Efficient robot localization and SLAM algorithms using Opposition based High Dimensional optimization Algorithm
Particle filter (PF) is introduced to tackle the limitations of the Kalman filter which adopts Gaussian in the state and noise of the system. PFs have the problem of sample impoverishment and one approach to solve this problem is to optimize the proposal distribution shown by particles. This paper i...
Saved in:
| Published in: | Engineering applications of artificial intelligence Vol. 104; p. 104308 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.09.2021
|
| Subjects: | |
| ISSN: | 0952-1976, 1873-6769 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Particle filter (PF) is introduced to tackle the limitations of the Kalman filter which adopts Gaussian in the state and noise of the system. PFs have the problem of sample impoverishment and one approach to solve this problem is to optimize the proposal distribution shown by particles. This paper introduces a novel evolutionary PF based on Opposition based High Dimensional optimization Algorithm (OHDA) to reposition the particles of PF in high probable regions for estimation. OHDA will preserve the diversity of particles while emphasizing the more informative ones by information sharing and angular movement operators. Opposite particles are introduced in this paper to speed up the convergence of PF. Virtual forward movement by angular movement of OHDA is employed to better guide the search process. The optimized PF can improve the performance of the estimation algorithms in problems such as localization and SLAM. In robot localization problem, particles show the location of the robot in a known environment. For SLAM (Simultaneous Localization And Mapping), particles contain the location of the robot as well as estimated map of the environment. The application of the resulting evolutionary particle filter is tested in both localization and SLAM. Comparing the results of the proposed evolutionary particle filter with other algorithms confirms the efficiency of applying OHDA to PF in terms of improving estimation accuracy in the well-known Victoria park dataset and some other generated test environments. Comparing optimization algorithms on FASTSLAM and UFASTSLAM are PSO, FA, MVO, and MGWO. |
|---|---|
| AbstractList | Particle filter (PF) is introduced to tackle the limitations of the Kalman filter which adopts Gaussian in the state and noise of the system. PFs have the problem of sample impoverishment and one approach to solve this problem is to optimize the proposal distribution shown by particles. This paper introduces a novel evolutionary PF based on Opposition based High Dimensional optimization Algorithm (OHDA) to reposition the particles of PF in high probable regions for estimation. OHDA will preserve the diversity of particles while emphasizing the more informative ones by information sharing and angular movement operators. Opposite particles are introduced in this paper to speed up the convergence of PF. Virtual forward movement by angular movement of OHDA is employed to better guide the search process. The optimized PF can improve the performance of the estimation algorithms in problems such as localization and SLAM. In robot localization problem, particles show the location of the robot in a known environment. For SLAM (Simultaneous Localization And Mapping), particles contain the location of the robot as well as estimated map of the environment. The application of the resulting evolutionary particle filter is tested in both localization and SLAM. Comparing the results of the proposed evolutionary particle filter with other algorithms confirms the efficiency of applying OHDA to PF in terms of improving estimation accuracy in the well-known Victoria park dataset and some other generated test environments. Comparing optimization algorithms on FASTSLAM and UFASTSLAM are PSO, FA, MVO, and MGWO. |
| ArticleNumber | 104308 |
| Author | GhaemiDizaji, Manizheh Dadkhah, Chitra Leung, Henry |
| Author_xml | – sequence: 1 givenname: Manizheh surname: GhaemiDizaji fullname: GhaemiDizaji, Manizheh email: m_ghaemi@email.kntu.ac.ir organization: Faculty of Computer Engineering, K. N. Toosi University of Technology, Tehran, Iran – sequence: 2 givenname: Chitra orcidid: 0000-0002-9836-9388 surname: Dadkhah fullname: Dadkhah, Chitra email: dadkhah@kntu.ac.ir organization: Faculty of Computer Engineering, K. N. Toosi University of Technology, Tehran, Iran – sequence: 3 givenname: Henry surname: Leung fullname: Leung, Henry email: leungh@ucalgary.ca organization: Department of Electrical and Computer Engineering, University of Calgary, Alberta, Canada |
| BookMark | eNqFkF1LwzAUhoNMcJv-Bckf6Ez6kbTghWNOJ0x2oV6HNEm7M9qmJFHQX2-3uRtvdnMOvJznhfNM0KiznUHolpIZJZTd7Wamq2XfS5jFJKZDmCYkv0BjmvMkYpwVIzQmRRZHtODsCk283xFCkjxlY2SXVQUKTBews6UNuLFKNvAjA9gOy07jt_X8Fcumtg7CtvX400NX403fWw-Ho1J6o_EK6i1-hNZ0fghlg20foD0VzU_8NbqsZOPNzd-eoo-n5ftiFa03zy-L-TpSCY1DlMpEK26qWJWaVSSNpU6LipjEsDRVRKWa8DJTZVJlnJeKDVPzgtMsU0bpLE-miB17lbPeO1OJ3kEr3begROy1iZ04aRN7beKobQDv_4EKwuGJ4CQ05_GHI26G577AOOH3dpXR4IwKQls4V_ELJnOS9g |
| CitedBy_id | crossref_primary_10_3390_s22197114 crossref_primary_10_1016_j_engappai_2022_105333 crossref_primary_10_3390_s22166263 |
| Cites_doi | 10.1109/TEVC.2008.2011729 10.1016/j.ijleo.2019.06.013 10.1504/IJBIC.2010.032124 10.1109/TRO.2008.924946 10.1016/j.advwatres.2017.11.011 10.1016/j.dsp.2018.06.015 10.1109/MRA.2006.1638022 10.1016/j.asoc.2020.106185 10.1016/j.ijleo.2015.05.028 10.1007/s11633-016-1050-y 10.1007/s10846-013-0009-2 10.1049/iet-cvi.2016.0201 10.1007/s00521-015-1870-7 10.1177/1729881419839575 10.1109/TIE.2018.2854557 10.1109/ACCESS.2019.2934995 10.1016/j.ins.2005.02.003 10.1016/j.dt.2019.10.004 10.1016/j.ijleo.2017.11.155 10.1016/j.eswa.2019.06.006 10.1016/j.asoc.2019.04.014 10.1016/j.eswa.2014.03.012 10.1109/TIE.2016.2522382 10.1109/TMECH.2014.2311416 10.1016/j.robot.2006.02.009 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd |
| Copyright_xml | – notice: 2021 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.engappai.2021.104308 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISSN | 1873-6769 |
| ExternalDocumentID | 10_1016_j_engappai_2021_104308 S0952197621001561 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS WUQ ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c312t-4a3dc7ef2cbd6f042ad49f0e3e644c0c4d07b5cb3f577bc6577d797155cecd583 |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000694881200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0952-1976 |
| IngestDate | Tue Nov 18 22:10:46 EST 2025 Sat Nov 29 07:06:36 EST 2025 Fri Feb 23 02:43:24 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | FASTSLAM Particle Filter Unscented FASTSLAM Opposition based High Dimensional Optimization Localization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c312t-4a3dc7ef2cbd6f042ad49f0e3e644c0c4d07b5cb3f577bc6577d797155cecd583 |
| ORCID | 0000-0002-9836-9388 |
| ParticipantIDs | crossref_primary_10_1016_j_engappai_2021_104308 crossref_citationtrail_10_1016_j_engappai_2021_104308 elsevier_sciencedirect_doi_10_1016_j_engappai_2021_104308 |
| PublicationCentury | 2000 |
| PublicationDate | September 2021 2021-09-00 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 09 year: 2021 text: September 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering applications of artificial intelligence |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Hosseininejad, Dadkhah (b7) 2019; 16 Thrun, Montemerlo, Koller, Wegbreit, Nieto, Nebot (b25) 2004; 4 Van Den Bergh, Engelbrecht (b27) 2006; 176 Gao, Li, Sun, Yin, Li, Luo (b4) 2015; 126 Mirjalili, Mirjalili, Hatamlou (b15) 2016; 27 Sasiadek, Monjazeb, Necsulescu (b22) 2008 Kim, Sakthivel, Chung (b10) 2008; 24 Shiguang, Mingde, Chengdong, Jun (b23) 2017 Abbaszadeh, Moradkhani, Yan (b1) 2018; 111 Park, Hwang, Kim, Kang (b18) 2009; 13 Narayana, Nenavath, Chavan, Rao (b17) 2019; 193 Rohilla, Sikri, Kapoor (b21) 2016; 11 Walia, Kapoor (b28) 2014; 41 Simanek, Reinstein, Kubelka (b24) 2014; 20 Julier (b9) 2002; 6 Moreno, Garrido, Mu (b16) 2006; 54 Zhang, Wang, Chen (b33) 2019; 135 Pinto, Moreira, Costa (b19) 2015; 77 Cui, Feng, Li, Tian (b2) 2020; 16 Zhang, Wang, Bao, Chen (b32) 2017 Qiu, Qian (b20) 2018; 81 Wu, Li, Zhao, Yang (b29) 2018 Ghaemidizaji, Dadkhah, Leung (b6) 2020; 91 Huang, Dissanayake (b8) 1999 Lv, Zhao (b14) 2018; 15 Zhong, Fung, Dai (b34) 2010; 8 Durrant-whyte, Bailey (b3) 2006; 13 Yin, Zhu, Qiu, Gao (b31) 2016; 63 Lin, Member, Yang, Li (b13) 2018; 66 Lin (b12) 2019; 7 Gao, Shen, Jiang (b5) 2018; 156 Yang (b30) 2010; 2 Vahdat, Nourashrafoddin, Ghidary (b26) 2007 Kwon (b11) 2020; 97 Cui (10.1016/j.engappai.2021.104308_b2) 2020; 16 Rohilla (10.1016/j.engappai.2021.104308_b21) 2016; 11 Zhang (10.1016/j.engappai.2021.104308_b32) 2017 Qiu (10.1016/j.engappai.2021.104308_b20) 2018; 81 Abbaszadeh (10.1016/j.engappai.2021.104308_b1) 2018; 111 Park (10.1016/j.engappai.2021.104308_b18) 2009; 13 Lin (10.1016/j.engappai.2021.104308_b12) 2019; 7 Sasiadek (10.1016/j.engappai.2021.104308_b22) 2008 Hosseininejad (10.1016/j.engappai.2021.104308_b7) 2019; 16 Simanek (10.1016/j.engappai.2021.104308_b24) 2014; 20 Julier (10.1016/j.engappai.2021.104308_b9) 2002; 6 Lv (10.1016/j.engappai.2021.104308_b14) 2018; 15 Gao (10.1016/j.engappai.2021.104308_b4) 2015; 126 Zhong (10.1016/j.engappai.2021.104308_b34) 2010; 8 Durrant-whyte (10.1016/j.engappai.2021.104308_b3) 2006; 13 Van Den Bergh (10.1016/j.engappai.2021.104308_b27) 2006; 176 Mirjalili (10.1016/j.engappai.2021.104308_b15) 2016; 27 Thrun (10.1016/j.engappai.2021.104308_b25) 2004; 4 Pinto (10.1016/j.engappai.2021.104308_b19) 2015; 77 Ghaemidizaji (10.1016/j.engappai.2021.104308_b6) 2020; 91 Vahdat (10.1016/j.engappai.2021.104308_b26) 2007 Yang (10.1016/j.engappai.2021.104308_b30) 2010; 2 Moreno (10.1016/j.engappai.2021.104308_b16) 2006; 54 Walia (10.1016/j.engappai.2021.104308_b28) 2014; 41 Kim (10.1016/j.engappai.2021.104308_b10) 2008; 24 Gao (10.1016/j.engappai.2021.104308_b5) 2018; 156 Kwon (10.1016/j.engappai.2021.104308_b11) 2020; 97 Wu (10.1016/j.engappai.2021.104308_b29) 2018 Yin (10.1016/j.engappai.2021.104308_b31) 2016; 63 Zhang (10.1016/j.engappai.2021.104308_b33) 2019; 135 Lin (10.1016/j.engappai.2021.104308_b13) 2018; 66 Narayana (10.1016/j.engappai.2021.104308_b17) 2019; 193 Shiguang (10.1016/j.engappai.2021.104308_b23) 2017 Huang (10.1016/j.engappai.2021.104308_b8) 1999 |
| References_xml | – volume: 97 start-page: 105443 year: 2020 ident: b11 article-title: Particle swarm optimization – Markov Chain Monte Carlo for accurate visual tracking with adaptive template update publication-title: Applied Soft Computing – start-page: 390 year: 2018 end-page: 398 ident: b29 article-title: FastSLAM method based on Gaussian particle swarm optimization. 130 (Ifmeita 2017) – volume: 156 start-page: 522 year: 2018 end-page: 529 ident: b5 article-title: Visual tracking using improved flower pollination algorithm publication-title: Optik – volume: 11 start-page: 207 year: 2016 end-page: 219 ident: b21 article-title: Spider monkey optimisation assisted particle filter for robust object tracking publication-title: IET Comput. Vis. – volume: 6 start-page: 4555 year: 2002 end-page: 4559 ident: b9 article-title: The scaled unscented transformation publication-title: Proceedings of the 2002 American Control Conference (IEEE Cat. No. CH37301) – volume: 8 start-page: 519 year: 2010 end-page: 526 ident: b34 article-title: A biologically inspired improvement strategy for particle filter – volume: 111 start-page: 192 year: 2018 end-page: 204 ident: b1 article-title: Enhancing hydrologic data assimilation by evolutionary particle filter and Markov Chain Monte Carlo publication-title: Adv. Water Resour. – volume: 91 year: 2020 ident: b6 article-title: OHDA: An opposition based high dimensional optimization algorithm publication-title: Appl. Soft Comput. – volume: 2 start-page: 78 year: 2010 end-page: 84 ident: b30 article-title: Firefly algorithm, stochastic test functions and design optimization publication-title: Int. J. Bio-Inspir. Comput. – volume: 54 start-page: 590 year: 2006 end-page: 600 ident: b16 article-title: Evolutionary filter for robust mobile robot global localization. publication-title: Robotics and Autonomous Systems – start-page: 517 year: 2008 end-page: 522 ident: b22 article-title: Navigation of an autonomous mobile robot using EKF-SLAM and fastslam publication-title: 2008 Mediterranean Conference on Control and Automation - Conference Proceedings, MED’08, no. 1 – start-page: 1527 year: 2007 end-page: 1534 ident: b26 article-title: Mobile robot global localization using differential evolution and particle swarm optimization publication-title: 2007 IEEE Congress on Evolutionary Computation – volume: 20 start-page: 985 year: 2014 end-page: 990 ident: b24 article-title: Evaluation of the EKF-based estimation architectures for data fusion in mobile robots publication-title: IEEE/ASME Trans. Mechatronics – volume: 66 start-page: 3583 year: 2018 end-page: 3594 ident: b13 article-title: An improved transformed unscented FastSLAM with adaptive genetic resampling publication-title: IEEE Trans. Ind. Electron. – start-page: 7134 year: 2017 end-page: 7137 ident: b23 article-title: An improved FastSLAM2.0 algorithm based on ant colony optimization – volume: 41 start-page: 6315 year: 2014 end-page: 6326 ident: b28 article-title: Intelligent video target tracking using an evolutionary particle filter publication-title: Expert Syst. Appl. – volume: 81 start-page: 163 year: 2018 end-page: 172 ident: b20 article-title: Adaptive genetic particle filter and its application to attitude estimation system publication-title: Digit. Signal Process. – volume: 135 start-page: 181 year: 2019 end-page: 193 ident: b33 article-title: 2019. an improved particle filter for mobile robot localization based on particle swarm optimization publication-title: Expert Systems with Applications – volume: 126 start-page: 1705 year: 2015 end-page: 1711 ident: b4 article-title: Firefly algorithm (fa) based particle filter method for visual tracking publication-title: Optik – volume: 13 start-page: 801 year: 2009 end-page: 809 ident: b18 article-title: A new evolutionary particle filter for the prevention of sample impoverishment publication-title: IEEE Transactions on Evolutionary Computation – volume: 24 start-page: 808 year: 2008 end-page: 820 ident: b10 article-title: Unscented FastSLAM : A robust and efficient solution to the SLAM problem publication-title: IEEE Trans. Robot. – volume: 16 start-page: 651 year: 2020 end-page: 661 ident: b2 article-title: Research on simultaneous localization and mapping for AUV by an improved method : Variance reduction fastslam with simulated annealing publication-title: Defence Technol. – start-page: 1 year: 1999 end-page: 10 ident: b8 article-title: Robot localization : An introduction publication-title: Wiley Encycl. Electr. Electron. Eng. – start-page: 105 year: 2017 end-page: 109 ident: b32 article-title: Mobile robot global localization using particle swarm optimization with a 2D range scan – volume: 27 start-page: 495 year: 2016 end-page: 513 ident: b15 article-title: Multi-verse optimizer: a nature-inspired algorithm for global optimization publication-title: Neural Comput. Appl. – volume: 13 start-page: 99 year: 2006 end-page: 110 ident: b3 article-title: Simultaneous localisation and mapping ( SLAM ): Part I the essential algorithms publication-title: IEEE robotics & automation magazine – volume: 176 start-page: 937 year: 2006 end-page: 971 ident: b27 article-title: A study of particle swarm optimization particle trajectories publication-title: Inf. Sci. – volume: 7 start-page: 113284 year: 2019 end-page: 113297 ident: b12 article-title: Intelligent filter-based SLAM for mobile robots with improved localization performance publication-title: IEEE Access – volume: 77 start-page: 313 year: 2015 end-page: 326 ident: b19 article-title: A localization method based on map-matching and particle swarm optimization publication-title: Journal of Intelligent & Robotic Systems – volume: 193 year: 2019 ident: b17 article-title: Intelligent visual object tracking with particle filter based on Modified Grey Wolf Optimizer publication-title: Optik – volume: 16 start-page: 1 year: 2019 end-page: 13 ident: b7 article-title: Mobile robot path planning in dynamic environment based on cuckoo optimization algorithm publication-title: Int. J. Adv. Robot. Syst. – volume: 15 start-page: 325 year: 2018 end-page: 334 ident: b14 article-title: An improved fastslam algorithm based on revised genetic resampling and SR-UPF publication-title: Int. J. Autom. Comput. – volume: 4 start-page: 380 year: 2004 end-page: 407 ident: b25 article-title: Fastslam:an efficient solution to the simultaneous localization and mapping problem with unknown data association publication-title: Journal of Machine Learning Research – volume: 63 start-page: 3786 year: 2016 end-page: 3794 ident: b31 article-title: State estimation in nonlinear system using sequential evolutionary filter publication-title: IEEE Transactions on Industrial Electronics – volume: 13 start-page: 801 issue: 4 year: 2009 ident: 10.1016/j.engappai.2021.104308_b18 article-title: A new evolutionary particle filter for the prevention of sample impoverishment publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2008.2011729 – start-page: 390 year: 2018 ident: 10.1016/j.engappai.2021.104308_b29 – start-page: 1527 year: 2007 ident: 10.1016/j.engappai.2021.104308_b26 article-title: Mobile robot global localization using differential evolution and particle swarm optimization – volume: 193 year: 2019 ident: 10.1016/j.engappai.2021.104308_b17 article-title: Intelligent visual object tracking with particle filter based on Modified Grey Wolf Optimizer publication-title: Optik doi: 10.1016/j.ijleo.2019.06.013 – start-page: 105 year: 2017 ident: 10.1016/j.engappai.2021.104308_b32 – volume: 2 start-page: 78 issue: 2 year: 2010 ident: 10.1016/j.engappai.2021.104308_b30 article-title: Firefly algorithm, stochastic test functions and design optimization publication-title: Int. J. Bio-Inspir. Comput. doi: 10.1504/IJBIC.2010.032124 – volume: 24 start-page: 808 issue: 4 year: 2008 ident: 10.1016/j.engappai.2021.104308_b10 article-title: Unscented FastSLAM : A robust and efficient solution to the SLAM problem publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2008.924946 – volume: 111 start-page: 192 year: 2018 ident: 10.1016/j.engappai.2021.104308_b1 article-title: Enhancing hydrologic data assimilation by evolutionary particle filter and Markov Chain Monte Carlo publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2017.11.011 – volume: 81 start-page: 163 year: 2018 ident: 10.1016/j.engappai.2021.104308_b20 article-title: Adaptive genetic particle filter and its application to attitude estimation system publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2018.06.015 – volume: 13 start-page: 99 issue: 2 year: 2006 ident: 10.1016/j.engappai.2021.104308_b3 article-title: Simultaneous localisation and mapping ( SLAM ): Part I the essential algorithms publication-title: IEEE robotics & automation magazine doi: 10.1109/MRA.2006.1638022 – volume: 4 start-page: 380 issue: 3 year: 2004 ident: 10.1016/j.engappai.2021.104308_b25 article-title: Fastslam:an efficient solution to the simultaneous localization and mapping problem with unknown data association publication-title: Journal of Machine Learning Research – start-page: 7134 year: 2017 ident: 10.1016/j.engappai.2021.104308_b23 – volume: 91 year: 2020 ident: 10.1016/j.engappai.2021.104308_b6 article-title: OHDA: An opposition based high dimensional optimization algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106185 – volume: 126 start-page: 1705 issue: 18 year: 2015 ident: 10.1016/j.engappai.2021.104308_b4 article-title: Firefly algorithm (fa) based particle filter method for visual tracking publication-title: Optik doi: 10.1016/j.ijleo.2015.05.028 – volume: 15 start-page: 325 issue: 3 year: 2018 ident: 10.1016/j.engappai.2021.104308_b14 article-title: An improved fastslam algorithm based on revised genetic resampling and SR-UPF publication-title: Int. J. Autom. Comput. doi: 10.1007/s11633-016-1050-y – volume: 77 start-page: 313 issue: 2 year: 2015 ident: 10.1016/j.engappai.2021.104308_b19 article-title: A localization method based on map-matching and particle swarm optimization publication-title: Journal of Intelligent & Robotic Systems doi: 10.1007/s10846-013-0009-2 – volume: 11 start-page: 207 issue: 3 year: 2016 ident: 10.1016/j.engappai.2021.104308_b21 article-title: Spider monkey optimisation assisted particle filter for robust object tracking publication-title: IET Comput. Vis. doi: 10.1049/iet-cvi.2016.0201 – volume: 27 start-page: 495 issue: 2 year: 2016 ident: 10.1016/j.engappai.2021.104308_b15 article-title: Multi-verse optimizer: a nature-inspired algorithm for global optimization publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1870-7 – volume: 16 start-page: 1 issue: 2 year: 2019 ident: 10.1016/j.engappai.2021.104308_b7 article-title: Mobile robot path planning in dynamic environment based on cuckoo optimization algorithm publication-title: Int. J. Adv. Robot. Syst. doi: 10.1177/1729881419839575 – volume: 66 start-page: 3583 issue: 5 year: 2018 ident: 10.1016/j.engappai.2021.104308_b13 article-title: An improved transformed unscented FastSLAM with adaptive genetic resampling publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2018.2854557 – volume: 7 start-page: 113284 year: 2019 ident: 10.1016/j.engappai.2021.104308_b12 article-title: Intelligent filter-based SLAM for mobile robots with improved localization performance publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2934995 – volume: 8 start-page: 519 issue: 3 year: 2010 ident: 10.1016/j.engappai.2021.104308_b34 article-title: A biologically inspired improvement strategy for particle filter – start-page: 517 year: 2008 ident: 10.1016/j.engappai.2021.104308_b22 article-title: Navigation of an autonomous mobile robot using EKF-SLAM and fastslam – volume: 176 start-page: 937 issue: 8 year: 2006 ident: 10.1016/j.engappai.2021.104308_b27 article-title: A study of particle swarm optimization particle trajectories publication-title: Inf. Sci. doi: 10.1016/j.ins.2005.02.003 – volume: 16 start-page: 651 issue: 3 year: 2020 ident: 10.1016/j.engappai.2021.104308_b2 article-title: Research on simultaneous localization and mapping for AUV by an improved method : Variance reduction fastslam with simulated annealing publication-title: Defence Technol. doi: 10.1016/j.dt.2019.10.004 – volume: 156 start-page: 522 year: 2018 ident: 10.1016/j.engappai.2021.104308_b5 article-title: Visual tracking using improved flower pollination algorithm publication-title: Optik doi: 10.1016/j.ijleo.2017.11.155 – volume: 135 start-page: 181 year: 2019 ident: 10.1016/j.engappai.2021.104308_b33 article-title: 2019. an improved particle filter for mobile robot localization based on particle swarm optimization publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.06.006 – volume: 97 start-page: 105443 year: 2020 ident: 10.1016/j.engappai.2021.104308_b11 article-title: Particle swarm optimization – Markov Chain Monte Carlo for accurate visual tracking with adaptive template update publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2019.04.014 – volume: 41 start-page: 6315 issue: 14 year: 2014 ident: 10.1016/j.engappai.2021.104308_b28 article-title: Intelligent video target tracking using an evolutionary particle filter publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.03.012 – volume: 63 start-page: 3786 issue: 6 year: 2016 ident: 10.1016/j.engappai.2021.104308_b31 article-title: State estimation in nonlinear system using sequential evolutionary filter publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2016.2522382 – volume: 20 start-page: 985 issue: 2 year: 2014 ident: 10.1016/j.engappai.2021.104308_b24 article-title: Evaluation of the EKF-based estimation architectures for data fusion in mobile robots publication-title: IEEE/ASME Trans. Mechatronics doi: 10.1109/TMECH.2014.2311416 – start-page: 1 year: 1999 ident: 10.1016/j.engappai.2021.104308_b8 article-title: Robot localization : An introduction publication-title: Wiley Encycl. Electr. Electron. Eng. – volume: 54 start-page: 590 issue: 7 year: 2006 ident: 10.1016/j.engappai.2021.104308_b16 article-title: Evolutionary filter for robust mobile robot global localization. publication-title: Robotics and Autonomous Systems doi: 10.1016/j.robot.2006.02.009 – volume: 6 start-page: 4555 year: 2002 ident: 10.1016/j.engappai.2021.104308_b9 article-title: The scaled unscented transformation |
| SSID | ssj0003846 |
| Score | 2.344452 |
| Snippet | Particle filter (PF) is introduced to tackle the limitations of the Kalman filter which adopts Gaussian in the state and noise of the system. PFs have the... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 104308 |
| SubjectTerms | FASTSLAM Localization Opposition based High Dimensional Optimization Particle Filter Unscented FASTSLAM |
| Title | Efficient robot localization and SLAM algorithms using Opposition based High Dimensional optimization Algorithm |
| URI | https://dx.doi.org/10.1016/j.engappai.2021.104308 |
| Volume | 104 |
| WOSCitedRecordID | wos000694881200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaqLgcuvBHLSz5wi7Lk7fhYsUWAyoLEgnqLEtvZprRJlWZXK_4H_5fxK8mKlRaEuESV1bHbzlfPePzNDEKvZM9HIQLuJkVUupHvJ24Oht4Nk4KWAkwGU2yLbwtycpIul_TzZPLT5sJcbEhdp5eXdPdfVQ1joGyZOvsX6u4nhQF4DUqHJ6gdnn-k-LkqCiGv-NumaDpHWSuTbamJmovZRyffnDVt1a22e-dchQs-7Sx_y5GWjSsGCOyIW8lwV-HCBnaXrZ1oZuWvhPaH4obO-GZckQ1axUpSPUJGZUB7_s8qF9vqGKZfVzqHqK5-rEQfrD7O-fdVru-DZKZIb00WwmxXKt1iHMQI_J6lZSJrNrtmoDLpEGXg-pSYUtl6g05J6Epa7pUdXHcw_s0a6MDE-kjUZ_Cl8-pILi1vtUMvHexfz0r8IheU6wW-yjCHQ_VBAFhOp-hg9n6-_NCb-DDVGWD2A45Sz69f7XqvZ-TJnN5Dd8wRBM80dO6jiagfoLvmOILNZr-HIdvxw449RE0PLqzAhcfgwgAuLMGFB3BhBS48gAsrcGEJLjwCFx6DC_fgeoS-vp2fvnnnmpYdLgv9oHOjPOSMiDJgBU9KMAg5j2jpiVCA3808FnGPFDErwjImpGAJPDmhBJxaJhiP0_AxmtZNLZ4gLHgJ9oeKgMVBRAVP5ZtjEpYU5D0qDlFsf9KMmXr2sq3KJrPExXVmVZFJVWRaFYfodS-30xVdbpSgVmOZ8Uu1v5kB0G6QffoPss_Q7eG_8hxNu_ZcvEC32EVX7duXBpO_ALwMvLg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+robot+localization+and+SLAM+algorithms+using+Opposition+based+High+Dimensional+optimization+Algorithm&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=GhaemiDizaji%2C+Manizheh&rft.au=Dadkhah%2C+Chitra&rft.au=Leung%2C+Henry&rft.date=2021-09-01&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.eissn=1873-6769&rft.volume=104&rft_id=info:doi/10.1016%2Fj.engappai.2021.104308&rft.externalDocID=S0952197621001561 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |