3D variational autoencoder for fingerprinting microstructure volume elements
Microstructure quantification is an important step towards establishing structure–property relationships in materials. Machine learning-based image processing methods have been shown to outperform conventional image processing techniques and are increasingly applied to microstructure quantification...
Saved in:
| Published in: | Computational materials science Vol. 259; p. 114145 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.09.2025
|
| Subjects: | |
| ISSN: | 0927-0256 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Microstructure quantification is an important step towards establishing structure–property relationships in materials. Machine learning-based image processing methods have been shown to outperform conventional image processing techniques and are increasingly applied to microstructure quantification tasks. In this work, we present a 3D variational autoencoder (VAE) for encoding microstructure volume elements (VEs) comprising voxelated crystallographic orientation data. Crystal symmetries in the orientation space are accounted for by mapping to the crystallographic fundamental zone as a preprocessing step, which allows for a continuous loss function to be used and improves the training convergence rate. The VAE is then used to encode a training set of VEs with an equiaxed polycrystalline microstructure with random texture. Accurate reconstructions are achieved with a relative average misorientation error of 3×10−2, on the test dataset, for a continuous latent space with dimension 256. We show that the model generalises well to microstructures with textures, grain sizes and aspect ratios outside the training distribution.
The main aim of this paper is to present the 3D VAE as an application-agnostic method for parameterising microstructure for input into downstream tasks where microstructure dependence is required. As a proof of concept, a simple surrogate model for uniaxial crystal plasticity (CP) simulations, with a fixed load path and microstructural dependence is presented. Microstructural fingerprints, obtained by encoding VEs with the trained VAE encoder, parameterise the VEs in a low-dimensional latent space and are stored alongside the volume-averaged stress response, at each strain increment. This is then used to train a fully connected neural network mapping the input fingerprint to the resulting stress response, which acts as a surrogate model for the CP simulation. The fingerprint-based surrogate model is shown to accurately predict the microstructural dependence in the CP stress response, with a mean relative error of 2.75 MPa on unseen test data. This approach offers a significant speed-up on the order of 108 for a stress–strain curve prediction, compared to running a CP simulation.
[Display omitted] |
|---|---|
| AbstractList | Microstructure quantification is an important step towards establishing structure–property relationships in materials. Machine learning-based image processing methods have been shown to outperform conventional image processing techniques and are increasingly applied to microstructure quantification tasks. In this work, we present a 3D variational autoencoder (VAE) for encoding microstructure volume elements (VEs) comprising voxelated crystallographic orientation data. Crystal symmetries in the orientation space are accounted for by mapping to the crystallographic fundamental zone as a preprocessing step, which allows for a continuous loss function to be used and improves the training convergence rate. The VAE is then used to encode a training set of VEs with an equiaxed polycrystalline microstructure with random texture. Accurate reconstructions are achieved with a relative average misorientation error of 3×10−2, on the test dataset, for a continuous latent space with dimension 256. We show that the model generalises well to microstructures with textures, grain sizes and aspect ratios outside the training distribution.
The main aim of this paper is to present the 3D VAE as an application-agnostic method for parameterising microstructure for input into downstream tasks where microstructure dependence is required. As a proof of concept, a simple surrogate model for uniaxial crystal plasticity (CP) simulations, with a fixed load path and microstructural dependence is presented. Microstructural fingerprints, obtained by encoding VEs with the trained VAE encoder, parameterise the VEs in a low-dimensional latent space and are stored alongside the volume-averaged stress response, at each strain increment. This is then used to train a fully connected neural network mapping the input fingerprint to the resulting stress response, which acts as a surrogate model for the CP simulation. The fingerprint-based surrogate model is shown to accurately predict the microstructural dependence in the CP stress response, with a mean relative error of 2.75 MPa on unseen test data. This approach offers a significant speed-up on the order of 108 for a stress–strain curve prediction, compared to running a CP simulation.
[Display omitted] |
| ArticleNumber | 114145 |
| Author | Atkinson, Michael D. White, Michael D. Plowman, Adam J. Shanthraj, Pratheek |
| Author_xml | – sequence: 1 givenname: Michael D. orcidid: 0000-0002-7730-3240 surname: White fullname: White, Michael D. email: mike.white@ukaea.uk – sequence: 2 givenname: Michael D. orcidid: 0000-0003-4843-699X surname: Atkinson fullname: Atkinson, Michael D. – sequence: 3 givenname: Adam J. orcidid: 0000-0002-9781-7353 surname: Plowman fullname: Plowman, Adam J. – sequence: 4 givenname: Pratheek orcidid: 0000-0002-6324-0306 surname: Shanthraj fullname: Shanthraj, Pratheek |
| BookMark | eNqFkMtqwzAQRbVIoUnab6h_wK4kW5G9DOkTAt20a6HHqCjYUpFkQ_--CinddjHMMNw7nLkbtPLBA0J3BDcEk939qdFhmmRO2jUUU9YQ0pGOrdAaD5TXZbO7RpuUTrioh56u0bF9qBYZncwueDlWcs4BvA4GYmVDKec_IX5F53OZqsnpGFKOs85zhGoJ4zxBBSNM4HO6QVdWjgluf_sWfTw9vh9e6uPb8-thf6x1S2iuO8OIaltDFDeKcWILo-ktBwyW8w4bNVCqyABcqU71fd_tQCvLQGImmabtFvHL3TNMimBFAZxk_BYEi3MQ4iT-ghDnIMQliOLcX5xQ8BYHURRF-ReMi6CzMMH9e-MH1gFxoA |
| Cites_doi | 10.1016/j.actamat.2019.08.045 10.1098/rspa.2017.0274 10.1038/s41524-022-00876-7 10.1038/s41598-018-31571-7 10.1016/j.commatsci.2022.111985 10.1016/j.matdes.2021.109544 10.1016/j.actamat.2007.10.044 10.1016/j.commatsci.2018.03.074 10.1007/s11222-007-9033-z 10.1016/j.commatsci.2018.04.030 10.1007/s10851-009-0161-2 10.1038/s41563-019-0402-8 10.1088/1361-651X/ab7150 10.1007/s11661-020-06008-4 10.1016/j.cma.2020.113234 10.1016/j.actamat.2017.05.014 10.21105/joss.07164 10.1038/s41746-019-0193-y 10.1007/s11831-022-09795-8 10.1016/j.jmps.2023.105329 10.1016/j.matdes.2021.109497 10.1186/2193-9772-3-5 10.1103/PhysRevB.73.024108 10.1016/j.actamat.2023.119514 10.2481/dsj.1.19 10.1016/j.commatsci.2015.08.011 10.1016/j.ijplas.2022.103430 10.1016/j.ijplas.2018.03.009 10.1002/adem.201901044 10.1063/1.4946894 10.1016/j.cam.2009.08.077 10.1016/j.pmatsci.2018.01.005 10.1007/s11837-011-0057-7 10.1146/annurev.matsci.32.110101.155324 10.1557/mrs.2016.163 10.12688/materialsopenres.17516.1 10.1016/j.cma.2019.112594 10.1016/j.msea.2015.07.075 10.1038/s41524-022-00764-0 10.1007/BF00344251 10.1016/j.actamat.2010.04.041 10.1561/2200000056 10.1002/wics.101 |
| ContentType | Journal Article |
| Copyright | 2025 The Authors |
| Copyright_xml | – notice: 2025 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.commatsci.2025.114145 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_commatsci_2025_114145 S0927025625004884 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABXZ AAEDT AAEDW AAEPC AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABWVN ABXDB ABXRA ACDAQ ACGFS ACLOT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AECPX AEIPS AEKER AENEX AEUPX AEZYN AFJKZ AFPUW AFRZQ AFTJW AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SBC SDF SDG SES SEW SMS SPC SPCBC SPD SSM SST SSZ T5K VH1 WUQ XPP ZMT ~G- ~HD 9DU AAYXX CITATION |
| ID | FETCH-LOGICAL-c312t-4d51b33d1b7db571f414d8f7e0ef7740db922b19e7bb4b88846ecbf5ea05a5c23 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001547379800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0927-0256 |
| IngestDate | Sat Nov 29 06:55:28 EST 2025 Sat Oct 04 17:00:13 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Microstructure characterisation Feature learning Crystal plasticity Fingerprinting Surrogate model Machine learning |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c312t-4d51b33d1b7db571f414d8f7e0ef7740db922b19e7bb4b88846ecbf5ea05a5c23 |
| ORCID | 0000-0002-7730-3240 0000-0002-6324-0306 0000-0002-9781-7353 0000-0003-4843-699X |
| OpenAccessLink | https://dx.doi.org/10.1016/j.commatsci.2025.114145 |
| ParticipantIDs | crossref_primary_10_1016_j_commatsci_2025_114145 elsevier_sciencedirect_doi_10_1016_j_commatsci_2025_114145 |
| PublicationCentury | 2000 |
| PublicationDate | September 2025 2025-09-00 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: September 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Computational materials science |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Kingma, Welling (b45) 2019; 12 Mianroodi, Shanthraj, Liu, Vakili, Roongta, Siboni, Perchikov, Bai, Svendsen, Roters, Raabe, Diehl (b2) 2022; 8 DeCost, Francis, Holm (b25) 2017; 133 Van Der Giessen, Schultz, Bertin, Bulatov, Cai, Csányi, Foiles, Geers, González, Hütter, Kim, Kochmann, LLorca, Mattsson, Rottler, Shluger, Sills, Steinbach, Strachan, Tadmor (b1) 2020; 28 DeCost, Holm (b24) 2015; 110 Roters, Diehl, Shanthraj, Eisenlohr, Reuber, Wong, Maiti, Ebrahimi, Hochrainer, Fabritius, Nikolov, Friák, Fujita, Grilli, Janssens, Jia, Kok, Ma, Meier, Werner, Stricker, Weygand, Raabe (b40) 2019; 158 Huynh (b49) 2009; 35 Björk, Myhre, Johansen (b46) 2022 McDowell, LeSar (b15) 2016; 41 Burnett, Withers (b13) 2019; 18 Torquato (b18) 2002; 32 Oommen, Shukla, Goswami, Dingreville, Karniadakis (b37) 2022; 8 Otto de Mentock, Roongta, Roters, Eisenlohr, Martin (b43) 2025; 10 Hahn, Meyers (b17) 2015; 646 Michael White, . Michael Atkinson, . Adam Plowman, . Pratheek Shanthraj, 3D variational autoencoder for fingerprinting microstructure volume elements: Supplementary Data. Fukushima (b28) 1980; 36 Liu, Ocegueda, Trautner, Stuart, Bhattacharya (b9) 2023; 178 Bostanabad, Zhang, Li, Kearney, Brinson, Apley, Liu, Chen (b16) 2018; 95 Bonatti, Berisha, Mohr (b8) 2022; 158 . Chen, Xu, Chawla, Ren, Jiao (b23) 2019; 179 Krakow, Bennett, Johnstone, Vukmanovic, Solano-Alvarez, Lainé, Einsle, Midgley, Rae, Hielscher (b39) 2017; 473 Kalidindi, Niezgoda, Salem (b19) 2011; 63 Michael White, lightning-vae3d. URL White, Gowtham, Jeyapriya, Basu, Withers, Race (b36) 2024 Geers, Kouznetsova, Brekelmans (b5) 2010; 234 Li, Zhang, Zhao, Burkhart, Brinson, Chen (b31) 2018; 8 Wu, Nguyen, Kilingar, Noels (b11) 2020; 369 Krizhevsky, Sutskever, Hinton (b29) 2012 Ghavamian, Simone (b10) 2019; 357 Suh, Rajagopalan, Li, Rajan (b27) 2002; 1 Kingma, Welling (b32) 2013 Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga, Desmaison, Kopf, Yang, DeVito, Raison, Tejani, Chilamkurthy, Steiner, Fang, Bai, Chintala (b42) 2019 URL Alber, Buganza Tepole, Cannon, De, Dura-Bernal, Garikipati, Karniadakis, Lytton, Perdikaris, Petzold, Kuhl (b6) 2019; 2 Desai, Shrivastava, D’Elia, Najm, Dingreville (b38) 2024; 263 Fullwood, Niezgoda, Kalidindi (b21) 2008; 56 Fernandez-Zelaia, Mayeur, Cheng, Lee, Knipe, Kadau (b12) 2024 Cang, Li, Yao, Jiao, Ren (b33) 2018; 150 von Luxburg (b51) 2007; 17 White, Tarakanov, Withers, Race, Law (b26) 2023; 218 Diehl, Wang, Liu, Rezaei Mianroodi, Han, Ma, Kok, Roters, Shanthraj (b3) 2020; 22 Groeber, Jackson (b41) 2014; 3 Liu, Shanthraj, Diehl, Roters, Dong, Dong, Ding, Raabe (b48) 2018; 106 Agrawal, Choudhary (b14) 2016; 4 Niezgoda, Turner, Fullwood, Kalidindi (b20) 2010; 58 Lu, Tadmor, Kaxiras (b4) 2006; 73 He, Zhang, Ren, Sun (b35) 2015 Hu, Li, Wang, Wang (b22) 2021; 201 Holm, Cohn, Gao, Kitahara, Matson, Lei, Yarasi (b30) 2020; 51 Kim, Park, Jung, Asghari-Rad, Lee, Kim, Jung, Kim (b34) 2021; 202 Bishara, Xie, Liu, Li (b7) 2023; 30 Kingma, Ba (b44) 2017 Abdi, Williams (b50) 2010; 2 Plowman, Jedrasiak, Jailin, Crowther, Mishra, Shanthraj, Quinta Da Fonseca (b47) 2023; 2 Abdi (10.1016/j.commatsci.2025.114145_b50) 2010; 2 Kalidindi (10.1016/j.commatsci.2025.114145_b19) 2011; 63 Fukushima (10.1016/j.commatsci.2025.114145_b28) 1980; 36 He (10.1016/j.commatsci.2025.114145_b35) 2015 Hahn (10.1016/j.commatsci.2025.114145_b17) 2015; 646 Chen (10.1016/j.commatsci.2025.114145_b23) 2019; 179 Lu (10.1016/j.commatsci.2025.114145_b4) 2006; 73 McDowell (10.1016/j.commatsci.2025.114145_b15) 2016; 41 Liu (10.1016/j.commatsci.2025.114145_b48) 2018; 106 Holm (10.1016/j.commatsci.2025.114145_b30) 2020; 51 Bostanabad (10.1016/j.commatsci.2025.114145_b16) 2018; 95 Huynh (10.1016/j.commatsci.2025.114145_b49) 2009; 35 10.1016/j.commatsci.2025.114145_b52 Kim (10.1016/j.commatsci.2025.114145_b34) 2021; 202 Kingma (10.1016/j.commatsci.2025.114145_b44) 2017 Liu (10.1016/j.commatsci.2025.114145_b9) 2023; 178 Plowman (10.1016/j.commatsci.2025.114145_b47) 2023; 2 Hu (10.1016/j.commatsci.2025.114145_b22) 2021; 201 White (10.1016/j.commatsci.2025.114145_b36) 2024 White (10.1016/j.commatsci.2025.114145_b26) 2023; 218 Wu (10.1016/j.commatsci.2025.114145_b11) 2020; 369 10.1016/j.commatsci.2025.114145_b53 Burnett (10.1016/j.commatsci.2025.114145_b13) 2019; 18 Niezgoda (10.1016/j.commatsci.2025.114145_b20) 2010; 58 Oommen (10.1016/j.commatsci.2025.114145_b37) 2022; 8 Geers (10.1016/j.commatsci.2025.114145_b5) 2010; 234 DeCost (10.1016/j.commatsci.2025.114145_b24) 2015; 110 Krakow (10.1016/j.commatsci.2025.114145_b39) 2017; 473 Agrawal (10.1016/j.commatsci.2025.114145_b14) 2016; 4 DeCost (10.1016/j.commatsci.2025.114145_b25) 2017; 133 Mianroodi (10.1016/j.commatsci.2025.114145_b2) 2022; 8 Bonatti (10.1016/j.commatsci.2025.114145_b8) 2022; 158 Krizhevsky (10.1016/j.commatsci.2025.114145_b29) 2012 Bishara (10.1016/j.commatsci.2025.114145_b7) 2023; 30 Roters (10.1016/j.commatsci.2025.114145_b40) 2019; 158 Groeber (10.1016/j.commatsci.2025.114145_b41) 2014; 3 Kingma (10.1016/j.commatsci.2025.114145_b45) 2019; 12 Li (10.1016/j.commatsci.2025.114145_b31) 2018; 8 Fullwood (10.1016/j.commatsci.2025.114145_b21) 2008; 56 von Luxburg (10.1016/j.commatsci.2025.114145_b51) 2007; 17 Ghavamian (10.1016/j.commatsci.2025.114145_b10) 2019; 357 Björk (10.1016/j.commatsci.2025.114145_b46) 2022 Kingma (10.1016/j.commatsci.2025.114145_b32) 2013 Otto de Mentock (10.1016/j.commatsci.2025.114145_b43) 2025; 10 Desai (10.1016/j.commatsci.2025.114145_b38) 2024; 263 Alber (10.1016/j.commatsci.2025.114145_b6) 2019; 2 Diehl (10.1016/j.commatsci.2025.114145_b3) 2020; 22 Torquato (10.1016/j.commatsci.2025.114145_b18) 2002; 32 Suh (10.1016/j.commatsci.2025.114145_b27) 2002; 1 Fernandez-Zelaia (10.1016/j.commatsci.2025.114145_b12) 2024 Van Der Giessen (10.1016/j.commatsci.2025.114145_b1) 2020; 28 Cang (10.1016/j.commatsci.2025.114145_b33) 2018; 150 Paszke (10.1016/j.commatsci.2025.114145_b42) 2019 |
| References_xml | – volume: 150 start-page: 212 year: 2018 end-page: 221 ident: b33 article-title: Improving direct physical properties prediction of heterogeneous materials from imaging data via convolutional neural network and a morphology-aware generative model publication-title: Comput. Mater. Sci. – volume: 35 start-page: 155 year: 2009 end-page: 164 ident: b49 article-title: Metrics for 3D rotations: Comparison and analysis publication-title: J. Math. Imaging Vision – volume: 158 start-page: 420 year: 2019 end-page: 478 ident: b40 article-title: DAMASK – the Düsseldorf advanced material simulation kit for modeling multi-physics crystal plasticity, thermal, and damage phenomena from the single crystal up to the component scale publication-title: Comput. Mater. Sci. – volume: 369 year: 2020 ident: b11 article-title: A recurrent neural network-accelerated multi-scale model for elasto-plastic heterogeneous materials subjected to random cyclic and non-proportional loading paths publication-title: Comput. Methods Appl. Mech. Engrg. – reference: . URL – year: 2015 ident: b35 article-title: Deep residual learning for image recognition – volume: 1 start-page: 19 year: 2002 end-page: 26 ident: b27 article-title: The application of principal component analysis to materials science data publication-title: Data Sci. J. – volume: 2 start-page: 433 year: 2010 end-page: 459 ident: b50 article-title: Principal component analysis: Principal component analysis publication-title: Wiley Interdiscip. Rev.: Comput. Stat. – volume: 32 start-page: 77 year: 2002 end-page: 111 ident: b18 article-title: Statistical description of microstructures publication-title: Annu. Rev. Mater. Res. – volume: 8 start-page: 190 year: 2022 ident: b37 article-title: Learning two-phase microstructure evolution using neural operators and autoencoder architectures publication-title: Npj Comput. Mater. – volume: 473 year: 2017 ident: b39 article-title: On three-dimensional misorientation spaces publication-title: Proc. R. Soc. A: Math. Phys. Eng. Sci. – volume: 58 start-page: 4432 year: 2010 end-page: 4445 ident: b20 article-title: Optimized structure based representative volume element sets reflecting the ensemble-averaged 2-point statistics publication-title: Acta Mater. – volume: 56 start-page: 942 year: 2008 end-page: 948 ident: b21 article-title: Microstructure reconstructions from 2-point statistics using phase-recovery algorithms publication-title: Acta Mater. – volume: 4 year: 2016 ident: b14 article-title: Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science publication-title: APL Mater. – volume: 95 start-page: 1 year: 2018 end-page: 41 ident: b16 article-title: Computational microstructure characterization and reconstruction: Review of the state-of-the-art techniques publication-title: Prog. Mater. Sci. – volume: 218 year: 2023 ident: b26 article-title: Digital fingerprinting of microstructures publication-title: Comput. Mater. Sci. – volume: 2 start-page: 2 year: 2023 ident: b47 article-title: A novel integrated framework for reproducible formability predictions using virtual materials testing publication-title: Mater. Open Res. – volume: 179 start-page: 317 year: 2019 end-page: 327 ident: b23 article-title: Hierarchical n-point polytope functions for quantitative representation of complex heterogeneous materials and microstructural evolution publication-title: Acta Mater. – year: 2012 ident: b29 article-title: ImageNet classification with deep convolutional neural networks publication-title: Advances in Neural Information Processing Systems – volume: 158 year: 2022 ident: b8 article-title: From CP-FFT to CP-RNN: Recurrent neural network surrogate model of crystal plasticity publication-title: Int. J. Plast. – volume: 17 start-page: 395 year: 2007 end-page: 416 ident: b51 article-title: A tutorial on spectral clustering publication-title: Stat. Comput. – volume: 133 start-page: 30 year: 2017 end-page: 40 ident: b25 article-title: Exploring the microstructure manifold: Image texture representations applied to ultrahigh carbon steel microstructures publication-title: Acta Mater. – volume: 646 start-page: 101 year: 2015 end-page: 134 ident: b17 article-title: Grain-size dependent mechanical behavior of nanocrystalline metals publication-title: Mater. Sci. Eng.: A – volume: 110 start-page: 126 year: 2015 end-page: 133 ident: b24 article-title: A computer vision approach for automated analysis and classification of microstructural image data publication-title: Comput. Mater. Sci. – volume: 263 year: 2024 ident: b38 article-title: Trade-offs in the latent representation of microstructure evolution publication-title: Acta Mater. – volume: 178 year: 2023 ident: b9 article-title: Learning macroscopic internal variables and history dependence from microscopic models publication-title: J. Mech. Phys. Solids – year: 2024 ident: b36 article-title: Exploring descriptors for titanium microstructure via digital fingerprints from variational autoencoders – year: 2022 ident: b46 article-title: Simpler is better: spectral regularization and up-sampling techniques for variational autoencoders – reference: . Michael White, . Michael Atkinson, . Adam Plowman, . Pratheek Shanthraj, 3D variational autoencoder for fingerprinting microstructure volume elements: Supplementary Data. – volume: 36 start-page: 193 year: 1980 end-page: 202 ident: b28 article-title: Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position publication-title: Biol. Cybernet. – year: 2024 ident: b12 article-title: Self-supervised feature distillation and design of experiments for efficient training of micromechanical deep learning surrogates – start-page: 8024 year: 2019 end-page: 8035 ident: b42 article-title: PyTorch: An imperative style, high-performance deep learning library publication-title: Advances in Neural Information Processing Systems 32 – volume: 10 start-page: 7164 year: 2025 ident: b43 article-title: A python library for pre- and post-processing of DAMASK simulations publication-title: J. Open Source Softw. – reference: . Michael White, lightning-vae3d. URL – year: 2017 ident: b44 article-title: Adam: A method for stochastic optimization – volume: 2 start-page: 115 year: 2019 ident: b6 article-title: Integrating machine learning and multiscale modeling—perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences publication-title: Npj Digit. Med. – volume: 18 start-page: 1041 year: 2019 end-page: 1049 ident: b13 article-title: Completing the picture through correlative characterization publication-title: Nat. Mater. – volume: 41 start-page: 587 year: 2016 end-page: 593 ident: b15 article-title: The need for microstructure informatics in process–structure–property relations publication-title: MRS Bull. – volume: 8 start-page: 93 year: 2022 ident: b2 article-title: Modeling and simulation of microstructure in metallic systems based on multi-physics approaches publication-title: Npj Comput. Mater. – volume: 3 start-page: 56 year: 2014 end-page: 72 ident: b41 article-title: DREAM.3D: A digital representation environment for the analysis of microstructure in 3D publication-title: Integr. Mater. Manuf. Innov. – volume: 12 start-page: 307 year: 2019 end-page: 392 ident: b45 article-title: An introduction to variational autoencoders publication-title: Found. Trends® Mach. Learn. – volume: 28 year: 2020 ident: b1 article-title: Roadmap on multiscale materials modeling publication-title: Modelling Simul. Mater. Sci. Eng. – volume: 51 start-page: 5985 year: 2020 end-page: 5999 ident: b30 article-title: Overview: Computer vision and machine learning for microstructural characterization and analysis publication-title: Met. Mater. Trans. A – volume: 201 year: 2021 ident: b22 article-title: A microstructure-informatic strategy for Vickers hardness forecast of austenitic steels from experimental data publication-title: Mater. Des. – reference: . – volume: 30 start-page: 191 year: 2023 end-page: 222 ident: b7 article-title: A state-of-the-art review on machine learning-based multiscale modeling, simulation, homogenization and design of materials publication-title: Arch. Comput. Methods Eng. – volume: 106 start-page: 203 year: 2018 end-page: 227 ident: b48 article-title: An integrated crystal plasticity–phase field model for spatially resolved twin nucleation, propagation, and growth in hexagonal materials publication-title: Int. J. Plast. – volume: 234 start-page: 2175 year: 2010 end-page: 2182 ident: b5 article-title: Multi-scale computational homogenization: Trends and challenges publication-title: J. Comput. Appl. Math. – volume: 73 year: 2006 ident: b4 article-title: From electrons to finite elements: A concurrent multiscale approach for metals publication-title: Phys. Rev. B – volume: 202 year: 2021 ident: b34 article-title: Exploration of optimal microstructure and mechanical properties in continuous microstructure space using a variational autoencoder publication-title: Mater. Des. – volume: 63 start-page: 34 year: 2011 end-page: 41 ident: b19 article-title: Microstructure informatics using higher-order statistics and efficient data-mining protocols publication-title: JOM – volume: 22 year: 2020 ident: b3 article-title: Solving material mechanics and multiphysics problems of metals with complex microstructures using DAMASK—The Düsseldorf advanced material simulation kit publication-title: Adv. Eng. Mater. – volume: 357 year: 2019 ident: b10 article-title: Accelerating multiscale finite element simulations of history-dependent materials using a recurrent neural network publication-title: Comput. Methods Appl. Mech. Engrg. – year: 2013 ident: b32 article-title: Auto-encoding variational Bayes – volume: 8 start-page: 13461 year: 2018 ident: b31 article-title: A transfer learning approach for microstructure reconstruction and structure-property predictions publication-title: Sci. Rep. – volume: 179 start-page: 317 year: 2019 ident: 10.1016/j.commatsci.2025.114145_b23 article-title: Hierarchical n-point polytope functions for quantitative representation of complex heterogeneous materials and microstructural evolution publication-title: Acta Mater. doi: 10.1016/j.actamat.2019.08.045 – volume: 473 issue: 2206 year: 2017 ident: 10.1016/j.commatsci.2025.114145_b39 article-title: On three-dimensional misorientation spaces publication-title: Proc. R. Soc. A: Math. Phys. Eng. Sci. doi: 10.1098/rspa.2017.0274 – volume: 8 start-page: 190 issue: 1 year: 2022 ident: 10.1016/j.commatsci.2025.114145_b37 article-title: Learning two-phase microstructure evolution using neural operators and autoencoder architectures publication-title: Npj Comput. Mater. doi: 10.1038/s41524-022-00876-7 – volume: 8 start-page: 13461 issue: 1 year: 2018 ident: 10.1016/j.commatsci.2025.114145_b31 article-title: A transfer learning approach for microstructure reconstruction and structure-property predictions publication-title: Sci. Rep. doi: 10.1038/s41598-018-31571-7 – volume: 218 year: 2023 ident: 10.1016/j.commatsci.2025.114145_b26 article-title: Digital fingerprinting of microstructures publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2022.111985 – ident: 10.1016/j.commatsci.2025.114145_b53 – volume: 202 year: 2021 ident: 10.1016/j.commatsci.2025.114145_b34 article-title: Exploration of optimal microstructure and mechanical properties in continuous microstructure space using a variational autoencoder publication-title: Mater. Des. doi: 10.1016/j.matdes.2021.109544 – volume: 56 start-page: 942 issue: 5 year: 2008 ident: 10.1016/j.commatsci.2025.114145_b21 article-title: Microstructure reconstructions from 2-point statistics using phase-recovery algorithms publication-title: Acta Mater. doi: 10.1016/j.actamat.2007.10.044 – volume: 150 start-page: 212 year: 2018 ident: 10.1016/j.commatsci.2025.114145_b33 article-title: Improving direct physical properties prediction of heterogeneous materials from imaging data via convolutional neural network and a morphology-aware generative model publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2018.03.074 – volume: 17 start-page: 395 issue: 4 year: 2007 ident: 10.1016/j.commatsci.2025.114145_b51 article-title: A tutorial on spectral clustering publication-title: Stat. Comput. doi: 10.1007/s11222-007-9033-z – volume: 158 start-page: 420 year: 2019 ident: 10.1016/j.commatsci.2025.114145_b40 article-title: DAMASK – the Düsseldorf advanced material simulation kit for modeling multi-physics crystal plasticity, thermal, and damage phenomena from the single crystal up to the component scale publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2018.04.030 – volume: 35 start-page: 155 issue: 2 year: 2009 ident: 10.1016/j.commatsci.2025.114145_b49 article-title: Metrics for 3D rotations: Comparison and analysis publication-title: J. Math. Imaging Vision doi: 10.1007/s10851-009-0161-2 – volume: 18 start-page: 1041 issue: 10 year: 2019 ident: 10.1016/j.commatsci.2025.114145_b13 article-title: Completing the picture through correlative characterization publication-title: Nat. Mater. doi: 10.1038/s41563-019-0402-8 – volume: 28 issue: 4 year: 2020 ident: 10.1016/j.commatsci.2025.114145_b1 article-title: Roadmap on multiscale materials modeling publication-title: Modelling Simul. Mater. Sci. Eng. doi: 10.1088/1361-651X/ab7150 – volume: 51 start-page: 5985 issue: 12 year: 2020 ident: 10.1016/j.commatsci.2025.114145_b30 article-title: Overview: Computer vision and machine learning for microstructural characterization and analysis publication-title: Met. Mater. Trans. A doi: 10.1007/s11661-020-06008-4 – ident: 10.1016/j.commatsci.2025.114145_b52 – volume: 369 year: 2020 ident: 10.1016/j.commatsci.2025.114145_b11 article-title: A recurrent neural network-accelerated multi-scale model for elasto-plastic heterogeneous materials subjected to random cyclic and non-proportional loading paths publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2020.113234 – volume: 133 start-page: 30 year: 2017 ident: 10.1016/j.commatsci.2025.114145_b25 article-title: Exploring the microstructure manifold: Image texture representations applied to ultrahigh carbon steel microstructures publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.05.014 – year: 2022 ident: 10.1016/j.commatsci.2025.114145_b46 – volume: 10 start-page: 7164 issue: 105 year: 2025 ident: 10.1016/j.commatsci.2025.114145_b43 article-title: A python library for pre- and post-processing of DAMASK simulations publication-title: J. Open Source Softw. doi: 10.21105/joss.07164 – volume: 2 start-page: 115 issue: 1 year: 2019 ident: 10.1016/j.commatsci.2025.114145_b6 article-title: Integrating machine learning and multiscale modeling—perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences publication-title: Npj Digit. Med. doi: 10.1038/s41746-019-0193-y – volume: 30 start-page: 191 issue: 1 year: 2023 ident: 10.1016/j.commatsci.2025.114145_b7 article-title: A state-of-the-art review on machine learning-based multiscale modeling, simulation, homogenization and design of materials publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-022-09795-8 – volume: 178 year: 2023 ident: 10.1016/j.commatsci.2025.114145_b9 article-title: Learning macroscopic internal variables and history dependence from microscopic models publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2023.105329 – volume: 201 year: 2021 ident: 10.1016/j.commatsci.2025.114145_b22 article-title: A microstructure-informatic strategy for Vickers hardness forecast of austenitic steels from experimental data publication-title: Mater. Des. doi: 10.1016/j.matdes.2021.109497 – volume: 3 start-page: 56 issue: 1 year: 2014 ident: 10.1016/j.commatsci.2025.114145_b41 article-title: DREAM.3D: A digital representation environment for the analysis of microstructure in 3D publication-title: Integr. Mater. Manuf. Innov. doi: 10.1186/2193-9772-3-5 – volume: 73 issue: 2 year: 2006 ident: 10.1016/j.commatsci.2025.114145_b4 article-title: From electrons to finite elements: A concurrent multiscale approach for metals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.73.024108 – volume: 263 year: 2024 ident: 10.1016/j.commatsci.2025.114145_b38 article-title: Trade-offs in the latent representation of microstructure evolution publication-title: Acta Mater. doi: 10.1016/j.actamat.2023.119514 – volume: 1 start-page: 19 year: 2002 ident: 10.1016/j.commatsci.2025.114145_b27 article-title: The application of principal component analysis to materials science data publication-title: Data Sci. J. doi: 10.2481/dsj.1.19 – volume: 110 start-page: 126 year: 2015 ident: 10.1016/j.commatsci.2025.114145_b24 article-title: A computer vision approach for automated analysis and classification of microstructural image data publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2015.08.011 – volume: 158 year: 2022 ident: 10.1016/j.commatsci.2025.114145_b8 article-title: From CP-FFT to CP-RNN: Recurrent neural network surrogate model of crystal plasticity publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2022.103430 – volume: 106 start-page: 203 year: 2018 ident: 10.1016/j.commatsci.2025.114145_b48 article-title: An integrated crystal plasticity–phase field model for spatially resolved twin nucleation, propagation, and growth in hexagonal materials publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2018.03.009 – year: 2017 ident: 10.1016/j.commatsci.2025.114145_b44 – volume: 22 issue: 3 year: 2020 ident: 10.1016/j.commatsci.2025.114145_b3 article-title: Solving material mechanics and multiphysics problems of metals with complex microstructures using DAMASK—The Düsseldorf advanced material simulation kit publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201901044 – volume: 4 issue: 5 year: 2016 ident: 10.1016/j.commatsci.2025.114145_b14 article-title: Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science publication-title: APL Mater. doi: 10.1063/1.4946894 – volume: 234 start-page: 2175 issue: 7 year: 2010 ident: 10.1016/j.commatsci.2025.114145_b5 article-title: Multi-scale computational homogenization: Trends and challenges publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2009.08.077 – volume: 95 start-page: 1 year: 2018 ident: 10.1016/j.commatsci.2025.114145_b16 article-title: Computational microstructure characterization and reconstruction: Review of the state-of-the-art techniques publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2018.01.005 – volume: 63 start-page: 34 issue: 4 year: 2011 ident: 10.1016/j.commatsci.2025.114145_b19 article-title: Microstructure informatics using higher-order statistics and efficient data-mining protocols publication-title: JOM doi: 10.1007/s11837-011-0057-7 – volume: 32 start-page: 77 issue: 1 year: 2002 ident: 10.1016/j.commatsci.2025.114145_b18 article-title: Statistical description of microstructures publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev.matsci.32.110101.155324 – volume: 41 start-page: 587 issue: 08 year: 2016 ident: 10.1016/j.commatsci.2025.114145_b15 article-title: The need for microstructure informatics in process–structure–property relations publication-title: MRS Bull. doi: 10.1557/mrs.2016.163 – volume: 2 start-page: 2 year: 2023 ident: 10.1016/j.commatsci.2025.114145_b47 article-title: A novel integrated framework for reproducible formability predictions using virtual materials testing publication-title: Mater. Open Res. doi: 10.12688/materialsopenres.17516.1 – volume: 357 year: 2019 ident: 10.1016/j.commatsci.2025.114145_b10 article-title: Accelerating multiscale finite element simulations of history-dependent materials using a recurrent neural network publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2019.112594 – volume: 646 start-page: 101 year: 2015 ident: 10.1016/j.commatsci.2025.114145_b17 article-title: Grain-size dependent mechanical behavior of nanocrystalline metals publication-title: Mater. Sci. Eng.: A doi: 10.1016/j.msea.2015.07.075 – year: 2015 ident: 10.1016/j.commatsci.2025.114145_b35 – volume: 8 start-page: 93 issue: 1 year: 2022 ident: 10.1016/j.commatsci.2025.114145_b2 article-title: Modeling and simulation of microstructure in metallic systems based on multi-physics approaches publication-title: Npj Comput. Mater. doi: 10.1038/s41524-022-00764-0 – year: 2012 ident: 10.1016/j.commatsci.2025.114145_b29 article-title: ImageNet classification with deep convolutional neural networks – volume: 36 start-page: 193 issue: 4 year: 1980 ident: 10.1016/j.commatsci.2025.114145_b28 article-title: Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position publication-title: Biol. Cybernet. doi: 10.1007/BF00344251 – volume: 58 start-page: 4432 issue: 13 year: 2010 ident: 10.1016/j.commatsci.2025.114145_b20 article-title: Optimized structure based representative volume element sets reflecting the ensemble-averaged 2-point statistics publication-title: Acta Mater. doi: 10.1016/j.actamat.2010.04.041 – start-page: 8024 year: 2019 ident: 10.1016/j.commatsci.2025.114145_b42 article-title: PyTorch: An imperative style, high-performance deep learning library – volume: 12 start-page: 307 issue: 4 year: 2019 ident: 10.1016/j.commatsci.2025.114145_b45 article-title: An introduction to variational autoencoders publication-title: Found. Trends® Mach. Learn. doi: 10.1561/2200000056 – year: 2024 ident: 10.1016/j.commatsci.2025.114145_b36 – year: 2024 ident: 10.1016/j.commatsci.2025.114145_b12 – volume: 2 start-page: 433 issue: 4 year: 2010 ident: 10.1016/j.commatsci.2025.114145_b50 article-title: Principal component analysis: Principal component analysis publication-title: Wiley Interdiscip. Rev.: Comput. Stat. doi: 10.1002/wics.101 – year: 2013 ident: 10.1016/j.commatsci.2025.114145_b32 |
| SSID | ssj0016982 |
| Score | 2.4496005 |
| Snippet | Microstructure quantification is an important step towards establishing structure–property relationships in materials. Machine learning-based image processing... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 114145 |
| SubjectTerms | Crystal plasticity Feature learning Fingerprinting Machine learning Microstructure characterisation Surrogate model |
| Title | 3D variational autoencoder for fingerprinting microstructure volume elements |
| URI | https://dx.doi.org/10.1016/j.commatsci.2025.114145 |
| Volume | 259 |
| WOSCitedRecordID | wos001547379800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0927-0256 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0016982 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbNpofkUNo8aNIHOvRmHCzZsqzelm5KG0pYSAJ7M5Itk0fXG7Kbx8_vjCU73m4gLaUXY8tYtmY-xqPR6BtCPglmrYRfVxjFWoVJmmShlnCZxlylldQ8FbopNiGPj7PJRI19WtG8KScg6zp7eFDX_1XV0AbKxq2zf6HurlNogHNQOhxB7XD8I8XHo-AOJsBtkE_fLmZIVomcEZhSWDVxPAznNQnPU0zIcySyuJTgjFVgXVL5vO-6uvoPbbfg6LrBBP4f-mjdfcU9n5AfjA46UC2uur1mq3fHP2f3Phw7LPU0OOrunJxrLOegm4Wm8Q36rJ5i2IcruOjysXwMbWUfjQtGchmi99W3y9xRha_YeBduuEQVwVhhkAf4HiQ9Zo6Z8jcC7RPsHTsHbw_tVbJG1rkUKhuQ9eH3w8lRt-qUqqa4WPc1S_mAT77uaW-m56Gcviav_NSCDh0k3pAXtt4imz3CyW3yIx7RHjhoDxwUwEGXwUGXwUGdxGgLjh1y9vXw9Mu30NfTCIuY8UWYlIKZOC6ZkaURklUwgjKrpI1sBbOAqDSKc8OUlcYkJgNJpbYwlbA6EloUPN4lg3pW27eEsoKVzPJEi9QkrNAKHW-ORBPQJiOxR6JWLvm1o03J23zCy7wTZY6izJ0o98jnVn65R67z6nJQ_HMP7__Lw-_IxiNS35MBiNV-IC-Lu8XF_OajB8kv04OHCQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+variational+autoencoder+for+fingerprinting+microstructure+volume+elements&rft.jtitle=Computational+materials+science&rft.au=White%2C+Michael+D.&rft.au=Atkinson%2C+Michael+D.&rft.au=Plowman%2C+Adam+J.&rft.au=Shanthraj%2C+Pratheek&rft.date=2025-09-01&rft.pub=Elsevier+B.V&rft.issn=0927-0256&rft.volume=259&rft_id=info:doi/10.1016%2Fj.commatsci.2025.114145&rft.externalDocID=S0927025625004884 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0256&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0256&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0256&client=summon |