A memory guided sine cosine algorithm for global optimization

Real-world optimization problems demand an algorithm which properly explores the search space to find a good solution to the problem. The sine cosine algorithm (SCA) is a recently developed and efficient optimization algorithm, which performs searches using the trigonometric functions sine and cosin...

Full description

Saved in:
Bibliographic Details
Published in:Engineering applications of artificial intelligence Vol. 93; p. 103718
Main Authors: Gupta, Shubham, Deep, Kusum, Engelbrecht, Andries P.
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.08.2020
Subjects:
ISSN:0952-1976, 1873-6769
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Real-world optimization problems demand an algorithm which properly explores the search space to find a good solution to the problem. The sine cosine algorithm (SCA) is a recently developed and efficient optimization algorithm, which performs searches using the trigonometric functions sine and cosine. These trigonometric functions help in exploring the search space to find an optimum. However, in some cases, SCA becomes trapped in a sub-optimal solution due to an inefficient balance between exploration and exploitation. Therefore, in the present work, a balanced and explorative search guidance is introduced in SCA for candidate solutions by proposing a novel algorithm called the memory guided sine cosine algorithm (MG-SCA). In MG-SCA, the number of guides is decreased with increase in the number of iterations to provide a sufficient balance between exploration and exploitation. The performance of the proposed MG-SCA is analysed on benchmark sets of classical test problems, IEEE CEC 2014 problems, and four well known engineering benchmark problems. The results on these applications demonstrate the competitive ability of the proposed algorithm as compared to other algorithms.
AbstractList Real-world optimization problems demand an algorithm which properly explores the search space to find a good solution to the problem. The sine cosine algorithm (SCA) is a recently developed and efficient optimization algorithm, which performs searches using the trigonometric functions sine and cosine. These trigonometric functions help in exploring the search space to find an optimum. However, in some cases, SCA becomes trapped in a sub-optimal solution due to an inefficient balance between exploration and exploitation. Therefore, in the present work, a balanced and explorative search guidance is introduced in SCA for candidate solutions by proposing a novel algorithm called the memory guided sine cosine algorithm (MG-SCA). In MG-SCA, the number of guides is decreased with increase in the number of iterations to provide a sufficient balance between exploration and exploitation. The performance of the proposed MG-SCA is analysed on benchmark sets of classical test problems, IEEE CEC 2014 problems, and four well known engineering benchmark problems. The results on these applications demonstrate the competitive ability of the proposed algorithm as compared to other algorithms.
ArticleNumber 103718
Author Deep, Kusum
Gupta, Shubham
Engelbrecht, Andries P.
Author_xml – sequence: 1
  givenname: Shubham
  surname: Gupta
  fullname: Gupta, Shubham
  email: sgupta@ma.iitr.ac.in, g.shubh93@gmail.com
  organization: Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
– sequence: 2
  givenname: Kusum
  surname: Deep
  fullname: Deep, Kusum
  email: kusumfma@iitr.ac.in
  organization: Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
– sequence: 3
  givenname: Andries P.
  surname: Engelbrecht
  fullname: Engelbrecht, Andries P.
  email: engel@sun.ac.za
  organization: Department of Industrial Engineering, and Computer Science Division, Stellenbosch University, Stellenbosch, South Africa
BookMark eNqFkNtKw0AURQepYFv9BZkfSJ1LkpkBBUvxBgVf9HmYy0mckmTCJAr16-1FX3zp04YDa7PPmqFJFztA6JqSBSW0vNksoKtN35uwYITtj1xQeYamVAqelaJUEzQlqmAZVaK8QLNh2BBCuMzLKbpb4hbamLa4_gwePB5CB9jFQ5imjimMHy2uYsJ1E61pcOzH0IZvM4bYXaLzyjQDXP3mHL0_PrytnrP169PLarnOHKdszHJmnJXcFs5XAI4aUikuLQPHFAEvReEFt5YURnllXWW5AipMwaQXNuc5n6PbY69LcRgSVNqF8bBgTCY0mhK9V6E3-k-F3qvQRxU7vPyH9ym0Jm1Pg_dHEHbPfQVIenABOgc-JHCj9jGcqvgBXIqAWA
CitedBy_id crossref_primary_10_1016_j_ins_2023_119569
crossref_primary_10_1186_s43067_020_00023_6
crossref_primary_10_1016_j_eswa_2024_123299
crossref_primary_10_1109_ACCESS_2023_3294993
crossref_primary_10_3390_math10234519
crossref_primary_10_1088_1361_6501_ad1fd0
crossref_primary_10_1007_s42235_023_00437_8
crossref_primary_10_1109_ACCESS_2023_3273298
crossref_primary_10_1016_j_engappai_2021_104506
crossref_primary_10_1007_s00521_023_08229_1
crossref_primary_10_1016_j_asoc_2023_110158
crossref_primary_10_1007_s10489_022_03269_x
crossref_primary_10_1007_s11227_023_05083_9
crossref_primary_10_1093_jcde_qwac119
crossref_primary_10_1007_s12065_025_01052_8
crossref_primary_10_3390_biomimetics8080576
crossref_primary_10_1080_19942060_2022_2098826
crossref_primary_10_1016_j_asoc_2022_108562
crossref_primary_10_3390_biomimetics10080537
crossref_primary_10_1016_j_engappai_2022_105620
crossref_primary_10_1109_ACCESS_2021_3082026
crossref_primary_10_1016_j_cma_2023_116582
crossref_primary_10_1002_cpe_70060
crossref_primary_10_1111_exsy_12854
crossref_primary_10_1109_ACCESS_2021_3119019
crossref_primary_10_1007_s10922_021_09599_4
crossref_primary_10_1016_j_eswa_2022_118372
crossref_primary_10_1007_s10462_025_11289_5
crossref_primary_10_1080_0305215X_2024_2340054
crossref_primary_10_1016_j_compbiomed_2021_104582
crossref_primary_10_1007_s00500_023_07851_4
crossref_primary_10_1371_journal_pone_0280006
crossref_primary_10_1007_s11227_024_06291_7
crossref_primary_10_1515_mt_2020_0043
crossref_primary_10_1016_j_swevo_2024_101748
crossref_primary_10_1007_s10462_022_10277_3
crossref_primary_10_7717_peerj_cs_1420
crossref_primary_10_1007_s10462_022_10233_1
crossref_primary_10_1016_j_est_2021_103319
crossref_primary_10_1186_s43067_020_00026_3
crossref_primary_10_1007_s00521_020_05610_2
crossref_primary_10_1016_j_cie_2022_108655
crossref_primary_10_1007_s00500_023_08578_y
crossref_primary_10_1038_s41598_025_01033_y
crossref_primary_10_1007_s10462_021_10026_y
crossref_primary_10_1016_j_eswa_2022_117993
crossref_primary_10_1002_cpe_7809
crossref_primary_10_1007_s10489_023_04473_z
crossref_primary_10_1016_j_asoc_2023_110894
crossref_primary_10_1007_s10462_021_10078_0
crossref_primary_10_1109_ACCESS_2020_3030950
crossref_primary_10_1016_j_cma_2021_113916
crossref_primary_10_1007_s00500_022_07389_x
crossref_primary_10_1007_s10586_020_03205_z
crossref_primary_10_1007_s44196_025_00823_6
crossref_primary_10_1007_s13198_023_01857_9
crossref_primary_10_1155_2021_6636918
crossref_primary_10_1007_s13369_021_06513_7
crossref_primary_10_1038_s41598_025_95545_2
crossref_primary_10_1007_s00202_025_03100_z
crossref_primary_10_1016_j_dajour_2023_100251
crossref_primary_10_1016_j_eswa_2022_118831
crossref_primary_10_1109_ACCESS_2023_3234109
crossref_primary_10_1016_j_knosys_2025_113589
crossref_primary_10_1016_j_swevo_2024_101725
crossref_primary_10_1007_s11831_024_10218_z
crossref_primary_10_1016_j_asoc_2022_108656
crossref_primary_10_3390_en15103485
crossref_primary_10_1155_2020_9495281
crossref_primary_10_1155_2021_6639671
Cites_doi 10.1115/1.2912596
10.1016/j.ijepes.2018.01.024
10.1007/s00521-017-2837-7
10.1007/s13369-017-2458-6
10.1007/s10898-007-9149-x
10.1016/j.swevo.2018.02.011
10.1023/A:1008202821328
10.1016/j.eswa.2018.10.050
10.1016/j.apenergy.2009.05.016
10.1016/j.compeleceng.2018.04.009
10.1109/TAP.2007.891561
10.1016/j.swevo.2019.04.008
10.1016/j.asoc.2014.11.003
10.1016/j.eswa.2017.07.043
10.1016/j.knosys.2015.07.006
10.1016/S0045-7825(99)00389-8
10.1145/2480741.2480752
10.1016/j.advengsoft.2016.01.008
10.1016/j.knosys.2015.12.022
10.1016/j.knosys.2018.12.008
10.1007/s00366-011-0241-y
10.1162/106365601750190398
10.1007/s00158-003-0316-5
10.1109/4235.771163
10.1016/j.advengsoft.2013.12.007
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2020.103718
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
ExternalDocumentID 10_1016_j_engappai_2020_103718
S095219762030138X
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c312t-42acb83b5cdfeec1a0f938b2ec290ed875d73bb05a9d9bcfb39e17a528d7b4343
ISICitedReferencesCount 82
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000582241300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0952-1976
IngestDate Tue Nov 18 20:47:30 EST 2025
Sat Nov 29 07:07:31 EST 2025
Fri Feb 23 02:47:15 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Sine cosine algorithm
Population-based algorithms
Exploration–exploitation
Optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-42acb83b5cdfeec1a0f938b2ec290ed875d73bb05a9d9bcfb39e17a528d7b4343
ParticipantIDs crossref_citationtrail_10_1016_j_engappai_2020_103718
crossref_primary_10_1016_j_engappai_2020_103718
elsevier_sciencedirect_doi_10_1016_j_engappai_2020_103718
PublicationCentury 2000
PublicationDate August 2020
2020-08-00
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: August 2020
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Elaziz, Oliva, Xiong (b12) 2017; 90
Mirjalili (b27) 2016; 96
Mirjalili, Lewis (b28) 2016; 95
Yang (b45) 2014
Bhandari (b3) 2018
Nayak, Dash, Majhi, Wang (b30) 2018; 68
Hansen, Ostermeier (b18) 2001; 9
Himmelblau (b19) 1972
Shi, Eberhart (b38) 1998
Yao, Liu, Lin (b46) 1999; 3
Gandomi, Yang (b13) 2011
Storn, Price (b41) 1997; 11
Eberhart, Kennedy (b9) 1995
Hongfeng (b21) 2018
Elaziz, Ewees, Oliva, Duan, Xiong (b11) 2017
Del Ser, Osaba, Molina, Yang, Salcedo-Sanz, Camacho, Herrera (b7) 2019; 48
Mirjalili (b26) 2015; 89
Schutte, Groenwold (b37) 2003; 25
Attia, El Sehiemy, Hasanien (b1) 2018; 99
Meshkat, Parhizgar (b25) 2017
Črepinšek, Liu, Mernik (b43) 2013; 45
Draa, Bouzoubia, Boukhalfa (b8) 2015; 27
Grimaccia, Mussetta, Zich (b15) 2007; 55
Holland (b20) 1992
Sindhu, Ngadiran, Yacob, Zahri, Hariharan (b39) 2017; 28
Das, Suganthan (b5) 2010
Deb (b6) 2000; 186
Gupta, Deep (b16) 2019; 119
Bairathi, Gopalani (b2) 2017
Rizk-Allah (b35) 2018; 5
Turgut (b42) 2017; 42
Mirjalili, Mirjalili, Lewis (b29) 2014; 69
Gupta, Deep (b17) 2019; 165
Karaboga, Basturk (b22) 2007; 39
Eiben, Schippers (b10) 1998; 35
Boyd, Vandenberghe (b4) 2004
Li, Li, Deng (b23) 2017
Wolpert, Macready (b44) 1995
Olorunda, Engelbrecht (b34) 2008
Singh, Singh (b40) 2017; 20
Nowcki (b33) 2011
Liang, Qu, Suganthan (b24) 2013
Gandomi, Yang, Alavi (b14) 2013; 29
Nenavath, Jatoth, Das (b31) 2018
Niknam (b32) 2010; 87
Sandgren (b36) 1990; 112
Gupta (10.1016/j.engappai.2020.103718_b16) 2019; 119
Das (10.1016/j.engappai.2020.103718_b5) 2010
Gandomi (10.1016/j.engappai.2020.103718_b14) 2013; 29
Gupta (10.1016/j.engappai.2020.103718_b17) 2019; 165
Shi (10.1016/j.engappai.2020.103718_b38) 1998
Gandomi (10.1016/j.engappai.2020.103718_b13) 2011
Mirjalili (10.1016/j.engappai.2020.103718_b28) 2016; 95
Bairathi (10.1016/j.engappai.2020.103718_b2) 2017
Meshkat (10.1016/j.engappai.2020.103718_b25) 2017
Holland (10.1016/j.engappai.2020.103718_b20) 1992
Bhandari (10.1016/j.engappai.2020.103718_b3) 2018
Sandgren (10.1016/j.engappai.2020.103718_b36) 1990; 112
Singh (10.1016/j.engappai.2020.103718_b40) 2017; 20
Nowcki (10.1016/j.engappai.2020.103718_b33) 2011
Sindhu (10.1016/j.engappai.2020.103718_b39) 2017; 28
Elaziz (10.1016/j.engappai.2020.103718_b11) 2017
Turgut (10.1016/j.engappai.2020.103718_b42) 2017; 42
Hongfeng (10.1016/j.engappai.2020.103718_b21) 2018
Yao (10.1016/j.engappai.2020.103718_b46) 1999; 3
Del Ser (10.1016/j.engappai.2020.103718_b7) 2019; 48
Liang (10.1016/j.engappai.2020.103718_b24) 2013
Mirjalili (10.1016/j.engappai.2020.103718_b26) 2015; 89
Li (10.1016/j.engappai.2020.103718_b23) 2017
Deb (10.1016/j.engappai.2020.103718_b6) 2000; 186
Mirjalili (10.1016/j.engappai.2020.103718_b29) 2014; 69
Storn (10.1016/j.engappai.2020.103718_b41) 1997; 11
Nayak (10.1016/j.engappai.2020.103718_b30) 2018; 68
Niknam (10.1016/j.engappai.2020.103718_b32) 2010; 87
Nenavath (10.1016/j.engappai.2020.103718_b31) 2018
Attia (10.1016/j.engappai.2020.103718_b1) 2018; 99
Elaziz (10.1016/j.engappai.2020.103718_b12) 2017; 90
Grimaccia (10.1016/j.engappai.2020.103718_b15) 2007; 55
Mirjalili (10.1016/j.engappai.2020.103718_b27) 2016; 96
Draa (10.1016/j.engappai.2020.103718_b8) 2015; 27
Rizk-Allah (10.1016/j.engappai.2020.103718_b35) 2018; 5
Olorunda (10.1016/j.engappai.2020.103718_b34) 2008
Yang (10.1016/j.engappai.2020.103718_b45) 2014
Boyd (10.1016/j.engappai.2020.103718_b4) 2004
Karaboga (10.1016/j.engappai.2020.103718_b22) 2007; 39
Himmelblau (10.1016/j.engappai.2020.103718_b19) 1972
Schutte (10.1016/j.engappai.2020.103718_b37) 2003; 25
Eiben (10.1016/j.engappai.2020.103718_b10) 1998; 35
Črepinšek (10.1016/j.engappai.2020.103718_b43) 2013; 45
Eberhart (10.1016/j.engappai.2020.103718_b9) 1995
Hansen (10.1016/j.engappai.2020.103718_b18) 2001; 9
Wolpert (10.1016/j.engappai.2020.103718_b44) 1995
References_xml – volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: b41
  article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b28
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
– start-page: 259
  year: 2011
  end-page: 281
  ident: b33
  article-title: Benchmark problems in structural optimization
  publication-title: Computational Optimization, Methods and Algorithms
– start-page: 69
  year: 1998
  end-page: 73
  ident: b38
  article-title: A modified particle swarm optimizer
  publication-title: Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence, the 1998 IEEE International Conference on
– year: 1992
  ident: b20
  article-title: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence
– start-page: 1
  year: 2018
  end-page: 8
  ident: b21
  article-title: Dynamic economic dispatch based on improved differential evolution algorithm
  publication-title: Cluster Comput.
– year: 2014
  ident: b45
  article-title: Nature-Inspired Optimization Algorithms
– year: 2004
  ident: b4
  article-title: Convex Optimization
– volume: 55
  start-page: 781
  year: 2007
  end-page: 785
  ident: b15
  article-title: Genetical swarm optimization: Self-adaptive hybrid evolutionary algorithm for electromagnetics
  publication-title: IEEE Trans. Antennas and Propagation
– volume: 119
  start-page: 210
  year: 2019
  end-page: 230
  ident: b16
  article-title: A hybrid self-adaptive sine cosine algorithm with opposition based learning
  publication-title: Expert Syst. Appl.
– volume: 96
  start-page: 120
  year: 2016
  end-page: 133
  ident: b27
  article-title: SCA: a sine cosine algorithm for solving optimization problems
  publication-title: Knowl.-Based Syst.
– volume: 90
  start-page: 484
  year: 2017
  end-page: 500
  ident: b12
  article-title: An improved opposition-based sine cosine algorithm for global optimization
  publication-title: Expert Syst. Appl.
– start-page: 39
  year: 1995
  end-page: 43
  ident: b9
  article-title: A new optimizer using particle swarm theory
  publication-title: Micro Machine and Human Science, 1995. MHS’95, Proceedings of the Sixth International Symposium on
– volume: 99
  start-page: 331
  year: 2018
  end-page: 343
  ident: b1
  article-title: Optimal power flow solution in power systems using a novel Sine-Cosine algorithm
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 89
  start-page: 228
  year: 2015
  end-page: 249
  ident: b26
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowl.-Based Syst.
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b29
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
– volume: 9
  start-page: 159
  year: 2001
  end-page: 195
  ident: b18
  article-title: Completely derandomized self-adaptation in evolution strategies
  publication-title: Evol. Comput.
– start-page: 1128
  year: 2008
  end-page: 1134
  ident: b34
  article-title: Measuring exploration/exploitation in particle swarms using swarm diversity
  publication-title: 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)
– volume: 20
  start-page: 1586
  year: 2017
  end-page: 1601
  ident: b40
  article-title: A novel hybrid GWO-SCA approach for optimization problems
  publication-title: Eng. Sci. Technol. Int. J.
– year: 1972
  ident: b19
  article-title: Applied Nonlinear Programming
– year: 2018
  ident: b31
  article-title: A synergy of the sine-cosine algorithm and particle swarm optimizer for improved global optimization and object tracking
  publication-title: Swarm Evol. Comput.
– volume: 5
  start-page: 249
  year: 2018
  end-page: 273
  ident: b35
  article-title: Hybridizing sine cosine algorithm with multi-orthogonal search strategy for engineering design problems
  publication-title: J. Comput. Des. Eng.
– volume: 35
  start-page: 35
  year: 1998
  end-page: 50
  ident: b10
  article-title: On evolutionary exploration and exploitation
  publication-title: Fund. Inform.
– year: 2010
  ident: b5
  article-title: Problem Definitions and Evaluation Criteria for CEC 2011 Competition on Testing Evolutionary Algorithms on Real World Optimization Problems
– year: 1995
  ident: b44
  article-title: No Free Lunch Theorems for Search, vol. 10
– volume: 48
  start-page: 220
  year: 2019
  end-page: 250
  ident: b7
  article-title: Bio-inspired computation: Where we stand and what’s next
  publication-title: Swarm Evol. Comput.
– volume: 27
  start-page: 99
  year: 2015
  end-page: 126
  ident: b8
  article-title: A sinusoidal differential evolution algorithm for numerical optimisation
  publication-title: Appl. Soft Comput.
– volume: 28
  start-page: 2947
  year: 2017
  end-page: 2958
  ident: b39
  article-title: Sine–Cosine algorithm for feature selection with elitism strategy and new updating mechanism
  publication-title: Neural Comput. Appl.
– year: 2017
  ident: b23
  article-title: An improved sine cosine algorithm based on levy flight
  publication-title: Ninth International Conference on Digital Image Processing (ICDIP 2017) (Vol. 10420, 104204R)
– start-page: 1
  year: 2018
  end-page: 31
  ident: b3
  article-title: A novel beta differential evolution algorithm-based fast multilevel thresholding for color image segmentation
  publication-title: Neural Comput. Appl.
– start-page: 166
  year: 2017
  end-page: 171
  ident: b25
  article-title: A novel weighted update position mechanism to improve the performance of sine cosine algorithm
  publication-title: 2017 5th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS)
– volume: 45
  start-page: 35
  year: 2013
  ident: b43
  article-title: Exploration and exploitation in evolutionary algorithms: A survey
  publication-title: ACM Comput. Surv.
– volume: 186
  start-page: 311
  year: 2000
  end-page: 338
  ident: b6
  article-title: An efficient constraint handling method for genetic algorithms
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 2013
  ident: b24
  article-title: Problem Definitions and Evaluation Criteria for the CEC 2014 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization
– volume: 3
  start-page: 82
  year: 1999
  end-page: 102
  ident: b46
  article-title: Evolutionary programming made faster
  publication-title: IEEE Trans. Evol. Comput.
– volume: 68
  start-page: 366
  year: 2018
  end-page: 380
  ident: b30
  article-title: Combining extreme learning machine with modified sine cosine algorithm for detection of pathological brain
  publication-title: Comput. Electr. Eng.
– volume: 29
  start-page: 17
  year: 2013
  end-page: 35
  ident: b14
  article-title: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems
  publication-title: Eng. Comput.
– volume: 39
  start-page: 459
  year: 2007
  end-page: 471
  ident: b22
  article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm
  publication-title: J. Global Optim.
– start-page: 259
  year: 2011
  end-page: 281
  ident: b13
  article-title: Benchmark problems in structural optimization
  publication-title: Computational Optimization, Methods and Algorithms
– volume: 42
  start-page: 2105
  year: 2017
  end-page: 2123
  ident: b42
  article-title: Thermal and economical optimization of a shell and tube evaporator using hybrid backtracking search—Sine–Cosine algorithm
  publication-title: Arab. J. Sci. Eng.
– volume: 165
  start-page: 374
  year: 2019
  end-page: 406
  ident: b17
  article-title: Improved sine cosine algorithm with crossover scheme for global optimization
  publication-title: Knowl.-Based Syst.
– volume: 112
  start-page: 223
  year: 1990
  end-page: 229
  ident: b36
  article-title: Nonlinear integer and discrete programming in mechanical design optimization
  publication-title: J. Mech. Des.
– start-page: 438
  year: 2017
  end-page: 444
  ident: b2
  article-title: Opposition-based Sine cosine algorithm (OSCA) for training feed-forward neural networks
  publication-title: Signal-Image Technology & Internet-Based Systems (SITIS), 2017 13th International Conference on
– start-page: 145
  year: 2017
  end-page: 155
  ident: b11
  article-title: A hybrid method of sine cosine algorithm and differential evolution for feature selection
  publication-title: International Conference on Neural Information Processing
– volume: 87
  start-page: 327
  year: 2010
  end-page: 339
  ident: b32
  article-title: A new fuzzy adaptive hybrid particle swarm optimization algorithm for non-linear, non-smooth and non-convex economic dispatch problem
  publication-title: Appl. Energy
– volume: 25
  start-page: 261
  year: 2003
  end-page: 269
  ident: b37
  article-title: Sizing design of truss structures using particle swarms
  publication-title: Struct. Multidiscip. Optim.
– start-page: 259
  year: 2011
  ident: 10.1016/j.engappai.2020.103718_b33
  article-title: Benchmark problems in structural optimization
– volume: 112
  start-page: 223
  issue: 2
  year: 1990
  ident: 10.1016/j.engappai.2020.103718_b36
  article-title: Nonlinear integer and discrete programming in mechanical design optimization
  publication-title: J. Mech. Des.
  doi: 10.1115/1.2912596
– volume: 99
  start-page: 331
  year: 2018
  ident: 10.1016/j.engappai.2020.103718_b1
  article-title: Optimal power flow solution in power systems using a novel Sine-Cosine algorithm
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2018.01.024
– volume: 28
  start-page: 2947
  issue: 10
  year: 2017
  ident: 10.1016/j.engappai.2020.103718_b39
  article-title: Sine–Cosine algorithm for feature selection with elitism strategy and new updating mechanism
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-017-2837-7
– volume: 42
  start-page: 2105
  issue: 5
  year: 2017
  ident: 10.1016/j.engappai.2020.103718_b42
  article-title: Thermal and economical optimization of a shell and tube evaporator using hybrid backtracking search—Sine–Cosine algorithm
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-017-2458-6
– year: 1995
  ident: 10.1016/j.engappai.2020.103718_b44
– volume: 35
  start-page: 35
  issue: 1–4
  year: 1998
  ident: 10.1016/j.engappai.2020.103718_b10
  article-title: On evolutionary exploration and exploitation
  publication-title: Fund. Inform.
– volume: 39
  start-page: 459
  issue: 3
  year: 2007
  ident: 10.1016/j.engappai.2020.103718_b22
  article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-007-9149-x
– start-page: 166
  year: 2017
  ident: 10.1016/j.engappai.2020.103718_b25
  article-title: A novel weighted update position mechanism to improve the performance of sine cosine algorithm
– year: 1972
  ident: 10.1016/j.engappai.2020.103718_b19
– start-page: 69
  year: 1998
  ident: 10.1016/j.engappai.2020.103718_b38
  article-title: A modified particle swarm optimizer
– year: 2018
  ident: 10.1016/j.engappai.2020.103718_b31
  article-title: A synergy of the sine-cosine algorithm and particle swarm optimizer for improved global optimization and object tracking
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.02.011
– year: 2013
  ident: 10.1016/j.engappai.2020.103718_b24
– year: 2014
  ident: 10.1016/j.engappai.2020.103718_b45
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 10.1016/j.engappai.2020.103718_b41
  article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008202821328
– start-page: 1128
  year: 2008
  ident: 10.1016/j.engappai.2020.103718_b34
  article-title: Measuring exploration/exploitation in particle swarms using swarm diversity
– volume: 119
  start-page: 210
  year: 2019
  ident: 10.1016/j.engappai.2020.103718_b16
  article-title: A hybrid self-adaptive sine cosine algorithm with opposition based learning
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.10.050
– start-page: 39
  year: 1995
  ident: 10.1016/j.engappai.2020.103718_b9
  article-title: A new optimizer using particle swarm theory
– volume: 87
  start-page: 327
  issue: 1
  year: 2010
  ident: 10.1016/j.engappai.2020.103718_b32
  article-title: A new fuzzy adaptive hybrid particle swarm optimization algorithm for non-linear, non-smooth and non-convex economic dispatch problem
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2009.05.016
– year: 1992
  ident: 10.1016/j.engappai.2020.103718_b20
– volume: 68
  start-page: 366
  year: 2018
  ident: 10.1016/j.engappai.2020.103718_b30
  article-title: Combining extreme learning machine with modified sine cosine algorithm for detection of pathological brain
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2018.04.009
– year: 2010
  ident: 10.1016/j.engappai.2020.103718_b5
– year: 2017
  ident: 10.1016/j.engappai.2020.103718_b23
  article-title: An improved sine cosine algorithm based on levy flight
– start-page: 1
  year: 2018
  ident: 10.1016/j.engappai.2020.103718_b3
  article-title: A novel beta differential evolution algorithm-based fast multilevel thresholding for color image segmentation
  publication-title: Neural Comput. Appl.
– volume: 5
  start-page: 249
  issue: 2
  year: 2018
  ident: 10.1016/j.engappai.2020.103718_b35
  article-title: Hybridizing sine cosine algorithm with multi-orthogonal search strategy for engineering design problems
  publication-title: J. Comput. Des. Eng.
– volume: 55
  start-page: 781
  issue: 3
  year: 2007
  ident: 10.1016/j.engappai.2020.103718_b15
  article-title: Genetical swarm optimization: Self-adaptive hybrid evolutionary algorithm for electromagnetics
  publication-title: IEEE Trans. Antennas and Propagation
  doi: 10.1109/TAP.2007.891561
– start-page: 438
  year: 2017
  ident: 10.1016/j.engappai.2020.103718_b2
  article-title: Opposition-based Sine cosine algorithm (OSCA) for training feed-forward neural networks
– volume: 48
  start-page: 220
  year: 2019
  ident: 10.1016/j.engappai.2020.103718_b7
  article-title: Bio-inspired computation: Where we stand and what’s next
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2019.04.008
– volume: 27
  start-page: 99
  year: 2015
  ident: 10.1016/j.engappai.2020.103718_b8
  article-title: A sinusoidal differential evolution algorithm for numerical optimisation
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.11.003
– volume: 90
  start-page: 484
  year: 2017
  ident: 10.1016/j.engappai.2020.103718_b12
  article-title: An improved opposition-based sine cosine algorithm for global optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.07.043
– volume: 89
  start-page: 228
  year: 2015
  ident: 10.1016/j.engappai.2020.103718_b26
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.07.006
– start-page: 145
  year: 2017
  ident: 10.1016/j.engappai.2020.103718_b11
  article-title: A hybrid method of sine cosine algorithm and differential evolution for feature selection
– start-page: 1
  year: 2018
  ident: 10.1016/j.engappai.2020.103718_b21
  article-title: Dynamic economic dispatch based on improved differential evolution algorithm
  publication-title: Cluster Comput.
– year: 2004
  ident: 10.1016/j.engappai.2020.103718_b4
– volume: 186
  start-page: 311
  issue: 2–4
  year: 2000
  ident: 10.1016/j.engappai.2020.103718_b6
  article-title: An efficient constraint handling method for genetic algorithms
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(99)00389-8
– volume: 45
  start-page: 35
  issue: 3
  year: 2013
  ident: 10.1016/j.engappai.2020.103718_b43
  article-title: Exploration and exploitation in evolutionary algorithms: A survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/2480741.2480752
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.engappai.2020.103718_b28
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 96
  start-page: 120
  year: 2016
  ident: 10.1016/j.engappai.2020.103718_b27
  article-title: SCA: a sine cosine algorithm for solving optimization problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.12.022
– start-page: 259
  year: 2011
  ident: 10.1016/j.engappai.2020.103718_b13
  article-title: Benchmark problems in structural optimization
– volume: 165
  start-page: 374
  year: 2019
  ident: 10.1016/j.engappai.2020.103718_b17
  article-title: Improved sine cosine algorithm with crossover scheme for global optimization
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.12.008
– volume: 29
  start-page: 17
  issue: 1
  year: 2013
  ident: 10.1016/j.engappai.2020.103718_b14
  article-title: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-011-0241-y
– volume: 9
  start-page: 159
  issue: 2
  year: 2001
  ident: 10.1016/j.engappai.2020.103718_b18
  article-title: Completely derandomized self-adaptation in evolution strategies
  publication-title: Evol. Comput.
  doi: 10.1162/106365601750190398
– volume: 25
  start-page: 261
  issue: 4
  year: 2003
  ident: 10.1016/j.engappai.2020.103718_b37
  article-title: Sizing design of truss structures using particle swarms
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-003-0316-5
– volume: 3
  start-page: 82
  issue: 2
  year: 1999
  ident: 10.1016/j.engappai.2020.103718_b46
  article-title: Evolutionary programming made faster
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.771163
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.engappai.2020.103718_b29
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 20
  start-page: 1586
  issue: 6
  year: 2017
  ident: 10.1016/j.engappai.2020.103718_b40
  article-title: A novel hybrid GWO-SCA approach for optimization problems
  publication-title: Eng. Sci. Technol. Int. J.
SSID ssj0003846
Score 2.5413172
Snippet Real-world optimization problems demand an algorithm which properly explores the search space to find a good solution to the problem. The sine cosine algorithm...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103718
SubjectTerms Exploration–exploitation
Optimization
Population-based algorithms
Sine cosine algorithm
Title A memory guided sine cosine algorithm for global optimization
URI https://dx.doi.org/10.1016/j.engappai.2020.103718
Volume 93
WOSCitedRecordID wos000582241300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Li9swEBZttode-i67faFDb0ZpLNmVdOghlJS-WBZ2W3IzkiwnWTZOSOKy_fcdPex46cK2lF6cMKAo0XyMZibfzCD0OlMKrrm8JFamFclEpQnEIYyYCpx9Y2lqfEL_-1d-fCymU3kS6bZbP06A17W4vJTr_6pqkIGyXensX6i7-1AQwHtQOjxB7fD8I8WPk6Vjz_5MZs2iBHfSEdsTs_Iv6mK22ix286VnF8ZmICuwGstYjnklUb9vVZj0_-f21IGN5xj5iR-9pp4dm6dZB6_0dN7ouVp27rK1fh7el2bbdMKJ49W6yDxkCRzFEsL35GTYz0jQPR8upsnaUpk9LynkGylJJY99r4O1FZwRx7Htm-MwMPE3yx6SDOdDW8_gJ6vF0O3sWwZE-321a_ap289tR13Mx8T0NjqgPJdigA7GnybTz911zUSo5mq_X6-M_Prdrvdgel7J2QN0L4YTeBxg8BDdsvUjdD-GFjga7i2I2ukdrewxejfGASg4AAU7hOAAFNwBBQNQcAAK7gPlCfr2YXL2_iOJwzSIYSndkYwqowXTuSkra02qRpVkQlNrqBzZEsLWkjOtR7mSpdSm0kzalKucipJrV378FA3qVW0PEX4rs9Lkkpoqy8DkpxruAJtxLiRIlRwdobw9oMLETvNu4MlF0VIKz4v2YAt3sEU42CP0plu3Dr1Wblwh2_MvoscYPMECYHPD2mf_sPY5ursH_gs02G0a-xLdMT92i-3mVUTYL2eOlgY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+memory+guided+sine+cosine+algorithm+for+global+optimization&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Gupta%2C+Shubham&rft.au=Deep%2C+Kusum&rft.au=Engelbrecht%2C+Andries+P.&rft.date=2020-08-01&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.eissn=1873-6769&rft.volume=93&rft_id=info:doi/10.1016%2Fj.engappai.2020.103718&rft.externalDocID=S095219762030138X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon