A competitive new multi-objective optimization genetic algorithm based on apparent front ranking
Evolutionary algorithms built on Pareto-dominance suffer from a loss of selection pressure as the number of objectives increases and the probability of finding non-dominated solutions in the population decreases. Furthermore, Pareto-dominance is computationally expensive because of the pairwise comp...
Saved in:
| Published in: | Engineering applications of artificial intelligence Vol. 132; p. 107870 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.06.2024
|
| Subjects: | |
| ISSN: | 0952-1976 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Evolutionary algorithms built on Pareto-dominance suffer from a loss of selection pressure as the number of objectives increases and the probability of finding non-dominated solutions in the population decreases. Furthermore, Pareto-dominance is computationally expensive because of the pairwise comparisons necessary to rank the individuals of a population. The paper introduces a new genetic algorithm for multi-objective optimization based on Apparent Front Ranking and crowding distance, called Controlled Apparent Front Zones Genetic Algorithm (CAFZGA). To avoid pairwise comparisons, CAFZGA first generates the main Apparent Front Boundary (AFB) with the help of a small set of support vectors and creates secondary AFBs as shifted versions of the main AFB. The space of objectives is divided into zones by the AFBs. The zones play a similar role in CAFZGA as the non-dominated fronts do in the Controlled Non-dominated Sorting Genetic Algorithm CNSGA-II. The zone ranking becomes the main criterion in differentiating individuals, with crowding distance being the tiebreak criterion. The method is shown to be extremely flexible because the AFBs are adjusted for each generation. Computationally, CAFZGA is more efficient than GAs using Pareto-dominance because the set of support vectors for generating the AFBs is significantly smaller than the population. CAFZGA is applied to the problem of optimizing the configuration of a Grid ALU Processor (GAP) and is shown to be competitive and sometimes even better than well-established GAs like CNSGA-II and Fuzzy-Dominance-Driven Genetic Algorithm FDD-GA.
[Display omitted] |
|---|---|
| AbstractList | Evolutionary algorithms built on Pareto-dominance suffer from a loss of selection pressure as the number of objectives increases and the probability of finding non-dominated solutions in the population decreases. Furthermore, Pareto-dominance is computationally expensive because of the pairwise comparisons necessary to rank the individuals of a population. The paper introduces a new genetic algorithm for multi-objective optimization based on Apparent Front Ranking and crowding distance, called Controlled Apparent Front Zones Genetic Algorithm (CAFZGA). To avoid pairwise comparisons, CAFZGA first generates the main Apparent Front Boundary (AFB) with the help of a small set of support vectors and creates secondary AFBs as shifted versions of the main AFB. The space of objectives is divided into zones by the AFBs. The zones play a similar role in CAFZGA as the non-dominated fronts do in the Controlled Non-dominated Sorting Genetic Algorithm CNSGA-II. The zone ranking becomes the main criterion in differentiating individuals, with crowding distance being the tiebreak criterion. The method is shown to be extremely flexible because the AFBs are adjusted for each generation. Computationally, CAFZGA is more efficient than GAs using Pareto-dominance because the set of support vectors for generating the AFBs is significantly smaller than the population. CAFZGA is applied to the problem of optimizing the configuration of a Grid ALU Processor (GAP) and is shown to be competitive and sometimes even better than well-established GAs like CNSGA-II and Fuzzy-Dominance-Driven Genetic Algorithm FDD-GA.
[Display omitted] |
| ArticleNumber | 107870 |
| Author | Neghină, Mihai Chiş, Radu Dicoiu, Alina-Ioana Florea, Adrian |
| Author_xml | – sequence: 1 givenname: Mihai orcidid: 0000-0001-9828-4299 surname: Neghină fullname: Neghină, Mihai email: mihai.neghina@ulbsibiu.ro – sequence: 2 givenname: Alina-Ioana surname: Dicoiu fullname: Dicoiu, Alina-Ioana – sequence: 3 givenname: Radu orcidid: 0000-0002-7284-948X surname: Chiş fullname: Chiş, Radu – sequence: 4 givenname: Adrian orcidid: 0000-0003-0278-4825 surname: Florea fullname: Florea, Adrian |
| BookMark | eNqFkMtOwzAQRb0oEi3wC8g_kGLnHYkFVcVLqsQG1mZiT4JDYkeOKYKvx21hw6abGWlm7h3dsyAzYw0ScsnZkjOeX3VLNC2MI-hlzOI0DIuyYDMyZ1UWR7wq8lOymKaOMZaUaT4nrysq7TCi115vkRr8pMNH73Vk6w7lfmZHrwf9DV5bQ1s04VZS6FvrtH8baA0TKhpWu7cOjaeNs6E6MO_atOfkpIF-wovffkZe7m6f1w_R5un-cb3aRDLhsY_SWBUMUGEh8wzKEsqaxY1MUDUABU8Vr2tZZUmZhVh1ouoCJC8bTOMKpGRFckbyg690dpocNmJ0egD3JTgTOzaiE39sxI6NOLAJwut_Qqn9Pqx3oPvj8puDHEO4rUYnJqnRSFTaBYBCWX3M4gfEKYw7 |
| CitedBy_id | crossref_primary_10_1016_j_cscm_2025_e05146 crossref_primary_10_1016_j_measurement_2025_117080 crossref_primary_10_1016_j_engappai_2024_109634 crossref_primary_10_3390_pr12050869 crossref_primary_10_1016_j_apenergy_2024_124330 |
| Cites_doi | 10.1109/TEVC.2013.2258025 10.1080/00207543.2011.631602 10.1109/TCAD.2015.2501299 10.1109/TEVC.2003.810758 10.1007/s11042-020-10139-6 10.1016/j.ins.2018.03.029 10.1016/j.knosys.2021.106856 10.1109/4235.996017 10.1109/4235.797969 10.1109/ICPR.1996.546029 10.4316/AECE.2017.04011 10.1016/j.engappai.2018.04.018 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.engappai.2024.107870 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| ExternalDocumentID | 10_1016_j_engappai_2024_107870 S0952197624000289 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO AAYFN ABBOA ABMAC ABXDB ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS WUQ ZMT ~G- 9DU AATTM AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c312t-42d70aede7c65a88a8b02fc3edfaa714d1bbc95385024b3db7ac18fe429acc073 |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001175344200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0952-1976 |
| IngestDate | Sat Nov 29 03:41:14 EST 2025 Tue Nov 18 22:36:42 EST 2025 Sat Oct 12 15:52:15 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multi-objective optimization methods Grid ALU processor optimization Genetic algorithm Controlled selection Apparent front ranking |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c312t-42d70aede7c65a88a8b02fc3edfaa714d1bbc95385024b3db7ac18fe429acc073 |
| ORCID | 0000-0002-7284-948X 0000-0001-9828-4299 0000-0003-0278-4825 |
| ParticipantIDs | crossref_primary_10_1016_j_engappai_2024_107870 crossref_citationtrail_10_1016_j_engappai_2024_107870 elsevier_sciencedirect_doi_10_1016_j_engappai_2024_107870 |
| PublicationCentury | 2000 |
| PublicationDate | June 2024 2024-06-00 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: June 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering applications of artificial intelligence |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Zitzler, Thiele (bib30) 1999; 3 Lydia, Francis (bib21) 2019 Gellert, Florea, Fiore, Zanetti, Vintan (bib12) 2019; 476 Saaty (bib27) 1980 Miettinen (bib22) 1998; vol. 12 He, Yen, Zhang (bib14) 2014; 18 Mohammadi, Karampourhaghghi, Samaei (bib23) 2012; 50 Chiş, Vinţan (bib2) 2014 (bib26) 2020 Farina, Amato (bib9) 2003 Coello, Pulido (bib4) 2001; vol. 1993 Florea, Buduleci, Chiş, Gellert, Vinţan (bib11) 2014 Neghină, Vinţan (bib24) 2020; 21 Vinţan, Chiş, Ismail, Coţofana (bib29) 2016 Zitzler, Thiele, Laumanns, Fonseca, da Fonseca (bib31) 2003; 7 Uhrig, Shehan, Jahr, Ungerer (bib28) 2009 Deb, Thiele, Laumanns, Zitzler (bib8) 2005 Köppen, Vicente-Garcia, Nickolay (bib19) 2005 Luo, Zheng, Xie, Wu (bib20) 2008; 1 Huband, Barone, While, Hingston (bib15) 2005 Deb (bib5) 2001 Jahr, Ungerer, Calborean, Vinţan (bib16) 2011 Jangir, Jangir (bib17) 2018; 72 Deb, Goel (bib6) 2001 Chiş, Vinţan (bib3) 2017; 17 Katoch, Chauhan, Kumar (bib18) 2021; 80 Calborean, Vinţan (bib1) 2010 Deb, Pratap, Agarwal, Meyarivan (bib7) 2002; 6 Guthaus, Ringenberg, Ernst, Austin, Mudge, Brown (bib13) 2001 Premkumar, Jangir, Sowmya (bib25) 2021; 218 Fitzgibbon, Pilu, Fisher (bib10) 1996; 1 Gellert (10.1016/j.engappai.2024.107870_bib12) 2019; 476 Vinţan (10.1016/j.engappai.2024.107870_bib29) 2016 Chiş (10.1016/j.engappai.2024.107870_bib3) 2017; 17 Chiş (10.1016/j.engappai.2024.107870_bib2) 2014 Neghină (10.1016/j.engappai.2024.107870_bib24) 2020; 21 Deb (10.1016/j.engappai.2024.107870_bib6) 2001 Premkumar (10.1016/j.engappai.2024.107870_bib25) 2021; 218 Deb (10.1016/j.engappai.2024.107870_bib7) 2002; 6 Huband (10.1016/j.engappai.2024.107870_bib15) 2005 Calborean (10.1016/j.engappai.2024.107870_bib1) 2010 He (10.1016/j.engappai.2024.107870_bib14) 2014; 18 Coello (10.1016/j.engappai.2024.107870_bib4) 2001; vol. 1993 Deb (10.1016/j.engappai.2024.107870_bib8) 2005 Katoch (10.1016/j.engappai.2024.107870_bib18) 2021; 80 Luo (10.1016/j.engappai.2024.107870_bib20) 2008; 1 Zitzler (10.1016/j.engappai.2024.107870_bib30) 1999; 3 Fitzgibbon (10.1016/j.engappai.2024.107870_bib10) 1996; 1 Uhrig (10.1016/j.engappai.2024.107870_bib28) 2009 Guthaus (10.1016/j.engappai.2024.107870_bib13) 2001 Jangir (10.1016/j.engappai.2024.107870_bib17) 2018; 72 Köppen (10.1016/j.engappai.2024.107870_bib19) 2005 Zitzler (10.1016/j.engappai.2024.107870_bib31) 2003; 7 Deb (10.1016/j.engappai.2024.107870_bib5) 2001 Lydia (10.1016/j.engappai.2024.107870_bib21) 2019 Farina (10.1016/j.engappai.2024.107870_bib9) 2003 Florea (10.1016/j.engappai.2024.107870_bib11) 2014 Jahr (10.1016/j.engappai.2024.107870_bib16) 2011 Miettinen (10.1016/j.engappai.2024.107870_bib22) 1998; vol. 12 Saaty (10.1016/j.engappai.2024.107870_bib27) 1980 Mohammadi (10.1016/j.engappai.2024.107870_bib23) 2012; 50 |
| References_xml | – start-page: 58 year: 2003 end-page: 72 ident: bib9 article-title: Fuzzy Optimality and Evolutionary Multiobjective Optimization. Evolutionary Multi-Criterion Opt – volume: 218 year: 2021 ident: bib25 article-title: MOGBO: a new Multiobjective Gradient-Based Optimizer for real-world structural optimization problems publication-title: Knowl. Base Syst. – volume: vol. 12 year: 1998 ident: bib22 article-title: Nonlinear Multiobjective Optimization. Part of Int. Series in Operations Research & Management Science – volume: 7 start-page: 117 year: 2003 end-page: 132 ident: bib31 article-title: Performance assessment of multiobjective optimizers: an analysis and review publication-title: IEEE Trans. Evol. Comput. – year: 2001 ident: bib13 article-title: Mibench: A Free, Commercially Representative Embedded Benchmark Suite. Proc. Of the Workload Characterization – start-page: 308 year: 2011 end-page: 316 ident: bib16 article-title: Automatic multi-objective optimization of parameters for hardware and code optimizations publication-title: Int. Conf. on High Perf. Comp. Sim. – year: 2014 ident: bib2 article-title: Multi-objective hardware-software co-optimization for the SNIPER multi-core simulator publication-title: IEEE 10 – volume: 3 start-page: 257 year: 1999 end-page: 271 ident: bib30 article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach publication-title: IEEE Trans. Evol. Comput. – start-page: 67 year: 2001 end-page: 81 ident: bib6 article-title: Controlled Elitist Non-dominated Sorting Genetic Algorithms for Better Convergence – volume: 80 start-page: 8091 year: 2021 end-page: 8126 ident: bib18 article-title: A review on genetic algorithm: past, present, and future publication-title: Multimed. Tool. Appl. – start-page: 3641 year: 2019 end-page: 3644 ident: bib21 article-title: Learning rate scheduling policy publication-title: Int. J. of Innov. Tech. and Expl. Eng. Nov – start-page: 608 year: 2009 end-page: 611 ident: bib28 article-title: A two-dimensional Superscalar processor architecture publication-title: 2009 Comp. World: Future Comp., Service Comp. – volume: 17 start-page: 89 year: 2017 end-page: 98 ident: bib3 article-title: Developing automatic multi-objective optimization methods for complex actuators publication-title: Adv. in Electrical and Computer Engineering – start-page: 280 year: 2005 end-page: 295 ident: bib15 article-title: A scalable multi-objective test problem Toolkit publication-title: Lect. N. in Comp. Sc. – volume: 72 start-page: 449 year: 2018 end-page: 467 ident: bib17 article-title: A new Non-Dominated Sorting Grey Wolf Optimizer (NS-GWO) algorithm: Development and application to solve engineering designs and economic constrained emission dispatch problem with integration of wind power publication-title: Eng. Appl. of A.I. – year: 2020 ident: bib26 article-title: repository – start-page: 202 year: 2010 end-page: 207 ident: bib1 article-title: An automatic design space exploration framework for multicore architecture optimizations publication-title: 9 – volume: 476 start-page: 375 year: 2019 end-page: 391 ident: bib12 article-title: Performance and energy optimisation in CPUs through fuzzy knowledge representation publication-title: Inf. Sci. – volume: 21 start-page: 179 year: 2020 end-page: 186 ident: bib24 article-title: Apparent front ranking: a novel population ranking method for genetic multi-objective algorithms publication-title: Proc. of the Ro. Acad. A – volume: vol. 1993 start-page: 126 year: 2001 end-page: 140 ident: bib4 article-title: A micro-genetic algorithm for multiobjective optimization publication-title: EMO – start-page: 105 year: 2005 end-page: 145 ident: bib8 article-title: Scalable test problems for evolutionary multiobjective optimization publication-title: Evol. Multiobjective Opt.: Th. Adv. & Appl – volume: 1 start-page: 253 year: 1996 end-page: 257 ident: bib10 article-title: Direct least squares fitting of ellipses publication-title: Proc. 13 – volume: 18 start-page: 269 year: 2014 end-page: 285 ident: bib14 article-title: Fuzzy-based Pareto optimality for many-objective evolutionary algorithms publication-title: IEEE Trans. Evol. Comput. – year: 2001 ident: bib5 article-title: Multi-objective Optimization Using Evolutionary Algorithms – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: bib7 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. – year: 1980 ident: bib27 article-title: The Analytic Hierarchy Process – start-page: 1125 year: 2016 end-page: 1129 ident: bib29 article-title: Improving computing systems automatic multiobjective optimization through Meta-optimization publication-title: IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems – start-page: 31 year: 2014 end-page: 36 ident: bib11 article-title: Enhancing the Sniper simulator with thermal measurement publication-title: 18 – start-page: 399 year: 2005 end-page: 412 ident: bib19 article-title: Fuzzy-Pareto-Dominance and its Application in Evolutionary Multi-Objective Optimization. Evolutionary Multi-Criterion Optimization – volume: 1 start-page: 580 year: 2008 end-page: 585 ident: bib20 article-title: Dynamic crowding distance – a new diversity maintenance strategy for MOEAs publication-title: ICNC ‘08, 4 – volume: 50 start-page: 5063 year: 2012 end-page: 5076 ident: bib23 article-title: A multi-objective optimisation model to integrating flexible process planning and scheduling based on hybrid multi-objective simulated annealing publication-title: Int. J. Prod. Res. – start-page: 67 year: 2001 ident: 10.1016/j.engappai.2024.107870_bib6 – volume: vol. 1993 start-page: 126 year: 2001 ident: 10.1016/j.engappai.2024.107870_bib4 article-title: A micro-genetic algorithm for multiobjective optimization – volume: 18 start-page: 269 year: 2014 ident: 10.1016/j.engappai.2024.107870_bib14 article-title: Fuzzy-based Pareto optimality for many-objective evolutionary algorithms publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2258025 – start-page: 202 year: 2010 ident: 10.1016/j.engappai.2024.107870_bib1 article-title: An automatic design space exploration framework for multicore architecture optimizations publication-title: 9th RoEduNet IEEE Int. Conf. – volume: 50 start-page: 5063 year: 2012 ident: 10.1016/j.engappai.2024.107870_bib23 article-title: A multi-objective optimisation model to integrating flexible process planning and scheduling based on hybrid multi-objective simulated annealing publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2011.631602 – start-page: 105 year: 2005 ident: 10.1016/j.engappai.2024.107870_bib8 article-title: Scalable test problems for evolutionary multiobjective optimization – start-page: 31 year: 2014 ident: 10.1016/j.engappai.2024.107870_bib11 article-title: Enhancing the Sniper simulator with thermal measurement – start-page: 1125 year: 2016 ident: 10.1016/j.engappai.2024.107870_bib29 article-title: Improving computing systems automatic multiobjective optimization through Meta-optimization publication-title: IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems doi: 10.1109/TCAD.2015.2501299 – start-page: 399 year: 2005 ident: 10.1016/j.engappai.2024.107870_bib19 – volume: 7 start-page: 117 year: 2003 ident: 10.1016/j.engappai.2024.107870_bib31 article-title: Performance assessment of multiobjective optimizers: an analysis and review publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2003.810758 – volume: 80 start-page: 8091 issue: 5 year: 2021 ident: 10.1016/j.engappai.2024.107870_bib18 article-title: A review on genetic algorithm: past, present, and future publication-title: Multimed. Tool. Appl. doi: 10.1007/s11042-020-10139-6 – volume: 476 start-page: 375 year: 2019 ident: 10.1016/j.engappai.2024.107870_bib12 article-title: Performance and energy optimisation in CPUs through fuzzy knowledge representation publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.03.029 – volume: 21 start-page: 179 issue: 2 year: 2020 ident: 10.1016/j.engappai.2024.107870_bib24 article-title: Apparent front ranking: a novel population ranking method for genetic multi-objective algorithms publication-title: Proc. of the Ro. Acad. A – year: 2001 ident: 10.1016/j.engappai.2024.107870_bib13 – volume: 218 year: 2021 ident: 10.1016/j.engappai.2024.107870_bib25 article-title: MOGBO: a new Multiobjective Gradient-Based Optimizer for real-world structural optimization problems publication-title: Knowl. Base Syst. doi: 10.1016/j.knosys.2021.106856 – volume: 6 start-page: 182 year: 2002 ident: 10.1016/j.engappai.2024.107870_bib7 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – year: 2001 ident: 10.1016/j.engappai.2024.107870_bib5 – start-page: 58 year: 2003 ident: 10.1016/j.engappai.2024.107870_bib9 – volume: 3 start-page: 257 year: 1999 ident: 10.1016/j.engappai.2024.107870_bib30 article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.797969 – start-page: 308 year: 2011 ident: 10.1016/j.engappai.2024.107870_bib16 article-title: Automatic multi-objective optimization of parameters for hardware and code optimizations publication-title: Int. Conf. on High Perf. Comp. Sim. – volume: 1 start-page: 580 year: 2008 ident: 10.1016/j.engappai.2024.107870_bib20 article-title: Dynamic crowding distance – a new diversity maintenance strategy for MOEAs publication-title: ICNC ‘08, 4th Int. Conf. on Natural Comp – volume: 1 start-page: 253 year: 1996 ident: 10.1016/j.engappai.2024.107870_bib10 article-title: Direct least squares fitting of ellipses publication-title: Proc. 13th Int. Conf. on Pattern Recognit. doi: 10.1109/ICPR.1996.546029 – start-page: 608 year: 2009 ident: 10.1016/j.engappai.2024.107870_bib28 article-title: A two-dimensional Superscalar processor architecture publication-title: 2009 Comp. World: Future Comp., Service Comp. – volume: 17 start-page: 89 issue: 4 year: 2017 ident: 10.1016/j.engappai.2024.107870_bib3 article-title: Developing automatic multi-objective optimization methods for complex actuators publication-title: Adv. in Electrical and Computer Engineering doi: 10.4316/AECE.2017.04011 – volume: vol. 12 year: 1998 ident: 10.1016/j.engappai.2024.107870_bib22 – year: 1980 ident: 10.1016/j.engappai.2024.107870_bib27 – volume: 72 start-page: 449 year: 2018 ident: 10.1016/j.engappai.2024.107870_bib17 article-title: A new Non-Dominated Sorting Grey Wolf Optimizer (NS-GWO) algorithm: Development and application to solve engineering designs and economic constrained emission dispatch problem with integration of wind power publication-title: Eng. Appl. of A.I. doi: 10.1016/j.engappai.2018.04.018 – year: 2014 ident: 10.1016/j.engappai.2024.107870_bib2 article-title: Multi-objective hardware-software co-optimization for the SNIPER multi-core simulator publication-title: IEEE 10th Int. Conf. on Intel. Comp. Comm. and Proc. (ICCP). – start-page: 3641 year: 2019 ident: 10.1016/j.engappai.2024.107870_bib21 article-title: Learning rate scheduling policy publication-title: Int. J. of Innov. Tech. and Expl. Eng. Nov – start-page: 280 year: 2005 ident: 10.1016/j.engappai.2024.107870_bib15 article-title: A scalable multi-objective test problem Toolkit publication-title: Lect. N. in Comp. Sc. |
| SSID | ssj0003846 |
| Score | 2.431533 |
| Snippet | Evolutionary algorithms built on Pareto-dominance suffer from a loss of selection pressure as the number of objectives increases and the probability of finding... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 107870 |
| SubjectTerms | Apparent front ranking Controlled selection Genetic algorithm Grid ALU processor optimization Multi-objective optimization methods |
| Title | A competitive new multi-objective optimization genetic algorithm based on apparent front ranking |
| URI | https://dx.doi.org/10.1016/j.engappai.2024.107870 |
| Volume | 132 |
| WOSCitedRecordID | wos001175344200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0952-1976 databaseCode: AIEXJ dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0003846 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9swDBaydodd9h7avaDDegrUxa_aPgZFi3WHYsA6IDdPluTEQSoHblL0V_Q3l9TDNrYC3TDsYiQKZBvkF5GiPpKEfFI8AaM7Eayq4orFR4ozXiU5UxUYT6wmkibSNJtIz8-z2Sz_Nhrd-lyY61WqdXZzk6__q6phDJSNqbN_oe7upjAAn0HpcAW1w_WPFD81NHFMHkNSEHjNljTImnJpF7dxA8vEpcu_xBbKyhRtXc2btt4sLsdo2CQeIvA10tOxeBNWORhje3dv6Hwsv69mOB4ehRt2QWtoSKYpyKDuZx99ni9qbXzZyPL3F7zu3GrAZ721CTi15uys4bqnFC3qg-PkID818OBy22OwARfYzJKth72LaIRxz7yyYTafatPzmmy8MmRBbpvFdEu3jY3-ZgZsRGJ5qPQcRVUf4mNgGFen3vB1dMTveHO8NxJq8ej1EdkN0ySHhX53enYy-9rZ9iizqV_-ZQY55_c_7X53Z-DCXDwnT93eg04tZl6QkdIvyTO3D6Fulb-CId_qw4-9Ij-ndIAqCqiiv6CKDlFFHapohypqUEXhJ48qalBFHapekx-nJxfHX5hrzsFEFIQbFocynXAlVSqOEp5lPCsnYSUiJSvO0yCWQVmKHMxpAsIosYo3F0FWKfB_uBBgWN6QHd1otUcoeI0ijJXZfMQ8TuGbAl1wNNQySsQ-SbwMC-Eq12MDlVXhKYrLwsu-QNkXVvb75HM3b21rtzw4I_cqKpwHaj3LApD1wNy3_zD3HXnS_xHek51Nu1UfyGNxvamv2o8OhHejd7Oy |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+competitive+new+multi-objective+optimization+genetic+algorithm+based+on+apparent+front+ranking&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Neghin%C4%83%2C+Mihai&rft.au=Dicoiu%2C+Alina-Ioana&rft.au=Chi%C5%9F%2C+Radu&rft.au=Florea%2C+Adrian&rft.date=2024-06-01&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.volume=132&rft_id=info:doi/10.1016%2Fj.engappai.2024.107870&rft.externalDocID=S0952197624000289 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |