Applying the stereo-vision detection technique to the development of underwater inspection task with PSO-based dynamic routing algorithm for autonomous underwater vehicles

This research is an extension of image detection technique for obstacle-avoidance of autonomous underwater vehicles (AUVs) by applying the BK triangle sub-product of fuzzy relations. According to the concept of stereo-vision detection technique, the obstacles as well as offshore structures can be re...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Ocean engineering Ročník 139; s. 127 - 139
Hlavní autori: Lin, Yu-Hsien, Wang, Shun-Ming, Huang, Lin-Chin, Fang, Ming-Chung
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 15.07.2017
Predmet:
ISSN:0029-8018, 1873-5258
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This research is an extension of image detection technique for obstacle-avoidance of autonomous underwater vehicles (AUVs) by applying the BK triangle sub-product of fuzzy relations. According to the concept of stereo-vision detection technique, the obstacles as well as offshore structures can be reconstructed by depth images. By obtaining the depth information in the space, the optimal route can be evaluated combining PSO (Particle Swarm Optimization)-based dynamic routing algorithm. In this study, the graphical language, LabVIEW (Laboratory Virtual Instrument Engineering Workbench), is used to simulate the AUV's inspection task in the offshore wind farm. The interface shows the pose, trajectories, perspectives and real-time series of 6-Degrees of Freedom (DOF) motion for the AUV. In the existence of obstacles, the AUV is found to conduct inspection tasks of the offshore wind farm with feasible routes by considering minimum time and energy consumption successfully. In summary, the stereo-vision detection technique with PSO-based dynamic routing algorithm is not only beneficial to optimize feasible routes but also identify features of objects for the purpose tracking and obstacle-avoidance more efficiently. •The image detection technique with PSO-based dynamic routing algorithm has been developed•The relationship of the two Pareto-optimal sets is non-dominant under different velocity conditions•Each solution of the minimum time route takes less time than that of the minimum energy consumption routes•Each energy optimization solution expends a lower amount of energy than the time optimization solutions•The difference of these two sets is high under low-velocity conditions
AbstractList This research is an extension of image detection technique for obstacle-avoidance of autonomous underwater vehicles (AUVs) by applying the BK triangle sub-product of fuzzy relations. According to the concept of stereo-vision detection technique, the obstacles as well as offshore structures can be reconstructed by depth images. By obtaining the depth information in the space, the optimal route can be evaluated combining PSO (Particle Swarm Optimization)-based dynamic routing algorithm. In this study, the graphical language, LabVIEW (Laboratory Virtual Instrument Engineering Workbench), is used to simulate the AUV's inspection task in the offshore wind farm. The interface shows the pose, trajectories, perspectives and real-time series of 6-Degrees of Freedom (DOF) motion for the AUV. In the existence of obstacles, the AUV is found to conduct inspection tasks of the offshore wind farm with feasible routes by considering minimum time and energy consumption successfully. In summary, the stereo-vision detection technique with PSO-based dynamic routing algorithm is not only beneficial to optimize feasible routes but also identify features of objects for the purpose tracking and obstacle-avoidance more efficiently. •The image detection technique with PSO-based dynamic routing algorithm has been developed•The relationship of the two Pareto-optimal sets is non-dominant under different velocity conditions•Each solution of the minimum time route takes less time than that of the minimum energy consumption routes•Each energy optimization solution expends a lower amount of energy than the time optimization solutions•The difference of these two sets is high under low-velocity conditions
Author Wang, Shun-Ming
Huang, Lin-Chin
Lin, Yu-Hsien
Fang, Ming-Chung
Author_xml – sequence: 1
  givenname: Yu-Hsien
  surname: Lin
  fullname: Lin, Yu-Hsien
  email: vyhlin@mail.ncku.edu.tw
  organization: Dept. of Systems & Naval Mechatronic Eng., National Cheng-Kung University, Tainan City 70101, Taiwan
– sequence: 2
  givenname: Shun-Ming
  surname: Wang
  fullname: Wang, Shun-Ming
  organization: Dept. of Systems & Naval Mechatronic Eng., National Cheng-Kung University, Tainan City 70101, Taiwan
– sequence: 3
  givenname: Lin-Chin
  surname: Huang
  fullname: Huang, Lin-Chin
  organization: Dept. of Systems & Naval Mechatronic Eng., National Cheng-Kung University, Tainan City 70101, Taiwan
– sequence: 4
  givenname: Ming-Chung
  surname: Fang
  fullname: Fang, Ming-Chung
  organization: Dept. of Systems & Naval Mechatronic Eng., National Cheng-Kung University, Tainan City 70101, Taiwan
BookMark eNqFkN1qGzEQRkVJobaTVwh6gd2O9lcLvWgIbRoIpND0WsjSrC13V9pKWhs_U16yu3EMJTe5mu9izjfMWZIL6ywScs0gZcCqz7vUKZQW7SbNgNUpFCmU7ANZMF7nSZmV_IIsALIm4cD4J7IMYQcAVQX5gjzfDEN3NHZD4xZpiOjRJXsTjLNUY0QV5zTNrTV_R6TRvSxq3GPnhh5tpK6lo9XoD3KiqbFhOFMy_KEHE7f056_HZC0DaqqPVvZGUe_GOF-V3cb5aaWnrfNUjtFZ17sx_F-5x61RHYZL8rGVXcCr17kiv79_e7r9kTw83t3f3jwkKmdZTIqGFTyTbcEaXWWSV6XWNdN1WyGUDc9ryJnkqqzbBup1UbVqXfP1lBRnuc5kviLVqVd5F4LHVgze9NIfBQMxKxc7cVYuZuUCCjEpn8Avb0BlopxdRC9N9z7-9YTj9NzeoBdBGbQKtfGTUqGdea_iH6rHqcg
CitedBy_id crossref_primary_10_1155_2021_8847863
crossref_primary_10_1016_j_oceaneng_2018_08_007
crossref_primary_10_1016_j_autcon_2024_105764
crossref_primary_10_3390_jmse7040107
crossref_primary_10_1016_j_robot_2019_07_001
crossref_primary_10_1016_j_oceaneng_2021_109407
crossref_primary_10_1155_2019_4276987
crossref_primary_10_1109_ACCESS_2025_3556446
crossref_primary_10_1364_AO_428502
crossref_primary_10_3390_jmse12122364
crossref_primary_10_1016_j_matcom_2020_09_019
crossref_primary_10_3389_fmars_2024_1357879
crossref_primary_10_1016_j_oceaneng_2021_109073
crossref_primary_10_1016_j_oceaneng_2023_115678
crossref_primary_10_1016_j_asoc_2021_107754
crossref_primary_10_3390_s18103570
crossref_primary_10_1016_j_oceaneng_2019_106327
crossref_primary_10_1016_j_marstruc_2018_02_001
crossref_primary_10_1016_j_oceaneng_2022_111070
crossref_primary_10_3390_app10072480
crossref_primary_10_1016_j_oceaneng_2018_10_015
crossref_primary_10_1002_cpe_6140
crossref_primary_10_1088_1361_6501_aba232
crossref_primary_10_1155_2019_6320186
crossref_primary_10_1016_j_oceaneng_2020_108242
crossref_primary_10_1109_ACCESS_2021_3108177
crossref_primary_10_1007_s11044_019_09720_1
crossref_primary_10_1016_j_advengsoft_2022_103319
Cites_doi 10.1109/OCEANSSYD.2010.5603905
10.15607/RSS.2005.I.008
10.1007/s10596-009-9142-1
10.1016/j.robot.2014.10.007
10.1109/3477.956031
10.1007/BFb0040810
10.1016/j.neucom.2012.09.019
10.1016/0025-3227(84)90006-9
10.1007/s11370-013-0138-2
10.1109/JOE.2013.2278891
10.1007/s001380100065
10.1109/IROS.2010.5649246
10.1016/j.oceaneng.2014.11.001
10.1109/CYBER.2014.6917525
10.1109/OCEANSE.2005.1513260
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright_xml – notice: 2017 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.oceaneng.2017.04.051
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Oceanography
EISSN 1873-5258
EndPage 139
ExternalDocumentID 10_1016_j_oceaneng_2017_04_051
S0029801817302457
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KCYFY
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSJ
SST
SSZ
T5K
TAE
TN5
XPP
ZMT
~02
~G-
29N
6TJ
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACKIV
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SET
SEW
WUQ
~HD
ID FETCH-LOGICAL-c312t-491482af419d62a865dd71d7f6e059837031a8c57f907b46fcb78b7b4c813d2a3
ISICitedReferencesCount 34
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000403987300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-8018
IngestDate Tue Nov 18 21:55:32 EST 2025
Sat Nov 29 05:33:12 EST 2025
Fri Feb 23 02:26:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Underwater inspection
Fuzzy control
AUV
Dynamic routing algorithm
Stereo vision
PSO
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-491482af419d62a865dd71d7f6e059837031a8c57f907b46fcb78b7b4c813d2a3
PageCount 13
ParticipantIDs crossref_primary_10_1016_j_oceaneng_2017_04_051
crossref_citationtrail_10_1016_j_oceaneng_2017_04_051
elsevier_sciencedirect_doi_10_1016_j_oceaneng_2017_04_051
PublicationCentury 2000
PublicationDate 2017-07-15
PublicationDateYYYYMMDD 2017-07-15
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-15
  day: 15
PublicationDecade 2010
PublicationTitle Ocean engineering
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Onwunalu, Durlofsky (bib13) 2010; 14
Paull, Saeedi, Seto, Li (bib15) 2014; 39
Zhang, Gong, Zhang (bib19) 2013; 103
Eustice, R., Singh, H., Leonard, J.J., Walter, M., Ballard, R., 2005. Visually navigating the RMS titanic with SLAM information filters. In: Proceedings of Robotics: Science and Systems (RSS).
Saravanakumar, Asokan (bib16) 2013; 6
Armstrong, B., Wolbrecht, E., Edwards, D., 2010. AUV navigation in the presence of a magnetic disturbance with an extended Kalman filter, OCEANS 2010 IEEE-Sydney. IEEE, pp. 1–6.
Belderson, Jones, Gorini, Kenyon (bib3) 1984; 56
Kermorgant, H.A., Scourzic, D., 2005. Interrelated functional topics concerning autonomy related issues in the context of autonomous inspection of underwater structures. Oceans 2005-Europe. IEEE, pp. 1370–1375.
Belderson, Jones, Gorini, Kenyon (bib4) 1984; 56
Mallios, A., Ridao, P., Ribas, D., Maurelli, F., Petillot, Y., 2010. EKF-SLAM for AUV navigation under probabilistic sonar scan-matching. Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, pp. 4404–4411.
Fang, Wang, Wu, Lin (bib7) 2015; 93
Ortiz, Simó, Oliver (bib14) 2002; 13
Chen, H., Stavinoha, S., Walker, M., Zhang, B., Fuhlbrigge, T., 2014. Exploring robotic applications in offshore oil & gas industry. Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), 2014 IEEE 4th Annual International Conference on. IEEE, pp. 563–568.
Ataei, Yousefi-Koma (bib2) 2015; 67
Foresti (bib8) 2001; 31
Kennedy (bib10) 2011
Griffiths (bib9) 1997
Zerr, Mailfert, Bertholom, Ayreault (bib18) 2005; 121
Shi, Y., Eberhart, R.C., 1998. Parameter selection in particle swarm optimization. International Conference on Evolutionary Programming. Springer, pp. 591–600.
10.1016/j.oceaneng.2017.04.051_bib17
Fang (10.1016/j.oceaneng.2017.04.051_bib7) 2015; 93
Ataei (10.1016/j.oceaneng.2017.04.051_bib2) 2015; 67
Saravanakumar (10.1016/j.oceaneng.2017.04.051_bib16) 2013; 6
Onwunalu (10.1016/j.oceaneng.2017.04.051_bib13) 2010; 14
Belderson (10.1016/j.oceaneng.2017.04.051_bib3) 1984; 56
Griffiths (10.1016/j.oceaneng.2017.04.051_bib9) 1997
Zhang (10.1016/j.oceaneng.2017.04.051_bib19) 2013; 103
Paull (10.1016/j.oceaneng.2017.04.051_bib15) 2014; 39
Zerr (10.1016/j.oceaneng.2017.04.051_bib18) 2005; 121
Kennedy (10.1016/j.oceaneng.2017.04.051_bib10) 2011
10.1016/j.oceaneng.2017.04.051_bib6
Foresti (10.1016/j.oceaneng.2017.04.051_bib8) 2001; 31
10.1016/j.oceaneng.2017.04.051_bib5
Ortiz (10.1016/j.oceaneng.2017.04.051_bib14) 2002; 13
10.1016/j.oceaneng.2017.04.051_bib1
10.1016/j.oceaneng.2017.04.051_bib11
Belderson (10.1016/j.oceaneng.2017.04.051_bib4) 1984; 56
10.1016/j.oceaneng.2017.04.051_bib12
References_xml – volume: 39
  start-page: 131
  year: 2014
  end-page: 149
  ident: bib15
  article-title: AUV navigation and localization: a review
  publication-title: Ocean. Eng. IEEE J. Of
– volume: 56
  start-page: 65
  year: 1984
  end-page: 78
  ident: bib4
  article-title: A long-range side-scan sonar (Gloria) survey of the Romanche active transform in the Equatorial Atlantic
  publication-title: Mar. Geol.
– volume: 56
  start-page: 65
  year: 1984
  end-page: 78
  ident: bib3
  article-title: A long-range side-scan sonar (Gloria) survey of the Romanche active transform in the equatorial Atlantic
  publication-title: Mar. Geol.
– reference: Eustice, R., Singh, H., Leonard, J.J., Walter, M., Ballard, R., 2005. Visually navigating the RMS titanic with SLAM information filters. In: Proceedings of Robotics: Science and Systems (RSS).
– reference: Kermorgant, H.A., Scourzic, D., 2005. Interrelated functional topics concerning autonomy related issues in the context of autonomous inspection of underwater structures. Oceans 2005-Europe. IEEE, pp. 1370–1375.
– reference: Armstrong, B., Wolbrecht, E., Edwards, D., 2010. AUV navigation in the presence of a magnetic disturbance with an extended Kalman filter, OCEANS 2010 IEEE-Sydney. IEEE, pp. 1–6.
– volume: 14
  start-page: 183
  year: 2010
  end-page: 198
  ident: bib13
  article-title: Application of a particle swarm optimization algorithm for determining optimum well location and type
  publication-title: Comput. Geosci.
– volume: 31
  start-page: 691
  year: 2001
  end-page: 705
  ident: bib8
  article-title: Visual inspection of sea bottom structures by an autonomous underwater vehicle
  publication-title: Syst. Man Cybern. Part B: Cybern. IEEE Trans. on
– volume: 121
  start-page: 124
  year: 2005
  end-page: 130
  ident: bib18
  article-title: Sidescan sonar image processing for AUV navigation
  publication-title: Eur. Oceans
– reference: Mallios, A., Ridao, P., Ribas, D., Maurelli, F., Petillot, Y., 2010. EKF-SLAM for AUV navigation under probabilistic sonar scan-matching. Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, pp. 4404–4411.
– volume: 103
  start-page: 172
  year: 2013
  end-page: 185
  ident: bib19
  article-title: Robot path planning in uncertain environment using multi-objective particle swarm optimization
  publication-title: Neurocomputing
– volume: 67
  start-page: 23
  year: 2015
  end-page: 32
  ident: bib2
  article-title: Three-dimensional optimal path planning for waypoint guidance of an autonomous underwater vehicle
  publication-title: Robot. Auton. Syst.
– volume: 93
  start-page: 11
  year: 2015
  end-page: 24
  ident: bib7
  article-title: Applying the self-tuning fuzzy control with the image detection technique on the obstacle-avoidance for autonomous underwater vehicles
  publication-title: Ocean Eng.
– volume: 6
  start-page: 211
  year: 2013
  end-page: 224
  ident: bib16
  article-title: Multipoint potential field method for path planning of autonomous underwater vehicles in 3D space
  publication-title: Intell. Serv. Robot.
– volume: 13
  start-page: 129
  year: 2002
  end-page: 140
  ident: bib14
  article-title: A vision system for an underwater cable tracker
  publication-title: Mach. Vision. Appl.
– start-page: 24
  year: 1997
  end-page: 25
  ident: bib9
  article-title: Ocean science applications for autonomous underwater vehicles – the work plan For Autosub-1 for 1997–2000 and beyond
  publication-title: Unmanned Underw. Veh. Showc.
– start-page: 760
  year: 2011
  end-page: 766
  ident: bib10
  article-title: Particle Swarm Optimization, Encyclopedia of Machine Learning
– reference: Chen, H., Stavinoha, S., Walker, M., Zhang, B., Fuhlbrigge, T., 2014. Exploring robotic applications in offshore oil & gas industry. Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), 2014 IEEE 4th Annual International Conference on. IEEE, pp. 563–568.
– reference: Shi, Y., Eberhart, R.C., 1998. Parameter selection in particle swarm optimization. International Conference on Evolutionary Programming. Springer, pp. 591–600.
– ident: 10.1016/j.oceaneng.2017.04.051_bib1
  doi: 10.1109/OCEANSSYD.2010.5603905
– ident: 10.1016/j.oceaneng.2017.04.051_bib6
  doi: 10.15607/RSS.2005.I.008
– volume: 14
  start-page: 183
  issue: 1
  year: 2010
  ident: 10.1016/j.oceaneng.2017.04.051_bib13
  article-title: Application of a particle swarm optimization algorithm for determining optimum well location and type
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-009-9142-1
– volume: 67
  start-page: 23
  year: 2015
  ident: 10.1016/j.oceaneng.2017.04.051_bib2
  article-title: Three-dimensional optimal path planning for waypoint guidance of an autonomous underwater vehicle
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2014.10.007
– volume: 31
  start-page: 691
  issue: 5
  year: 2001
  ident: 10.1016/j.oceaneng.2017.04.051_bib8
  article-title: Visual inspection of sea bottom structures by an autonomous underwater vehicle
  publication-title: Syst. Man Cybern. Part B: Cybern. IEEE Trans. on
  doi: 10.1109/3477.956031
– start-page: 760
  year: 2011
  ident: 10.1016/j.oceaneng.2017.04.051_bib10
– ident: 10.1016/j.oceaneng.2017.04.051_bib17
  doi: 10.1007/BFb0040810
– volume: 103
  start-page: 172
  year: 2013
  ident: 10.1016/j.oceaneng.2017.04.051_bib19
  article-title: Robot path planning in uncertain environment using multi-objective particle swarm optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.09.019
– volume: 56
  start-page: 65
  issue: 1
  year: 1984
  ident: 10.1016/j.oceaneng.2017.04.051_bib4
  article-title: A long-range side-scan sonar (Gloria) survey of the Romanche active transform in the Equatorial Atlantic
  publication-title: Mar. Geol.
  doi: 10.1016/0025-3227(84)90006-9
– volume: 6
  start-page: 211
  issue: 4
  year: 2013
  ident: 10.1016/j.oceaneng.2017.04.051_bib16
  article-title: Multipoint potential field method for path planning of autonomous underwater vehicles in 3D space
  publication-title: Intell. Serv. Robot.
  doi: 10.1007/s11370-013-0138-2
– start-page: 24
  year: 1997
  ident: 10.1016/j.oceaneng.2017.04.051_bib9
  article-title: Ocean science applications for autonomous underwater vehicles – the work plan For Autosub-1 for 1997–2000 and beyond
  publication-title: Unmanned Underw. Veh. Showc.
– volume: 39
  start-page: 131
  issue: 1
  year: 2014
  ident: 10.1016/j.oceaneng.2017.04.051_bib15
  article-title: AUV navigation and localization: a review
  publication-title: Ocean. Eng. IEEE J. Of
  doi: 10.1109/JOE.2013.2278891
– volume: 121
  start-page: 124
  year: 2005
  ident: 10.1016/j.oceaneng.2017.04.051_bib18
  article-title: Sidescan sonar image processing for AUV navigation
  publication-title: Eur. Oceans
– volume: 13
  start-page: 129
  issue: 3
  year: 2002
  ident: 10.1016/j.oceaneng.2017.04.051_bib14
  article-title: A vision system for an underwater cable tracker
  publication-title: Mach. Vision. Appl.
  doi: 10.1007/s001380100065
– ident: 10.1016/j.oceaneng.2017.04.051_bib12
  doi: 10.1109/IROS.2010.5649246
– volume: 93
  start-page: 11
  year: 2015
  ident: 10.1016/j.oceaneng.2017.04.051_bib7
  article-title: Applying the self-tuning fuzzy control with the image detection technique on the obstacle-avoidance for autonomous underwater vehicles
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2014.11.001
– volume: 56
  start-page: 65
  issue: 1–4
  year: 1984
  ident: 10.1016/j.oceaneng.2017.04.051_bib3
  article-title: A long-range side-scan sonar (Gloria) survey of the Romanche active transform in the equatorial Atlantic
  publication-title: Mar. Geol.
  doi: 10.1016/0025-3227(84)90006-9
– ident: 10.1016/j.oceaneng.2017.04.051_bib5
  doi: 10.1109/CYBER.2014.6917525
– ident: 10.1016/j.oceaneng.2017.04.051_bib11
  doi: 10.1109/OCEANSE.2005.1513260
SSID ssj0006603
Score 2.3281393
Snippet This research is an extension of image detection technique for obstacle-avoidance of autonomous underwater vehicles (AUVs) by applying the BK triangle...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 127
SubjectTerms AUV
Dynamic routing algorithm
Fuzzy control
PSO
Stereo vision
Underwater inspection
Title Applying the stereo-vision detection technique to the development of underwater inspection task with PSO-based dynamic routing algorithm for autonomous underwater vehicles
URI https://dx.doi.org/10.1016/j.oceaneng.2017.04.051
Volume 139
WOSCitedRecordID wos000403987300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5258
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006603
  issn: 0029-8018
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELeqjgeYhGCA2PgjP_BWGZLmj53HCQ0VBNskhihPkRvHrKMkU5uU8Zn4Rnwa7mLHSWFi7IGXKLJ9bq371Xd2735HyLNcC_BzZcRUoBULQ6S81VnEApmJBAwuD3VTteQtPzwU02lyPBj8bHNh1gteFOLiIjn_r6qGNlA2ps5eQ91uUmiAd1A6PEHt8PwnxaNf-b1NgkIahLxkJoN8pPIqN6XBO-pW63uqLngI_UdMLVt-k8igOC9MNiZKydUXc3N7_P6IoQFUI2VK2o-WZd1EUMvF53IJQ76a-My6wqwJjLPtTbnOT5tovL5nfJThfwJ5R4_oQoUMy8Gnmk1W8y5x7WN70X1aF-xdb_yktj0gyLA8uIOobcfB0FFbEXvl4Td3qSbp06UgJGhaxcY2bkiR7EbsG8YBa9Nt3x_mwtxcnD0vcYmwQgz14w31rWXB3eDn_s1uumjGNlDuLG3nSXGe1AtTD7P7t8Y8SsSQbO2_Ppi-cX5CHHtBG4CEi-nlr1_-jS53nXru0MkdctueY-i-wd9dMsiLHXKrx265Q7YblVpK9HvkRwtMCnijG8CkDpjUAZNWZTOwB0xaatqhiHbApAhMisCkDpjUApNaYFIHTArApB0w-1O2wLxPPrw6OHk5YbZUCMsCf1yxMEE-W6lDP1HxWIo4Uor7ius4h_MDEjwFvhRZxHXi8VkY62zGxQzeMuEHaiyDB2RYlEX-kNBkzD2JkYZCg2-u41kkFZwLYKgXRLCX7ZKo1UKaWR59LOeySP-Og13ywsmdGyaZKyWSVsmp9YeNn5sCfq-Q3bv2pz0iN7vf2mMyrJZ1_oTcyNbVfLV8asH7C2cI5R8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applying+the+stereo-vision+detection+technique+to+the+development+of+underwater+inspection+task+with+PSO-based+dynamic+routing+algorithm+for+autonomous+underwater+vehicles&rft.jtitle=Ocean+engineering&rft.au=Lin%2C+Yu-Hsien&rft.au=Wang%2C+Shun-Ming&rft.au=Huang%2C+Lin-Chin&rft.au=Fang%2C+Ming-Chung&rft.date=2017-07-15&rft.issn=0029-8018&rft.volume=139&rft.spage=127&rft.epage=139&rft_id=info:doi/10.1016%2Fj.oceaneng.2017.04.051&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_oceaneng_2017_04_051
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon