10.1016/j.engappai.2021.104309_b45) 2020; 90
Mohammadzadeh (10.1016/j.engappai.2021.104309_b46) 2019; 28
Gao (10.1016/j.engappai.2021.104309_b18) 2013; 43
El-Hay (10.1016/j.engappai.2021.104309_b13) 2019; 166
Houssein (10.1016/j.engappai.2021.104309_b24) 2021
Hashim (10.1016/j.engappai.2021.104309_b19) 2020; 32
References_xml – volume: 38
  start-page: 5796
  year: 2013
  end-page: 5806
  ident: b65
  article-title: Hybrid artificial bee colony algorithm for parameter estimation of proton exchange membrane fuel cell
  publication-title: Int. J. Hydrogen Energy
– volume: 12
  start-page: 608
  year: 2020
  ident: b48
  article-title: Environmental impacts on the performance of solar photovoltaic systems
  publication-title: Sustainability
– volume: 10
  start-page: 1
  year: 2020
  end-page: 22
  ident: b26
  article-title: Hybrid Harris hawks optimization with cuckoo search for drug design and discovery in chemoinformatics
  publication-title: Sci. Rep.
– volume: 45
  start-page: 1
  year: 2013
  end-page: 33
  ident: b10
  article-title: Exploration and exploitation in evolutionary algorithms: A survey
  publication-title: ACM Comput. Surv.
– volume: 97
  start-page: 849
  year: 2019
  end-page: 872
  ident: b23
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Gener. Comput. Syst.
– volume: 150
  year: 2020
  ident: b62
  article-title: Orthogonally-designed adapted grasshopper optimization: A comprehensive analysis
  publication-title: Expert Syst. Appl.
– volume: 174
  year: 2021
  ident: b27
  article-title: Hybrid slime mould algorithm with adaptive guided differential evolution algorithm for combinatorial and global optimization problems
  publication-title: Expert Syst. Appl.
– volume: 90
  year: 2020
  ident: b45
  article-title: A novel fractional-order type-2 fuzzy control method for online frequency regulation in ac microgrid
  publication-title: Eng. Appl. Artif. Intell.
– volume: 211
  year: 2020
  ident: b64
  article-title: Orthogonal Nelder-Mead moth flame method for parameters identification of photovoltaic modules
  publication-title: Energy Convers. Manage.
– volume: 138
  start-page: 458
  year: 2019
  end-page: 464
  ident: b49
  article-title: Maximizing SOFC performance through optimal parameters identification by modern optimization algorithms
  publication-title: Renew. Energy
– year: 2020
  ident: b47
  article-title: A better balance in metaheuristic algorithms: Does it exist?
  publication-title: Swarm Evol. Comput.
– start-page: 1
  year: 2020
  end-page: 8
  ident: b43
  article-title: Evaluating the performance of adaptive gainingsharing knowledge based algorithm on CEC 2020 benchmark problems
  publication-title: 2020 IEEE Congress on Evolutionary Computation (CEC)
– volume: 32
  start-page: 10759
  year: 2020
  end-page: 10771
  ident: b19
  article-title: A modified Henry gas solubility optimization for solving motif discovery problem
  publication-title: Neural Comput. Appl.
– volume: 166
  start-page: 451
  year: 2019
  end-page: 461
  ident: b13
  article-title: Optimized parameters of SOFC for steady state and transient simulations using interior search algorithm
  publication-title: Energy
– start-page: 391
  year: 2020
  end-page: 396
  ident: b42
  article-title: Generalized adaptive differential evolution algorithm for solving CEC 2020 benchmark problems
  publication-title: 2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES)
– volume: 143
  start-page: 634
  year: 2018
  end-page: 644
  ident: b16
  article-title: Multi-verse optimizer for identifying the optimal parameters of PEMFC model
  publication-title: Energy
– volume: 2
  start-page: 137
  year: 2012
  end-page: 151
  ident: b7
  article-title: A survey of bio inspired optimization algorithms
  publication-title: Int. J. Soft Comput. Eng.
– year: 2020
  ident: b15
  article-title: A novel strategy based on salp swarm algorithm for extracting the maximum power of proton exchange membrane fuel cell
  publication-title: Int. J. Hydrogen Energy
– volume: 8
  start-page: 19381
  year: 2020
  end-page: 19397
  ident: b31
  article-title: Optimal sink node placement in large scale wireless sensor networks based on Harris’ hawk optimization algorithm
  publication-title: IEEE Access
– volume: 101
  start-page: 646
  year: 2019
  end-page: 667
  ident: b20
  article-title: Henry gas solubility optimization: A novel physics-based algorithm
  publication-title: Future Gener. Comput. Syst.
– volume: 90
  year: 2020
  ident: b34
  article-title: Tunicate swarm algorithm: A new bio-inspired based metaheuristic paradigm for global optimization
  publication-title: Eng. Appl. Artif. Intell.
– volume: 33
  start-page: 1
  year: 2017
  end-page: 17
  ident: b36
  article-title: A survey of swarm intelligence for dynamic optimization: Algorithms and applications
  publication-title: Swarm Evol. Comput.
– volume: 18
  start-page: 594
  year: 2013
  end-page: 623
  ident: b5
  article-title: Parameter tuning or default values? An empirical investigation in search-based software engineering
  publication-title: Empir. Softw. Eng.
– volume: 43
  start-page: 1011
  year: 2013
  end-page: 1024
  ident: b18
  article-title: A novel artificial bee colony algorithm based on modified search equation and orthogonal learning
  publication-title: IEEE Trans. Cybern.
– volume: 94
  year: 2020
  ident: b30
  article-title: Lévy flight distribution: A new metaheuristic algorithm for solving engineering optimization problems
  publication-title: Eng. Appl. Artif. Intell.
– volume: 165
  start-page: 169
  year: 2019
  end-page: 196
  ident: b12
  article-title: Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems
  publication-title: Knowl.-Based Syst.
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: b61
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 96
  start-page: 120
  year: 2016
  end-page: 133
  ident: b38
  article-title: SCA: a sine cosine algorithm for solving optimization problems
  publication-title: Knowl.-Based Syst.
– volume: 207
  year: 2020
  ident: b17
  article-title: Recent moth-flame optimizer for enhanced solid oxide fuel cell output power via optimal parameters extraction process
  publication-title: Energy
– volume: 100
  year: 2021
  ident: b22
  article-title: An improved manta ray foraging optimizer for cost-effective emission dispatch problems
  publication-title: Eng. Appl. Artif. Intell.
– volume: 39
  start-page: 3837
  year: 2014
  end-page: 3854
  ident: b52
  article-title: An improved TLBO with elite strategy for parameters identification of PEM fuel cell and solar cell models
  publication-title: Int. J. Hydrogen Energy
– start-page: 1
  year: 2020
  end-page: 44
  ident: b6
  article-title: A new hybrid chaotic atom search optimization based on tree-seed algorithm and Levy flight for solving optimization problems
  publication-title: Eng. Comput.
– year: 2021
  ident: b24
  article-title: Task scheduling in cloud computing based on meta-heuristics: Review, taxonomy, open challenges, and future trends
  publication-title: Swarm Evol. Comput.
– year: 2020
  ident: b28
  article-title: Optimizing quantum cloning circuit parameters based on adaptive guided differential evolution algorithm
  publication-title: J. Adv. Res.
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b39
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
– volume: 89
  year: 2020
  ident: b33
  article-title: An intensify Harris Hawks optimizer for numerical and engineering optimization problems
  publication-title: Appl. Soft Comput.
– volume: 87
  year: 2020
  ident: b8
  article-title: A powerful variant of symbiotic organisms search algorithm for global optimization
  publication-title: Eng. Appl. Artif. Intell.
– volume: 114
  start-page: 48
  year: 2017
  end-page: 70
  ident: b11
  article-title: Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications
  publication-title: Adv. Eng. Softw.
– start-page: 1
  year: 2020
  end-page: 21
  ident: b21
  article-title: Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems
  publication-title: Appl. Intell.
– volume: 131
  start-page: 142
  year: 2004
  end-page: 146
  ident: b44
  article-title: Proton exchange membrane (PEM) fuel cell stack configuration using genetic algorithms
  publication-title: J. Power Sources
– volume: 188
  year: 2020
  ident: b63
  article-title: Dynamic opposite learning enhanced teaching–learning-based optimization
  publication-title: Knowl.-Based Syst.
– volume: 182
  start-page: 1
  year: 2019
  end-page: 8
  ident: b53
  article-title: Shark smell optimizer applied to identify the optimal parameters of the proton exchange membrane fuel cell model
  publication-title: Energy Convers. Manage.
– year: 2020
  ident: b25
  article-title: A novel black widow optimization algorithm for multilevel thresholding image segmentation
  publication-title: Expert Syst. Appl.
– volume: 13
  start-page: 283
  year: 2020
  ident: b59
  article-title: Differential evolution with linear bias reduction in parameter adaptation
  publication-title: Algorithms
– volume: 204
  year: 2020
  ident: b60
  article-title: Improving fuel cell performance via optimal parameters identification through fuzzy logic based-modeling and optimization
  publication-title: Energy
– start-page: 1942
  year: 1995
  end-page: 1948
  ident: b35
  article-title: Particle swarm optimization
  publication-title: Proceedings of ICNN’95-International Conference on Neural Networks, Vol. 4
– year: 2020
  ident: b3
  article-title: Gradient-based optimizer: A new metaheuristic optimization algorithm
  publication-title: Inform. Sci.
– volume: 28
  start-page: 1940
  year: 2019
  end-page: 1950
  ident: b46
  article-title: An interval type-3 fuzzy system and a new online fractional-order learning algorithm: theory and practice
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 89
  start-page: 228
  year: 2015
  end-page: 249
  ident: b37
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowl.-Based Syst.
– volume: 540
  start-page: 131
  year: 2020
  end-page: 159
  ident: b4
  article-title: Gradient-based optimizer: A new metaheuristic optimization algorithm
  publication-title: Inform. Sci.
– volume: 6
  start-page: 1428
  year: 2020
  end-page: 1437
  ident: b58
  article-title: New optimized technique for unknown parameters selection of SOFC using converged grass fibrous root optimization algorithm
  publication-title: Energy Rep.
– volume: 29
  start-page: 659
  year: 2018
  end-page: 692
  ident: b41
  article-title: A novel differential evolution algorithm for solving constrained engineering optimization problems
  publication-title: J. Intell. Manuf.
– start-page: 1
  year: 2019
  ident: b29
  article-title: Nature-inspired algorithms: A comprehensive review
  publication-title: Hybrid Computational Intelligence: Research and Applications
– volume: 4
  start-page: 195
  year: 2018
  end-page: 212
  ident: b57
  article-title: A hybrid SA-MFO algorithm for function optimization and engineering design problems
  publication-title: Complex Intell. Syst.
– volume: 10
  year: 2015
  ident: b1
  article-title: A comprehensive review of swarm optimization algorithms
  publication-title: PLoS One
– volume: 12
  start-page: 5601
  year: 2020
  ident: b54
  article-title: Performance improvement of PEM fuel cell using variable step-size incremental resistance MPPT technique
  publication-title: Sustainability
– volume: 52
  start-page: 2191
  year: 2019
  end-page: 2233
  ident: b32
  article-title: Metaheuristic research: a comprehensive survey
  publication-title: Artif. Intell. Rev.
– volume: 146
  start-page: 1833
  year: 2020
  end-page: 1845
  ident: b14
  article-title: A novel approach based on hybrid vortex search algorithm and differential evolution for identifying the optimal parameters of PEM fuel cell
  publication-title: Renew. Energy
– volume: 98
  start-page: 2375
  year: 2019
  end-page: 2385
  ident: b55
  article-title: Robust fuzzy control for fractional-order systems with estimated fraction-order
  publication-title: Nonlinear Dynam.
– year: 2020
  ident: b50
  article-title: An efficient henry gas solubility optimization for feature selection
  publication-title: Expert Syst. Appl.
– volume: 30
  start-page: 585
  year: 2006
  end-page: 597
  ident: b40
  article-title: Parameter optimization for a PEMFC model with a hybrid genetic algorithm
  publication-title: Int. J. Energy Res.
– volume: 77
  year: 2020
  ident: b2
  article-title: Nonprecious anodic catalysts for low-molecular-hydrocarbon fuel cells: Theoretical consideration and current progress
  publication-title: Prog. Energy Combust. Sci.
– volume: 35
  start-page: 649
  year: 2003
  end-page: 659
  ident: b9
  article-title: Rolling element bearing design through genetic algorithms
  publication-title: Eng. Optim.
– volume: 4
  start-page: 47
  year: 2006
  end-page: 53
  ident: b51
  article-title: Fuel cells: promising devices for distributed generation
  publication-title: IEEE Power Energy Mag.
– volume: 13
  start-page: 2592
  year: 2013
  end-page: 2612
  ident: b56
  article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems
  publication-title: Appl. Soft Comput.
– volume: 166
  start-page: 451
  year: 2019
  ident: 10.1016/j.engappai.2021.104309_b13
  article-title: Optimized parameters of SOFC for steady state and transient simulations using interior search algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2018.10.038
– volume: 101
  start-page: 646
  year: 2019
  ident: 10.1016/j.engappai.2021.104309_b20
  article-title: Henry gas solubility optimization: A novel physics-based algorithm
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.07.015
– volume: 4
  start-page: 47
  issue: 1
  year: 2006
  ident: 10.1016/j.engappai.2021.104309_b51
  article-title: Fuel cells: promising devices for distributed generation
  publication-title: IEEE Power Energy Mag.
  doi: 10.1109/MPAE.2006.1578531
– volume: 182
  start-page: 1
  year: 2019
  ident: 10.1016/j.engappai.2021.104309_b53
  article-title: Shark smell optimizer applied to identify the optimal parameters of the proton exchange membrane fuel cell model
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2018.12.057
– volume: 98
  start-page: 2375
  issue: 3
  year: 2019
  ident: 10.1016/j.engappai.2021.104309_b55
  article-title: Robust fuzzy control for fractional-order systems with estimated fraction-order
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-019-05217-w
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.engappai.2021.104309_b39
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 188
  year: 2020
  ident: 10.1016/j.engappai.2021.104309_b63
  article-title: Dynamic opposite learning enhanced teaching–learning-based optimization
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.104966
– start-page: 1942
  year: 1995
  ident: 10.1016/j.engappai.2021.104309_b35
  article-title: Particle swarm optimization
– volume: 6
  start-page: 1428
  year: 2020
  ident: 10.1016/j.engappai.2021.104309_b58
  article-title: New optimized technique for unknown parameters selection of SOFC using converged grass fibrous root optimization algorithm
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2020.05.024
– volume: 29
  start-page: 659
  issue: 3
  year: 2018
  ident: 10.1016/j.engappai.2021.104309_b41
  article-title: A novel differential evolution algorithm for solving constrained engineering optimization problems
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-017-1294-6
– volume: 52
  start-page: 2191
  issue: 4
  year: 2019
  ident: 10.1016/j.engappai.2021.104309_b32
  article-title: Metaheuristic research: a comprehensive survey
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-017-9605-z
– volume: 90
  year: 2020
  ident: 10.1016/j.engappai.2021.104309_b45
  article-title: A novel fractional-order type-2 fuzzy control method for online frequency regulation in ac microgrid
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103483
– volume: 207
  year: 2020
  ident: 10.1016/j.engappai.2021.104309_b17
  article-title: Recent moth-flame optimizer for enhanced solid oxide fuel cell output power via optimal parameters extraction process
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118326
– volume: 204
  year: 2020
  ident: 10.1016/j.engappai.2021.104309_b60
  article-title: Improving fuel cell performance via optimal parameters identification through fuzzy logic based-modeling and optimization
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117976
– year: 2020
  ident: 10.1016/j.engappai.2021.104309_b50
  article-title: An efficient henry gas solubility optimization for feature selection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113364
– volume: 540
  start-page: 131
  year: 2020
  ident: 10.1016/j.engappai.2021.104309_b4
  article-title: Gradient-based optimizer: A new metaheuristic optimization algorithm
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2020.06.037
– volume: 77
  year: 2020
  ident: 10.1016/j.engappai.2021.104309_b2
  article-title: Nonprecious anodic catalysts for low-molecular-hydrocarbon fuel cells: Theoretical consideration and current progress
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2019.100805
– volume: 90
  year: 2020
  ident: 10.1016/j.engappai.2021.104309_b34
  article-title: Tunicate swarm algorithm: A new bio-inspired based metaheuristic paradigm for global optimization
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103541
– volume: 165
  start-page: 169
  year: 2019
  ident: 10.1016/j.engappai.2021.104309_b12
  article-title: Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.11.024
– volume: 35
  start-page: 649
  issue: 6
  year: 2003
  ident: 10.1016/j.engappai.2021.104309_b9
  article-title: Rolling element bearing design through genetic algorithms
  publication-title: Eng. Optim.
  doi: 10.1080/03052150310001624403
– volume: 89
  year: 2020
  ident: 10.1016/j.engappai.2021.104309_b33
  article-title: An intensify Harris Hawks optimizer for numerical and engineering optimization problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.106018
– volume: 4
  start-page: 195
  issue: 3
  year: 2018
  ident: 10.1016/j.engappai.2021.104309_b57
  article-title: A hybrid SA-MFO algorithm for function optimization and engineering design problems
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-018-0066-z
– volume: 114
  start-page: 48
  year: 2017
  ident: 10.1016/j.engappai.2021.104309_b11
  article-title: Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.05.014
– volume: 89
  start-page: 228
  year: 2015
  ident: 10.1016/j.engappai.2021.104309_b37
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.07.006
– volume: 12
  start-page: 5601
  issue: 14
  year: 2020
  ident: 10.1016/j.engappai.2021.104309_b54
  article-title: Performance improvement of PEM fuel cell using variable step-size incremental resistance MPPT technique
  publication-title: Sustainability
  doi: 10.3390/su12145601
– start-page: 1
  year: 2020
  ident: 10.1016/j.engappai.2021.104309_b6
  article-title: A new hybrid chaotic atom search optimization based on tree-seed algorithm and Levy flight for solving optimization problems
  publication-title: Eng. Comput.
– volume: 146
  start-page: 1833
  year: 2020
  ident: 10.1016/j.engappai.2021.104309_b14
  article-title: A novel approach based on hybrid vortex search algorithm and differential evolution for identifying the optimal parameters of PEM fuel cell
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.08.046
– volume: 143
  start-page: 634
  year: 2018
  ident: 10.1016/j.engappai.2021.104309_b16
  article-title: Multi-verse optimizer for identifying the optimal parameters of PEMFC model
  publication-title: Energy
  doi: 10.1016/j.energy.2017.11.014
– volume: 10
  issue: 5
  year: 2015
  ident: 10.1016/j.engappai.2021.104309_b1
  article-title: A comprehensive review of swarm optimization algorithms
  publication-title: PLoS One
– start-page: 1
  year: 2019
  ident: 10.1016/j.engappai.2021.104309_b29
  article-title: Nature-inspired algorithms: A comprehensive review
– year: 2020
  ident: 10.1016/j.engappai.2021.104309_b15
  article-title: A novel strategy based on salp swarm algorithm for extracting the maximum power of proton exchange membrane fuel cell
  publication-title: Int. J. Hydrogen Energy
– volume: 43
  start-page: 1011
  issue: 3
  year: 2013
  ident: 10.1016/j.engappai.2021.104309_b18
  article-title: A novel artificial bee colony algorithm based on modified search equation and orthogonal learning
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TSMCB.2012.2222373
– start-page: 1
  year: 2020
  ident: 10.1016/j.engappai.2021.104309_b43
  article-title: Evaluating the performance of adaptive gainingsharing knowledge based algorithm on CEC 2020 benchmark problems
– volume: 39
  start-page: 3837
  issue: 8
  year: 2014
  ident: 10.1016/j.engappai.2021.104309_b52
  article-title: An improved TLBO with elite strategy for parameters identification of PEM fuel cell and solar cell models
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.12.110
– year: 2020
  ident: 10.1016/j.engappai.2021.104309_b3
  article-title: Gradient-based optimizer: A new metaheuristic optimization algorithm
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2020.06.037
– start-page: 1
  year: 2020
  ident: 10.1016/j.engappai.2021.104309_b21
  article-title: Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems
  publication-title: Appl. Intell.
– volume: 45
  start-page: 1
  issue: 3
  year: 2013
  ident: 10.1016/j.engappai.2021.104309_b10
  article-title: Exploration and exploitation in evolutionary algorithms: A survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/2480741.2480752
– volume: 8
  start-page: 19381
  year: 2020
  ident: 10.1016/j.engappai.2021.104309_b31
  article-title: Optimal sink node placement in large scale wireless sensor networks based on Harris’ hawk optimization algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2968981
– volume: 13
  start-page: 2592
  issue: 5
  year: 2013
  ident: 10.1016/j.engappai.2021.104309_b56
  article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.11.026
– year: 2021
  ident: 10.1016/j.engappai.2021.104309_b24
  article-title: Task scheduling in cloud computing based on meta-heuristics: Review, taxonomy, open challenges, and future trends
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2021.100841
– volume: 38
  start-page: 5796
  issue: 14
  year: 2013
  ident: 10.1016/j.engappai.2021.104309_b65
  article-title: Hybrid artificial bee colony algorithm for parameter estimation of proton exchange membrane fuel cell
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.01.058
– volume: 12
  start-page: 608
  issue: 2
  year: 2020
  ident: 10.1016/j.engappai.2021.104309_b48
  article-title: Environmental impacts on the performance of solar photovoltaic systems
  publication-title: Sustainability
  doi: 10.3390/su12020608
– volume: 97
  start-page: 849
  year: 2019
  ident: 10.1016/j.engappai.2021.104309_b23
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.02.028
– volume: 96
  start-page: 120
  year: 2016
  ident: 10.1016/j.engappai.2021.104309_b38
  article-title: SCA: a sine cosine algorithm for solving optimization problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.12.022
– volume: 87
  year: 2020
  ident: 10.1016/j.engappai.2021.104309_b8
  article-title: A powerful variant of symbiotic organisms search algorithm for global optimization
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.103294
– volume: 211
  year: 2020
  ident: 10.1016/j.engappai.2021.104309_b64
  article-title: Orthogonal Nelder-Mead moth flame method for parameters identification of photovoltaic modules
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2020.112764
– volume: 131
  start-page: 142
  issue: 1–2
  year: 2004
  ident: 10.1016/j.engappai.2021.104309_b44
  article-title: Proton exchange membrane (PEM) fuel cell stack configuration using genetic algorithms
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2004.01.012
– volume: 2
  start-page: 137
  issue: 2
  year: 2012
  ident: 10.1016/j.engappai.2021.104309_b7
  article-title: A survey of bio inspired optimization algorithms
  publication-title: Int. J. Soft Comput. Eng.
– volume: 174
  year: 2021
  ident: 10.1016/j.engappai.2021.104309_b27
  article-title: Hybrid slime mould algorithm with adaptive guided differential evolution algorithm for combinatorial and global optimization problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.114689
– volume: 138
  start-page: 458
  year: 2019
  ident: 10.1016/j.engappai.2021.104309_b49
  article-title: Maximizing SOFC performance through optimal parameters identification by modern optimization algorithms
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.01.072
– year: 2020
  ident: 10.1016/j.engappai.2021.104309_b25
  article-title: A novel black widow optimization algorithm for multilevel thresholding image segmentation
  publication-title: Expert Syst. Appl.
– volume: 18
  start-page: 594
  issue: 3
  year: 2013
  ident: 10.1016/j.engappai.2021.104309_b5
  article-title: Parameter tuning or default values? An empirical investigation in search-based software engineering
  publication-title: Empir. Softw. Eng.
  doi: 10.1007/s10664-013-9249-9
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.engappai.2021.104309_b26
  article-title: Hybrid Harris hawks optimization with cuckoo search for drug design and discovery in chemoinformatics
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-71502-z
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 10.1016/j.engappai.2021.104309_b61
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– year: 2020
  ident: 10.1016/j.engappai.2021.104309_b28
  article-title: Optimizing quantum cloning circuit parameters based on adaptive guided differential evolution algorithm
  publication-title: J. Adv. Res.
– volume: 13
  start-page: 283
  issue: 11
  year: 2020
  ident: 10.1016/j.engappai.2021.104309_b59
  article-title: Differential evolution with linear bias reduction in parameter adaptation
  publication-title: Algorithms
  doi: 10.3390/a13110283
– volume: 100
  year: 2021
  ident: 10.1016/j.engappai.2021.104309_b22
  article-title: An improved manta ray foraging optimizer for cost-effective emission dispatch problems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2021.104155
– year: 2020
  ident: 10.1016/j.engappai.2021.104309_b47
  article-title: A better balance in metaheuristic algorithms: Does it exist?
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2020.100671
– volume: 33
  start-page: 1
  year: 2017
  ident: 10.1016/j.engappai.2021.104309_b36
  article-title: A survey of swarm intelligence for dynamic optimization: Algorithms and applications
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2016.12.005
– volume: 28
  start-page: 1940
  issue: 9
  year: 2019
  ident: 10.1016/j.engappai.2021.104309_b46
  article-title: An interval type-3 fuzzy system and a new online fractional-order learning algorithm: theory and practice
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2019.2928509
– volume: 32
  start-page: 10759
  issue: 14
  year: 2020
  ident: 10.1016/j.engappai.2021.104309_b19
  article-title: A modified Henry gas solubility optimization for solving motif discovery problem
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04611-0
– volume: 94
  year: 2020
  ident: 10.1016/j.engappai.2021.104309_b30
  article-title: Lévy flight distribution: A new metaheuristic algorithm for solving engineering optimization problems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103731
– volume: 30
  start-page: 585
  issue: 8
  year: 2006
  ident: 10.1016/j.engappai.2021.104309_b40
  article-title: Parameter optimization for a PEMFC model with a hybrid genetic algorithm
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.1170
– start-page: 391
  year: 2020
  ident: 10.1016/j.engappai.2021.104309_b42
  article-title: Generalized adaptive differential evolution algorithm for solving CEC 2020 benchmark problems
– volume: 150
  year: 2020
  ident: 10.1016/j.engappai.2021.104309_b62
  article-title: Orthogonally-designed adapted grasshopper optimization: A comprehensive analysis
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113282
SSID ssj0003846
Score 2.571982
Snippet Meta-heuristic optimization algorithms aim to tackle real world problems through maximizing some specific criteria such as performance, profit, and quality or...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104309
SubjectTerms Archimedes optimization algorithm (AOA)
Energy efficiency
Fuel cell
Local escaping operator
Meta-heuristic optimization algorithms
Orthogonal learning
Title An enhanced Archimedes optimization algorithm based on Local escaping operator and Orthogonal learning for PEM fuel cell parameter identification
URI https://dx.doi.org/10.1016/j.engappai.2021.104309
Volume 103
WOSCitedRecordID wos000659848800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKxgMv3BHjJj_wZqU0SR07jxUqGoiVSQypb5FrO21HmlZNO037F_w0_hHHsZ1kYtJAiJeosuS48vnic3wu30HobSJoxCV831LxQWDoWwKeJzRI8kQPUmXoR2yzCTaZ8Ok0Pe31fvpamIuClSW_vEw3_1XUMAbCNqWzfyHu5qUwAL9B6PAEscPzjwQ_KokuFzawX_PKgr4zzLJwNqxc0SURxXy9Xe4WK2K0mDIRg89GqRFdSVFXUK03ug7A18GFL9vdYj2vfYaFd6WY9MTT8QnJ97ogxv1PDIv4ymTXkKVyOUit2L3zv6U_JN3YeZ2OsK3n1F1EOkShDfDW-6pyrTnHVSVW5LjfenKLle2YLRZCkHERqGVb4qavvlsNOxdXTQRhArcGbRkpF7BD5KTfdYBEYZN-57xyvjKnTYOy7s0oCFPmaLbt4c5ZHJiU3munf02x8LsmsU6N874u57AdYtk3S5uIeDxIW93ZZDR-NQua9SJDakVZfAcdRoymcNAejj6Op58a8yDmtnrM_8FO2frNq91sMXWsoLOH6L67vuCRhd0j1NPlY_TAXWWwUxQVDPluIX7sCfoxKrEHJm6BibvAxA0wcQ1MDEM1MLEHJvbAxABM3AITe2BiACYGYGIDTGyAiRtg4uvAfIq-fRifvT8OXEOQQMZhtAtorGjC4fjIZa5jSQdCDELNGM21YFIkPIoFFznoKbC7dRgPFaMzmYQzRfNUcB0_QwflutTPEQ5ZoiIaUy6TaMhUONOp1LM8Z5EcKqHkEaJ-0zPp2PJN05Yi82mR55kXVmaElVlhHaF3zbyN5Yu5dUbqZZo5q9dasxlA8Za5L_5h7kt0r_2aXqGD3XavX6O78mK3rLZvHGp_Adds3SU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+enhanced+Archimedes+optimization+algorithm+based+on+Local+escaping+operator+and+Orthogonal+learning+for+PEM+fuel+cell+parameter+identification&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Houssein%2C+Essam+H.&rft.au=Helmy%2C+Bahaa+El-din&rft.au=Rezk%2C+Hegazy&rft.au=Nassef%2C+Ahmed+M.&rft.date=2021-08-01&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.eissn=1873-6769&rft.volume=103&rft_id=info:doi/10.1016%2Fj.engappai.2021.104309&rft.externalDocID=S0952197621001573
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon