A novel brain-inspired approach based on spiking neural network for cooperative control and protection of multiple trains

The ongoing challenge of addressing critical issues related to intelligent cooperative control and active protection persists due to the absence of a comprehensive and efficient integrated solution. To address this challenge, this paper introduces a brain-inspired controller that emulates the collab...

Full description

Saved in:
Bibliographic Details
Published in:Engineering applications of artificial intelligence Vol. 127; p. 107252
Main Authors: Zhang, Zixuan, Song, Haifeng, Wang, Hongwei, Tan, Ligang, Dong, Hairong
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.01.2024
Subjects:
ISSN:0952-1976, 1873-6769
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The ongoing challenge of addressing critical issues related to intelligent cooperative control and active protection persists due to the absence of a comprehensive and efficient integrated solution. To address this challenge, this paper introduces a brain-inspired controller that emulates the collaborative functionalities of various brain regions, harnessing the power of spiking neural networks. The controller’s primary tasks include reference velocity tracking, cooperative control, and active protection, with a special focus on cooperative protection within distinct operational modes. Furthermore, the fundamental principles of incorporating spiking neural networks into train control, such as coding and decoding mechanisms, are expounded. The overarching controller is partitioned into two principal functional segments. The first segment involves emulating the prefrontal cortex (PFC) for reference velocity tracking and active protection against overspeed and collisions through motor control and movement planning. The second segment employs a cerebellum-inspired network for cooperative control. Additionally, the brain-inspired network introduced in this study undergoes training utilizing biologically-inspired mechanisms, incorporating dopamine and pertinent teaching signals to facilitate realistic synaptic modifications. Simulation results in several scenarios validate the proposed approach.
AbstractList The ongoing challenge of addressing critical issues related to intelligent cooperative control and active protection persists due to the absence of a comprehensive and efficient integrated solution. To address this challenge, this paper introduces a brain-inspired controller that emulates the collaborative functionalities of various brain regions, harnessing the power of spiking neural networks. The controller’s primary tasks include reference velocity tracking, cooperative control, and active protection, with a special focus on cooperative protection within distinct operational modes. Furthermore, the fundamental principles of incorporating spiking neural networks into train control, such as coding and decoding mechanisms, are expounded. The overarching controller is partitioned into two principal functional segments. The first segment involves emulating the prefrontal cortex (PFC) for reference velocity tracking and active protection against overspeed and collisions through motor control and movement planning. The second segment employs a cerebellum-inspired network for cooperative control. Additionally, the brain-inspired network introduced in this study undergoes training utilizing biologically-inspired mechanisms, incorporating dopamine and pertinent teaching signals to facilitate realistic synaptic modifications. Simulation results in several scenarios validate the proposed approach.
ArticleNumber 107252
Author Zhang, Zixuan
Tan, Ligang
Dong, Hairong
Song, Haifeng
Wang, Hongwei
Author_xml – sequence: 1
  givenname: Zixuan
  surname: Zhang
  fullname: Zhang, Zixuan
  organization: Beijing Jiaotong University, Beijing 100044, China
– sequence: 2
  givenname: Haifeng
  surname: Song
  fullname: Song, Haifeng
  organization: Beihang University, Beijing 100191, China
– sequence: 3
  givenname: Hongwei
  surname: Wang
  fullname: Wang, Hongwei
  organization: Beijing Jiaotong University, Beijing 100044, China
– sequence: 4
  givenname: Ligang
  surname: Tan
  fullname: Tan, Ligang
  organization: China State Railway Group Co., Ltd., Beijing 100844, China
– sequence: 5
  givenname: Hairong
  surname: Dong
  fullname: Dong, Hairong
  email: hrdong@bjtu.edu.cn
  organization: Beijing Jiaotong University, Beijing 100044, China
BookMark eNqFkMtKAzEUhoMo2FZfQfICU3OZTGbAhaV4g4IbXYdMJqlpp8mQpJW-vRmqGzddnVz4_sP_TcGl804DcIfRHCNc3W_m2q3lMEg7J4jQ_MgJIxdggmtOi4pXzSWYoIaRAje8ugbTGDcIIVqX1QQcF9D5g-5hG6R1hXVxsEF3MOcFL9UXbGXMV-9g_that4ZO74Ps80jfPmyh8QEq7wcdZLIHnc8uBd9D6TqYI5JWyWbaG7jb98kOvYZpXBVvwJWRfdS3v3MGPp-fPpavxer95W25WBWKYpKKkpqKsabExFAuTVdzjSWtZcMMIw3tSm5K1dZ1SxCvMOs4ZS0tGZdlW1NaEzoD1SlXBR9j0EYMwe5kOAqMxChQbMSfQDEKFCeBGXz4Byqb5NhmLNCfxx9PuM7lDlYHEZXVTukuC1ZJdN6ei_gBfx2VLA
CitedBy_id crossref_primary_10_1007_s41403_024_00512_4
crossref_primary_10_3390_math13010050
crossref_primary_10_1007_s11227_024_05948_7
crossref_primary_10_1016_j_tre_2025_104277
crossref_primary_10_1007_s13534_024_00436_6
crossref_primary_10_1016_j_engappai_2025_111435
Cites_doi 10.1109/72.991428
10.1049/itr2.12201
10.3389/fnins.2018.00291
10.3390/s20020500
10.1109/TITS.2019.2914910
10.1016/j.engappai.2020.103986
10.1016/j.biosystems.2008.05.008
10.1016/j.neucom.2021.08.005
10.1016/j.engappai.2021.104362
10.1016/j.neunet.2018.04.002
10.1093/cercor/bhl152
10.1088/1748-3190/ac290c
10.1016/j.neucom.2021.06.027
10.1109/TCNS.2021.3084064
10.1016/j.neunet.2019.05.019
10.3390/brainsci12070863
10.3389/fninf.2017.00034
10.1016/j.aap.2022.106703
10.1016/j.automatica.2022.110470
10.1109/TVT.2020.3019699
10.1109/TCYB.2018.2852772
10.1109/TNN.2004.832719
10.1155/2019/7261726
10.1109/TII.2020.3024946
10.1016/j.neunet.2014.01.006
10.1016/j.cie.2016.11.030
10.1109/TVT.2021.3098343
10.1109/TNNLS.2021.3111051
10.1155/2018/3061034
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2023.107252
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
ExternalDocumentID 10_1016_j_engappai_2023_107252
S0952197623014367
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c312t-43f6559412f37afd87e1a38a95f5293d47f4cb88b207615d735b3457a4b833823
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001094787800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0952-1976
IngestDate Sat Nov 29 07:04:08 EST 2025
Tue Nov 18 22:33:45 EST 2025
Fri Feb 23 02:35:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Brain-inspired control
Cooperative operation
Railway train control
Spiking neural networks
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-43f6559412f37afd87e1a38a95f5293d47f4cb88b207615d735b3457a4b833823
ParticipantIDs crossref_primary_10_1016_j_engappai_2023_107252
crossref_citationtrail_10_1016_j_engappai_2023_107252
elsevier_sciencedirect_doi_10_1016_j_engappai_2023_107252
PublicationCentury 2000
PublicationDate January 2024
2024-01-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: January 2024
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Fu, Dessouky (b9) 2017; 103
Gao, Wei, Song, Zhang, Dong, Hu (b10) 2020; 96
Li, Wang, Shan, Lanzon, Petersen (b18) 2021; 8
Zhang, Song, Wang, Wang, Dong (b36) 2021; 70
Wang, Zhao, Lin, Cui, Luo, Zhu, Wang, Tang (b30) 2020; 17
Bohte, La Poutré, Kok (b2) 2002; 13
Xing, Yang, Zhang, Xu (b32) 2022
Felez, Kim, Borrelli (b7) 2019; 20
Duan, Schmid (b6) 2018
Xu, Peng, Zhang, Chen, Zhou, Yang, Gao, Huang (b33) 2019; 2019
Lin, Tian, Gui, Yang (b19) 2022; 144
Pu, Zhu, Zhang, Liu, Cai, Fu (b26) 2020; 69
Bing, Meschede, Chen, Knoll, Huang (b1) 2020; 121
Carrillo, Ros, Boucheny, Olivier (b3) 2008; 94
Izhikevich (b14) 2007; 17
Pan, Luo, Zhao, Zhang, Chen (b24) 2018; 2018
Zhang, Zhao, Zhang, Zhang (b37) 2022; 236
Clawson, Ferrari, Fuller, Wood (b4) 2016
Kasabov (b17) 2019
Moberget, Ivry (b23) 2019; 4
Kasabov (b16) 2014; 52
Xu, Tu, Xu, Wu (b34) 2022
Shalumov, Halaly, Tsur (b27) 2021; 16
Yamazaki, Vo-Ho, Bulsara, Le (b35) 2022; 12
Pérez, Cabrera, Castillo, Velasco (b25) 2018; 104
Van Albada, Rowley, Senk, Hopkins, Schmidt, Stokes, Lester, Diesmann, Furber (b29) 2018; 12
Xing, Li, Zhang, Xu (b31) 2021; 33
Fernández, Vargas, García, Carrillo, Aguilar (b8) 2021; 463
Liu, Lu, Luo, Yang (b20) 2021; 104
Dong, Zhu, Li, Lv, Gao, Zhang, Ning (b5) 2018; 48
Kaiser, Tieck, Hubschneider, Wolf, Weber, Hoff, Friedrich, Wojtasik, Roennau, Kohlhaas (b15) 2016
Hahne, Dahmen, Schuecker, Frommer, Bolten, Helias, Diesmann (b12) 2017; 11
Su, Liu, Zhu, Li, Tang, Lv (b28) 2022; 173
Lobov, Chernyshov, Krilova, Shamshin, Kazantsev (b21) 2020; 20
Izhikevich (b13) 2004; 15
Gerstner, Kistler (b11) 2002
Lu, Liu, Luo, Hua, Qiu, Huang (b22) 2021; 458
Kasabov (10.1016/j.engappai.2023.107252_b17) 2019
Van Albada (10.1016/j.engappai.2023.107252_b29) 2018; 12
Clawson (10.1016/j.engappai.2023.107252_b4) 2016
Izhikevich (10.1016/j.engappai.2023.107252_b14) 2007; 17
Pan (10.1016/j.engappai.2023.107252_b24) 2018; 2018
Su (10.1016/j.engappai.2023.107252_b28) 2022; 173
Carrillo (10.1016/j.engappai.2023.107252_b3) 2008; 94
Wang (10.1016/j.engappai.2023.107252_b30) 2020; 17
Gerstner (10.1016/j.engappai.2023.107252_b11) 2002
Xu (10.1016/j.engappai.2023.107252_b34) 2022
Izhikevich (10.1016/j.engappai.2023.107252_b13) 2004; 15
Zhang (10.1016/j.engappai.2023.107252_b36) 2021; 70
Yamazaki (10.1016/j.engappai.2023.107252_b35) 2022; 12
Li (10.1016/j.engappai.2023.107252_b18) 2021; 8
Moberget (10.1016/j.engappai.2023.107252_b23) 2019; 4
Pérez (10.1016/j.engappai.2023.107252_b25) 2018; 104
Felez (10.1016/j.engappai.2023.107252_b7) 2019; 20
Kasabov (10.1016/j.engappai.2023.107252_b16) 2014; 52
Lobov (10.1016/j.engappai.2023.107252_b21) 2020; 20
Xing (10.1016/j.engappai.2023.107252_b31) 2021; 33
Bohte (10.1016/j.engappai.2023.107252_b2) 2002; 13
Fu (10.1016/j.engappai.2023.107252_b9) 2017; 103
Bing (10.1016/j.engappai.2023.107252_b1) 2020; 121
Hahne (10.1016/j.engappai.2023.107252_b12) 2017; 11
Gao (10.1016/j.engappai.2023.107252_b10) 2020; 96
Lin (10.1016/j.engappai.2023.107252_b19) 2022; 144
Lu (10.1016/j.engappai.2023.107252_b22) 2021; 458
Shalumov (10.1016/j.engappai.2023.107252_b27) 2021; 16
Kaiser (10.1016/j.engappai.2023.107252_b15) 2016
Liu (10.1016/j.engappai.2023.107252_b20) 2021; 104
Zhang (10.1016/j.engappai.2023.107252_b37) 2022; 236
Xu (10.1016/j.engappai.2023.107252_b33) 2019; 2019
Dong (10.1016/j.engappai.2023.107252_b5) 2018; 48
Fernández (10.1016/j.engappai.2023.107252_b8) 2021; 463
Duan (10.1016/j.engappai.2023.107252_b6) 2018
Pu (10.1016/j.engappai.2023.107252_b26) 2020; 69
Xing (10.1016/j.engappai.2023.107252_b32) 2022
References_xml – volume: 33
  start-page: 2094
  year: 2021
  end-page: 2105
  ident: b31
  article-title: A brain-inspired approach for collision-free movement planning in the small operational space
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– year: 2019
  ident: b17
  article-title: Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence
– volume: 15
  start-page: 1063
  year: 2004
  end-page: 1070
  ident: b13
  article-title: Which model to use for cortical spiking neurons?
  publication-title: IEEE Trans. Neural Netw.
– start-page: 3381
  year: 2016
  end-page: 3388
  ident: b4
  article-title: Spiking Neural Network (SNN) control of a flapping insect-scale robot
  publication-title: 2016 IEEE 55th Conference on Decision and Control
– volume: 12
  start-page: 291
  year: 2018
  ident: b29
  article-title: Performance comparison of the digital neuromorphic hardware SpiNNaker and the neural network simulation software NEST for a full-scale cortical microcircuit model
  publication-title: Front. Neurosci.
– volume: 2019
  year: 2019
  ident: b33
  article-title: Adaptive model predictive control for cruise control of high-speed trains with time-varying parameters
  publication-title: J. Adv. Transp.
– start-page: 127
  year: 2016
  end-page: 134
  ident: b15
  article-title: Towards a framework for end-to-end control of a simulated vehicle with spiking neural networks
  publication-title: 2016 IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots
– volume: 13
  start-page: 426
  year: 2002
  end-page: 435
  ident: b2
  article-title: Unsupervised clustering with spiking neurons by sparse temporal coding and multilayer RBF networks
  publication-title: IEEE Trans. Neural Netw.
– volume: 8
  start-page: 1743
  year: 2021
  end-page: 1753
  ident: b18
  article-title: Robust cooperative control of networked train platoons: A negative-imaginary systems’ perspective
  publication-title: IEEE Trans. Control Netw. Syst.
– volume: 458
  start-page: 308
  year: 2021
  end-page: 318
  ident: b22
  article-title: An autonomous learning mobile robot using biological reward modulate STDP
  publication-title: Neurocomputing
– volume: 144
  year: 2022
  ident: b19
  article-title: Cooperative control for multiple train systems: Self-adjusting zones, collision avoidance and constraints
  publication-title: Automatica
– volume: 12
  start-page: 863
  year: 2022
  ident: b35
  article-title: Spiking neural networks and their applications: A review
  publication-title: Brain Sci.
– volume: 20
  start-page: 500
  year: 2020
  ident: b21
  article-title: Competitive learning in a spiking neural network: Towards an intelligent pattern classifier
  publication-title: Sensors
– volume: 121
  start-page: 21
  year: 2020
  end-page: 36
  ident: b1
  article-title: Indirect and direct training of spiking neural networks for end-to-end control of a lane-keeping vehicle
  publication-title: Neural Netw.
– year: 2022
  ident: b34
  article-title: Intelligent train operation based on deep learning from excellent driver manipulation patterns
  publication-title: IET Intell. Transp. Syst.
– volume: 2018
  year: 2018
  ident: b24
  article-title: A new calibration method for the real-time calculation of dynamic safety following distance under railway moving block system
  publication-title: Math. Probl. Eng.
– volume: 70
  start-page: 8545
  year: 2021
  end-page: 8555
  ident: b36
  article-title: Cooperative multi-scenario departure control for virtual coupling trains: A fixed-time approach
  publication-title: IEEE Trans. Veh. Technol.
– start-page: 1
  year: 2018
  end-page: 5
  ident: b6
  article-title: Optimised headway distance moving block with capacity analysis
  publication-title: 2018 International Conference on Intelligent Rail Transportation
– volume: 103
  start-page: 271
  year: 2017
  end-page: 281
  ident: b9
  article-title: Models and algorithms for dynamic headway control
  publication-title: Comput. Ind. Eng.
– volume: 173
  year: 2022
  ident: b28
  article-title: A cooperative collision-avoidance control methodology for virtual coupling trains
  publication-title: Accid. Anal. Prev.
– year: 2002
  ident: b11
  article-title: Spiking Neuron Models: Single Neurons, Populations, Plasticity
– volume: 104
  year: 2021
  ident: b20
  article-title: Spiking neural network-based multi-task autonomous learning for mobile robots
  publication-title: Eng. Appl. Artif. Intell.
– volume: 96
  year: 2020
  ident: b10
  article-title: Fuzzy adaptive automatic train operation control with protection constraints: A residual nonlinearity approximation-based approach
  publication-title: Eng. Appl. Artif. Intell.
– volume: 17
  start-page: 4935
  year: 2020
  end-page: 4945
  ident: b30
  article-title: A reinforcement learning empowered cooperative control approach for iiot-based virtually coupled train sets
  publication-title: IEEE Trans. Ind. Inform.
– year: 2022
  ident: b32
  article-title: A brain-inspired approach for probabilistic estimation and efficient planning in precision physical interaction
  publication-title: IEEE Trans. Cybern.
– volume: 236
  start-page: 975
  year: 2022
  end-page: 988
  ident: b37
  article-title: Intelligent train control for cooperative train formation: A deep reinforcement learning approach
  publication-title: Proc. Inst. Mech. Eng. I
– volume: 16
  year: 2021
  ident: b27
  article-title: Lidar-driven spiking neural network for collision avoidance in autonomous driving
  publication-title: Bioinspiration Biomim.
– volume: 463
  start-page: 237
  year: 2021
  end-page: 250
  ident: b8
  article-title: A biological-like controller using improved spiking neural networks
  publication-title: Neurocomputing
– volume: 17
  start-page: 2443
  year: 2007
  end-page: 2452
  ident: b14
  article-title: Solving the distal reward problem through linkage of STDP and dopamine signaling
  publication-title: Cerebral Cortex
– volume: 4
  start-page: 820
  year: 2019
  end-page: 831
  ident: b23
  article-title: Prediction, psychosis, and the cerebellum
  publication-title: Biol. Psychiatry: Cogn. Neurosci. Neuroimag.
– volume: 104
  start-page: 15
  year: 2018
  end-page: 25
  ident: b25
  article-title: Bio-inspired spiking neural network for nonlinear systems control
  publication-title: Neural Netw.
– volume: 48
  start-page: 3381
  year: 2018
  end-page: 3389
  ident: b5
  article-title: Parallel intelligent systems for integrated high-speed railway operation control and dynamic scheduling
  publication-title: IEEE Trans. Cybern.
– volume: 94
  start-page: 18
  year: 2008
  end-page: 27
  ident: b3
  article-title: A real-time spiking cerebellum model for learning robot control
  publication-title: Biosystems
– volume: 69
  start-page: 10656
  year: 2020
  end-page: 10667
  ident: b26
  article-title: Speed profile tracking by an adaptive controller for subway train based on neural network and pid algorithm
  publication-title: IEEE Trans. Veh. Technol.
– volume: 52
  start-page: 62
  year: 2014
  end-page: 76
  ident: b16
  article-title: NeuCube: A spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data
  publication-title: Neural Netw.
– volume: 20
  start-page: 2728
  year: 2019
  end-page: 2739
  ident: b7
  article-title: A model predictive control approach for virtual coupling in railways
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 11
  start-page: 34
  year: 2017
  ident: b12
  article-title: Integration of continuous-time dynamics in a spiking neural network simulator
  publication-title: Front. Neuroinf.
– volume: 13
  start-page: 426
  issue: 2
  year: 2002
  ident: 10.1016/j.engappai.2023.107252_b2
  article-title: Unsupervised clustering with spiking neurons by sparse temporal coding and multilayer RBF networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.991428
– year: 2022
  ident: 10.1016/j.engappai.2023.107252_b34
  article-title: Intelligent train operation based on deep learning from excellent driver manipulation patterns
  publication-title: IET Intell. Transp. Syst.
  doi: 10.1049/itr2.12201
– volume: 12
  start-page: 291
  year: 2018
  ident: 10.1016/j.engappai.2023.107252_b29
  article-title: Performance comparison of the digital neuromorphic hardware SpiNNaker and the neural network simulation software NEST for a full-scale cortical microcircuit model
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00291
– volume: 20
  start-page: 500
  issue: 2
  year: 2020
  ident: 10.1016/j.engappai.2023.107252_b21
  article-title: Competitive learning in a spiking neural network: Towards an intelligent pattern classifier
  publication-title: Sensors
  doi: 10.3390/s20020500
– year: 2022
  ident: 10.1016/j.engappai.2023.107252_b32
  article-title: A brain-inspired approach for probabilistic estimation and efficient planning in precision physical interaction
  publication-title: IEEE Trans. Cybern.
– year: 2019
  ident: 10.1016/j.engappai.2023.107252_b17
– volume: 4
  start-page: 820
  issue: 9
  year: 2019
  ident: 10.1016/j.engappai.2023.107252_b23
  article-title: Prediction, psychosis, and the cerebellum
  publication-title: Biol. Psychiatry: Cogn. Neurosci. Neuroimag.
– volume: 20
  start-page: 2728
  issue: 7
  year: 2019
  ident: 10.1016/j.engappai.2023.107252_b7
  article-title: A model predictive control approach for virtual coupling in railways
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2019.2914910
– volume: 96
  year: 2020
  ident: 10.1016/j.engappai.2023.107252_b10
  article-title: Fuzzy adaptive automatic train operation control with protection constraints: A residual nonlinearity approximation-based approach
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103986
– volume: 94
  start-page: 18
  issue: 1–2
  year: 2008
  ident: 10.1016/j.engappai.2023.107252_b3
  article-title: A real-time spiking cerebellum model for learning robot control
  publication-title: Biosystems
  doi: 10.1016/j.biosystems.2008.05.008
– volume: 463
  start-page: 237
  year: 2021
  ident: 10.1016/j.engappai.2023.107252_b8
  article-title: A biological-like controller using improved spiking neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.08.005
– start-page: 3381
  year: 2016
  ident: 10.1016/j.engappai.2023.107252_b4
  article-title: Spiking Neural Network (SNN) control of a flapping insect-scale robot
– start-page: 127
  year: 2016
  ident: 10.1016/j.engappai.2023.107252_b15
  article-title: Towards a framework for end-to-end control of a simulated vehicle with spiking neural networks
– volume: 104
  year: 2021
  ident: 10.1016/j.engappai.2023.107252_b20
  article-title: Spiking neural network-based multi-task autonomous learning for mobile robots
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2021.104362
– volume: 104
  start-page: 15
  year: 2018
  ident: 10.1016/j.engappai.2023.107252_b25
  article-title: Bio-inspired spiking neural network for nonlinear systems control
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2018.04.002
– volume: 17
  start-page: 2443
  issue: 10
  year: 2007
  ident: 10.1016/j.engappai.2023.107252_b14
  article-title: Solving the distal reward problem through linkage of STDP and dopamine signaling
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bhl152
– volume: 16
  issue: 6
  year: 2021
  ident: 10.1016/j.engappai.2023.107252_b27
  article-title: Lidar-driven spiking neural network for collision avoidance in autonomous driving
  publication-title: Bioinspiration Biomim.
  doi: 10.1088/1748-3190/ac290c
– volume: 458
  start-page: 308
  year: 2021
  ident: 10.1016/j.engappai.2023.107252_b22
  article-title: An autonomous learning mobile robot using biological reward modulate STDP
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.06.027
– volume: 8
  start-page: 1743
  issue: 4
  year: 2021
  ident: 10.1016/j.engappai.2023.107252_b18
  article-title: Robust cooperative control of networked train platoons: A negative-imaginary systems’ perspective
  publication-title: IEEE Trans. Control Netw. Syst.
  doi: 10.1109/TCNS.2021.3084064
– volume: 121
  start-page: 21
  year: 2020
  ident: 10.1016/j.engappai.2023.107252_b1
  article-title: Indirect and direct training of spiking neural networks for end-to-end control of a lane-keeping vehicle
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.05.019
– volume: 236
  start-page: 975
  issue: 5
  year: 2022
  ident: 10.1016/j.engappai.2023.107252_b37
  article-title: Intelligent train control for cooperative train formation: A deep reinforcement learning approach
  publication-title: Proc. Inst. Mech. Eng. I
– volume: 12
  start-page: 863
  issue: 7
  year: 2022
  ident: 10.1016/j.engappai.2023.107252_b35
  article-title: Spiking neural networks and their applications: A review
  publication-title: Brain Sci.
  doi: 10.3390/brainsci12070863
– volume: 11
  start-page: 34
  year: 2017
  ident: 10.1016/j.engappai.2023.107252_b12
  article-title: Integration of continuous-time dynamics in a spiking neural network simulator
  publication-title: Front. Neuroinf.
  doi: 10.3389/fninf.2017.00034
– volume: 173
  year: 2022
  ident: 10.1016/j.engappai.2023.107252_b28
  article-title: A cooperative collision-avoidance control methodology for virtual coupling trains
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2022.106703
– volume: 144
  year: 2022
  ident: 10.1016/j.engappai.2023.107252_b19
  article-title: Cooperative control for multiple train systems: Self-adjusting zones, collision avoidance and constraints
  publication-title: Automatica
  doi: 10.1016/j.automatica.2022.110470
– year: 2002
  ident: 10.1016/j.engappai.2023.107252_b11
– volume: 69
  start-page: 10656
  issue: 10
  year: 2020
  ident: 10.1016/j.engappai.2023.107252_b26
  article-title: Speed profile tracking by an adaptive controller for subway train based on neural network and pid algorithm
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2020.3019699
– volume: 48
  start-page: 3381
  issue: 12
  year: 2018
  ident: 10.1016/j.engappai.2023.107252_b5
  article-title: Parallel intelligent systems for integrated high-speed railway operation control and dynamic scheduling
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2852772
– volume: 15
  start-page: 1063
  issue: 5
  year: 2004
  ident: 10.1016/j.engappai.2023.107252_b13
  article-title: Which model to use for cortical spiking neurons?
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2004.832719
– volume: 2019
  year: 2019
  ident: 10.1016/j.engappai.2023.107252_b33
  article-title: Adaptive model predictive control for cruise control of high-speed trains with time-varying parameters
  publication-title: J. Adv. Transp.
  doi: 10.1155/2019/7261726
– volume: 17
  start-page: 4935
  issue: 7
  year: 2020
  ident: 10.1016/j.engappai.2023.107252_b30
  article-title: A reinforcement learning empowered cooperative control approach for iiot-based virtually coupled train sets
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2020.3024946
– volume: 52
  start-page: 62
  year: 2014
  ident: 10.1016/j.engappai.2023.107252_b16
  article-title: NeuCube: A spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.01.006
– start-page: 1
  year: 2018
  ident: 10.1016/j.engappai.2023.107252_b6
  article-title: Optimised headway distance moving block with capacity analysis
– volume: 103
  start-page: 271
  year: 2017
  ident: 10.1016/j.engappai.2023.107252_b9
  article-title: Models and algorithms for dynamic headway control
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2016.11.030
– volume: 70
  start-page: 8545
  issue: 9
  year: 2021
  ident: 10.1016/j.engappai.2023.107252_b36
  article-title: Cooperative multi-scenario departure control for virtual coupling trains: A fixed-time approach
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2021.3098343
– volume: 33
  start-page: 2094
  issue: 5
  year: 2021
  ident: 10.1016/j.engappai.2023.107252_b31
  article-title: A brain-inspired approach for collision-free movement planning in the small operational space
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2021.3111051
– volume: 2018
  year: 2018
  ident: 10.1016/j.engappai.2023.107252_b24
  article-title: A new calibration method for the real-time calculation of dynamic safety following distance under railway moving block system
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2018/3061034
SSID ssj0003846
Score 2.413543
Snippet The ongoing challenge of addressing critical issues related to intelligent cooperative control and active protection persists due to the absence of a...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107252
SubjectTerms Brain-inspired control
Cooperative operation
Railway train control
Spiking neural networks
Title A novel brain-inspired approach based on spiking neural network for cooperative control and protection of multiple trains
URI https://dx.doi.org/10.1016/j.engappai.2023.107252
Volume 127
WOSCitedRecordID wos001094787800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLgcuvBG7POQDtyilSezaPlZo0cJhhcQiVVwiJ3FQVpVTtd1S_tj-PsavJGVXLHtAlaJoUjtO52tmPB5_g9A7JqQop5VJK09lTEpZxoKyIia8plSSpICPLTbBzs74fC6-jEZXYS_MdsG05rudWP5XVYMMlG22zt5B3V2nIIBzUDocQe1w_CfFzyLdbtUiKkzxh7jRZikdvMpAHh4Zu1WZNQK4YOLkkaG0BEVplxBu8w7Ltl0qzwkektkdo4BldfBOZpeMaOtMrPeC_D3NYTRcI7dpByubn2SrhQwIQa-FsL83u8seu1997vCpbGrlza1dCPBiuPxTNX0gwm2paH5I_10f2UjJILIRQpRpnAhXH6Z7WzsqAf--hclr6hhwr5kCF5W4GMOQ4DllMzaF4sd9g33u7T9sYpepGJLgLvLQT276yV0_99BhyqgAg3A4-3Qy_9z5ABl3W8TCEwz2pt88opvdooGrc_4YPfRzFDxz2HqCRko_RY_8fAV7a7AGUSgJEmTP0K8ZtujD--jDAX3Yog-3Gnv0YYc-7NGHAX14gD7s0YcBfbhHH25rHNCHHfqeo28fT84_nMa-ukdcZkm6iUlWT2E6S5K0zpisK85UIjMuBa0p-KAVYTUpC86L1ITaaMUyWmSEMkkKnpnV6xfoQLdavUR4ypJEEMYV5ZKQYlIYv2zCKzhRKpWTI0TDj5uXnvrejG2R_129R-h9127pyF9ubSGC7nLvwjrXNAdY3tL2-M53e4Ue9P-b1-hgs7pUb9D9crtp1qu3HpO_Ae-cxqU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+brain-inspired+approach+based+on+spiking+neural+network+for+cooperative+control+and+protection+of+multiple+trains&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Zhang%2C+Zixuan&rft.au=Song%2C+Haifeng&rft.au=Wang%2C+Hongwei&rft.au=Tan%2C+Ligang&rft.date=2024-01-01&rft.issn=0952-1976&rft.volume=127&rft.spage=107252&rft_id=info:doi/10.1016%2Fj.engappai.2023.107252&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2023_107252
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon