A competitive new multi-objective optimization genetic algorithm based on apparent front ranking

Evolutionary algorithms built on Pareto-dominance suffer from a loss of selection pressure as the number of objectives increases and the probability of finding non-dominated solutions in the population decreases. Furthermore, Pareto-dominance is computationally expensive because of the pairwise comp...

Full description

Saved in:
Bibliographic Details
Published in:Engineering applications of artificial intelligence Vol. 132; p. 107870
Main Authors: Neghină, Mihai, Dicoiu, Alina-Ioana, Chiş, Radu, Florea, Adrian
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.06.2024
Subjects:
ISSN:0952-1976
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Evolutionary algorithms built on Pareto-dominance suffer from a loss of selection pressure as the number of objectives increases and the probability of finding non-dominated solutions in the population decreases. Furthermore, Pareto-dominance is computationally expensive because of the pairwise comparisons necessary to rank the individuals of a population. The paper introduces a new genetic algorithm for multi-objective optimization based on Apparent Front Ranking and crowding distance, called Controlled Apparent Front Zones Genetic Algorithm (CAFZGA). To avoid pairwise comparisons, CAFZGA first generates the main Apparent Front Boundary (AFB) with the help of a small set of support vectors and creates secondary AFBs as shifted versions of the main AFB. The space of objectives is divided into zones by the AFBs. The zones play a similar role in CAFZGA as the non-dominated fronts do in the Controlled Non-dominated Sorting Genetic Algorithm CNSGA-II. The zone ranking becomes the main criterion in differentiating individuals, with crowding distance being the tiebreak criterion. The method is shown to be extremely flexible because the AFBs are adjusted for each generation. Computationally, CAFZGA is more efficient than GAs using Pareto-dominance because the set of support vectors for generating the AFBs is significantly smaller than the population. CAFZGA is applied to the problem of optimizing the configuration of a Grid ALU Processor (GAP) and is shown to be competitive and sometimes even better than well-established GAs like CNSGA-II and Fuzzy-Dominance-Driven Genetic Algorithm FDD-GA. [Display omitted]
AbstractList Evolutionary algorithms built on Pareto-dominance suffer from a loss of selection pressure as the number of objectives increases and the probability of finding non-dominated solutions in the population decreases. Furthermore, Pareto-dominance is computationally expensive because of the pairwise comparisons necessary to rank the individuals of a population. The paper introduces a new genetic algorithm for multi-objective optimization based on Apparent Front Ranking and crowding distance, called Controlled Apparent Front Zones Genetic Algorithm (CAFZGA). To avoid pairwise comparisons, CAFZGA first generates the main Apparent Front Boundary (AFB) with the help of a small set of support vectors and creates secondary AFBs as shifted versions of the main AFB. The space of objectives is divided into zones by the AFBs. The zones play a similar role in CAFZGA as the non-dominated fronts do in the Controlled Non-dominated Sorting Genetic Algorithm CNSGA-II. The zone ranking becomes the main criterion in differentiating individuals, with crowding distance being the tiebreak criterion. The method is shown to be extremely flexible because the AFBs are adjusted for each generation. Computationally, CAFZGA is more efficient than GAs using Pareto-dominance because the set of support vectors for generating the AFBs is significantly smaller than the population. CAFZGA is applied to the problem of optimizing the configuration of a Grid ALU Processor (GAP) and is shown to be competitive and sometimes even better than well-established GAs like CNSGA-II and Fuzzy-Dominance-Driven Genetic Algorithm FDD-GA. [Display omitted]
ArticleNumber 107870
Author Neghină, Mihai
Chiş, Radu
Dicoiu, Alina-Ioana
Florea, Adrian
Author_xml – sequence: 1
  givenname: Mihai
  orcidid: 0000-0001-9828-4299
  surname: Neghină
  fullname: Neghină, Mihai
  email: mihai.neghina@ulbsibiu.ro
– sequence: 2
  givenname: Alina-Ioana
  surname: Dicoiu
  fullname: Dicoiu, Alina-Ioana
– sequence: 3
  givenname: Radu
  orcidid: 0000-0002-7284-948X
  surname: Chiş
  fullname: Chiş, Radu
– sequence: 4
  givenname: Adrian
  orcidid: 0000-0003-0278-4825
  surname: Florea
  fullname: Florea, Adrian
BookMark eNqFkMtOwzAQRb0oEi3wC8g_kGLnHYkFVcVLqsQG1mZiT4JDYkeOKYKvx21hw6abGWlm7h3dsyAzYw0ScsnZkjOeX3VLNC2MI-hlzOI0DIuyYDMyZ1UWR7wq8lOymKaOMZaUaT4nrysq7TCi115vkRr8pMNH73Vk6w7lfmZHrwf9DV5bQ1s04VZS6FvrtH8baA0TKhpWu7cOjaeNs6E6MO_atOfkpIF-wovffkZe7m6f1w_R5un-cb3aRDLhsY_SWBUMUGEh8wzKEsqaxY1MUDUABU8Vr2tZZUmZhVh1ouoCJC8bTOMKpGRFckbyg690dpocNmJ0egD3JTgTOzaiE39sxI6NOLAJwut_Qqn9Pqx3oPvj8puDHEO4rUYnJqnRSFTaBYBCWX3M4gfEKYw7
CitedBy_id crossref_primary_10_1016_j_cscm_2025_e05146
crossref_primary_10_1016_j_measurement_2025_117080
crossref_primary_10_1016_j_engappai_2024_109634
crossref_primary_10_3390_pr12050869
crossref_primary_10_1016_j_apenergy_2024_124330
Cites_doi 10.1109/TEVC.2013.2258025
10.1080/00207543.2011.631602
10.1109/TCAD.2015.2501299
10.1109/TEVC.2003.810758
10.1007/s11042-020-10139-6
10.1016/j.ins.2018.03.029
10.1016/j.knosys.2021.106856
10.1109/4235.996017
10.1109/4235.797969
10.1109/ICPR.1996.546029
10.4316/AECE.2017.04011
10.1016/j.engappai.2018.04.018
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2024.107870
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
ExternalDocumentID 10_1016_j_engappai_2024_107870
S0952197624000289
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
9DU
AATTM
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c312t-42d70aede7c65a88a8b02fc3edfaa714d1bbc95385024b3db7ac18fe429acc073
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001175344200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0952-1976
IngestDate Sat Nov 29 03:41:14 EST 2025
Tue Nov 18 22:36:42 EST 2025
Sat Oct 12 15:52:15 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Multi-objective optimization methods
Grid ALU processor optimization
Genetic algorithm
Controlled selection
Apparent front ranking
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-42d70aede7c65a88a8b02fc3edfaa714d1bbc95385024b3db7ac18fe429acc073
ORCID 0000-0002-7284-948X
0000-0001-9828-4299
0000-0003-0278-4825
ParticipantIDs crossref_primary_10_1016_j_engappai_2024_107870
crossref_citationtrail_10_1016_j_engappai_2024_107870
elsevier_sciencedirect_doi_10_1016_j_engappai_2024_107870
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zitzler, Thiele (bib30) 1999; 3
Lydia, Francis (bib21) 2019
Gellert, Florea, Fiore, Zanetti, Vintan (bib12) 2019; 476
Saaty (bib27) 1980
Miettinen (bib22) 1998; vol. 12
He, Yen, Zhang (bib14) 2014; 18
Mohammadi, Karampourhaghghi, Samaei (bib23) 2012; 50
Chiş, Vinţan (bib2) 2014
(bib26) 2020
Farina, Amato (bib9) 2003
Coello, Pulido (bib4) 2001; vol. 1993
Florea, Buduleci, Chiş, Gellert, Vinţan (bib11) 2014
Neghină, Vinţan (bib24) 2020; 21
Vinţan, Chiş, Ismail, Coţofana (bib29) 2016
Zitzler, Thiele, Laumanns, Fonseca, da Fonseca (bib31) 2003; 7
Uhrig, Shehan, Jahr, Ungerer (bib28) 2009
Deb, Thiele, Laumanns, Zitzler (bib8) 2005
Köppen, Vicente-Garcia, Nickolay (bib19) 2005
Luo, Zheng, Xie, Wu (bib20) 2008; 1
Huband, Barone, While, Hingston (bib15) 2005
Deb (bib5) 2001
Jahr, Ungerer, Calborean, Vinţan (bib16) 2011
Jangir, Jangir (bib17) 2018; 72
Deb, Goel (bib6) 2001
Chiş, Vinţan (bib3) 2017; 17
Katoch, Chauhan, Kumar (bib18) 2021; 80
Calborean, Vinţan (bib1) 2010
Deb, Pratap, Agarwal, Meyarivan (bib7) 2002; 6
Guthaus, Ringenberg, Ernst, Austin, Mudge, Brown (bib13) 2001
Premkumar, Jangir, Sowmya (bib25) 2021; 218
Fitzgibbon, Pilu, Fisher (bib10) 1996; 1
Gellert (10.1016/j.engappai.2024.107870_bib12) 2019; 476
Vinţan (10.1016/j.engappai.2024.107870_bib29) 2016
Chiş (10.1016/j.engappai.2024.107870_bib3) 2017; 17
Chiş (10.1016/j.engappai.2024.107870_bib2) 2014
Neghină (10.1016/j.engappai.2024.107870_bib24) 2020; 21
Deb (10.1016/j.engappai.2024.107870_bib6) 2001
Premkumar (10.1016/j.engappai.2024.107870_bib25) 2021; 218
Deb (10.1016/j.engappai.2024.107870_bib7) 2002; 6
Huband (10.1016/j.engappai.2024.107870_bib15) 2005
Calborean (10.1016/j.engappai.2024.107870_bib1) 2010
He (10.1016/j.engappai.2024.107870_bib14) 2014; 18
Coello (10.1016/j.engappai.2024.107870_bib4) 2001; vol. 1993
Deb (10.1016/j.engappai.2024.107870_bib8) 2005
Katoch (10.1016/j.engappai.2024.107870_bib18) 2021; 80
Luo (10.1016/j.engappai.2024.107870_bib20) 2008; 1
Zitzler (10.1016/j.engappai.2024.107870_bib30) 1999; 3
Fitzgibbon (10.1016/j.engappai.2024.107870_bib10) 1996; 1
Uhrig (10.1016/j.engappai.2024.107870_bib28) 2009
Guthaus (10.1016/j.engappai.2024.107870_bib13) 2001
Jangir (10.1016/j.engappai.2024.107870_bib17) 2018; 72
Köppen (10.1016/j.engappai.2024.107870_bib19) 2005
Zitzler (10.1016/j.engappai.2024.107870_bib31) 2003; 7
Deb (10.1016/j.engappai.2024.107870_bib5) 2001
Lydia (10.1016/j.engappai.2024.107870_bib21) 2019
Farina (10.1016/j.engappai.2024.107870_bib9) 2003
Florea (10.1016/j.engappai.2024.107870_bib11) 2014
Jahr (10.1016/j.engappai.2024.107870_bib16) 2011
Miettinen (10.1016/j.engappai.2024.107870_bib22) 1998; vol. 12
Saaty (10.1016/j.engappai.2024.107870_bib27) 1980
Mohammadi (10.1016/j.engappai.2024.107870_bib23) 2012; 50
References_xml – start-page: 58
  year: 2003
  end-page: 72
  ident: bib9
  article-title: Fuzzy Optimality and Evolutionary Multiobjective Optimization. Evolutionary Multi-Criterion Opt
– volume: 218
  year: 2021
  ident: bib25
  article-title: MOGBO: a new Multiobjective Gradient-Based Optimizer for real-world structural optimization problems
  publication-title: Knowl. Base Syst.
– volume: vol. 12
  year: 1998
  ident: bib22
  article-title: Nonlinear Multiobjective Optimization. Part of Int. Series in Operations Research & Management Science
– volume: 7
  start-page: 117
  year: 2003
  end-page: 132
  ident: bib31
  article-title: Performance assessment of multiobjective optimizers: an analysis and review
  publication-title: IEEE Trans. Evol. Comput.
– year: 2001
  ident: bib13
  article-title: Mibench: A Free, Commercially Representative Embedded Benchmark Suite. Proc. Of the Workload Characterization
– start-page: 308
  year: 2011
  end-page: 316
  ident: bib16
  article-title: Automatic multi-objective optimization of parameters for hardware and code optimizations
  publication-title: Int. Conf. on High Perf. Comp. Sim.
– year: 2014
  ident: bib2
  article-title: Multi-objective hardware-software co-optimization for the SNIPER multi-core simulator
  publication-title: IEEE 10
– volume: 3
  start-page: 257
  year: 1999
  end-page: 271
  ident: bib30
  article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 67
  year: 2001
  end-page: 81
  ident: bib6
  article-title: Controlled Elitist Non-dominated Sorting Genetic Algorithms for Better Convergence
– volume: 80
  start-page: 8091
  year: 2021
  end-page: 8126
  ident: bib18
  article-title: A review on genetic algorithm: past, present, and future
  publication-title: Multimed. Tool. Appl.
– start-page: 3641
  year: 2019
  end-page: 3644
  ident: bib21
  article-title: Learning rate scheduling policy
  publication-title: Int. J. of Innov. Tech. and Expl. Eng. Nov
– start-page: 608
  year: 2009
  end-page: 611
  ident: bib28
  article-title: A two-dimensional Superscalar processor architecture
  publication-title: 2009 Comp. World: Future Comp., Service Comp.
– volume: 17
  start-page: 89
  year: 2017
  end-page: 98
  ident: bib3
  article-title: Developing automatic multi-objective optimization methods for complex actuators
  publication-title: Adv. in Electrical and Computer Engineering
– start-page: 280
  year: 2005
  end-page: 295
  ident: bib15
  article-title: A scalable multi-objective test problem Toolkit
  publication-title: Lect. N. in Comp. Sc.
– volume: 72
  start-page: 449
  year: 2018
  end-page: 467
  ident: bib17
  article-title: A new Non-Dominated Sorting Grey Wolf Optimizer (NS-GWO) algorithm: Development and application to solve engineering designs and economic constrained emission dispatch problem with integration of wind power
  publication-title: Eng. Appl. of A.I.
– year: 2020
  ident: bib26
  article-title: repository
– start-page: 202
  year: 2010
  end-page: 207
  ident: bib1
  article-title: An automatic design space exploration framework for multicore architecture optimizations
  publication-title: 9
– volume: 476
  start-page: 375
  year: 2019
  end-page: 391
  ident: bib12
  article-title: Performance and energy optimisation in CPUs through fuzzy knowledge representation
  publication-title: Inf. Sci.
– volume: 21
  start-page: 179
  year: 2020
  end-page: 186
  ident: bib24
  article-title: Apparent front ranking: a novel population ranking method for genetic multi-objective algorithms
  publication-title: Proc. of the Ro. Acad. A
– volume: vol. 1993
  start-page: 126
  year: 2001
  end-page: 140
  ident: bib4
  article-title: A micro-genetic algorithm for multiobjective optimization
  publication-title: EMO
– start-page: 105
  year: 2005
  end-page: 145
  ident: bib8
  article-title: Scalable test problems for evolutionary multiobjective optimization
  publication-title: Evol. Multiobjective Opt.: Th. Adv. & Appl
– volume: 1
  start-page: 253
  year: 1996
  end-page: 257
  ident: bib10
  article-title: Direct least squares fitting of ellipses
  publication-title: Proc. 13
– volume: 18
  start-page: 269
  year: 2014
  end-page: 285
  ident: bib14
  article-title: Fuzzy-based Pareto optimality for many-objective evolutionary algorithms
  publication-title: IEEE Trans. Evol. Comput.
– year: 2001
  ident: bib5
  article-title: Multi-objective Optimization Using Evolutionary Algorithms
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: bib7
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– year: 1980
  ident: bib27
  article-title: The Analytic Hierarchy Process
– start-page: 1125
  year: 2016
  end-page: 1129
  ident: bib29
  article-title: Improving computing systems automatic multiobjective optimization through Meta-optimization
  publication-title: IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems
– start-page: 31
  year: 2014
  end-page: 36
  ident: bib11
  article-title: Enhancing the Sniper simulator with thermal measurement
  publication-title: 18
– start-page: 399
  year: 2005
  end-page: 412
  ident: bib19
  article-title: Fuzzy-Pareto-Dominance and its Application in Evolutionary Multi-Objective Optimization. Evolutionary Multi-Criterion Optimization
– volume: 1
  start-page: 580
  year: 2008
  end-page: 585
  ident: bib20
  article-title: Dynamic crowding distance – a new diversity maintenance strategy for MOEAs
  publication-title: ICNC ‘08, 4
– volume: 50
  start-page: 5063
  year: 2012
  end-page: 5076
  ident: bib23
  article-title: A multi-objective optimisation model to integrating flexible process planning and scheduling based on hybrid multi-objective simulated annealing
  publication-title: Int. J. Prod. Res.
– start-page: 67
  year: 2001
  ident: 10.1016/j.engappai.2024.107870_bib6
– volume: vol. 1993
  start-page: 126
  year: 2001
  ident: 10.1016/j.engappai.2024.107870_bib4
  article-title: A micro-genetic algorithm for multiobjective optimization
– volume: 18
  start-page: 269
  year: 2014
  ident: 10.1016/j.engappai.2024.107870_bib14
  article-title: Fuzzy-based Pareto optimality for many-objective evolutionary algorithms
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2258025
– start-page: 202
  year: 2010
  ident: 10.1016/j.engappai.2024.107870_bib1
  article-title: An automatic design space exploration framework for multicore architecture optimizations
  publication-title: 9th RoEduNet IEEE Int. Conf.
– volume: 50
  start-page: 5063
  year: 2012
  ident: 10.1016/j.engappai.2024.107870_bib23
  article-title: A multi-objective optimisation model to integrating flexible process planning and scheduling based on hybrid multi-objective simulated annealing
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2011.631602
– start-page: 105
  year: 2005
  ident: 10.1016/j.engappai.2024.107870_bib8
  article-title: Scalable test problems for evolutionary multiobjective optimization
– start-page: 31
  year: 2014
  ident: 10.1016/j.engappai.2024.107870_bib11
  article-title: Enhancing the Sniper simulator with thermal measurement
– start-page: 1125
  year: 2016
  ident: 10.1016/j.engappai.2024.107870_bib29
  article-title: Improving computing systems automatic multiobjective optimization through Meta-optimization
  publication-title: IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems
  doi: 10.1109/TCAD.2015.2501299
– start-page: 399
  year: 2005
  ident: 10.1016/j.engappai.2024.107870_bib19
– volume: 7
  start-page: 117
  year: 2003
  ident: 10.1016/j.engappai.2024.107870_bib31
  article-title: Performance assessment of multiobjective optimizers: an analysis and review
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2003.810758
– volume: 80
  start-page: 8091
  issue: 5
  year: 2021
  ident: 10.1016/j.engappai.2024.107870_bib18
  article-title: A review on genetic algorithm: past, present, and future
  publication-title: Multimed. Tool. Appl.
  doi: 10.1007/s11042-020-10139-6
– volume: 476
  start-page: 375
  year: 2019
  ident: 10.1016/j.engappai.2024.107870_bib12
  article-title: Performance and energy optimisation in CPUs through fuzzy knowledge representation
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.03.029
– volume: 21
  start-page: 179
  issue: 2
  year: 2020
  ident: 10.1016/j.engappai.2024.107870_bib24
  article-title: Apparent front ranking: a novel population ranking method for genetic multi-objective algorithms
  publication-title: Proc. of the Ro. Acad. A
– year: 2001
  ident: 10.1016/j.engappai.2024.107870_bib13
– volume: 218
  year: 2021
  ident: 10.1016/j.engappai.2024.107870_bib25
  article-title: MOGBO: a new Multiobjective Gradient-Based Optimizer for real-world structural optimization problems
  publication-title: Knowl. Base Syst.
  doi: 10.1016/j.knosys.2021.106856
– volume: 6
  start-page: 182
  year: 2002
  ident: 10.1016/j.engappai.2024.107870_bib7
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– year: 2001
  ident: 10.1016/j.engappai.2024.107870_bib5
– start-page: 58
  year: 2003
  ident: 10.1016/j.engappai.2024.107870_bib9
– volume: 3
  start-page: 257
  year: 1999
  ident: 10.1016/j.engappai.2024.107870_bib30
  article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.797969
– start-page: 308
  year: 2011
  ident: 10.1016/j.engappai.2024.107870_bib16
  article-title: Automatic multi-objective optimization of parameters for hardware and code optimizations
  publication-title: Int. Conf. on High Perf. Comp. Sim.
– volume: 1
  start-page: 580
  year: 2008
  ident: 10.1016/j.engappai.2024.107870_bib20
  article-title: Dynamic crowding distance – a new diversity maintenance strategy for MOEAs
  publication-title: ICNC ‘08, 4th Int. Conf. on Natural Comp
– volume: 1
  start-page: 253
  year: 1996
  ident: 10.1016/j.engappai.2024.107870_bib10
  article-title: Direct least squares fitting of ellipses
  publication-title: Proc. 13th Int. Conf. on Pattern Recognit.
  doi: 10.1109/ICPR.1996.546029
– start-page: 608
  year: 2009
  ident: 10.1016/j.engappai.2024.107870_bib28
  article-title: A two-dimensional Superscalar processor architecture
  publication-title: 2009 Comp. World: Future Comp., Service Comp.
– volume: 17
  start-page: 89
  issue: 4
  year: 2017
  ident: 10.1016/j.engappai.2024.107870_bib3
  article-title: Developing automatic multi-objective optimization methods for complex actuators
  publication-title: Adv. in Electrical and Computer Engineering
  doi: 10.4316/AECE.2017.04011
– volume: vol. 12
  year: 1998
  ident: 10.1016/j.engappai.2024.107870_bib22
– year: 1980
  ident: 10.1016/j.engappai.2024.107870_bib27
– volume: 72
  start-page: 449
  year: 2018
  ident: 10.1016/j.engappai.2024.107870_bib17
  article-title: A new Non-Dominated Sorting Grey Wolf Optimizer (NS-GWO) algorithm: Development and application to solve engineering designs and economic constrained emission dispatch problem with integration of wind power
  publication-title: Eng. Appl. of A.I.
  doi: 10.1016/j.engappai.2018.04.018
– year: 2014
  ident: 10.1016/j.engappai.2024.107870_bib2
  article-title: Multi-objective hardware-software co-optimization for the SNIPER multi-core simulator
  publication-title: IEEE 10th Int. Conf. on Intel. Comp. Comm. and Proc. (ICCP).
– start-page: 3641
  year: 2019
  ident: 10.1016/j.engappai.2024.107870_bib21
  article-title: Learning rate scheduling policy
  publication-title: Int. J. of Innov. Tech. and Expl. Eng. Nov
– start-page: 280
  year: 2005
  ident: 10.1016/j.engappai.2024.107870_bib15
  article-title: A scalable multi-objective test problem Toolkit
  publication-title: Lect. N. in Comp. Sc.
SSID ssj0003846
Score 2.431533
Snippet Evolutionary algorithms built on Pareto-dominance suffer from a loss of selection pressure as the number of objectives increases and the probability of finding...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107870
SubjectTerms Apparent front ranking
Controlled selection
Genetic algorithm
Grid ALU processor optimization
Multi-objective optimization methods
Title A competitive new multi-objective optimization genetic algorithm based on apparent front ranking
URI https://dx.doi.org/10.1016/j.engappai.2024.107870
Volume 132
WOSCitedRecordID wos001175344200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0952-1976
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0003846
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9swDBaydodd9h7avaDDegrUxa_aPgZFi3WHYsA6IDdPluTEQSoHblL0V_Q3l9TDNrYC3TDsYiQKZBvkF5GiPpKEfFI8AaM7Eayq4orFR4ozXiU5UxUYT6wmkibSNJtIz8-z2Sz_Nhrd-lyY61WqdXZzk6__q6phDJSNqbN_oe7upjAAn0HpcAW1w_WPFD81NHFMHkNSEHjNljTImnJpF7dxA8vEpcu_xBbKyhRtXc2btt4sLsdo2CQeIvA10tOxeBNWORhje3dv6Hwsv69mOB4ehRt2QWtoSKYpyKDuZx99ni9qbXzZyPL3F7zu3GrAZ721CTi15uys4bqnFC3qg-PkID818OBy22OwARfYzJKth72LaIRxz7yyYTafatPzmmy8MmRBbpvFdEu3jY3-ZgZsRGJ5qPQcRVUf4mNgGFen3vB1dMTveHO8NxJq8ej1EdkN0ySHhX53enYy-9rZ9iizqV_-ZQY55_c_7X53Z-DCXDwnT93eg04tZl6QkdIvyTO3D6Fulb-CId_qw4-9Ij-ndIAqCqiiv6CKDlFFHapohypqUEXhJ48qalBFHapekx-nJxfHX5hrzsFEFIQbFocynXAlVSqOEp5lPCsnYSUiJSvO0yCWQVmKHMxpAsIosYo3F0FWKfB_uBBgWN6QHd1otUcoeI0ijJXZfMQ8TuGbAl1wNNQySsQ-SbwMC-Eq12MDlVXhKYrLwsu-QNkXVvb75HM3b21rtzw4I_cqKpwHaj3LApD1wNy3_zD3HXnS_xHek51Nu1UfyGNxvamv2o8OhHejd7Oy
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+competitive+new+multi-objective+optimization+genetic+algorithm+based+on+apparent+front+ranking&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Neghin%C4%83%2C+Mihai&rft.au=Dicoiu%2C+Alina-Ioana&rft.au=Chi%C5%9F%2C+Radu&rft.au=Florea%2C+Adrian&rft.date=2024-06-01&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.volume=132&rft_id=info:doi/10.1016%2Fj.engappai.2024.107870&rft.externalDocID=S0952197624000289
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon